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Optimal auctions in a general model of
identical goods.

Paulo Klinger Monteiro*'
EPGE

Abstract

In this paper I study optimal auctions of identical goods. There is
synergy in the number of goods and independent bidder’s signals.

1 Introduction.

In this paper I study optimal simultaneous auctions of identical goods in an
asymmetric bidders setting. My approach follows Myerson(1981) paper. The
papers of Maskin and Riley(1989) and Branco(1996a-b) also study optimal
auctions of identical goods. Indeed, Maskin and Riley suppose each bidder
has a utility function U(q,z) where z is the bidder signal and ¢ € R} is
the quantity received. Thus U(1,z) is the utility of one unity of the good,
U(2,x) is the utility of two units and so on. If the good is indivisible! the
meaning of (say) U(5/4,x), is the expected utility of receiving one unit for
sure and another unity with probability 5/4 —1 = 1/4. However Maskin and
Riley’s hypotheses preclude synergy: the topic of this paper.? The difference
between the utility of several objects together and the sum of each objects’
utility is called synergy.®> For example in Krishna and Rosenthal (1996) and
in Branco(1996a) the synergy is a positive constant. I allow a much more
general form of synergy and even negative synergy up to a certain amount.

*I acknowledge the financial support of a Guggenheim fellowship. This paper was born
during my fellowship at CORE/Belgium.
1T acknowledge the comments of Flivio Menezes.



The general existence of optimal auctions was studied by Page(1992).
However I emphasize here an explicit characterization of the auction. This
is of course possible only in very restrictive conditions. The main restriction
in this paper, besides identical goods are independent bidders’ signals. The
general case seems very difficult. Myerson paper has still not been generalized
to include dependent bidders’ signals.

The hypothesis of identical goods has been made in I. Gale(1996). How-
ever his bidders’ utility is dependent on the utility level of the other bidder.*
He obtains that it is always better to sell in bundles. I prove that if the
synergy is sufficiently high and doesn’t increase too fast then it is best to sell
in bundles.

2 Notation and basic definitions.

The set of bidders is I = {1,2,...,/}. The number of objects to be sold
at auction is K > 1. Bidder’s i signal of each object, ¢ = ... = z% is
the realization of the integrable random variable X* : Q@ — R,, defined
on the probability space (€,.4, P). The valuation of bidder i is a function
U': R, x{0,1,..., K} — R. Tsuppose U*(z,0) =0, U(z,1) = z and that
Ui(x) = U'(z,k) is increasing.” Therefore if the realization of X is z and
the number of objects received is k, bidder i has valuation U}(z). I suppose
Ui(-) differentiable® with a bounded derivative. Therefore there exists an
L > 0 such that |Ui(z) — Ui(y)| < L|z — y| for every k, i and z,y > 0. It
is convenient also to include the auctioneer as bidder number 0 and define
B = TU {0}. The distribution of X* is F; with density f;(z). I suppose
that {x > 0; f;(x) > 0} is an interval, Y, of the form Y; = [m;, n;) where
m; > 0 and n; < oo. The random variables X!, ... X! are independent.
The joint distribution of X = (X' ... X7) is therefore F' = IL;c|FV with
density f(z) = Ijc1f;(z;). The distribution of (X! ... X1 X . XT)
is P, = de\{i}Fj with density f_;. The set Y = Il;Y; is the set of all
possible bidders’ signals. For each vector y = (yy,...,y;) I define the vector
Y—i = (Y1, Yi-1,Yit1,- - -, Y1) obtained by the removal of the ith coordinate
of y. Define also y = (y;,y—;). The set of allocations of objects among bidders
is A ={ae{0,1,... K%Y, sa =K} Ifa€ A the Bidder b gets a,
objects. For each k = 0,1,..., K define the set of allocations that gives
k objects to b, Ay, = {a € Aj;a, = k}. Define S(A) = {(qu)aca;qa =



0,> 1caa=1}.

3 The model.

The auction will proceed in the following way:

1. The auctioneer publicly announces the functions’ g : ]Rfr — S(A) and
P=(P,. .., PH)P:AXR, =R 1<i<I;

2. Each bidder knowing his signal X* announces a number y; > 0 privately
to the auctioneer. The auctioneer forms the vector y = (y1,...,¥r);

3. The allocation a € A is drawn with probability ¢,(y) = q(y)(a),a € A;

4. Bidder i receives a; objects and pays P'(a,y).

As in Myerson(1981), pages 62-63, the direct mechanism (g, P) will be
chosen among the direct mechanisms that satisfy individual rationality and
incentive compatibility constraints.

To shorten several inequalities below I define for each (g, P) the function

Ti(c) = / S guley o) (Ui(e) = Piey ) dF sy ) c€ Ry (1)
and
Qi (e) = / Goley_)AF 4 (y_2). (2)

Definition 1 1. The direct mechanism (q, P) is individually rational if

Ti(y:) > 0 for all y; > 0. (3)

2. The direct mechanism (q, P) is incentive compatible if for every y;,y: >
0,

Tiy:) > /an(yé,yi)(Uéi(yi) — Pa(yiy-i))dF i(y-). (4)

acA



The right hand side of the inequality above is the expected utility of bidder
i if his signal is y; and v, is announced to the auctioneer. The auctioneer
problem is to choose (g, P) satisfying items (3) and (4) that maximizes:

/an )Y Pily)dF(y

acA i€l

To begin the study of inequalities (3) and (4) note that, given (q,P), by
defining P'(y) = > ca qa(y)PZ(y) a new pair of direct mechanisms, (g, P),

a

is obtained with P’ independent of a that gives the same profit.

Remark 1 The function Q°, may not be monotonic. The reason is simple:
Suppose there are two objects and a allocates one object to i. If the bid of 1,
¢, increases, i will eventually receives two objects. Therefore Q' eventually
decreases.

The following lemma is similar to a lemma in Myerson. However since
the functions @’ may not be monotonic my proof is by necessity different.

Lemma 1 If T; is defined by (1) then

1. T; is a primitive: For almost every ¢ > 0, T;(c) = T;(0) + [, T/ (z)d=
where T is defined almost surely;

2. T(e) = o (UL ()QL(E) for almost every ¢ > 0;
3. [ Tilwy)dFi(w:) = Ti(0) + [(1 = F*(2)) Y aea (Us,) (2)Qu(2)dz
Proof. From (4) it is true for every b, ¢ > 0 that:

Ti(e) = Ti(b) 2 ) (Ui, () = U, (0)QL(0) = —Lle—0] Y Qu(v).  (5)

acA acA

Since Y ca QL(0) = [ > ca a(b,y_i)dF_( = [dF_;(y_;) = 1 we con-
clude that T;(¢) — T;(b) > —L|c — b). Changlng places between b and ¢ we

obtain T;(b) — T;(¢) > —L|c — b|. Therefore |T;(c) — T;(b)| < L|c — b|. So T;
is Lipschitzian and by Saks(1964) theorem 15.7 page 155, T} is a primitive.



To prove the second part suppose & > ¢, ¢ a point of differentiability of T;.

Then Ti() - Ti(0) Ui (z) — U (c)
e T Z

Tr—c Tr—c
acA

Therefore passing to the limit z — ¢ we get T/(c) > > A (UL ) (c)Q%(c).
Analogously we prove the other inequality. To prove item (3) we apply
Tonellis’ theorem in the second integral below:

Qal(c)-

/T( )dF,(z // T!(c)dedFy(z) = T(0)+/(1—Fi(c))T;(c)dc.

Now using item 2 we finish the proof. QED

Lemma 2 The auctioneer problem is equivalent to mazximize

i 1_F< ) i
=D it /an {Z <Uai(yz-) ) ———(Us,) (y )>}f(y)dy (6)

el acA zel
subject to:
q(y) € S(A) for every y € R:;
a; > 0;
/ (W L(2)dz > (UL ()QL(D) for allb,c>0. (7)
acA acA

Proof. Suppose (g, P) is a direct mechanism satisfying the incentive com-
patibility and individual rationality constraints. If 7; is defined as in (1) then
from lemma 1, item 2, and the incentive compatibility constraints we obtain
(7). The individual rationality constraints imply 7;(0) > 0. From lemma 1,
item 3 we have

[ Pwaro) - / < / Pi<y>sz-<yz->> A () =

/> ~ Ti(w)) dFi() =

acA



[ U Qi) 10— [(1= FE) Y W) ()i

acA acA

Therefore the auctioneer profit is [, ; P'(y)dF(y) =
-2+ X S [ tmatare - [0 rE@EE:E] .

This proves (6) with a; = T;(0). Reciprocally suppose g and «; > 0 satisfy
the restrictions (6) and (7). Let us define P* by

= > Ua(wi)aa(v) / > qu(z,y-) (UL (2)dz — a.

acA acA

Now note that

/(%qa<y>Uéi(yi) —Pi(y)> ;AU; Y:)Q /PZ( Jab-i(y-:) =
o // N Gy ) (UL (2)dz dFo(y—) = o / S Qi)

acA acA

Therefore the individual rationality constraint follows from «a; > 0. To verify
the incentive compatibility constraints fix i € I and define v = (v}, y—;):

/(Zq VUL (i) Pi(y’)> dF;

acA

= Quw)UL (vi) - /Pi(y’)sz-(yz)Z

acA

> QL) (U () — Ui ( (ZQ WUz () — /Pi(y’)dFi(yi)> <
/ ZQZ )(UL) dz—l—/ ZQZ Y(UL) (2)dz + oy =

Yi acA acA
/ > QW Gz o= [ (Z WU, () — Pl‘<y>> AF o(y ).
acA acA
The profit can be verified as in the proof’s beginning. QED
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Remark 2 The lemma 2 generalizes Myerson’s revenue equivalence theorem.
The theorem of Engelbrecht-Wiggans(1988) is not applicable here since its
differentiability hypothesis is not true. For example the price formula for the
one bidder case (see equation 18 below) is not recoverable from its derivative
as his proof needs.

A few definitions are necessary for the main theorem enunciate. When-

ever y € Y; define r;(y) = %;()y) For each k and i define h}(y) = Ui (y;) —

7:(4:)(UL) (). If a € A the auctioneer revenue given yis ha(y) = >, h?. (y).
The set of maximizers of h(-,y) is

A(y) ={a € A;ho(y) > hy(y) for all v € A}.

The set of maximizers a € A(y) which minimizes the number of goods de-
livered by the auctioneer is

A(y) = {a € A(y); Zaj < Zvj for all v € A(y)}.

jel gel
The probability that bidder i receives k objects is g;;(y) = Y acA, q.(y).

Theorem 3 (Optimal auction of identical goods.) Suppose for everyi €
Iandy cY,; that

1. For every l >k, hi(y) — hi(y) is either strictly increasing or constant.
2.y, — Tl(yl) 18 strictly increasing;
3. (Uk) (v) = Uk 1) (y) 2 - 2 (U1)'(y) = 1 for every y > 0.

Then the optimal auction (q, P) is the following:

#Al(y) if a€Ay) andy €Y,
qa(y) = 1 if a=0andyeRL\Y; (8)
0 otherwise.

and P* is given by

N-y <Uk (i )alo) — [ yi(U,:‘>’<z>qz-k<z,yi>dz> NG

k=1



Remark 3 Since hi(y) = y; — ri(y), holy) = 0 the hypothesis (2) in the
theorem is really a strengthening of hypothesis (1) for 1 =1, k = 0. Hypoth-
esis (1) will imply that the number of goods delivered to a bidder does not
decreases with his bid.

Proof. Choose o; = 0 for every i. It is clear from (6) that (8) gives the
greatest expected profit possible. To verify (7) define for each k:

#(A(y) NAx)
#A(y)

It follows from (8) that ¢z (y) = #;x(y). I will prove for every y ; and b,¢ > 0
that J > H where

for1 <k <K.

tir(y) =

:/ Z (U ()tir(z,y_s)dz and H = Z (U (c) — UL (D)) tir (b, y_s).

b k= k=1

From J > H, we obtain (7) by integration in dF;. Define I}, = {2

Yiiti(z,9-5) > 0}. Then from lemma 4 below there exists g = 0 <
. < zxg < gy = n; such that (zg,2541) C I C |2, 2p4q) for k

0,1,..., K. To prove that J > H suppose first that b < ¢. There exists a

unique [ such that b € [x;, 111). We have that

Il IA m

1= [ Sz [ Z (T (Y (2)dz = Ui(e) = T0)
b k=
Now z
H <Y (Ui(c) = Ui 0)ta(b,y-s) = Uj(e) = Ui (b) < J.
k=1
The case b > c is treated analogously. QED

Remark 4 The mechanisms (8,9) may be interpreted as follows: The auc-
tioneer keeps the objects if y € Y. Ify € Y the auctioneer finds the allocation
a € A that mazimizes ), hi(y). Among those allocations he chooses the al-
locations that deliver the fewest numbers of objects. He chooses among those
with equal likelihood. This is (8). From the characterization in lemma 4 we
see that the price paid by the Bidder is his valuation for the smallest possible
bid that will still give him the same number of objects.

8



Lemma 4 The set I = {z € Y;;ti(z,y5) > 0} is an interval, possibly
degenerated such that t;x(z,y—;) = 1 for all z € int(ly,). Moreover the interval
Iy is to the left of the interval Iy 4.

Proof. Suppose a < c are two points of [;. I will prove that for every
be(a,c)tiy(b,y—;) =1. There exists u® € A(a,y_;) and u® € A(c,y_;) such
that uf = uf = k. Therefore we have that

R (a) + Z h] ( ;) > hZ Z hj (y;) for every w € A (10)
jel\{z} jel\{z}

and

hi(c) + Z hl. ( i) > hiy, () + Z hzuj(yj) for every w € A. (11)
jel) jeni

Choosing w = »° in (10) and w = u® in the inequality (11) we obtain that
Ejd\{i} hla(y;) = Ejd\{i} hl.(y;). For any w € A such that w; < k we have
from (10) and hypothesis (1) of the theorem that

PO+ Y he(ys) = B, (0) + Y b (s): (12)

jel\{i} Jel{i}

Analogously if w; > k we use (11) to conclude (12) for every w € A. Hence
u® € A(b,y_;). I omit the proof that u® € A(b, y_;). A reasoning analogous to
the above using inequality (10) shows that for every I < k; A;NA(b,y_;) = 0.
Also using (11), A;NA(b,y ;) = 0ifl > k. Hence A(b,y_;) = AyNA(Db,y ;)
and t;5(b,y_;) = 1. From this also follows that [ is to the left of I;y;. This
ends the proof. QED

Remark 5 Iltem 2 is an usual reqularity assumption. Item 1 is very gen-
eral. It permits the possibility that a group of bidders demands fewer than K
objects. For example a group wants at most one object, another two and so
on.

Remark 6 The pricing farmula (9) is nOt umque What matters for the
auctioneer revenue 18 P (v;) = [ Pi(y) y_i). In particular it is easily
verified that (q, Pl, e ,PI) s an Optzmal mecham'sm and s an all-pay auc-
tion. In other words: there is always an all-pay optimal auction. I chose (9)
because it s analogous to Myerson’s equation 4.8, page 64, and has the same
interpretation he gives on page 67.



Corollary 5 Suppose K = 2. In the optimal auction the objects are sold in
a bundle if

Us() = ri(2)(U3) () > 2z — ri(

(
Proof. If i # j, hi(y;) > 0 and 1J(y;) > 0 it is true that hi(y,) + hi(y;) <
2max{ 1 (y;), W (y;)} < max{hi(y;), M(y;)} it follows that no a € A such
that a; = 1 = a; maximizes h(v,y). QED

)) whenever x — r;(z) > 0.

v (yi)dF(y). 1t in-

Corollary 6 The auctioneer revenue is [ maXeea »
creases with 1.

ZE]I

Proof. The revenue formula is immediate from equation 6 and the definition
of ¢. Tt is increasing since the maximum increases with [ and f dFr1(yr) =

1.

4 The optimal auction in particular cases

In this section I consider some particular cases to make it easier to understand
the optimal auction.

4.1 The one bidder case.

It is interesting to compare the single bidder optimal auction when there
are several objects to sell. Two objects will give the general idea. Suppose
therefore that K = 2, I = {1} and Y; = [0,1]. Define §(z) = Uj(z) and
r(z) = r1(x). Suppose also that k(z) = Us(z) —r(z)(Us) (z) — (z—r(x)) and
x — r(x) are strictly increasing. There exist xg,p € [0,1] such that k(p) =0
and zg = r1(zg). For definiteness I suppose 0 < 9 < p < 1. The optimum
probabilities are:

u=0 and x < xg;
qu(z)=1if { u=1 and =z € (0,p;
u=2 and z € (p1].

Let’s calculate the bidder’s payments. We have
P(r) = Fo(x) = Pi(x) = Pa(x) = $Q1($)+5($)Q2($)—/ (@1(2)+6'(2)aa(2))dz
0

10



Therefore
0 if < x

P(z) =< xo if zo<x<p; (13)
2o+6(p)—p if p<z<l1.
And the auctioneer revenue is 2oP(zo < X < p) + (2o + 6(p) — p)P(p < X).

4.2 An example.

In this section the optimal auction is analysed in a particular case in which the
synergy is negative. I suppose K =2, [ =2 and U'(z,2) = az, 1 < a < 2.
The distribution of signals is uniform in [0, 1] for each bidder i = 1,2. Let us
verify the hypotheses of theorem 3. Since r;(y) = 1 —y we have that h’(y) =
2y — 1 and hi(y) = a(2y — 1). Ttems 1 and 3 of theorem 3 are true if a > 1.
The set of allocations is A = {(ag,a1,a2);a, € {0,1,2},a0 + a3 + ay = 2}.
The auctioneer wants to maximize h,(y) = ha(yl,yQ where

( 0 if a=(2,0,0),
(

)
2,0
1.1

(1.0,
0.1
0,2
0,0

2y1 — 1 lf a = ) 70)7
B 2y2 —1 if a= 1)7
ha@) - 2<y1 + Yo — 1) if a= ( ) 71)7
a(2y1 — 1) if = ( ) 70)7

2

L a2y —1) if a—(, ).
So the auctioneer keeps the objects if y; < 1/2, y5 < 1/2. If y4 = 1/2 and
Y2 < 1/2 the auctioneer keeps the objects with probability 1/3, deliver one
object to Bidder 1 with probability 1/3 and deliver two objects to Bidder 1
with probability 1/3. The auctioneer may not deliver the objects in a bundle:
he delivers one object to Bidder 1 and one to Bidder 2 if

Y1 22—« 2—«
> 1/2 and — > Yy > ———— — Dys.
% /2 an w_1 24_92 ¥ 5 + (= Dy

Let us calculate the Bidder 2 payment if y; > 1/2, yo > 1/ 2 We have

I

that Bidder 2 receives one object for sure if(and only if) - — 2a S >y >
T + (@ — 1)y1. He receives two objects if 3, > = — 22020‘2. Hence his
payment is:
L4 (a— Dy if 2y (=D,
Py(y) = , ,
C : C
T T ey ity >0 =55

11



4.3 The optimal auction in the symmetric case.

It may help to understand the optimal auction to consider the case when there
is (ex-ante) symmetry among bidders. Therefore let me suppose that F* = F'!
and U’ = U! for every i = 2,...,I. Define r(z) = r(z), hy(z) = hi(x)
and Up(x) = UNz), k = 1,..., K. Define also X(!) the greatest value of
{X' ..., X"} and X® the second greatest and so on, X®) being the Kth

greatest.®Then the following is true:

Corollary 7 (The symmetric case) Suppose that h; — hy is strictly in-
creasing if | > k and that x — r(z) is strictly increasing. Then the optimal
auction allocates the objects accordingly to the greatest number below:

hy (X)) one bidder receives K objects,
hg 1(XDY 4 hy(XP) one bidder receives K — 1 objects
and one bidder one object,
hi 1 (XM)) ezactly one bidder receives K — 1 objects,
hi—o(XM) + hy(X @) one bidder receives K — 2 objects

and one bidder 2 objects,

hi o(XM) + h (X @) 4+ by (X®))  one bidder receives K — 2 objects
and two bidders 1 object,

and so on. ..

For example if there are two objects(K = 2) the auctioneer chooses the
allocation that maximizes

Up(X D) = r(XW)(U5) (X D); (14)
XW — (XD 4 XO — (X @), (15)
X® — (XM and (16)

0. (17)

The auctioneer keeps the objects if (17) is the greatest number. Deliver the
objects separately if (15) is the greatest and so on.

Remark 7 (Efficiency) We see from (14,15,16,17) that the optimal auc-
tion allocation does not mazximize social welfare. For example the objects are
not always delivered. Branco(1996a) shows’for every bounded distribution
that the optimal auction is not (ex-post) efficient.

12
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Footnotes

1. Most of the time I will call an indivisible good an object.

2. For example U(2,z) < 2U(1,z) with Maskin and Riley’s hypotheses.

3. Le. U(2,z) —2U(1, z).

4. He studies the selling of licenses in a production game with two partic-

ipants. Here I suppose the bidders are consumers.

The function f : R — R is increasing if z < y = f(z) < f(y). It is
strictly increasing if x <y = f(x) < f(y).
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6. It is enough to suppose U/ (-) absolutely continuous.

7. Henceforward called direct mechanisms.
8. It is possible that X® = X &+1),

9. He supposes additive valuations.
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