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Abstract

This paper considers least absolute deviations estimation of a regression model
with multiple change points occurring at unknown times. Some asymptotic re-
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1 Introduction

This paper considers the estimation of a multiple-regime regression in which the regime switch

points are unknown. A common method of estimation is Gaussian maximum likelihood or

the least squares method (e.g., Quandt 1958). In this paper we consider the method of least

absolute deviations (LAD). As is well known, for heavy tailed distributions, LAD is more

efficient than least squares (LS). In the change point context, efficiency gains can be realized

not only for the estimated regression parameters, but also for the estimated change points.

The purpose of this paper is to study the consistency, rate of convergence, and asymptotic

distributions for the estimated change points. We also study estimating the number of change

points based on a Bayesian information type criterion (BIC). Results are obtained allowing

the number of change points to increase with the sample size.

Estimating multiple change points typically require enormous computation. As a result,

computational feasibility becomes an important concern in selecting estimation methods. Two

additional factors reinforce this concern. First, multiple change points typically occur in large

samples. Second, even if there is only a single change point, multiple ones must be computed

when BIC criterion is used in estimating the true number. In addition to its robust properties,

LAD is computationally feasible, since optimization can be carried out via linear programming.

In our Monte Carlo simulations, the BIC criterion is calculated up to 10 potential change

points, and optimal solution is achieved quickly. In this regard, LAD has certain advantages

over other robust procedures.

The LAD method has not been analyzed in the literature for estimating multiple change-

points models. A related work is Bai (1995), who studies the method for a single change

point. A different framework is needed for more than one change. In the case of a single

change point, each of the two regimes has one fixed and known boundary; the first regime has

its lower boundary known (i.e. first observation) and the second regime has its upper boundary

known (i.e., the last observation). For multiple changes, each middle regime has boundaries

completely unknown. The analysis must take into account the possibility that a hypothesized

regime may not have overlapping observations with the true regime. In general, the objective

function (sum of the absolute deviations) is a stochastic process indexed by a vector of integers

[see (2) below]. This vector of integers must be allowed to take all possible combinations.
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Consequently, the analysis of multiple change points requires a different framework from that

of a single change point. The purpose of this paper is to establish the underlying theory for

the LAD method in the context of multiple change points. Furthermore, unlike the existing

literature, we abandon the assumption that each regime spans a positive fraction of the total

sample. In addition, we allow the number of change points to be unbounded. This setting needs

a different argument from that of a bounded number of change points, a further departure

from the existing framework.

There is a large body of literature on the change point problem, see the survey papers

of Shaban (1980), Zacks (1983), and Krishnaiah and Miao (1988). The inference on a sin-

gle change point has received the most attention, e.g. Picard (1985), Bhattacharya (1987),

Kim and Siegmund (1989), Dümbgen (1991), Brodsky and Darkhovsky (1993), Gombay and

Horváth (1994), Horváth (1995), Horváth et al (1997), and Hušková (1996a). A procedure

based on M-estimation is proposed by Hušková (1996b) for the case of no covariates. For mul-

tiple changes, Yin (1988) proposes a moving-window estimation of change points occurring in

a nonparametric function of time. Yao (1988) proposes the Schwarz criterion for estimating

the number of change points in a sequence of normal means. Yao and Au (1988), and Huang

and Chang (1993) consider the least squares estimation of change points in a sequence of

random variables without covariates. Bai and Perron (1998) study the problem of estimating

and testing multiple change points in regression models.

All above studies impose the restriction that each regime occupies at least a positive

fraction of the total sample. That is, the length of each regime is O(n), where n is the sample

size. This conventional restriction is removed in this paper. We also allow the number of

change points to grow as the sample size increases. Meanwhile, we consider multiple regression

models, as well as a different estimation technique, namely LAD.

The rest of this paper is organized as follows. Section 2 gives the assumptions and main

results. Rates of convergence and asymptotic distributions are derived. In section 3, the issue

of determining the number of change points is considered. Section 4 provides some numerical

results, including computational issues, Monte Carlo simulations and an application with real

data. Section 5 derives some preliminary results used for the main theorems and Section 6

provides the proofs.
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2 Notation, Assumptions, and Main Results

Consider the following (m+ 1)-regime regression model:

yi = x′iβ1 + εi, i = 1, 2, ..., n1,

yi = x′iβ2 + εi, i = n1 + 1, ..., n2,

...
... (1)

yi = x′iβm+1 + εi, i = nm + 1, ..., n,

where yi is the dependent variable, xi (p× 1) is a vector of regressors, and εi is a disturbance.

The βj (p× 1) are unknown parameters. This (m+ 1)-regime regression has m change points,

n1, ..., nm, which are also unknown.

Let β0 = (β0
1 , ..., β

0
m+1) denote the vector of true regression parameters and let (n0

1, ..., n
0
m)

denote the vector of true change points. Let P = (n1, ..., nm) denote a partition of the integers

1,...,n-1, such that n1 < · · · < nm. Let β̂(P) = (β̂1(P), ..., β̂m+1(P)) denote the LAD estimator

of β0 for a given partition P. Namely,

β̂(n1, ..., nm) = argmin
β

m+1∑
j=1

nj∑
i=nj−1+1

|yi − x′iβj |,

where n0 = 0 and nm+1 = n. Or equivalently, β̂j(P) minimizes
∑nj
i=nj−1+1 |yi − x′iβj | (j =

1, ...,m+ 1). Denote by Sn(n1, ..., nm), the resulting sum of absolute values of residuals,

Sn(n1, ..., nm) =
m+1∑
j=1

nj∑
i=nj−1+1

|yi − x′iβ̂j(P)| =
m+1∑
j=1

inf
φ

nj∑
i=nj−1+1

|yi − x′iφ|

 . (2)

The estimated change points, (n̂1, ..., n̂m), are defined as a set of integers n1, ..., nm, which

minimizes Sn(n1, ..., nm). Finally, the estimators of regression parameters are defined as

β̂ = (β̂1, ..., β̂m+1) = β̂(n̂1, ..., n̂m).

We shall study the asymptotic behavior of (n̂1, ..., n̂m) and β̂.

In what follows, we shall use |y| to denote the Euclidean norm of y, i.e. |y| = (
∑p
i=1 y

2
i )

1/2

for y ∈ Rp. All limits are taken as n converges to infinity unless stated otherwise. We now

state the assumptions:
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A1. For each j, the length of regime j satisfies n0
j − n0

j−1 ≥ c1n
3/4 for some c1 > 0. The

number of change points satisfies m = m(n) < c2n
(1/4)−b for some c2, b > 0.

A2. The parameter vector β0 is an interior point of a bounded set of Rp(m+1). In addition,

min1≤j≤m(n)+1 |β0
j+1 − β0

j | ≥ c > 0, where c does not depend on n.

A3. The regressors xi are uniformly bounded, i.e., there exists K <∞ such that |xi| ≤ K

for all i.

A4. The matrices 1
k

∑n0
s+k
n0
s+1 xix

′
i and 1

k

∑n0
s

n0
s−k

xix
′
i (s = 0, ...,m+ 1) converge in probability

to some non-random positive-definite matrices (not necessarily the same) as k increases.

A5. The disturbances εi are i.i.d. random variables with a zero median and a positive

continuous density, f , at the neighborhood of zero. Moreover, εi is independent of xk for all i

and all k.

The assumptions on the number of change points and the regime length are not the weakest

possible. They can be improved upon. For bounded m, the requirement of n0
j+1−n0

j ≥ c1n3/4

can be weakened to n0
j+1−n0

j > c1n
(1/2)+δ for some δ ∈ (0, 1/2). The assumption of a bounded

parameter set in A2 is restrictive, although it may not be of any practical significance. Under

a slightly stronger condition on the disturbances, namely the existence of a 1 + δ moment, A2

can be dispensed with so that the parameter set can be Rp(m+1). The uniform boundedness of

regressors in A3 can also be dispensed with. A3 can be replaced by the following less restrictive

assumption used by Pollard (1990, p. 58) adapted to our case: for each ε > 0, there exists

K > 0 such that

1
k

n0
s+k∑

i=n0
s+1

|xi|2I(|xi| > K) < ε and
1
k

n0
s∑

n0
s−k
|xi|2I(|xi| > K) < ε

for all large k (s = 0, ...,m+ 1), where I(·) is the indicator function, see Bai (1995). However,

using these less stringent assumptions rather than A2 and A3 makes the argument much more

complex. We thus retain A2 and A3 in this paper. Assumption A4 is used for bounded

m. For unbounded m, we will require a stronger assumption (A6 below), under which A4 is

automatically satisfied.

Remark 1: Assumption A4 does not cover the case of trending regressors. For example,

let h(t) = (1, t, ..., tp)′ for t ∈ [0, 1] and xi = h(i/n). Then, unless k grows linearly in n, the

matrix 1
k

∑n0
s+k
n0
s+1 xixi converges to h(τ0

s )h(τ0
s )′, as n and k converge to infinity with k = o(n),
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where τ0
s = lim(n0

s/n). The matrix h(τ0
s )h(τ0

s )′ has a rank of 1. Therefore, A4 rules out

trending regressors. However, the regressor xi = h(i/n) has the following property. For every

ε > 0 and for k = [nε],

1
[nε]

n0
s+[nε]∑
n0
s+1

xix
′
i →

1
ε

∫ τ0
s+ε

τ0
s

h(t)h(t)′dt > 0 and
1

[nε]

n0
s∑

n0
s−[nε]

xix
′
i →

1
ε

∫ τ0
s

τ0
s−ε

h(t)h(t)′dt > 0,

(3)

where, for a matrix, we write A > 0 if A is positive definite. If we further assume that each

regime occupies a positive fraction of observations such that

n0
s = [nτ0

s ], 0 < τ0
1 < · · · < τ0

m < 1, and β0
s 6= β0

s+1, (4)

then (3) and (4) are sufficient to establish the following result. For every ε > 0 and δ > 0, for

all large n, we have

P (|n̂s − n0
s| > δn) < ε (s = 1, ...,m). (5)

Under an additional assumption,

h(τ0
s )′(β0

s+1 − β0
s ) 6= 0, s = 1, ...,m (6)

we can improve the rate in (5) to obtain n̂s − n0
s = Op(1). That is, Theorem 1 (below) still

holds for trending regressors under assumptions (4) and (6). Because our general framework

does not require (6) (i.e. positive fraction of the sample size for each regime), we will not give

a separate proof for the case of trending regressors. A proof for this case is available from the

author. In the sequel, we shall focus on regressors satisfying A1-A5. 2

Throughout, the notation on the number of change points m is used interchangeably with

m(n) and mn.

Theorem 1 If A1-A5 hold and m is bounded, then

n̂j − n0
j = Op(1), (j = 1, 2, ...,m).

Although the number of change points in this theorem is bounded, the length of each

regime is not assumed to be a positive fraction of n. That is, the assumption that n0
j = [nτ0

j ]

with 0 < τ0
j < 1 is not needed. A1 assumes that each regime length is at least c1n3/4 (c1 > 0).

This assumption can be weakened to c1n(1/2)+δ for some δ ∈ (0, 1/2), as long as m is bounded.
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We shall not deal with this case because it would require a separate proof from the case of

m(n)→∞, which will be considered below. To allow the number of changes to grow with the

sample size, we need an additional assumption, under which the proof will be much easier:

A6. The regressors xi are i.i.d. such that E(xix′i) is positive definite.

Theorem 2 If A1-A6 hold and m(n) → ∞ but m(n) < cn(1/4)−b (c, b > 0), then Theorem 1

still holds. That is, for each j ≤ m(n), n̂j − n0
j = Op(1).

Given this rate of convergence, it is not difficult to prove the following result.

Theorem 3 For bounded m, assume A1-A5. For m = m(n) → ∞, assume A1-A6. Then,

for each j

2f(0)(n̂j − n̂j−1)1/2(β̂j − β0
j ) d−→ N

(
0, Vj

)
,

where f(0) is the density function of ε1 at zero, and

Vj = plim
1

n0
j − n0

j−1

n0
j∑

i=n0
j−1+1

xix
′
i.

The limiting distribution of the estimated regression parameter is the same as if the change

points were known. This result is well known for a single change point.

The next result concerns the limiting distributions of the estimated change points. To

characterize the limiting distribution, we first define a stochastic process W (j)(k) on the set

of integers as follows: W (j)(0) = 0,W (j)(k) = W
(j)
1 (k) for k < 0, and W (j)(k) = W

(j)
2 (k) for

k > 0 where, for j = 1, ...,m(n):

W
(j)
1 (k) =

0∑
`=k+1

|ε(j)` −∆′jx
(j)
` | − |ε

(j)
` |, k = −1,−2, ... (7)

W
(j)
2 (k) =

k∑
`=1

|ε(j)` + ∆′jx
(j)
` | − |ε

(j)
` |, k = 1, 2, ... (8)

with ∆j = (β0
j+1 − β0

j ) and where {x(j)
` , ε

(j)
` } is an independent copy of {x`, ε`}.

Theorem 4 Under assumptions A1-A6, and assuming that |εi±∆′jxi|− |εi| has a continuous

distribution, then for each j ≤ m(n) (m(n) can be bounded or unbounded),

n̂j − n0
j
d→ arg min

k
W (j)(k)
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Furthermore, the estimated change points are asymptotically independent of each other and of

the estimated regression parameters.

The assumption that |εi±∆′jxi|− |εi| has a continuous distribution ensures the uniqueness

(a.s.) of the minimum of W (j).

Remark 2: When m = m(n) is fixed, Theorem 4 can be proved by showing that Sn(n0
1 +

k1, ..., n
0
m + km) − Sn(n0

1, ..., n
0
m) converges in distribution to

∑m
j=1W

(j)(kj), for |kj | ≤ M ,

where M < ∞. However, the limiting process is not defined when m = m(n) → ∞. This

difficulty can be bypassed using the following small trick. We note that

n̂j = argmin
nj

Sn(n̂1, ..., n̂j−1, nj , n̂j+1, ..., n̂m)

= argmin
nj

{
Sn(n̂1, ..., n̂j−1, nj , n̂j+1, ..., n̂m)− Sn(n̂1, ..., n̂j−1, n

0
j , n̂j+1, ..., n̂m)

}
The limiting process above is indexed by nj−n0

j , a scalar, rather than a process with multiple

indices. Further details is given in the proof of Theorem 4. 2

Remark 3: Here we discuss the efficiency of LAD relative to LS. For simplicity, consider a

single mean shift: yi = µ1,n + εi for i ≤ n0, and yi = µ2,n + εi for i > n0, where n = [nτ ], with

τ ∈ (0, 1) and εi are i.i.d. Let δn = µ1,n − µ2,n 6= 0. For fixed magnitude of shift, it is difficult

to compare the efficiency, so we assume shrinking shifts. Let δn → 0 but
√
nδn/ log n → ∞.

Let τ̂LS and τ̂LAD denote the LS and LAD estimators of τ , respectively. Then Bai (1994)

shows that,

nδ2n(τ̂LS − τ) d−→ σ2
ε argmax

v
{W (v)− |v|/2}

where σ2
ε = V ar(εi), and W (v) is a two-sided Brownian motion on R. For LAD estimation,

Bai (1995) shows that

nδ2n(τ̂LAD − τ) d−→ (2f(0))−2 argmax
v
{W (v)− |v|/2},

where f(x) is the density function of εi. Obviously, if εi does not have a finite variance, LS

estimation is less efficient than LAD. The same limiting distributions would result even if µ1,n

and µ2,n were known and not estimated. In this sense, there is a direct gain in efficiency by

LAD when estimating the change point for heavy-tailed distributions. On the other hand,

efficiency gain is realized through LAD’s consistent estimation of the regression coefficients

when they are unknown. 2
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3 Determining the Number of Change Points

In this section, we consider estimating the number of change points. Yao (1987) proposes the

Schwarz criterion to estimate this number. If the underlying distribution is double exponential,

then LAD is the maximum likelihood procedure. By the Schwarz Criterion, the number of

change points is determined by minimizing the objective function

LADBIC(m) = n log ê(m) + (1/2)(m+ 1)(p+ 1) log n (9)

where ê(m) = Sn(n̂1, ..., n̂m)/n. Note that the total estimated number of parameters, (m +

1)(p + 1), includes (m + 1)p regression parameters, m change points, and a scale parameter.

Criterion (9) differs from Yao’s criterion by an extra factor 1/2, which is absent for least

squares estimation under the normality assumption. Of course, ê(m) is the sample average

of absolute deviations rather than squared values of residuals. Whether this criterion leads

to a consistent estimate of the number of change points remains an open question. In this

section, we study a modified criterion under which the estimated number of change points can

be shown to be consistent for the true number of changes.

Consider the criterion of the form

B(m) = n log ê(m) +mg(n). (10)

Although there is some flexibility in choosing the penalty term g(n), we shall consider g(n) =
√
n to be specific. This choice of g is also used in the reported simulations.

We allow the true number m0
n →∞. Let m̂ be the integer at which the criterion function

is minimized over the integer set {0, 1, 2, ..., Lm0
n}, where L > 1 is arbitrarily given.

Theorem 5 If A1-A6 hold and E|ε1| <∞, then P (m̂ = m0
n)→ 1.

The theorem asserts that even if mn → ∞, with probability tending to 1, the estimated

break point coincides with the true number.

4 Numerical Result

In addition to the theoretical properties, we are also interested in LAD’s implementation

in practice. We develop a computer program for estimating multiple-regime regressions. The
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program allows one to choose the number of regimes based on the information criteria discussed

earlier. Our program exploits linear programming for LAD estimation (Barrodale and Roberts

1974) and dynamic programming for optimal segmentation (Guthery 1974). Our program

only requires O(n2m) number of LAD computations to achieve the global minimization, a

considerable computational savings relative to the brute-force enumeration for m > 2. The

computation is fast even with 10 change points as in the simulations reported later.

4.1 Monte Carlo Simulation

This simulation focuses on the relative performance of LAD and LS. We consider the following

simple model with 4 regimes (3 change points):

yi = αk + βkxi + εi, i = 1, ..., n, (11)

where the xi are i.i.d. standard normal random variables, the vector (αk, βk) (k = 1, ..., 4) is

the parameter for regime k, and the εi are i.i.d. standard normal or double exponential random

variables. In the latter case, the density function is f(x) = 2−1e−|x|, which has a variance of

2. We choose n = 100 and m = 3. The true change points are 25, 50, and 75, respectively.

Only the case of intercept changes with α1 = 1, α2 = 3, α3 = 1, α4 = −1 and βk = 1 (∀k)

is reported. The estimated means and standard deviations from 500 repetitions are reported

in Table 1. The number of regimes is assumed to be known. Under normal errors, the LAD

yields estimates with a larger spread than LS. The converse is true under double exponential

errors. The LS gives estimates with a much larger spread than LAD. Additional simulations

are done for εi being t distribution with df = 3 and contaminated normal distribution with

cdf F (x) = (1 − ε)Φ(x) + εΦ(x/τ), here ε = 0.1 and τ = 5. For these latter distributions,

efficiency gain by LAD is striking. Though not reported in Table 1, this observation is true

for jumps of different sizes and changes in slope parameters as well.

Monte Carlo simulations for estimating the number of change points are also performed.

We only report the summary here. The model considered is still (11). Both criteria (9) and

(10) are used. Each criterion function is minimized over the range {0, 1, 2, ..., 10}. Criterion

(9) correctly identifies the number of regimes 71% of the time for normal errors and 73% of

the time for double exponential errors. This criterion has a tendency to overestimate the true

number, suggesting that the penalty term is not heavy enough. In contrast, criterion (10)

9



with g(n) =
√
n correctly identifies the number of regimes 93% of the time for normal errors

and 76% for double exponential errors. Here there is tendency to underestimate the number.

These results suggest the possibility of further improvement by adjusting the penalty term.

4.2 An Application

This application concerns the response of market interest rates to changes in the Federal

Reserve (Fed) discount rate, which is the rate at which the Fed lends money and is set by the

Fed. The yield of three-month treasury bills is used as the market interest rate. The data

range spans 1973 to 1989. Over this period the Fed made 56 changes in the discount rate.

The details are described by Dueker (1992).

Changes in the market interest rate are often a complicated function of many factors in

addition to the Fed discount rate. The most importance of these is perhaps the state of

the economy. As in Dueker (1992), we use the unemployment rate as an indicator of the

performance of the economy. Dueker uses a mixture model by mixing “high” and “lower”

responses with mixing probability depending on other exogenous variables. His results suggest

that the response is different over time. Here we use the simple change point model and

estimate the response pattern over time. The following model is used:

∆TBi = β0k + β1k∆DRi + β2kUi + εi,

where ∆TB is the change in the T-bill rate, ∆DR is the change in the discount rate, U is the

unemployment rate, and (β0k, β1k, β2k) are the regression parameters of regime k. Both criteria

(9) and (10) suggest the existence of three regimes. The estimated numbers of observations

for the three regimes are 27, 15, and 14, respectively. The estimated regression parameters

are (0.331, 0.051, -0.058), (3.256, 0.163, -0.383), and (0.268, 0.064, -0.040), respectively. The

second regime is markedly different from the rest, with responses being most sensitive to

changes in the discount rate and in unemployment. Finally, it is interesting to note that

the first change point occurs in October 1979, and the second occurs in November 1982.

These estimated change points coincide with changes in the operating procedure of the Federal

Reserve (Roley and Wheatley, 1990). Thus, policy changes that may not be directly linked

to the variables under consideration can have an effect on those variables. This example

highlights the potential use of the change-point model in social sciences.
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5 Auxiliary Results

In this section, we derive a number of results in the absence of change points. In the next

section, we show how these results can be used to establish Theorems 1-5. This framework

of proof is useful for other estimation methods such as M-estimation. All needed is to prove

the corresponding lemmas for a given estimation method. Consider the standard regression

model:

yi = w′iφ
0 + εi, (i = 1, ..., n),

where wi is a p × 1 vector of regressors, φ0 is the true vector of parameters, and εi is a

disturbance. We assume:

B1: The errors εi satisfy A5 with xi interpreted as wi.

B2: The regressors wi are uniformly bounded as in A3. That is, there exists K > 0 such that

|wi| < K for all i.

B3: The matrix 1
k

∑k
i=1wiw

′
i converges in probability to a non-random positive definite matrix.

Throughout this section, we assume B1-B3 are satisfied. We do not assume a bounded

parameter set. The parameter space is Rp. All the lemmas are true even if the regressors

are not uniformly bounded, but satisfy the condition: for each ε > 0, there exists a K > 0

such that 1
k

∑k
i=1 |wi|2I(|wi| > K) < ε for all large k with large probability. We shall treat

wi as deterministic. Otherwise, conditional argument can be used because of the indepen-

dence of disturbances and regressors. However, in Lemma 7 below, we do analyze the case of

i.i.d. regressors, which allow us to strengthen some of the results. The case of iid regressors

corresponds to assumption A6.

We are interested in the behavior of the optimal objective function

inf
φ

n∑
i=1

|yi − w′iφ| = inf
φ

n∑
i=1

|εi − w′i(φ− φ0)| = inf
φ

n∑
i=1

|εi − w′iφ|,

(redefining φ as φ−φ0, or simply assuming φ0 = 0). Define the centered objective function as

n∑
i=1

(
| εi − w′iφ| − |εi|

)
.

To begin, we state a Lemma due to Babu (1989), which is closely related to the Bernstein

inequality.
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Lemma 1 (Babu (1989), Lemma 1). Let Zi be a sequence of independent random variables

with mean zero and |Zi| ≤ d for some d > 0. Let V ≥
∑k
i=1EZ

2
i . Then for all 0 < s < 1 and

0 ≤ a ≤ V/(sd),

P

(
|
k∑
i=1

Zi| > a

)
≤ 2 exp{−a2s(1− s)/V }. (12)

The following simple inequality will be used frequently:

∣∣∣|x− y| − |x− z|∣∣∣ ≤ |y − z|. (13)

We define throughout

ηi(φ) = |εi − w′iφ| − |εi|, and ξi(φ) = ηi(φ)− Eηi(φ) (14)

Lemma 2 (i) For each δ ∈ (0, 1),

sup
n≥k≥nδ

∣∣∣∣∣inf
φ

k∑
i=1

(|εi − w′iφ| − |εi|)
∣∣∣∣∣ = Op(1).

(ii)

sup
1≤k≤n

∣∣∣∣∣inf
φ

k∑
i=1

(|εi − w′iφ| − |εi|)
∣∣∣∣∣ = Op(log n).

Proof. See Lemma 1 of Bai (1995). 2

Lemma 3 For every α > 1/2 and every M <∞, we have

sup
1≤`<k≤n

∣∣∣∣∣ inf
|φ|≤M

k∑
i=`

(
| εi − w′iφ| − |εi|

)∣∣∣∣∣ = Op(nα).

Proof. Let ηi(φ) = |εi − w′iφ| − |εi|. Because Eηi(φ) ≥ 0 and ηi(0) = 0, we have

0 ≥ inf
|φ|≤M

k∑
i=`

ηi(φ) ≥ inf
|φ|≤M

k∑
i=`

[ηi(φ)− Eηi(φ)].

Thus ∣∣∣∣∣ inf
|φ|≤M

k∑
i=`

ηi(φ)

∣∣∣∣∣ ≤ sup
|φ|≤M

∣∣∣∣∣
k∑
i=`

[ηi(φ)− Eηi(φ)]

∣∣∣∣∣ .
It follows that

sup
1≤`<k≤n

∣∣∣∣∣ inf
|φ|≤M

k∑
i=`

ηi(φ)

∣∣∣∣∣ ≤ 2 sup
1≤k≤n

sup
|φ|≤M

∣∣∣∣∣
k∑
i=1

[ηi(φ)− Eηi(φ)]

∣∣∣∣∣ .
12



Thus it suffices to prove the right hand side above is bounded by Op(nα).

Let ζk = sup|φ|≤M
∣∣∣∑k

i=1[ηi(φ)− Eηi(φ)]
∣∣∣. Then {ζk,Fk} (k = 1, ..., n) forms a submartin-

gale, where Fk = σ − field{ε1, ..., εk}. By Doob’s inequality,

P

(
sup
k≤n

ζk > nα
)
≤ n−αmCmE(ζmn ), (15)

for some Cm > 0 (where m > 1 will be determined later). Next, divide the parameter set

|φ| ≤M into cpnp/2 (cp > 0) cells such that the diameter of each cell is no larger than Mn−1/2.

For arbitrary s, t in a common cell,

|
n∑
i=1

ηi(s)− Eηi(s)− ηi(t) + Eη(t)| ≤ 2
n∑
i=1

|wi||s− t| ≤ 2Mn−1/2
n∑
i=1

|wi| ≤ 2KMn1/2.

Let φr be a point in the rth cell (r = 1, 2, ..., cpnp/2). From |h(φ)| ≤ |h(φr)| + |h(φ) − h(φr)|

for an arbitrary function h(φ), and |a + b|m ≤ Lm|a|m + Lm|b|m for some constant Lm only

depending on m, we have

ζmn ≤ Lm sup
r

∣∣∣∣∣
n∑
i=1

ηi(φr)− Eηi(φr)
∣∣∣∣∣
m

+ Lm(2KM)mnm/2. (16)

Because ηi(φr)−Eηi(φr) forms a sequence of bounded martingale differences for each fixed r,

we have, for some A > 0,

E

∣∣∣∣∣
n∑
i=1

ηi(φr)− Eηi(φr)
∣∣∣∣∣
m

≤ Anm/2, ∀r.

Taking expectations on both sides of (16) and using E(supr | · |m) ≤
∑
r E| · |m, we obtain

Eζmn ≤ ALmcpnp/2nm/2 +O(nm/2) = O(n(p+m)/2).

Thus the right hand side of (15) is bounded by, for some C > 0, Cn−αmn(p+m)/2, which

converges to zero as n→∞ for m > p/(2α− 1) and for α > 1/2. This proves the lemma. 2

Lemma 4 Let cn be a positive sequence such that either cn ≡ c > 0 or cn → 0 and nc2n/ log n→

∞. Then there exists a C > 0 such that for each ε > 0 and all large n,

P
(

sup
|φ|≤cn

∣∣∣∣∣ 1
nc2n

n∑
i=1

ξi(φ)

∣∣∣∣∣ ≥ ε) ≤ exp(−ε2nc2nC),

where ξi(φ) is defined in (14).

13



Proof. Divide the region |φ| ≤ cn into cpnp/2 (for some cp < ∞) cells such that the diameter

of each cell is no larger than n−1/2cn. For φ1, φ2 belonging to a common cell, the incremental

value
1
nc2n

∣∣∣∣∣
n∑
i=1

[ξi(φ1)− ξi(φ2)]

∣∣∣∣∣ ≤ 2K|φ1 − φ2|/c2n ≤ 2K/(
√
ncn)→ 0.

Let φr be a point in the rth cell (r = 1, ..., cpnp/2), we have

P

(
sup
r

∣∣∣∣∣ 1
nc2n

n∑
i=1

ξi(φr)

∣∣∣∣∣ > ε

)
≤
∑
r

P

(∣∣∣∣∣
n∑
i=1

ξi(φr)

∣∣∣∣∣ > nc2nε

)
. (17)

From |ξi(φ)| ≤ 2|w′iφ| ≤ 2Kcn, it follows that V ar(ξi(φ)) ≤ 4K2c2n uniformly in |φ| ≤ cn.

Apply Lemma 1 with d = 2Kcn, V = 4K2nc2n, s = 1/2, and a = nc2nε, we have for large n

P

(∣∣∣∣∣
n∑
i=1

ξi(φr)

∣∣∣∣∣ > nc2nε

)
≤ 2 exp(−ε2 nc2nC),

with C = 1/(16K2). Thus the r.h.s. of (17) is bounded by 2cpnp/2 exp(−ε2 nc2nC), which is

further bounded by exp(−ε2 nc2nC/2) for all large n, because nc2n/ log n→∞. 2

Lemma 4 implies that, by the Borel-Cantelli Lemma, for every ε > 0,

lim sup
n→∞

sup
|φ|≤cn

∣∣∣∣∣ 1
nc2n

n∑
i=1

ξi(φ)

∣∣∣∣∣ ≤ ε, a.s. (18)

Remark 4. The following result will be used in subsequent proofs. Let h(x) (x ∈ Rp)

be a convex function with h(0) = 0. If inf |x|=c h(x) = a > h(0) = 0, then inf |x|≥c h(x) =

inf |x|=c h(x). That is, the extreme value of a convex function is attained on the boundary. To

see this, suppose |x′| > c. Choose λ ∈ (0, 1) such that x′′ = λx′ and |x′′| = λ|x′| = c. Then

a ≤ h(x′′) = h(λx′ + (1− λ)0) ≤ λh(x′) + (1− λ)h(0) = λh(x′). Thus h(x′) ≥ a/λ > a. 2

Lemma 5 If cn → 0 and nc2n/ log n→∞, then there exists an η > 0, such that with probability

1,

lim inf
n

inf
|φ|≥cn

1
nc2n

n∑
i=1

(
|εi − w′iφ| − |εi|

)
≥ η > 0.

Proof. We prove the sum has a large expected value, and its deviation from its expected

value is small. Because |εi−w′iφ| − |εi| is convex in φ, and the sum of convex functions is still

convex, it suffices to prove the lemma for |φ| = cn (see Remark 4). Because cn → 0, we have

14



(e.g., Pollard 1991)

E

 n∑
i=1

(|εi − w′iφ| − |εi|)


= φ′(

n∑
i=1

wiw
′
i)φf(0)(1 + o(1)) ≥ n|φ|2λf(0)/2 = nc2nλf(0)/2, (19)

where λ is a positive number which is no larger than the smallest eigenvalue of 1
n

∑n
i=1wiw

′
i.

The existence of such a λ is guaranteed by assumption B3 for all large n. The lemma is proved

with η = λf(0)/4 if we take ε = λf(0)/4 in (18). 2

Lemma 6 Let φ̂n be the LAD estimator of φ, i.e., φ̂n = argminφ
∑n
i=1(|εi−w′iφ|−|εi|). Then

for cn in Lemma 5, there exists a C > 0 such that for all large n,

P
(
|φ̂n| > cn

)
≤ exp(−nc2nC).

Proof. The lemma is implied by the following:

P

(
inf
|φ|≥cn

n∑
i=1

(|εi − w′iφ| − |εi|) < 0

)
≤ exp(−nc2nC). (20)

We shall prove this inequality. By convexity, it is sufficient to consider |φ| = cn. Let ηi(φ) =

|εi − w′iφ| − |εi| and ξi(φ) = ηi(φ)− Eηi(φ). Now

inf
|φ|=cn

n∑
i=1

ηi(φ) ≥ inf
|φ|=cn

n∑
i=1

[ηi(φ)− Eηi(φ)] + inf
|φ|=cn

n∑
i=1

Eηi(φ)

≥ − sup
|φ|=cn

∣∣∣ n∑
i=1

ξi(φ)
∣∣∣+ inf
|φ|=cn

n∑
i=1

Eηi(φ).

Thus

P
(

inf
|φ|=cn

n∑
i=1

ηi(φ) < 0
)

≤ P
(

sup
|φ|=cn

∣∣∣ n∑
i=1

ξi(φ)
∣∣∣ ≥ inf

|φ|=cn

n∑
i=1

Eηi(φ)
)

≤ P
(

sup
|φ|=cn

∣∣∣ n∑
i=1

ξi(φ)
∣∣∣ ≥ nc2nλf(0)/2

)
≤ exp(−nc2nCλ2f(0)2/4),

where the second inequality follows from inf |φ|=cn
∑n
i=1Eηi(φ) ≥ nc2nλf(0)/2 by (19); the last

inequality follows from Lemma 4 with ε = λf(0)/2. The lemma is proved by redefining C.

2
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The following lemma is an improved version of Lemma 3 under the i.i.d. assumption. The

latter assumption is made in A6.

Lemma 7 Assuming that {wi, εi}ni=1 are iid, then for every a > 0, t > 0, and M <∞,

P

(
sup

1≤`<k≤n

∣∣∣∣∣ inf
|φ|≤M

k∑
i=`

(|εi − w′iφ| − |εi|)
∣∣∣∣∣ > na

)
= O(n−t).

Proof. Let ηi(φ) be defined as before. Then

P

(
sup

1≤`<k≤n

∣∣∣∣∣ inf
|φ|≤M

k∑
i=`

ηi(φ)

∣∣∣∣∣ > na
)
≤

∑
`<k

P

(∣∣∣∣∣ inf
|φ|≤M

k∑
i=`

ηi(φ)

∣∣∣∣∣ > na
)

=
∑
`<k

P

(∣∣∣∣∣ inf
|φ|≤M

k−∑̀
i=1

ηi(φ)

∣∣∣∣∣ > na
)

by i.i.d.

≤ n2 max
1≤k≤n

P

(∣∣∣∣∣ inf
|φ|≤M

k∑
i=1

ηi(φ)

∣∣∣∣∣ > na
)
.

From |ηi(φ)| ≤ |w′iφ| ≤ KM , we have |
∑k
i=1 ηi(φ)| ≤ kKM < na for k < nb and n large,

where 0 < b < a. Thus, it is enough to consider k ≥ nb for some b ∈ (0, a). Let φ̂k =

argminφ
∑k
i=1 ηi(φ), and let ck be a sequence of positive numbers. Then,

n2 max
nb≤k≤n

P

(∣∣∣∣∣ inf
|φ|≤M

k∑
i=1

ηi(φ)

∣∣∣∣∣ > na
)

≤ n2 max
nb≤k≤n

P (|φ̂k| > ck) + n2 max
nb≤k≤n

P

(∣∣∣∣∣ inf
|φ|≤ck

k∑
i=1

ηi(φ)

∣∣∣∣∣ > na
)
. (21)

Choose ck = k−1/2 log k. By Lemma 6,

P
(
|φ̂k| > ck

)
≤ exp(−kc2kC) ≤ exp(−(b log n)2C), for k ≥ nb.

It follows that, for every t > 0

n2 max
nb≤k≤n

P
(
|φ̂k| > ck

)
= O(n−t) (22)

for all large n. Next, ∣∣∣∣∣ inf
|φ|≤ck

k∑
i=1

ηi(φ)

∣∣∣∣∣ ≤ sup
|φ|≤ck

∣∣∣∣∣
k∑
i=1

ξi(φ)

∣∣∣∣∣+ sup
|φ|≤ck

k∑
i=1

Eηi(φ).
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Because ck → 0,

k∑
i=1

Eηi(φ) = φ′
k∑
i=1

wiw
′
iφf(0)(1 + o(1)) ≤ 2kK2c2k ≤ 2K2(log k)2 ≤ na/2

for all large n. Moreover, by Lemma 4 (applied with n = k and ε = 2−1na/(kc2k) =

2−1na/(log k)2),

P

(
sup
|φ|≤ck

∣∣∣∣∣
k∑
i=1

ξi(φ)

∣∣∣∣∣ > 1
2
na
)
≤ exp(−4−1Cn2a/(log k)4) ≤ exp(−4−1Cn2a/(b log n)4),

for k > nb. Since n2 exp(−4−1Cn2a/(b log n)4) = O(n−t) for every t, the last term of (21) is

bounded by O(n−t). Combining with (22), we obtain the lemma. 2

Lemma 8 If |φ| = M > 0, then there exists a δ > 0 such that a positive fraction of observa-

tions satisfy |w′iφ| > δ. More specifically, let Nn(φ) = card{i; |w′iφ| > δ, 1 ≤ i ≤ n}, then for

some ε0 > 0, uniformly in |φ| = M , Nn(φ) ≥ nε0 for all large n.

Proof. Note that

n∑
i=1

(w′iφ)2 = φ′
n∑
i=1

wiw
′
iφ ≥ λn|φ|2 = λnM2,

where λ is defined in the proof of Lemma 5. On the other hand,

n∑
i=1

(w′iφ)2 =
n∑
i=1

(w′iφ)2I(|w′iφ| ≤ δ) +
n∑
i=1

(w′iφ)2I(|w′iφ| > δ) ≤ nδ2 + (KM)2
n∑
i=1

I(|w′iφ| > δ).

Thus

Nn(φ) =
n∑
i=1

I(|w′iφ| > δ) ≥ (KM)−2n(λM2 − δ2) ≥ nε0

for ε0 = (KM)−2(λM2 − δ2), which is positive for a small δ. 2

Lemma 9 For each M > 0, there exists an η > 0 and C > 0 such that

P

(
inf
|φ|≥M

n∑
i=1

(
| εi − w′iφ| − |εi|

)
≥ ηn

)
≥ 1− exp(−nC)

Proof. Again by convexity, we assume without loss of generality, |φ| = M . Let H(µ) =

E(|εi − µ| − |εi|). Then H(µ) is nonnegative and H(µ) is an increasing function in |µ| with
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a unique minimum at zero. By Lemma 8, there exist no less than nε0 (for some ε0 > 0)

observations such that |w′iφ| > δ for some δ > 0. Thus

E
n∑
i=1

(
| εi − w′iφ| − |εi|

)
≥ nε0H(δ) (23)

uniformly over {φ; |φ| = M}. Furthermore, by Lemma 4 (applied with cn ≡ M), for each

ε > 0,

P

(
sup
|φ|=M

∣∣∣∣∣
n∑
i=1

(
| εi − w′iφ| − |εi| − E[|εi − w′iφ| − |εi|]

)∣∣∣∣∣ > εn

)
≤ exp(−nε2C). (24)

That is, the deviation from the mean is small. Take ε = ε0H(δ)/2, the lemma follows from

(23) and (24) with η = ε0H(δ)/2. 2

Lemma 10 Let n1 and n2 be two integers such that n1 ≥ nρ with 1 ≥ ρ ≥ 3/4 and n2 ≤ nν

with ν < 1/4. Consider

yi = w′iφ1 + εi, i = 1, ..., n1,

yi = w′iφ2 + εi, i = n1 + 1, .., n1 + n2.

Let N = n1 + n2 and Let φ̂N = argmin|φ|≤M
∑N
i=1 |yi − w′iφ|, where M is large enough such

that |φ1| < M and |φ2| < M . Then

(i) For every δ ∈ (0, ρ− ν), with probability tending to 1,

|φ̂N − φ1| ≤ n−1/2
1 n

(ν+δ)/(2ρ)
1 ≤ n−(ρ−ν−δ)/2

(ii)
∑n1
i=1

(
| εi − w′i(φ̂N − φ1)| − |εi|

)
= Op(1).

This lemma says that when the data are from two different models (two regimes in our

application), the estimated regression parameter using the pooled data is close to the param-

eter of the model from where most of the data came. This is, of course, obvious, but (i)

quantifies this intuition. Furthermore, similar to Lemma 2(i), the centered objective function

of the “dominating” model evaluated at the pooled estimator φ̂N is stochastically bounded,

as asserted by (ii).

Proof of (i): Note that φ̂N minimizes

gn(φ) =
n1∑
i=1

(
| εi − w′i(φ− φ1)| − |εi|

)
+

n1+n2∑
i=n1+1

(
|εi − w′i(φ− φ2)| − |εi|

)
. (25)
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The second term on the right hand side of (25) is bounded by
∑n1+n2
i=n1+1 |wi||φ−φ2| ≤ 2KMn2 =

O(nν) by the assumption of bounded regressors and |φ−φ2| ≤ 2M . If |φ̂N−φ1| ≥ n−1/2
1 n

(ν+δ)/(2ρ)
1

for some δ > 0 with some positive probability η0, then by Lemma 5, with c(n1) = n
−1/2
1 n

(ν+δ)/(2ρ)
1 ,

n1∑
i=1

(
|εi − w′i(φ̂N − φ1)| − |εi|

)
≥ ηn1c(n1)2 ≥ ηn(ν+δ)/ρ

1 ≥ ηnν+δ

with probability at least η0/2 for large n. This implies that gn(φ̂N ) ≥ ηn(ν+δ) − O(nν) ≥

2−1ηnν+δ with probability at least η0/2 for large n. However, infφ gn(φ) ≤ gn(φ1) = O(nν)

with probability 1. Thus we arrive at a contradiction.

Proof of (ii). Rewrite gn(φ) as

gn(φ) = fn(φ) + hn(φ) +
n1+n2∑
i=n1+1

(
| εi − w′i(φ1 − φ2)| − |εi|

)
, (26)

where

fn(φ) =
n1∑
i=1

(
| εi − w′i(φ− φ1)| − |εi|

)
(27)

and

hn(φ) =
n1+n2∑
i=n1+1

(
| εi − w′i(φ− φ2)| − |εi − w′i(φ1 − φ2)|

)
.

From (i), |hn(φ̂N )| ≤
∑n1+n2
i=n1+1 |wi||φ̂N − φ1| ≤ Kn2n

−(ρ−ν−δ)/2 ≤ Kn−(ρ−3ν−δ)/2 = o(1), for

0 < δ < (ρ − 3ν). Because fn(φ) + hn(φ) evaluated at φ = φ1 is zero and φ̂N minimizes

fn(φ) + hn(φ), it follows that

0 ≥ fn(φ̂N ) + hn(φ̂N ) ≥ fn(φ̂N )− |op(1)| ≥ inf
φ
fn(φ)− |op(1)|. (28)

Thus,

|fn(φ̂N )| ≤ | inf
φ
fn(φ)|+ op(1).

By Lemma 2(i), infφ fn(φ) = Op(1). This implies that fn(φ̂N ) = Op(1). 2

The following result is an extension of Lemma 10.

Lemma 11 Let n1 and n2 be the same as in the previous lemma. Consider

yi = w′iφ1 + εi, i = 1, ..., k,

yi = w′iφ2 + εi, i = k + 1, ..., k + n2,

where k is no smaller than a positive fraction of n1 such that k ∈ [n1a, n1] with a ∈ (0, 1]. Let

φ̂k = argmin|φ|≤M
∑k+n2
i=1 |yi − w′iφ|. We have
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(i) For every a ∈ (0, 1] and every δ ∈ (0, ρ− ν), with probability tending to 1,

sup
n1a≤k≤n1

|φ̂k − φ1| ≤ n−1/2
1 n

(ν+δ)/(2ρ)
1 ≤ n−(ρ−ν−δ)/2

(ii)

sup
n1a≤k≤n1

∣∣∣∣∣
k∑
i=1

|εi − w′i(φ̂k − φ1)| − |εi|
∣∣∣∣∣ = Op(1).

Proof of (i): Let c(k) = k−1/2k(ν+δ)/(2ρ). Then there exists a constant A > 0 such that,

c(n1) ≤ c(k) ≤ Ac(n1) for all k ∈ [n1a, n1]. We prove (i) by reduction to absurdity. Now

suppose |φ̂k − φ1| ≥ c(n1), then |φ̂k − φ1| ≥ c(k)/A. By Lemma 5,

k∑
i=1

(
|εi − w′i(φ̂k − φ1)| − |εi|

)
≥ ηkc(k)2A−2 ≥ ηkc(n1)2A−2 ≥ ηan(ν+δ)/ρ

1 A−2 ≥ ηan(ν+δ)A−2.

The above inequality implies that gk(φ̂k) ≥ ηan(ν+δ)/A2 − O(nν) ≥ Cn(ν+δ). On the other

hand, because φ̂k minimizes gk(φ), we have gk(φ̂k) ≤ gk(φ1). But gk(φ1) ≤ O(nν). This gives

rise to a contradiction.

Proof of (ii): Using part (i), it is easy to argue that hk(φ̂k) = op(1) uniformly in k ∈ [n1a, n1]

as long as δ is small. Furthermore, Lemma 2(i) is equivalent to supn1a≤k≤n1
| infφ fk(φ)| =

Op(1). The remaining argument is similar to the proof of the previous lemma. 2

6 Proofs of Theorem 1 – Theorem 5

The proofs will use Lemmas 2, 3, 5, 7, 9, and 11. For the rest of the proofs, we assume that

the infimum with respect to φ is taken over a bounded parameter set as stated in assumption

A2. We need some preliminary results.

Proposition 1 If m is bounded and assumptions A1-A5 hold, then for every τ > 1/2,

P (|n̂j − n0
j | > nτ )→ 0, (j = 1, ...,m).

Proof. Let Aj = {(n1, ..., nm) : n1 < n2 < · · · < nm, |n` − n0
j | ≥ nτ , 1 ≤ ` ≤ m}. It suffices

to assume τ ≤ 3/4. Since

Sn(n̂1, ..., n̂m) ≤ Sn(n0
1, ..., n

0
m) ≤ Sn(n0

1, ..., n
0
m, β

0) =
n∑
i=1

|εi|
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with probability 1, it suffices to show that

min
(n1,...,nm)∈Aj

Sn(n1, ..., nm) >
n∑
i=1

|εi| (29)

with probability tending to one as n→∞. Now we extend the definition of Sn to every subset

{n1, ..., n`} of {1, ..., n− 1} such that

Sn(n1, ..., n`) =
`+1∑
r=1

inf
φ

n(r)∑
i=n(r−1)+1

|yi − x′iφ|,

where n(0) = 0, n(`+1) = n and 0 < n(1) < · · · < n(`) < n is the ordered version of n1, ..., n`.

For (n1, ..., nm) ∈ Aj

Sn(n1, ..., nm) ≥ Sn(n1, ..., nm, n
0
1, ..., n

0
j−1, n

0
j − [nτ ], n0

j + [nτ ], n0
j+1, .., n

0
m).

The right hand side of the above can be expressed as Sn1 + Sn2, where Sn1 is the sum of at

most 2(m + 1) expressions of the form infφ
∑k
i=` |yi − x′iφ|, where ` and k fall in a common

true regime (i.e. n0
r ≤ ` < k ≤ n0

r+1 for some r); and Sn2 is given by

Sn2 = inf
φ

n0
j+[nτ ]∑

n0
j−[nτ ]+1

∣∣yi −x′iφ∣∣ , (30)

which can be rewritten as

Sn2 = inf
φ


n0
j∑

n0
j−[nτ ]+1

∣∣∣εi −x′i(φ− β0
j )
∣∣∣+ n0

j+[nτ ]∑
n0
j+1

∣∣∣εi −x′i(φ− β0
j+1)

∣∣∣
 . (31)

When ` and k fall in a common true regime,

inf
φ

k∑
i=`

|yi − x′iφ| = inf
φ

k∑
i=`

|εi − x′iφ|.

Thus

Sn(n1, ..., nm)−
n∑
i=1

|εi| ≥ Sn1 + Sn2 −
n∑
i=1

|εi|

≥ −|2(m+ 1) sup
1≤`<k≤n

∣∣∣∣∣inf
φ

k∑
i=`

(
| εi − x′iφ| − |εi|

)∣∣∣∣∣ (32)

+ inf
φ


n0
j∑

n0
j−[nτ ]+1

(
| εi − x′i(φ− β0

j )| − |εi|
)

+
n0
j+[nτ ]∑
n0
j+1

(
| εi − x′i(φ− β0

j+1)| − |εi|
) .(33)
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From Lemma 3 and the boundedness of m, expression (32) is bounded by Op(nα) for every

α > 1/2. Note that max{|φ−β0
j |, |φ−β0

j+1|} ≥ (|φ−β0
j |+ |φ−β0

j+1|)/2 ≥ |β0
j −β0

j+1|/2. Thus

if |φ − β0
j | is bounded away from zero, then we can apply Lemma 9 to the first sum in (33),

applied with the data order reversed (treating n0
j as the first observation, nτ as n, and xi as

wi). All conditions of the lemma are satisfied. If |φ− β0
j+1| is bounded away from zero, then

we can apply Lemma 9 to the second sum in (33), treating n0
j + 1 as the first observation. In

each case, Lemma 9 implies that, for some η > 0, (33) is larger than [nτ ]η with probability

tending to one. Therefore Sn1 + Sn2 >
∑n
i=1 |εi|+ [nτ ]η −O(nα) >

∑n
i=1 |εi| with probability

tending to one for α ∈ (1/2, τ). This proves (29) and hence the proposition. 2

The rate of convergence given in the previous proposition can be improved upon under the

additional assumption A6, even if the number of change points mn →∞.

Proposition 2 Under assumptions A1-A6, there exists a δ > 0 such that

P
(

sup
1≤j≤mn

|n̂j − n0
j | > n1/(4+δ)

)
→ 0.

This proposition gives a uniform rate of convergence for bounded or unbounded mn.

Proof. The argument is similar to that of Proposition 1, with Lemma 7 in place of Lemma

3 in the proof. For a δ > 0 (to be determined later), define Aj = {(n1, ..., nmn) : n1 < n2 <

· · · < nmn , |n` − n0
j | ≥ n1/(4+δ), 1 ≤ ` ≤ mn}. Then

P
(

sup
1≤j≤mn

|n̂j − n0
j | > n1/(4+δ)

)
≤

mn∑
j=1

P
(
|n̂j − n0

j | > n1/(4+δ)
)

≤
mn∑
j=1

P
(

inf
Aj
Sn(n1, ..., nmn)−

n∑
i=1

|εi| ≤ 0
)
. (34)

Using the previous arguments, we have [cf. (32) and (33)]

Sn(n1, ..., nmn)−
n∑
i=1

|εi|

≥ −|2(mn + 1) sup
1≤`<k≤n

∣∣∣∣∣inf
φ

k∑
i=`

(
| εi − x′iφ| − |εi|

)∣∣∣∣∣
+ inf

φ


n0
j∑

n0
j−[n1/(4+δ)]+1

(
| εi − x′i(φ− β0

j )| − |εi|
)
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+
n0
j+[n1/(4+δ)]∑
n0
j+1

(
| εi − x′i(φ− β0

j+1)| − |εi|
)

def
= −2(mn + 1)Un + Vnj .

Thus

P
(

inf
Aj
Sn(n1, ..., nmn)−

n∑
i=1

|εi| > 0
)

≥ P (Vnj > 2(mn + 1)Un)

≥ P (Vnj > 2(mn + 1)Un, Un ≤ nε)

≥ P (Vnj > 2(mn + 1)nε, Un ≤ nε)

≥ P (Vnj > 2(mn + 1)nε) + P (Un ≤ nε)− 1

≥ P (Vnj > 3nd+ε) + P (Un ≤ nε)− 1

where d < 1/4 by the assumption on mn. The fourth inequality follows from P (A ∩ B) ≥

P (A) + P (B) − 1. Lemma 7 implies that for every ε > 0 and t > 0, P (Un > nε) = O(n−t)

for large n. Lemma 9 implies that [see the argument for (33)] there exists an η > 0 such that

P (Vnj ≥ ηn1/(4+δ)) ≥ 1 − exp(−n1/(4+δ)C), for some C > 0. Now, because d < 1/4, we can

choose ε > 0 such that d + ε < 1/4. Furthermore, choose δ > 0 such that d + ε < 1/(4 + δ).

Then, for every η > 0, nd+ε ≤ ηn1/(4+δ) for all large n. Thus

P
(
Vnj > 3nd+ε

)
≥ P (Vnj ≥ ηn1/(4+δ)) ≥ 1− exp(−n1/(4+δ)C).

Note that the constant C can be chosen independent of j because of the iid assumption and

max{|φ−β0
j , |φ−βj+1|} ≥ |β0

j −β0
j+1|/2 ≥ c > 0 for all j, by A2. This implies that, uniformly

in j,

P
(

inf
Aj
Sn(n1, ..., nmn)−

n∑
i=1

|εi| > 0
)
≥
(
1− exp(−n1/(4+δ)C)

)
+
(
1−O(n−t)

)
− 1,

which is 1−O(n−t). Equivalently, uniformly in j ≤ mn,

P
(

inf
Aj
Sn(n1, ..., nmn)−

n∑
i=1

|εi| ≤ 0
)
≤ O(n−t)

for every t > 0 for large n. It follows from (34) that

P
(

sup
j
|n̂j − n0

j | > n1/(4+δ)
)
≤ mnO(n−t)→ 0.
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The proof of Proposition 2 is complete. 2

The result of Proposition 1 can be further improved upon.

Proposition 3 If m is bounded and assumptions A1-A5 hold, then for every ε > 0 and for

all large n

P (|n̂j − n0
j | > log2 n) < ε, (j = 1, ...,m).

Proof. Let B = {(n1, ..., nm) : |ns − n0
s| < nτ , 1 ≤ s ≤ m} for some τ ∈ (1/2, 3/4). Let Bj

be a subset of B such that

Bj = {(n1, ..., nm) : |nj − n0
j | > log2 n, |ns − n0

s| < nτ , 1 ≤ s ≤ m},

By Proposition 1, P ({n̂1, ..., n̂m} ∈ B)→ 1. To prove Proposition 3, we show P ((n̂1, ..., n̂m) ∈

Bj)→ 0, which is implied by the following:

min
(n1,...,nm)∈Bj

Sn(n1, ...nm) >
n∑
i=1

|εi| (35)

with probability tending to 1. For (n1, ..., nm) ∈ Bj ,

Sn(n1, ..., nm) ≥ Sn(n1, ..., nm, n
0
1, ..., n

0
j−1, n

0
j − [log2 n], n0

j + [log2 n], n0
j+1, .., n

0
m)

def
= Tn(n1, ..., nm) = Tn(P).

Thus to prove Proposition 3, it is sufficient to show, with probability tending to 1,

min
(n1,...,nm)∈Bj

Tn(n1, ...nm) >
n∑
i=1

|εi|. (36)

Let us introduce some terminology for ease of exposition. The diameter of (`, k], denoted

by D(`, k), is defined as the sum of least absolute deviations for observations i ∈ [` + 1, k].

That is, D(`, k) = infφ
∑k
i=`+1 |yi − x′iφ|. The diameter of (`, k] relative to a partition P =

(n1, ..., nm), denoted by D(`, k,P), is defined as the sum of all the diameters of the form

(`, k] ∩ (ns, ns+1] (s = 0, 1, ...,m). The diameter of an empty set is defined to be zero.

Because the length of each true regime is no smaller than n3/4 and because τ < 3/4, it is

clear that for each partition P = (n1, ..., nm) ∈ B, (n0
s, n

0
s+1] contains at most the two integers

ns and ns+1 of P. Thus, D(n0
s, n

0
s+1,P) can be written as the sum of at most three diameters

of subsets of (n0
s, n

0
s+1]. Namely, if n0

s < ns < ns+1 < n0
s+1, then D(n0

s, n
0
s+1,P) = D(n0

s, ns) +
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D(ns, ns+1)+D(ns+1, n
0
s+1). Generally, let rs = max{n0

s, ns}, rs+1 = min{n0
s+1, ns+1}, we have

D(n0
s, n

0
s+1,P) = D(n0

s, rs) +D(rs, rs+1) +D(rs+1, n
0
s+1) with the convention that D(`, k) = 0

for k ≤ `.

Given these preparations, we see that Tn(P) can be written as:

∑
s 6=j−1,j

D(n0
s, n

0
s+1,P) +D(n0

j−1, n
0
j − [log2 n],P) +D(n0

j + [log2 n], n0
j+1,P) (37)

+D(n0
j − [log2 n], n0

j + [log2 n],P). (38)

Because the diameter of (n0
s, n

0
s+1] relative to P ∈ Bj involves observations from a common

true regime, it can be written as

D(n0
s, n

0
s+1,P) = inf

φ

rs∑
n0
s+1

|εi − x′iφ|+ inf
φ

rs+1∑
rs+1

|εi − x′iφ|+ inf
φ

n0
s+1∑

rs+1+1

|εi − x′iφ|. (39)

That is, we can replace yi by εi. All of the diameters in (37) have similar expressions to (39).

The diameter in (38), however, involves observations from two different true regimes and hence

it has an expression given by Sn2 in (31) with [nτ ] replaced by [log2 n]. Now the difference

between Tn(P) and
∑n
i=1 |εi| can be written as

Tn(P)−
n∑
i=1

|εi| =
∑

s 6=j−1,j

(
D(n0

s, n
0
s+1,P)−

∑ ′′|εi|
)

(40)

+ D(n0
j−1, n

0
j − [log2 n],P)−

∑ ′′|εi| (41)

+ D(n0
j + [log2 n], n0

j+1,P)−
∑ ′′|εi| (42)

+ D(n0
j − [log2 n], n0

j + [log2 n],P)−
∑ ′′|εi|, (43)

where
∑′′ extends over the range over which the preceded diameter is defined. For example,

the first sum
∑′′ means

∑n0
s+1

n0
s+1. Next we shall show that (40)-(42) are all bounded by Op(log n)

uniformly in P ∈ Bj , whereas (43) is larger than η log2 n, for some η > 0, with probability

tending to 1. To this end, for s 6= j − 1, j, by (39)

D(n0
s, n

0
s+1,P)−

n0
s+1∑

n0
s+1

|εi| =

inf
φ

rs∑
n0
s+1

|εi − x′iφ| − |εi|

 (44)

+

inf
φ

rs+1∑
rs+1

|εi − x′iφ| − |εi|

+

inf
φ

n0
s+1∑

rs+1+1

|εi − x′iφ| − |εi|

 . (45)
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By Lemma 2(ii) (treating n0
s + 1 as the first observation), the term on the right of (44) is

uniformly bounded in absolute value by Op(log n) as rs varies. Similarly, the second term

of (45) is also uniformly bounded by Op(log n) by Lemma 2(ii) (applied with the data order

reversed and treating n0
s+1 as the first observation). What is less obvious is that the first term

of (45) is also bounded by Op(log n). This is because rs and rs+1 are not arbitrary, the interval

(rs, rs+1] must include r0s = [(n0
s + n0

s+1)/2] by the definition of Bj , rs and rs+1. Thus we can

break up the sum into two pieces with one piece summing over (rs, r0s ] and the other summing

over (r0s , rs+1]. In this way Lemma 2(ii) can be applied to each piece (r0s does not vary when

rs and rs+1 vary). Because m is bounded, the number of diameters in (40) is bounded. Thus

(40) is bounded by Op(log n).

Similarly, both (41) and (42) are bounded uniformly on Bj by Op(log n).

Next consider (43), which can be written as (see (31), replacing [nτ ] by [log2 n]):

inf
φ


n0
j∑

n0
j−[log2 n]+1

(
| εi − x′i(φ− β0

j )| − |εi|
)

+
n0
j+[log2 n]∑
n0
j+1

(
| εi − x′i(φ− β0

j+1)| − |εi|
) . (46)

Because max{|φ − β0
j |, |φ − β0

j+1|} ≥ |β0
j − β0

j+1|/2 for all φ, Lemma 9 implies that (46) is

larger than η log2 n for some η > 0, with probability tending to one [see the detailed argument

concerning (33)]. Thus

min
(n1,...,nm)∈Bj

Tn(n1, ..., nm)−
n∑
i=1

|εi| > −|Op(log n)|+ η log2 n > 0

with probability tending to 1. Therefore (36) is proved and so is the proposition.

Proof of Theorem 1 and Theorem 2. Write m = m(n). Define G = {(n1, ..., nm) :

|nk −n0
k| ≤ nν , 1 ≤ k ≤ m}, where ν < 1/4. For each fixed j and C <∞ define Gj(C) to be a

subset of G such that Gj(C) = {(n1, ..., nm) ∈ G;nj < n0
j − C}. In Gj(C), nj < n0

j ; the case

of nj > n0
j is similar and is omitted. By Propositions 2 and 3, P ((n̂1, ..., n̂m) ∈ G) → 1. To

prove the theorems, it suffices to show that for each ε > 0, P
(
(n̂1, ..., n̂m) ∈ Gj(C)

)
< ε for

all large C and large n (j = 1, ..,m). Because (n̂1, ..., n̂m) must satisfy

Sn(n̂1, · · · , n̂j , · · · , n̂m) ≤ Sn(n̂1, · · · , n̂j−1, n
0
j , n̂j+1, · · · , n̂m),

to show that (n̂1, ..., n̂m) is not in Gj(C), it suffices to show

min
(n1,···,nm)∈Gj(C)

[Sn(n1, · · · , nj , · · · , nm)− Sn(n1, · · · , nj−1, n
0
j , nj+1, · · · , nm)] > 0 (47)
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with large probability for large C.

For a fixed j, let β̂j be the LAD estimator based on observations (nj−1, nj ], viz, β̂j =

argminβ
∑nj
nj−1+1 |yi − x′iβ|. Similarly, let β̂j+1 be the LAD estimator based on observations

(nj , nj+1]. For notational simplicity, we omit the dependence of β̂j on the partition. Let β̂∗j and

β̂∗j+1 be the LAD estimators based on observations (nj−1, n
0
j ] and (n0

j , nj+1], respectively (see

Figure 1). By the definition of G, β̂k and β̂∗k (k = j, j+1) are estimated with at least a positive

fraction of n0
k − n0

k−1 observations belonging to a common true regime (because nk is close to

n0
k) and with at most O(nν) observations from another true regime. Note that n0

k−n0
k−1 ≥ nρ

with ρ ≥ 3/4 by assumption. Thus by Lemma 11(i), we have, for each δ ∈ (0, ρ − ν), with

probability tending to 1,

|β̂k − β0
k| ≤ n−(ρ−ν−δ)/2 k = j, j + 1, (48)

and similarly,

|β̂∗k − β0
k| ≤ n−(ρ−ν−δ)/2 k = j, j + 1. (49)

These inequalities hold uniformly on G. We further assume, for the sake of concreteness, that

nj−1 ≤ n0
j−1 and nj+1 ≥ n0

j+1 (other cases can be analyzed similarly and are actually simpler).

For nj−1 ≤ n0
j−1 and nj+1 ≥ n0

j+1 (see Figure 1),

Sn(n1, · · · , nj , · · · , nm)

=
j−1∑
k=1

D(nk−1, nk) +
n0
j−1∑

nj−1+1

|εi − x′i(β̂j − β0
j−1)|+

nj∑
n0
j−1+1

|εi − x′i(β̂j − β0
j )|

+
n0
j∑

nj+1

|εi − x′i(β̂j+1 − β0
j )|+

n0
j+1∑

n0
j+1

|εi − x′i(β̂j+1 − β0
j+1)|

+
nj+1∑
n0
j+1+1

|εi − x′i(β̂j+1 − β0
j+2)|+

m∑
k=j+2

D(nk−1, nk)

def
=

j−1∑
k=1

D(nk−1, nk) + a+ b+ c+ d+ e+
m∑

k=j+2

D(nk−1, nk), (50)

where D(`, k) = infφ
∑k
i=`+1 |yi − x′iφ|, as defined earlier. Similarly,

Sn(n1, · · · , nj−1, n
0
j , nj+1 · · · , nm)
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=
j−1∑
k=1

D(nk−1, nk) +
n0
j−1∑

nj−1+1

|εi − x′i(β̂∗j − β0
j−1)|+

nj∑
n0
j−1+1

|εi − x′i(β̂∗j − β0
j )|

+
n0
j∑

nj+1

|εi − x′i(β̂∗j − β0
j )|+

n0
j+1∑

n0
j+1

|εi − x′i(β̂∗j+1 − β0
j+1)|

+
nj+1∑
n0
j+1+1

|εi − x′i(β̂∗j+1 − β0
j+2)|+

m∑
k=j+2

D(nk−1, nk)

def
=

j−1∑
k=1

D(nk−1, nk) + a∗ + b∗ + c∗ + d∗ + e∗ +
m∑

k=j+2

D(nk−1, nk), (51)

A major distinction between Sn(n1, · · · , nm) and Sn(n1, · · · , n0
j , · · · , nm) lies in the fourth ex-

pression on the right hand of each, c and c∗. Expression c involves β̂j+1 and c∗ involves β̂∗j ;

with β̂j+1 and β̂∗j being estimators of β0
j+1 and β0

j , respectively. We now consider the difference

between (50) and (51). First, by the simple inequality (13), assumption A3, and (48)-(49),

|a− a∗| ≤ (n0
j−1 − nj−1)K|β̂j − β̂∗j | ≤ 2Knνn−(ρ−ν−δ)/2 = 2Kn−(ρ−3ν−δ)/2 = op(1)

for δ ∈ (0, ρ − 3ν), where op(1) is uniform on G. Similarly, |e − e∗| = op(1) uniformly on G.

Next, b− b∗ can be written as (by adding and subtracting |εi|),

b− b∗ =
nj∑

n0
j−1+1

(
|εi − x′i(β̂j − β0

j )| − |εi|
)
−

nj∑
n0
j−1+1

(
|εi − x′i(β̂∗j − β0

j )| − |εi|
)
. (52)

By Lemma 11(ii), each term on the right hand side is Op(1) uniformly on G. To see this,

consider the first term on the right. Note that β̂j is estimated with observations (nj−1, nj ].

But |nj−1−n0
j−1| ≤ nν and |n0

j−1−nj | ≥ a|n0
j−1−n0

j | for some a ∈ (0, 1) because nj is close to

n0
j . Thus, the conditions of Lemma 11 are satisfied (treating n0

j −n0
j−1 as the n1, and treating

nj − n0
j−1 as the k of the lemma). By the same reasoning, d− d∗ = Op(1) uniformly on G. It

remains to deal with c and c∗. Adding and subtracting terms,

c− c∗ =
n0
j∑

nj+1

(
|εi − x′i(β0

j+1 − β0
j )| − |εi|

)
(53)

+
n0
j∑

nj+1

(
|εi − x′i(β̂j+1 − β0

j )|
)
−

n0
j∑

nj+1

(
|εi − x′i(β0

j+1 − β0
j )|
)

(54)

−
n0
j∑

nj+1

(
|εi − x′i(β̂∗j − β0

j )| − |εi|
)
. (55)
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Expression (54) is bounded by (n0
j − nj)K|β̂j+1− β0

j+1| ≤ nνKn−(ρ−ν−δ)/2 = op(1). Similarly,

(55) is bounded by (n0
j − nj)K|β̂∗j − β0

j | = op(1) [see (49)]. Expression (53) will be treated

later. Summarizing these results, we obtain, uniformly on G,

Sn(n1, ..., nm)− Sn(n1, ..., n
0
j , ..., nm) =

n0
j∑

nj+1

(
|εi − x′i(β0

j+1 − β0
j )| − |εi|

)
+Op(1). (56)

Next, for (n1, ..., nm) ∈ Gj(C) ⊂ G, we shall show that the r.h.s. term above is large. Because

|β0
j+1 − β0

j | > 0 is fixed and n0
j − nj ≥ C, Lemma 9 implies that the first term on the r.h.s. of

(56) is greater than η(n0
j − nj) ≥ ηC for some η > 0 with probability tending to 1 as C tends

to infinity. Thus on Gj(C),

min
(n1,···,nm)∈Gj(C)

[Sn(n1, · · · , nm)− Sn(n1, · · · , n0
j , · · · , nm)] ≥ ηC +Op(1).

The r.h.s. above is positive with large probability if C is large. This proves (47) and thus the

theorems. 2

Proof of Theorem 3. We note that β̂j(n̂1, ..., n̂m) only depends on n̂j−1 and n̂j so we

can write it as β̂j(n̂j−1, n̂j). Further note that β̂j(n0
j−1, n

0
j ) has the stated limiting distribution

[see, e.g., Bassett and Koenker (1978)]. But n̂i = n0
i + Op(1), thus with large probability,

β̂j(n̂j−1, n̂j) is estimated using the same set of observations as β̂j(n0
j−1, n

0
j ) with at most a

finite number of different observations. A finite number of different observations will not alter

the limiting distribution. The proof of Theorem 3 is now complete. 2

Proof of Theorem 4. The key to the proof lies in the following fact. Let (n̂1, ..., n̂m)

be the jointly estimated change points, where m = m(n), not necessarily bounded. Then for

each j, it must be true that

n̂j = argmin
1≤nj≤n

Sn(n̂1, ..., n̂j−1, nj , n̂j+1, ..., n̂m).

This fact effectively transforms the problem into that of a single change point. The above is

equivalent to n̂j − n0
j = argmink Sn(n̂1, ..., n̂j−1, n

0
j + k, n̂j+1, ..., n̂m). In view of the rate of

convergence of n̂j given by Theorems 1 and 2, to prove Theorem 4 it suffices to show that, for

|k| ≤M (M <∞ arbitrarily given)

Sn(n̂1, ..., n̂j−1, n
0
j + k, n̂j+1, ..., n̂m)− Sn(n̂1, ..., n̂j−1, n

0
j , n̂j+1, ..., n̂m) d−→W (j)(k). (57)
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Let nj = n0
j + k. Then (n̂1, ..., n̂j−1, nj , n̂j+1, ..., n̂m) ∈ G with probability approaching to 1.

Thus (56) implies that, for k < 0 (the case of k > 0 is similar and is omitted),

Sn(n̂1, ..., n̂j−1, nj , n̂j+1, ..., n̂m)− Sn(n̂1, ..., n̂j−1, n
0
j , n̂j+1, ..., n̂m)

=
n0
j∑

nj+1

(
|εi − x′i(β0

j+1 − β0
j )| − |εi|

)
+Op(1) (58)

The first term on the r.h.s. above has the same distribution as W (j)(n0
j −nj) = W (j)(k) under

the iid assumption. Thus (57) and hence Theorem 4 will be proved if the Op(1) term in (58)

can be strengthened to be op(1), under |nj − n0
j | ≤ M . Note that the Op(1) term represents

b− b∗ and d− d∗ defined in the previous proof. We next show that b− b∗ = op(1). The proof

for d− d∗ being op(1) is similar.

Let β̂j and β̂∗j be the LAD estimators of β0
j based on observations [n̂j−1, nj ] and [n̂j−1, n

0
j ],

respectively. Because |nj − n0
j | ≤ M by assumption and n̂j−1 − n0

j−1 = Op(1) by Theorem 2,

it follows from the classical result that

β̂j − β0
j = n−1/2

a Op(1), and β̂∗j − β0
j = n−1/2

a Op(1), (59)

where na = n0
j − n0

j−1. Using the Bahadur type of representation (Babu 1989), we have, by

canceling the common term of representations,

|β̂∗j − β̂j | ≤ n−3/4
a (log na)Op(1). (60)

We now prove b−b∗ = op(1) (cf. (52)). Replacing nj by n0
j in (52), which is equivalent to adding

an op(1) term
∑n0

j
nj (·). [The term being op(1) follows because |

∑n0
j
nj | ≤

∑n0
j
nj |xi||β̂j − β̂∗j | ≤

MK|β̂j − β̂∗j | = op(1) by (60)], we can rewrite b− b∗ as

b− b∗ =
n0
j∑

n0
j−1+1

∣∣∣εi − x′i(β̂j − β0
j )
∣∣∣− n0

j∑
n0
j−1+1

∣∣∣εi − x′i(β̂∗j − β0
j )
∣∣∣+ op(1)

=
n0
j∑

n0
j−1+1

∣∣∣εi − x′i(β̂∗j − β0
j )− x′i(β̂j − β̂∗j )

∣∣∣− n0
j∑

n0
j−1+1

∣∣∣εi − x′i(β̂∗j − β0
j )
∣∣∣+ op(1).

The following lemma together with (59)-(60) implies that b− b∗ is op(1). 2
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Lemma 12 Under A3 and A5, for every L <∞,

sup
|φ1|<L,|φ2|<L

∣∣∣∣∣
n∑
i=1

(
|εi − x′iφ1n

−1/2 − x′iφ2n
−3/4 log n| − |εi − x′iφ1n

−1/2|
)∣∣∣∣∣ = op(1).

Proof. Denote the ith summand by ψin(θ), where θ = (φ1, φ2). From E(|εi − t| − |εi|) =

t2f(0) + o(t2), it is easy to verify that
∑n
i=1Eψin(θ) = o(1) uniformly in |θ| ≤M = 2L. Thus

the lemma will be true if we can prove it with ψin(θ) replaced by ψin(θ) − Eψin(θ). From

|ψin(θ)| ≤ |x′iφ2|n−3/4 log n ≤ KLn−3/4 log n, we obtain E[ψin(θ)]2 ≤ (KL)2n−3/2(log n)2.

Apply Lemma 1 with a = ε, s = 1/2, V = (KL)2n−1/2(log n)2, we obtain, for each fixed θ,

P

(∣∣∣ n∑
i=1

[ψin(θ)− Eψin(θ)]
∣∣∣ > ε

)
≤ 2 exp(−ε2Cn1/2/(log n)2)

for some C > 0. Next divide the region |θ| ≤M into O(np) cells such that for θ′, θ′′ belonging

to a common cell, |θ′ − θ′′| ≤Mn−1/2. In this way, the incremental value,

∣∣∣ n∑
i=1

(
ψin(θ′)− Eψin(θ′)− ψin(θ′′) + Eψin(θ′′)

)∣∣∣ ≤ n∑
i=1

|x′i(φ′2 − φ′′2)|n−3/4 log n

≤ 2KMn−1/4 log n = o(1).

Thus

P

(
sup
|θ|≤M

∣∣∣ n∑
i=1

ψin(θ)− Eψin(θ)
∣∣∣ > ε

)
≤ O(np) exp(−ε2Cn1/2/(log n)2)→ 0,

proving the lemma. 2

Proof of Theorem 5. We first prove P (m̂ < m0
n)→ 0 by arguing that P

(
infm<m0

n
B(m)

−B(m0
n) ≤ 0

)
→ 0. Write m0 = m0

n. First note that when m < m0, there must exist at

least one change point that cannot be estimated. Because each of the regime lengths is at

least n3/4, there exists a segment [`, k] which contains no estimated change point and satisfies

n0
j − ` ≥ n3/4/2 and k−n0

j ≥ n3/4/2 for some n0
j . Using a similar argument as in proving (33)

and Lemma 9, we can show that, for some C > 0,

Sn(n̂1, ..., n̂m)−
n∑
i=1

|εi| > Cn3/4 (61)

with probability tending to 1. Next,

B(m)−B(m0) = n log
(

1 +
ê(m)− ê(m0)

ê(m0)

)
+ (m−m0)g(n).
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Without loss of generality, we may assume that |ê(m) − ê(m0)|/ê(m0) is small (if it is large,

it is even less unlikely for B(m) ≤ B(m0)). Using log(1 + x) ∼ x,

B(m)−B(m0) ∼ n[ê(m)− ê(m0)]/ê(m0) + (m−m0)g(n)

=
[
Sn(n̂1, ..., n̂m)−

n∑
i=1

|εi| − {Sn(n̂1, ..., n̂m0)−
n∑
i=1

|εi|}
]/
ê(m0) (62)

+(m−m0)g(n).

We need the following lemma:

Lemma 13 Under A1-A6,

0 ≥ Sn(n̂1, ..., n̂m0)−
n∑
i=1

|εi| = Op(n1/4).

Proof. From Sn(n̂1, ..., n̂m) ≥ Sn(n̂1, ..., n̂m, n
0
1, ..., n

0
m0

) for all m, we have

n∑
i=1

|εi| − Sn(n̂1, ..., n̂m) ≤ (m+m0 + 1)Un, ∀ m (63)

where Un = sup1≤`<k≤n

∣∣∣ infφ
∑k
i=` |εi − x′iφ| − |εi|

∣∣∣. Thus, for m = m0,

P
( n∑
i=1

|εi| − Sn(n̂1, ..., n̂m0) > n1/4
)
≤ P (3m0Un > n1/4) = P (3Un > n1/4/m0).

The above probability converges to zero by Lemma 7 because n1/4/m0 > na for some a > 0.

2

The lemma implies that ê(m0) = n−1∑n
i=1 |εi| + Op(n−3/4) → E(|ε1|). From (61), (62)

and Lemma 13, we have, for all large n

B(m)−B(m0) > Cn3/4 −Op(n1/4) + (m−m0)g(n) ≥ 2−1Cn3/4 −m0g(n) > 0

because m0 g(n) ≤ c2n(1/4)−bn1/2 = o(n3/4) by A1 and g(n) = n1/2. This implies that P (m̂ <

m0)→ 0.

Next consider m > m0. We assume m < Lm0 for a large given L. For m > m0,

Sn(n̂1, ..., n̂m0) ≥ Sn(n̂1, ..., n̂m)

= Sn(n̂1, ..., n̂m0) +
{
Sn(n̂1, ..., n̂m)−

n∑
i=1

|εi|
}
−
{
Sn(n̂1, ..., n̂m0)−

n∑
i=1

|εi|
}

≥ Sn(n̂1, ..., n̂m0)− (Lm0 +m0 + 1)Un − (2m0 + 1)Un
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where the last inequality follows from (63). By Lemma 7, Un = Op(nε) for every ε > 0. Choose

a small ε > 0 such that m0Un = Op(n1/4), we have

Sn(n̂1, ..., n̂m0) ≥ Sn(n̂1, ..., n̂m) ≥ Sn(n̂1, ..., n̂m0)−Op(n1/4).

Divide by n on both sides above to obtain

0 ≤ ê(m0)− ê(m) = Op(n−3/4).

Thus

n log ê(m0)− n log ê(m) = −n log
(

1 +
ê(m)− ê(m0)

ê(m0)

)
= Op(n1/4).

Because g(n)/n1/4 →∞,

n log ê(m0)− n log ê(m) = Op(n1/4) < g(n) ≤ (m−m0)g(n)

for all m > m0. That is, for m > m0,

n log ê(m) +mg(n) > n log ê(m0) +m0g(n)

for all large n. This implies that P (m̂ > m0)→ 0. 2

References

[1] Babu, G.J. (1989). Strong representations for LAD estimators in linear models. Probability

Theory and Related Fields 83 547-558.

[2] Bai, J. (1994). Least squares estimation of a shift in linear processes. J. of Time Series

Analysis 15, 453-472.

[3] Bai, J. (1995). Least absolute deviation estimation of a shift. Econometric Theory 11,

403-436.

[4] Bai, J. and P. Perron (1998). Estimating and testing linear models with multiple structural

changes. Econometrica, 66, 47-78.

[5] Barrodale, I. and Roberts, F.D.K. (1974). Algorithm 478: Solution of an overdetermined

system of equations in the L1 norm. Comm. ACM 17 319-320.

[6] Bassett, G. and K. Koenker (1978), Asymptotic theory of least absolute error regression.

J. Amer. Statist. Assoc. 73 618-622.

33



[7] Bhattacharya, P.K. (1987). Maximum likelihood estimation of a change-point in the distri-

bution of independent random variables, General Multiparameter case. J. Multi. Analysis.

23 183-208.

[8] Brodsky, B.E. and B.S. Darkhovsky (1993). Nonparametric Methods in Change Point

Problems. Kluwer, Dordrecht.

[9] Dueker, M.J. (1992). The response of market interest rates to discount rate changes. The

Federal Reserve Bank of St. Louis Review 74, No.4 78-91.
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Table 1: Means and standard deviations of the estimated change points

(500 repetitions)

Normal LS 24.98 (1.49) 49.95 (1.75) 75.00 (1.31)
LAD 24.95 (2.08) 49.99 (1.86) 74.97 (1.70)

Double LS 24.99 (6.04) 49.32 (8.43) 74.41 (5.87)
exponential LAD 25.18 (2.53) 50.11 (3.54) 75.15 (2.96)

t-distribution LS 26.57 (10.15) 50.07 (10.98) 75.04 (7.26)
df=3 LAD 25.11 (3.64) 50.00 (3.38) 75.18 (3.24)

Contaminated normal LS 28.65 (13.96) 49.61 (14.47) 74.59 (9.72)
(ε = 0.1, τ = 5) LAD 25.42 (4.82) 49.91 (4.54) 75.26 (3.38)

Model: yi = αk + βxi + εi, where εi are, respectively, normal N(0, 1), double

exponential with density f(x) = 2−1e−|x|, student t with df = 3, and contaminated normal

with cdf F (x) = (1 − ε)Φ(x) + εΦ(xτ ), here ε = 0.1 and τ = 5. Sample size 100, true change

points 25, 50, and 75. Standard deviations are reported in parentheses.



Figure 1: A particular configuration of (n1, n2, ..., nm) in the set Gj(C) defined in the proof
of Theorems 1 and 2.
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