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Abstract: This paper examines the robustness of efficiency score rankings across four distributional 

assumptions for trans-log stochastic production-frontier models, using data from 1,221 Japanese water 

utilities (for 2004 and 2005).  One-sided error terms considered include the half-normal, truncated 

normal, exponential, and gamma distributions.  Results are compared for homoscedastic and doubly 

heteroscedastic models, where we also introduce a doubly heteroscedastic variable mean model, and 

examine the sensitivity of the nested models to a stronger heteroscedasticity correction for the one-sided 

error component. The results support three conclusions regarding the sensitivity of efficiency rankings to 

distributional assumptions. When four standard distributional assumptions are applied to a homoscedastic 

stochastic frontier model, the efficiency rankings are quite consistent. When those assumptions are 

applied to a doubly heteroscedastic stochastic frontier model, the efficiency rankings are consistent when 

proper and sufficient arguments for the variance functions are included in the model. When a more 

general model, like a variable mean model is estimated, efficiency rankings are quite sensitive to 

heteroscedasticity correction schemes.   

Running Title:  Sensitivity of Efficiency Rankings to Distributional Assumptions: Japanese 

Water Utilities 
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Sensitivity Analysis of Efficiency Rankings to Distributional Assumptions:  

Applications to Japanese Water Utilities 

1.     Introduction 

Efficient frontier techniques, including both stochastic frontier analysis (SFA) and data 

environment analysis (DEA), are widely used to identify high and low performing 

organizations.  The application of sophisticated yardstick comparisons and associated 

benchmarking
 
incentive schemes can improve efficiency.

1
 However, as Kumbhakar and Lovell 

(2000, p.90) conclude that, even within a parametric approach, “ . . . it is unclear whether a 

ranking of producers by their efficiency scores is sensitive to distributional assumptions, 

although it is clear that sample mean efficiencies are sensitive.” Since a distributional assumption 

is essential for SFA, especially in the context of cross-sectional models, this empirical problem 

presents issues for the application of efficiency scores in the context of benchmarking.  The 

purpose of this paper is to examine the sensitivity of efficiency rankings to distributional 

assumptions regarding the one-sided efficiency error term for SFA. 

In his analysis of stochastic cost frontiers for 123 U.S. electric utilities, Greene (1990, p.157) 

used four types of models where one-sided error components are assumed, using half normal, 

truncated normal, exponential, and gamma distributions.  The reported sample mean 

(in)efficiencies are 0.8839 (0.1234), 0.9013 (0.1039), 0.9058 (0.0989) and 0.9002 (0.1051) 

respectively.  Based on these results, Green (pp. 155-8) also concluded that the frontier 

parameter estimates were roughly similar for the four models; however, the gamma model 

yielded a different inefficiency distribution. 

https://legacy.mail.ufl.edu/OWA/WebReadyViewBody.aspx?t=att&id=RgAAAABNIAfjbsqjSKF739mBLq2VBwB1Wh3iOYEfQ4IulmaiOJf2AAAYbDCuAAB1Wh3iOYEfQ4IulmaiOJf2AAAwOn%2fNAAAJ&attid0=EABpb90kAe6eTZbOAG9VjTGh&attcnt=1&pn=1#footnote1
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Kumbhakar and Lovell (2000, p.90) used the same data and calculated the correlation 

coefficients for rankings; the highest was 0.9803, between the half normal and truncated normal 

models, whereas the lowest was 0.7467 between the exponential and gamma models. These 

correlations suggest that rankings can be somewhat sensitive to distributional assumptions. 

Greene (2008, p.182) also presents new results based on the same data but on a full translog 

model; he concludes that mean inefficiency estimates are almost identical, although there are 

differences in the parameter estimates. The reported sample mean (in)efficiencies are 0.9240 

(0.0790), 0.9281 (0.0746), 0.9279 (0.0748) and 0.9368 (0.0653) respectively. Hence, in contrast 

with the initial conclusion by Kumbhakar and Lovell (2000), the mean efficiency scores no 

longer seem to be sensitive to distributional assumptions in the translog case. In fact, the lowest 

correlation coefficient is 0.9116 between the half normal and gamma models. In the context of 

ranking correlations, the highest is 0.9999, between the truncated normal and exponential 

models, and the lowest is 0.9554 between the half normal and gamma models. These new results 

suggest that not only efficiency rankings but also mean efficiencies are consistent among 

different assumed distributions. Thus, Greene (2008, p.114) concludes that the overall pictures 

drawn by SFA and DEA are similar, although the evidence is mixed due to different efficiency 

evaluations of financial institutions (the industry from which data were obtained).  Here, we will 

focus on consistency within SFA models, where different error distribution assumptions are 

considered. 

As Greene argues (2008, p.180), the issue of robustness to different error distribution 

assumptions does not have an analytical solution.  However, it is useful to explore the extent of 

consistency of efficiency scores (and utility rankings) under different distributional assumptions, 

since that can provide sign-posts for analysts conducting performance studies. Furthermore, the 
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reported correlations are derived from a homoscedastic frontier model. That model (which 

neglects heteroscedasticity) faces serious problems in the context of SFA. Previous empirical 

studies conclude that estimated parameters and efficiency scores are sensitive to specification of 

the one-sided (inefficiency) error component and/or the two-sided (idiosyncratic) error 

component. A number of approaches have been suggested to address these problems: Caudill, 

Ford and Gropper (1995) use a half-normal one-sided heteroscedastic frontier model; Hadri 

(1999) and Hadri, Guermat and Whittaker (2003) develop a half-normal doubly heteroscedastic 

frontier model; Greene (2004, and 2005a,b) applies a truncated-normal heterogeneous mean 

model as well as true fixed or random model; and Wang and Schmidt (2002) and Alvarez et al. 

(2006) propose scaling-function models. To the extent that correcting for heteroscedasticity 

affects estimates of frontier parameters and efficiency scores, an appropriate heteroscedasticity 

correction presents a serious technical issue. Unless the sensitivity to specification is addressed, 

the policy-relevance of estimates will be called into question. 

Therefore, it is useful to examine the consistency among heteroscedastic frontier models that 

have different distributional assumptions. In the present study, we combine the above mentioned 

four types of distributional assumptions with homoscedastic and doubly heteroscedastic 

stochastic production-frontier models, utilizing a sample of 1,221 Japanese water utilities, pooled 

for two years. Here, the dispersion in the size distribution of utilities suggests that the 

homogeneity assumption is violated.  Thus, we also introduce a doubly heteroscedastic variable 

mean model, and examine the sensitivity of nested models to a more comprehensive 

heteroscedasticity correction for the one-sided error component. 

Our estimated results suggest three possibilities regarding the sensitivity of efficiency ranking is 

sensitive to distributional assumptions. When we apply the four types of distributional 
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assumptions to a homoscedastic stochastic frontier model, an efficiency ranking will be clearly 

consistent. When they apply them  to a doubly heteroscedastic stochastic frontier model, analysts 

will be able to make an efficiency ranking consistent whenever they can find proper and 

sufficient arguments for the variance functions. When a more general model, like a variable 

mean model, is estimated, the efficiency ranking is quite sensitive to heteroscedasticity 

correction schemes.  In general, controlling for heteroscedasticity is very important for efficiency 

rankings; getting the correct specification of the heteroscedasticity form is just as important. 

Therefore one must conduct sensitivity tests before making policy recommendations. If results 

are sensitive to the error specification, one must use a more flexible specification, such as 

nonparametric specification for the heteroscedasticity.   

The remainder of the paper is organized as follows. In Section 2, we briefly describe our data 

and models, and present estimates of parameters, mean efficiencies and efficiency rankings of 

the homoscedastic translog production-frontier models with different distributional assumptions. 

In Section 3, we show the corresponding results of doubly heteroscedastic frontier models with 

different distributional assumptions. We also examine estimates of three nested models which 

consists of a doubly heteroscedastic half-normal, truncated-normal and variable mean models 

when we increase significant arguments for the one-sided error component. The last section 

presents some implications of the study.  

2.     Homoscedastic Stochastic Production-Frontier Models 

Data and Models 

We use two-year pooled data which consists of 2,442 observations (1,221 utilities) in the 

Japanese water industry in fiscal years 2004 and 2005. The data are from Annual Statistics of 
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Public Enterprises (Chihou Kouei-Kigyou Nenkan). The largest single cost items except for capital 

and labor expenditures are outsourcing and purchased water expenditures. In addition, we use 

intake water capacity as a proxy for actual intake water volume because we have only intake 

water volume but not purchased water volume. Since the correlation between intake water 

volume and capacity is high (0.99), we use “purchasing water capacity” plus “other intake water 

capacity.” We also calculate the number of virtual staff based on outsourcing by dividing 

outsourcing expenditures by payment per employee in each prefecture. Then our output and 

input variables for a production function are defined as follows: 

Y: total delivered water volume in a year (1,000 m
3
) 

K: length of all pipes (1,000 m) 

L: total number of staff, including estimated number of staff from outsourcing  

O: intake water volume without purchased water volume (1,000 m
3
) 

P: purchased water volume (1,000 m
3
) 

Table 1 summarizes descriptive statistics and it shows that our data exhibit considerable size 

dispersion.
2
 

Table 1: Descriptive Statistics of 2442 Observations in FY 2004-05 

Variable Skewness Kurtosis S.D. Mean Min Median Max 

Y 22  597  55,295  12,313  222  3,922  1,624,602  

K 15  330  1,017  443  17  224  25,914  

L 20  504  314  68  1  19  8,876  

O 23  657  84,245  14,881  0  4,282  2,586,888  

P 12  198  21,649  5,784  0  77  404,137  

As Greene (2008, p.181) suggests, consistency is also affected by the functional form adopted. 

Thus, we use a translog production function rather than a restricted Cobb-Douglas function.  

https://legacy.mail.ufl.edu/OWA/WebReadyViewBody.aspx?t=att&id=RgAAAABNIAfjbsqjSKF739mBLq2VBwB1Wh3iOYEfQ4IulmaiOJf2AAAYbDCuAAB1Wh3iOYEfQ4IulmaiOJf2AAAwOn%2fNAAAJ&attid0=EABpb90kAe6eTZbOAG9VjTGh&attcnt=1&pn=1#footnote2
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When we denote each output observation by yi and inputs K, L, O and P by x
m

 or x
n
,for m,n = 

1(K), 2(L),3(I),4(P), then our stochastic production-frontier model is written as follows. 
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The two-sided error component for each utility i, vi, and the nonnegative one-sided error 

component, ui, are assumed to be distributed independently of each other and of the regressors. 

The technical efficiency of each utility, ei, is measured by the mean of the conditional 

distribution of ui given the total error term, εi.  

The one-sided disturbance is assumed to be a truncated normal or Gamma distribution; assuming 

homoscedasticity results in a constant term of ζui = ζu or θi = θ0 in (3) respectively, as well as ζvi 

= ζv in (2).  A half normal model is a restricted form of a truncated normal model because μi = 0 

for all i, whereas an exponential model is a special case of a Gamma model when P = 1. In 

addition, a truncated normal model is a restricted form of a variable mean model in the sense that 

μi = μ0 for all i and then a half normal, truncated normal and variable mean models are nested.  

Homoscedastic Stochastic Production-Frontier Models 
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Table 2 presents estimates of homoscedastic frontier parameters based on four types of 

distributional assumptions; half-normal (H), truncated normal (T), exponential (X) and gamma 

(G) distributions.
3
 As expected, the estimated parameters are not substantially different from 

estimates using ordinary least squares (OLS). The estimates among these four frontier models are 

much closer to each other than to the OLS estimates, although several estimates of the half 

normal model are slightly different from others.  

Table 2: Homoscedastic Stochastic-Production-Frontier Models 

  OLS Half Trunc eXpo Gamma 

Constant 1.9293*** 2.0594*** 2.0433*** 2.0437*** 2.0368*** 

(0.1927) (0.1822) (0.1800) (0.1805) (0.1798) 

Log(K) 0.2968** 0.3093
**

 0.3001
**

 0.2999
**

 0.2994
**

 

(0.1045) (0. 0994) (0.1002) (0.0975) (0.0998) 

Log(L) 0.2284** 0. 1626
*
 0.1686

*
 0.1688

*
 0.1698

*
 

(0.0816) (0.0772) (0.0772) (0.0759) (0.0767) 

Log(O) 0.2654*** 0.2916
***

 0.2845
***

 0.2844
***

 0.2837
***

 

(0.0221) (0.0206) (0.0200) (0.0204) (0.0199) 

Log(P) 0.2468*** 0.2769
***

 0.2718
***

 0.2717
***

 0.2711
***

 

(0.0172) (0.0159) (0.0159) (0.0159) (0.0159) 

L(K)L(K) -0.0587 -0.0704* -0.0718
*
 -0.0717* -0.0717* 

(0.0320) (0.0305) (0.0312) (0.0298) (0.0311) 

L(L)L(L) -0.0435 -0.0369 -0.0399 -0.0399 -0.0401 

(0.0232) (0.0220) (0. 0206) (0.0218) (0.0205) 

L(O)L(O) 0.0450*** 0.0413*** 0.0417*** 0.0417*** 0.0417*** 

(0.0028) (0.0025) (0.0022) (0.0026) (0.0022) 

L(P)L(P) 0.0494*** 0.0452*** 0.0463
***

 0.0463*** 0.0464*** 

(0.0023) (0.0020) (0.0018) (0.0021) (0.0018) 

L(K)L(L) -0.0167 -0.0182 -0. 0155 -0.0155 -0.0153 

(0.0252) (0.0240) (0.0232) (0.0235) (0.0232) 

L(K)L(O) 0.0177*** 0.0216*** 0.0227
***

 0.0227*** 0.0227*** 

(0.0041) (0.0039) (0.0040) (0.0038) (0.0040) 

L(K)L(P) 0.0148*** 0.0189*** 0.0188
***

 0.0187*** 0.0187
***

 

(0.0031) (0.0029) (0.0030) (0.0029) (0.0030) 

L(L)L(O) 0.0158*** 0.0195*** 0.0185
***

 0.0185*** 0.0184*** 

https://legacy.mail.ufl.edu/OWA/WebReadyViewBody.aspx?t=att&id=RgAAAABNIAfjbsqjSKF739mBLq2VBwB1Wh3iOYEfQ4IulmaiOJf2AAAYbDCuAAB1Wh3iOYEfQ4IulmaiOJf2AAAwOn%2fNAAAJ&attid0=EABpb90kAe6eTZbOAG9VjTGh&attcnt=1&pn=1#footnote3
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(0.0043) (0.0040) (0.0041) (0.0039) (0.0041) 

L(L)L(P) 0.0229*** 0.0259*** 0.0250*** 0.0250*** 0.0250*** 

(0.0031) (0.0028) (0.0029) (0.0028) (0.0029) 

L(O)L(P) -0.0631*** -0.0681*** -0.0678*** -0.0677*** -0.0676*** 

(0.0023) (0.0021) (0.0020) (0.0022) (0.0019) 

R
2
 / LL 0.9701 380.9279 395.4415 395.4672 395.5657 

Standard errors in parentheses. 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001.  

The likelihood ratio (LR) test strongly rejects the restriction of the half normal model, but it 

cannot reject the restriction of the exponential model. Thus, we can say that the estimates of the 

frontier parameters are roughly similar: only the estimates of the half normal model whose 

restriction is rejected by the LR test are slightly different. Several Tables provide evidence 

regarding the consistency of the results. Table 3 confirms that efficiency estimates are also quite 

similar for the different error models, except for the half-normal model. In particular, the 

truncated normal and exponential models have almost the same efficiency distribution, which is 

the same result found by Greene (2008, p.182).
4 

In his earlier work, Greene (1990, p.158) also 

suggests that a restricted model produces smaller values of estimated efficiencies than a more 

general model for most of the sample observations: a conclusion that is consistent with our 

results, shown in Table 3.
5 

 

Table 3: Estimated Efficiency Distributions from Homoscedastic Frontier Models 

Model Skewness Kurotsis S.D. Mean Min Median Max 

Half -0.9748 3.5862 0.0969 0.8121 0.4905 0.8328 0.9662 

Trunc -2.0816 8.5865 0.0844 0.8671 0.4018 0.8929 0.9681 

eXpo -2.1418 9.1015 0.0846 0.8675 0.3552 0.8934 0.9681 

Gamma -2.2673 9.8223 0.0834 0.8764 0.3589 0.9024 0.9718 

 

Table 4 shows that the lowest correlation coefficient is 0.9603 between the half normal and 

gamma models, supporting the consistency of estimated efficiency scores for the four error 

https://legacy.mail.ufl.edu/OWA/WebReadyViewBody.aspx?t=att&id=RgAAAABNIAfjbsqjSKF739mBLq2VBwB1Wh3iOYEfQ4IulmaiOJf2AAAYbDCuAAB1Wh3iOYEfQ4IulmaiOJf2AAAwOn%2fNAAAJ&attid0=EABpb90kAe6eTZbOAG9VjTGh&attcnt=1&pn=1#footnote4
https://legacy.mail.ufl.edu/OWA/WebReadyViewBody.aspx?t=att&id=RgAAAABNIAfjbsqjSKF739mBLq2VBwB1Wh3iOYEfQ4IulmaiOJf2AAAYbDCuAAB1Wh3iOYEfQ4IulmaiOJf2AAAwOn%2fNAAAJ&attid0=EABpb90kAe6eTZbOAG9VjTGh&attcnt=1&pn=1#footnote5
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distribution specifications.  None of the efficiency rankings are sensitive to distributional 

assumptions: the lowest ranking correlation coefficient is 0.999 (between the half normal and 

gamma models again). Therefore, we can conclude that both efficiency scores and their rankings 

are consistent among these four types of models.  

 

Table 4: Correlations for Estimated Efficiencies from Homoscedastic Frontier Models
a
 

Model Half Trunc eXpo Gamma 

Half 1 0.9697 0.9673 0.9603 

Trunc 0.9998 1 0.9998 0.9991 

eXpo 0.9998 1 1 0.9995 

Gamma 0.9991 0.9993 0.9993 1 

 
a) Spearman rank correlations below diagonal and Pearson correlations above diagonal. 

 

However, these high correlations do not necessarily imply a simple linear relationship between 

efficiency scores. For example, Figure 1 suggests that the estimated efficiency distribution from 

the normal half model is convex when compared with the distribution associated with the 

truncated normal model. Interestingly, the normal half model also takes a similar convex form 

relative to the exponential and gamma models; except for the half normal model, these three 

models have a close linear relationship with each other.  However, the correlation coefficients of 

the half normal model are relatively low on Table 4. 
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Figure 1: Estimated Efficiencies: Half against Trunc 
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Figure 2 depicts the estimated efficiency distributions for the four homoscedastic models. While 

the half normal model has a peak at a lower efficiency level, the other three distributions share a 

long and thin tail on the left side of a relatively higher efficiency peak. Therefore, as was 

suggested by patterns in Figure 1, the half normal model is apt to be able to distinguish more 

efficient utilities in some detail; the other models do not have this capability in this case. 
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Figure 2: Estimated Efficiency Distributions from Four Homoscedastic Models 
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3.     Doubly Heteroscedastic Stochastic Frontier Models 

Doubly Heteroscedastic Stochastic Production-Frontier Models 

A half normal doubly heteroscedastic model developed by Hadri (1999) and Hadri et al. (2003) 

allows heteroscedasticity for both error components. A homoscedastic assumption on each error 

component in the last section can be examined using the likelihood ratio (LR) tests. We can also 

apply not only half normal model but also other three models by assuming that the two-sided and 

one-sided error terms take the following multiplicative heteroscedasticity form:
6
  

 

 ))ln(exp()exp( 2

0

22  v

iv

v

ivvi ZZ        (5) 

https://legacy.mail.ufl.edu/OWA/WebReadyViewBody.aspx?t=att&id=RgAAAABNIAfjbsqjSKF739mBLq2VBwB1Wh3iOYEfQ4IulmaiOJf2AAAYbDCuAAB1Wh3iOYEfQ4IulmaiOJf2AAAwOn%2fNAAAJ&attid0=EABpb90kAe6eTZbOAG9VjTGh&attcnt=1&pn=1#footnote6
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))ln(exp()exp( 2

0

22  u

iu

u

iuui ZZ   or )exp(  u

ii Z    (6) 

where v

iZ and u

iZ are vectors of conventional size-related exogenous variables (like firm size) and 

efficiency-related environmental variables (like firm management) respectively, and γ and δ 

capture the corresponding unknown parameters respectively. Since we introduce two types of 

four distributions for the one-sided error term in (3), the heteroscedastic corrections for the half 

normal and truncated normal models take a different form in the exponential and gamma models 

as shown in (6). 

In this paper, the conventional size-related exogenous variables for the two-sided error 

component, v

iZ , are 

diwv1-diwv6: size dummy variables, based on intake water volume (diwv1=1 represents 

the smallest group), 

and the efficiency-related environmental variables for the one-sided error component, u

iZ , are 

rraw: a proxy for raw water ratio defined by chemical expenditures per intake water 

volume, 

rout: outsourcing ratio defined by the ratio of the number of staff based on outsourcing to 

the number of total staff, and 

uprice: unit price defined by water supply revenue divided by total billed water volume. 

 

Now we can examine four types of heteroscedastic stochastic production-frontier models for 

their inefficiency error components: half normal (H), truncated normal (T), exponential (X) and 

gamma (G) distributions. To do so, we estimate a one-sided heteroscedastic model (u), a two-
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sided heteroscedastic model (v) and a doubly heteroscedastic model (uv) for each type of 

distributional assumptions. For all types of the models, the likelihood ratio (LR) tests strongly 

reject the restriction of homoscedasticity for the one-sided and two-sided error components. 

Thus, we focus on a doubly heteroscedastic model, which is statistically more appropriate than 

the other three models (including the homoscedastic model introduced in the previous section). 

Table 5 presents estimates of doubly heteroscedastic frontier parameters based on four types of 

distributional assumptions as well as feasible general least squares (FGLS) by using the same 

arguments of  v

iZ and 1u

iZ . Huv, Tuv, Xuv and Guv denote doubly heteroscedastic models (uv) 

with half-normal (H), truncated normal (T), exponential (X) and gamma (G) distributions, 

respectively. The agreement between Huv and Tuv is striking, whereas FGLS estimates seem 

closer to them than Guv.  Since the LR tests strongly reject the restriction of the half normal and 

exponential models, we can say that the estimates of the frontier parameters are (at most) only 

roughly similar. 

Table 5: Doubly Heteroscedastic Production-Frontier Models 

  FGLS Huv Tuv Xuv Guv 

Constant 1.9911*** 2.3731*** 2.3672*** 2.2949*** 2.4879*** 

(0.1837) (0.1717) (0.1730) (0.1710) (0.1634) 

Log(K) 0.2655** 0.2429
*
 0.2437

*
 0.2505

**
 0.2997*** 

(0.0985) (0. 0958) (0.0953) (0.0952) (0.0886) 

Log(L) 0.2377** 0. 2692*** 0.2679
***

 0.2496*** 0.2167
**

 

(0.0783) (0.0740) (0.0735) (0.0735) (0.0704) 

Log(O) 0.2767*** 0.2700
***

 0.2697
***

 0.2727
***

 0.2821
***

 

(0.0221) (0.0188) (0.0188) (0.0188) (0.0184) 

Log(P) 0.2553*** 0.2541
***

 0.2541
***

 0.2576
***

 0.2694
***

 

(0.0161) (0.0143) (0.0143) (0.0144) (0.0143) 

L(K)L(K) -0.0599* -0.0423 -0.0427 -0.0481 -0.0573* 

(0.0302) (0.0298) (0.0296) (0.0296) (0.0276) 

L(L)L(L) -0.0477* -0.0250 -0.0247 -0.0302 -0.0215 

(0.0224) (0.0195) (0. 0194) (0.0194) (0.0188) 

L(O)L(O) 0.0461*** 0.0325*** 0.0323*** 0.0335*** 0.0288*** 
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(0.0028) (0.0022) (0.0022) (0.0022) (0.0020) 

L(P)L(P) 0.0467*** 0.0404*** 0.0403
***

 0.0413*** 0.0364*** 

(0.0022) (0.0016) (0.0016) (0.0016) (0.0015) 

L(K)L(L) -0.0144 -0.0272 -0. 0270 -0.0239 -0.0225 

(0.0244) (0.0226) (0.0225) (0.0225) (0.0212) 

L(K)L(O) 0.0180*** 0.0200*** 0.0201
***

 0.0207*** 0.0206*** 

(0.0041) (0.0039) (0.0039) (0.0038) (0.0037) 

L(K)L(P) 0.0186*** 0.0164*** 0.0165
***

 0.0170*** 0.0178
***

 

(0.0028) (0.0027) (0.0028) (0.0027) (0.0026) 

L(L)L(O) 0.0143** 0.0170*** 0.0170
***

 0.0178*** 0.0197*** 

(0.0043) (0.0041) (0.0041) (0.0041) (0.0041) 

L(L)L(P) 0.0213*** 0.0213*** 0.0213*** 0.0219*** 0.0227*** 

(0.0028) (0.0026) (0.0026) (0.0026) (0.0025) 

L(O)L(P) -0.0642*** -0.0602*** -0.0601*** -0.0616*** -0.0614*** 

(0.0021) (0.0017) (0.0018) (0.0018) (0.0017) 

R
2
 / LL 0.9715 709.2707 714.5512 672.3141 740.4062 

Standard errors in parentheses. 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001.  

 

Table 6 shows that the sample mean efficiencies become considerably different when comparing 

a restricted model to an unrestricted model; Huv and Xuv have relatively higher mean 

efficiencies than Tuv and Guv. In contrast with homoscedastic mean efficiencies presented in 

Table 2, the two unrestricted models indicate lower mean efficiencies among the sample of 

Japanese water utilities. 

Table 6: Estimated Efficiency Distributions from Doubly Heteroscedastic Frontier Models 

 

Model Skewness Kurtosis S.D. Mean Min Median Max 

Huv -1.7274 6.4203 0.0987 0.8666 0.3698 0.9002 0.9824 

Tuv -0.9973 4.8775 0.0806 0.7127 0.2972 0.7252 0.8949 

Xuv -2.1102 8.2741 0.1019 0.8876 0.3174 0.9247 0.9911 

Guv -0.6056 3.2483 0.1171 0.7111 0.2481 0.7243 0.9533 
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Thus, as Table 7 shows, we have the lowest correlation coefficient of 0.899 between the doubly 

heteroscedastic exponential (Xuv) and gamma (Guv) models. We conclude that the estimated 

efficiency scores are moderately consistent, although the correlation coefficient between 

unrestricted models is fairly high: 0.963. 

Table 7: Correlations for Estimated Efficiencies from Doubly Heteroscedastic Frontier 

Models
a
 

Model Huv Tuv eXuv Guv 

Huv 1 0.9425 0.9878 0.9272 

Tuv 0.9506 1 0.9136 0.9630 

Xuv 0.9898 0.9170 1 0.8991 

Guv 0.9444 0.9537 0.9215 1 

 
a) Spearman rank correlations below diagonal and Pearson correlations above diagonal. 

 

In the context of efficiency rankings, the highest correlation is 0.990 between Huv and Xuv, and 

the lowest correlation is 0.917 between Tuv and Xuv. Thus we can still maintain a conclusion 

from the above homoscedastic models; efficiency rankings are consistent among these four types 

of models. 

A slight decrease in these correlation coefficients indicates that correcting heteroscedasticity is 

(to some extent) sensitive to the distributional assumptions. For example, Figure 3 suggests that 

the estimated efficiency distribution from the doubly heteroscedastic half normal (Huv) model is 

now concave rather than convex to that from the doubly heteroscedastic truncated normal (Tuv) 

model. Interestingly, another restricted Xuv model also takes a similar concave form to another 

unrestricted Guv model. These results explain why the correlation coefficients between a 

restricted model and an unrestricted model are relatively lower. 
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Figure 3: Estimated Efficiencies: Huv against Tuv 
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Comparing Figure 4 with Figure 2, we can observe that estimated efficiency distributions from 

both unrestricted models move to the left and become flatter. On the other hand, the efficiency 

distribution for the half normal model moves to the right and becomes more peaked. Thus, the 

unrestricted model is now apt to be able to distinguish more efficient utilities in a more precise 

way, and the restricted models share the opposite pattern. 
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Figure 4: Estimated Efficiency Distributions from Four Doubly Heteroscedastic Models 
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A Doubly Heteroscedastic Variable Mean Model and the Nested Models 

We further examine the above sensitivity to heteroscedasticity corrections by introducing a 

doubly heteroscedastic variable mean model. Whereas the half normal and truncated normal 

models assume μi = 0 and μi = μ0 in (3) respectively, our truncated normal variable mean model 

has a more flexible functional form: 

 

 u

ii Z 0             (7)  

where u

iZ is the above defied efficiency-related environmental variables in (6), and η captures 

the corresponding unknown parameters. Thus, these three models are nested.  
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We also can examine a doubly heteroscedastic Variable Mean (Muv) model by combining (5), 

(6) and (7): then three models (Huv, Tuv and Muv) are also nested. That is, the models use the 

same kinds of assumptions, but the extent of the restrictions is different: the Half-normal model 

is a special case of the Truncated-normal model, and the Truncated-normal model is a special 

case of the Variable Mean model.  In addition, in order for a more comprehensive 

heteroscedastic correction, we also introduce more arguments, 2u

iZ , which is achieved by adding 

the following efficiency-related environmental variables to u

iZ : 

rsubp: subsidy ratio on profit and loss account defined by the sum of subsidies on profit 

and loss account per water supply revenue, 

aveope: average operation rate defined by average delivered water volume per delivered 

water capacity, 

cusden: customer density defined by the number of customers per the length of all pipes. 

Then we can estimate the half normal, truncated normal and variable mean doubly 

heteroscedastic models when the number of arguments for the one-sided error component 

increases for a more comprehensive heteroscedastic correction.  

 

Table 8 presents estimates of the frontier parameters as well as the estimates of feasible general 

least squares (FGLS) by using the same arguments: 2u

iZ and v

iZ : Hsuv, Tsuv, and Msuv denote 

doubly heteroscedastic (uv) models with more explanatory variables, yielding a stronger 

heteroscedastic correction for half-normal (H) and truncated normal (T) distributions, and a 

variable mean (M) model, respectively. 
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Table 8: Doubly Heteroscedastic Production-Frontier Models with s stronger correction 

  FGLS Hsuv Tsuv Msuv Muv 

Constant 2.3188*** 2.2129*** 2.2089*** 2.6134*** 3.2664*** 

(0.1820) (0.1406) (0.1408) (0.1484) (0.1608) 

Log(K) 0.4019*** 0.2468** 0.2446
**

 0.3003
***

 0.2199* 

(0.1014) (0. 0783) (0.0786) (0.0774) (0.0859) 

Log(L) 0.1572* 0. 1516* 0.1515 0.1771** 0.3812*** 

(0.0796) (0.0628) (0.0638) (0.0615) (0.0656) 

Log(O) 0.2159*** 0.2969
***

 0.2977
***

 0.2653
***

 0.2250*** 

(0.0195) (0.0155) (0.0155) (0.0138) (0.0167) 

Log(P) 0.1669*** 0.2638
***

 0.2649
***

 0.2304
***

 0.2043*** 

(0.0141) (0.0131) (0.0131) (0.0112) (0.0133) 

L(K)L(K) -0.0764** -0.0342 -0.0343 -0.0338 -0.0179 

(0.0311) (0.0251) (0.0253) (0.0226) (0.0262) 

L(L)L(L) -0.0477 -0.0285 -0.0290 -0.0328* -0.0092 

(0.0224) (0.0172) (0. 0178) (0.0156) (0.0180) 

L(O)L(O) 0.0558*** 0.0402*** 0.0401*** 0.0279*** 0.0238*** 

(0.0026) (0.0018) (0.0018) (0.0015) (0.0020) 

L(P)L(P) 0.0567*** 0.0451*** 0.0450
***

 0.0344*** 0.0373*** 

(0.0021) (0.0014) (0.0014) (0.0012) (0.0014) 

L(K)L(L) -0.0002*** -0.0347 -0. 0344 -0.0186 -0.0369 

(0.0246) (0.0195) (0.0198) (0.0178) (0.0203) 

L(K)L(O) 0.0068*** 0.0169*** 0.0170
***

 0.0135*** 0.0168*** 

(0.0039) (0.0030) (0.0030) (0.0027) (0.0033) 

L(K)L(P) 0.0165 0.0188*** 0.0189
***

 0.0185*** 0.0120*** 

(0.0028) (0.0024) (0.0024) (0.0021) (0.0025) 

L(L)L(O) 0.0109** 0.0228*** 0.0228
***

 0.0214*** 0.0104** 

(0.0037) (0.0032) (0.0032) (0.0030) (0.0036) 

L(L)L(P) 0.0131*** 0.0250*** 0.0250*** 0.0185*** 0.0132 

(0.0027) (0.0024) (0.0023) (0.0021) (0.0024) 

L(O)L(P) -0.0542*** -0.0665*** -0.0666*** -0.0559*** -0.0476 

(0.0019) (0.0017) (0.0017) (0.0015) (0.0017) 

R
2
 / LL 0.9715 1087.7965 1095.2768 1408.0258 906.2368 

Standard errors in parentheses. 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001.  
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These models are nested; LR tests strongly reject the restriction of the zero mean and 

homoscedastic mean. We also add a doubly heteroscedastic variable mean model (Muv) based 

on (7) by using the arguments of only u

iZ and v

iZ , which can be compared with heteroscedastic 

models in Table 5.  We cannot compare these models with exponential or gamma models 

because the assumptions are fundamentally different. 

Again, the agreement between Hsuv and Tsuv is striking; the frontier parameters are almost 

identical. On the other hand, estimated parameters from Msuv are not close to those estimated by 

the other models. Note that the estimated parameters from Muv are not close to those of Huv and 

Tuv in Table 5. Thus, it appears that these differences are mainly caused from the 

heteroscedastic mean assumption rather than the number of arguments utilized for the one-sided 

variance function.  

In sum, however, we conclude that the estimates of the frontier parameters are not as consistent 

when we include a more appropriate variable mean statistical model. On the other hand, we can 

say that an increase in the one-sided error arguments produces more consistent estimates of the 

frontier parameters. 

Table 9 shows that the sample mean efficiencies become much closer by the stronger 

heteroscedastic correction.  

Table 9: Estimated Efficiency Distributions from Doubly Heteroscedastic Frontier Models 

Model Skewness Kurotsis S.D. Mean Min Median Max 

Hsuv -1.3686 4.2516 0.1177 0.8663 0.4698 0.9064 0.9966 

Tsuv -2.0837 8.4576 0.1028 0.8951 0.2959 0.9278 0.9992 

Msuv -1.4309 5.7861 0.0838 0.9011 0.4019 0.9206 0.9999 

Muv -0.2074 3.1323 0.1004 0.5511 0.1827 0.5561 0.8658 

 



22 
 

Tsuv and Msuv produce especially higher values of efficiencies than Tuv and Muv. Figure 5 and 

Figure 6 capture these movements and indicate the important role of adopting an  appropriate 

heteroscedastic correction. Then, as Table 10 shows, the correlation coefficients for efficiency 

scores and their rankings between Hsuv and Tsuv are 0.945 and 0.966, both of which are higher 

than those between Huv and Tuv. A proper and sufficient heteroscedasticity correction produces 

increases in the consistency of the efficiency scores and their rankings, as well as consistency in 

the estimates of the frontier parameters. 

Figure 5: Efficiency Distributions for Doubly Heteroscedastic Models (Weaker Correction) 
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Figure 6: Efficiency Distributions for Doubly Heteroscedastic Models (Stronger Correction) 
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However, when we include a variable mean model, the lowest correlation coefficient is 0.799 

and the lowest rank correlation coefficient is 0.838: between Hsuv and Msuv. Note that these 

relatively low correlation coefficients are not caused from the heteroscedastic mean assumption 

itself because estimated efficiencies from Muv are highly correlated with those of Huv, as shown 

in Table 10. The differences are due to the fact that estimated efficiencies from the Variable 

Mean model are quite sensitive to a stronger heteroscedasticity correction, which is statistically 

favored among our nested models. Therefore, we can conclude that the estimated efficiency 

scores and their rankings are only moderately consistent.  
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Table 10: Correlations for Estimated Efficiencies  

from Doubly Heteroscedastic Frontier Models
a
 

Stronger Correction Weaker Correction 

Model Msuv Tsuv Hsuv Trunc 

Msuv 1 0.8400 0.7985 0.6603 

Tsuv 0.873 1 0.9454 0.8286 

Hsuv 0.8376 0.9660 1 0.8952 

Trunc 0.6322 0.7395 0.8545 1 

  

Model Muv Tuv Huv Trunc 

Muv 1 0.9577 0.9107 0.7727 

Tuv 0.9623 1 0.9425 0.8831 

Huv 0.9770 0.9506 1 0.8611 

Trunc 0.7985 0.8589 0.8040 1 

  

4.     Implications 

We estimate homoscedastic and doubly heteroscedastic stochastic production-frontier models of 

the Japanese water industry under four distributional assumptions: half-normal, truncated 

normal, exponential and gamma distributions. The results for the homoscedastic frontier models 

support that the view that both efficiency scores and their rankings are consistent among these 

four types of models; this result is similar that obtained by Greene (2008, p.183).  

The four types of doubly heteroscedastic frontier models produce modest improvements: 

efficiency rankings are still consistent but the efficiency scores themselves are somewhat 

consistent. These results are in line with conclusions by Kumbhakar and Lovell (2000, p.90), 

although their observations are based on only a homoscedastic frontier model. We can explain a 

slight decrease in these correlation coefficients by the different sensitivity of different 

distributional assumptions used to correct for heteroscedasticity. In particular, unrestricted 

models produce lower efficiencies than restricted models, and the shifted distributions result in 

relatively low correlations. 
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We further examine this sensitivity problem by introducing a doubly heteroscedastic Variable 

Mean model, increasing the number of statistically significant arguments for the one-sided error 

component. The half normal, truncated normal and variable mean doubly heteroscedastic models 

are nested.  The likelihood ratio tests reject the restriction of the zero mean and homoscedastic 

mean. The stronger correction for heteroscedasticity brings greater consistency of estimates for 

parameters, efficiencies and their rankings between half normal and truncated normal models, 

whereas it reduces their correlation coefficients with the doubly heteroscedastic variable mean 

model.  

These empirical results suggest three possibilities regarding the sensitivity of efficiency ranking 

to distributional assumptions. When we apply the four types of distributional assumptions to a 

homoscedastic stochastic frontier model, an efficiency ranking will be clearly consistent. When 

we apply them to a doubly heteroscedastic stochastic frontier model, we were able to make an 

efficiency ranking consistent whenever we can find proper and sufficient arguments for the 

variance functions. When a more general model, like a variable mean model, is statistically 

supported, the efficiency ranking is quite sensitive to heteroscedasticity correction schemes.   

From the policy-standpoint, the results underscore the point that individual efficiency scores are 

not necessarily robust with respect to different error specifications, let alone different 

specifications of the model itself, treatment of outliers, or other elements that can influence the 

coefficients that determine “expected output” relative to actual output—for given inputs and 

exogenous conditions.  Rather, this analysis of Japanese water utilities reminds us that the 

decision-relevance of technical benchmarking studies depends on sensible use of the scores 

(Berg, 2010, p. 115).  A regulator setting price caps would have to establish catch-up times for 

utilities which seem to be lagging in performance—that decision requires judgment and 
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awareness that groupings of firms makes better sense than using individual scores.  Similarly, a 

government ministry determining whether support subsidies are being wasted or used wisely by 

utilities would want to group firms (say, in quartiles or deciles) so that incentives could be 

applied in a manner that can be supported by performance patterns (and not individual scores).  

These observations are not meant to detract from efforts to refine and improve benchmarking—

just to remind analysts that humility is called for when so many factors remain beyond 

managerial control (and outside analytical models). 

 

Endnotes 

  

1
 De White and Marques (2009a, b). See also Davis and Garces (2009, Chapter 3), Coelli and 

Perelman (2003) and Haney and Pollitt (2009) for practical applications of yardstick 

comparisons. 

 

2
 In our sample, 203 observations (8.3%) have zero value of O and 1209 observations (49.5%) 

have zero value of P. Thus we adopt a standard practice, and calculate the log values of O and P 

by adding one to these original values. 

 

3
 We used LIMDEP (NLOGIT v.4.3) to estimate all of stochastic production-frontier models in 

this paper. 

 

4
 The results are also similar in that a truncated normal model results in a large variance for the 

inefficiency error component. 
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5
 In our homoscedastic case, however, we should recall that the LR test cannot reject the 

restriction of the exponential model. In addition, a half normal model rather than a gamma model 

exhibits a different efficiency distribution. Thus, some of Greene’s observations on a gamma 

distribution apply to a heteroscedastic model as well as to a homoscedastic model in our case. 

 

6
 See Caudill et al. (1995, p.107) for a discussion of the advantages of this functional form. 
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