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1. Introduction 

Rather frequently, commercial areas locate outside the cities. When consumers 

decide the store where to buy a given product, they then consider both the price and the 

transportation cost. Stores must account for this aspect when they first decide their 

location along the commercial area and the price to be charged for the product. 

Although normally observed in practise, surprisingly the literature on spatial 

competition has not considered the existence of restrictions with respect to the locations 

of firms and consumers in cities, in particular, their effects on the selected locations and 

prices. One exception is the linear model of vertical differentiation proposed by 

Gabszewicz and Thisse (1986), which considers a uniform mass of consumers located 

along a linear city and two firms located outside one of the extremes of the city. It is 

well known that a first-location-then-price equilibrium does exist in this model, 

independently of transportation costs being convex or concave in distance.
1
 

However, the vertical differentiation model is a rather hard simplification of real life 

situations. Quite often, we observe that commercial areas attract not only consumers of 

a particular neighbouring city or suburb, but consumers from several surrounding 

locations. 

An illustrative example is the usual case of two linear cities with a commercial area 

between the two.
2
 However, this case has not been analyzed in the literature, which, 

starting with Hotelling (1929), studies the model of horizontal differentiation where no 

location restrictions apply. The existence of the sequential equilibrium in this model is 

questioned in the literature, although it is well known that such an equilibrium exists in 

the case where the transportation cost are quadratic in distance, see D’Aspremont et al. 

                                                
1
 Gabszewicz and Thisse (1986) show the existence of equilibrium in the case where the transportation 

cost is linear-quadratic in distance, i.e., C(d) = ad + bd
2
, a ≥ 0, b ≥ 0, where d is the distance between the 

consumer and the firm. Very recently, Arguedas et al. (2005) have confirmed this existence result under 

the concave specification C(d) =ad-bd
2
, a ≥ 0, b ≥ 0. 

 
2
 This would correspond to consider two overlapped models of vertical differentiation. 
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(1979).
3
 A common result in the literature is that, under existence, the sequential 

equilibrium involves maximal differentiation. 

But location restrictions may also apply to circular cities, a case which has not been 

analyzed in the literature either. Till now, conclusions with respect to the circle model 

with no location restrictions summarize in the existence of the sequential equilibrium at 

least in the quadratic case and under certain concave and convex specifications of the 

transportation costs, see Anderson (1986) or De Frutos et al. (1999, 2002). 

In this paper, we analyze whether the sequential equilibrium would persist under the 

mentioned restrictions on the locations of firms and consumers. In particular, we 

analyze the case of quadratic transportation costs, which, as explained above, is 

unquestioned in both the linear and the circular models. 

Our results are rather negative. We find that there exists no sequential equilibrium in 

any model (linear or circular) when there is a separation between the residential and the 

commercial areas. 

In the linear model, we find that there exist no locations of the firms in the 

commercial area for which Nash price equilibrium exists, other than locating exactly in 

the same place and charging a zero price (the Bertrand solution). The result is quite 

surprising, since intuition would suggest that firms would be tempted to differentiate as 

much as possible within the commercial area to avoid competition. However, if firms 

differentiated, stability in prices would not be possible. Given the discontinuity of the 

region were consumers live, firms would be tempted to either increase prices when the 

consumers of their own hinterland strictly prefer their products to the ones of their 

competitors or decrease prices when their natural consumers start thinking of travelling 

to the other firm to save total costs. 

In the circle model, results are not that harsh. As before, there exists no Nash price 

equilibrium for all the possible locations of the firms in the commercial area. However, 

                                                
3
 However, under the linear-quadratic specification of Gabszewicz and Thisse (1986) and symmetric 

locations, the sequential equilibrium does not exist, a result which is after extended by Anderson (1988) 

to the case of asymmetric locations, and to functions of the type C�(d) = d 
n
, 1 ≤ n ≤ 1.26, by Economides 

(1986). Arguedas et al. (2005) confirm the inexistence of the sequential equilibrium under concave 

transportation costs. 
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at least we find a region where such price equilibrium exists, which is positively related 

to the length of the commercial area. 

The remainder of the paper is organized as follows. In Section 2, we present the 

model. In Section 3, we analyze the equilibrium existence under location restrictions in 

the linear model. In Section 4, we study the circular model. We conclude in Section 5. 

All the proofs are in the Appendix. 

 

2. The model 

We consider the two traditional models of spatial competition with a slight variation 

with respect to the allowed locations of both consumers and firms in the market. 

Our linear model is a market of length 1 composed of two parts (Figure 1): a 

commercial area of length 0 ≤ v≤ 1 where firms locate, and a residential area of  length 

1 – v  where consumers live. For convenience, we assume that the commercial area is 

centrally situated between locations ½ - v/2 and  ½ + v/2. This area is occupied by two 

firms  

 

Figure 1: The linear model  

 

 

which sell a homogeneous commodity with zero production costs. We denote by xi  the 

location of firm i in this area, such that  ½ - v/2 ≤ x1 ≤ x2 ≤ ½ + v/2. Let z denote the 

distance between the two firms, i.e., z = x2 – x1. Also let q be the sum of the two firms 

locations, q = x1 + x2. Given firms’ locations, q/2 represents the equidistant point 

between the two firms and constitutes a useful symmetry measure, as we will see later 

on. For given locations, firm i chooses the mill price which maximizes profits, i.e., the 

price times the number of units sold. 
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Consumers uniformly locate along the residential area. Let denote the consumer 

location in this area as  x ∈[0, ½ - v/2] ∪ [0, ½ - v/2]. Each consumer buys only one unit 

of the goods at the firm with the lowest total cost, that is, the mill price plus the 

transportation cost.
4
  The distance between the consumer and firm i is defined by di =|x 

- xi|, i = 1,2. We assume that transportation costs are quadratic, as follows: 

C(di) = di
2 

                                                            (1) 

As noted in the introduction, this model integrates two cases of vertical 

differentiation: in the first one, consumers locate in  [0, ½ - v/2] and firms locate in  [ ½ 

- v/2 , ½ + v/2] ; in the second one, firms locate in the same region  [ ½ -v/2 , ½ + v/2] 

and consumers live in  [ ½ + v/2 , 1 ]. 

For instance, this situation may reflect the case where two cities share a commercial 

area located between the two.
5
 

Alternatively, our circular model consists of a market of perimeter 1 composed of a 

commercial area of length 0 ≤ v ≤ ½  and a residential area of length 1 - v  (Figure 2). 

Now, the locations of the two firms satisfy that 0 ≤ x1 ≤ x2 ≤ v  and the location of a 

typical consumer in the residential area satisfies  x ∈[1 – v ]. The remaining ingredients 

are exactly the same as those of the linear model described above. 

                                                
4
 For simplicity, we assume that all consumers have enough willingness to pay. This assumption is 

common in all the literature on spatial differentiation. 

 
5
 Alternatively, this model refers to the case where, for equal prices, a clearly identified subset of 

consumers prefer the product of firm 1 while the remaining consumers prefer the product of firm 2. 
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Figure 2: The circular model 

The location of the indifferent consumer in any of the two described models is 

determined as follows: 

p1 + C (d1) = p2 +C (d2)                                               (2) 

We consider a sequential game where firms first decide their locations in the 

commercial area and then, they choose prices which maximize profits given the selected 

locations. We concentrate on the concept of sub-game perfect equilibrium. Thus, we 

solve backwards, first finding the Nash equilibrium prices for given locations. 

In the next section, we analyze the existence of the sequential equilibrium in the 

linear model of spatial competition. 

 

3. Equilibrium existence in the linear model 
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Consider the linear model as described in the previous section (Figure 1). We first 

derive firms’ demands and then we analyze the existence of the sequential equilibrium. 

3.1. Demand functions 

To obtain the demand functions, we first obtain the location of the indifferent 

consumer, described by (2). Considering (1) and  di = |x-xi|,  i = 1,2, the expression of 

the indifferent consumer is the following: 

 

By the construction of the model, all consumers located to the left of X select firm 1, 

while the remaining consumers choose firm 2. Therefore, depending on the location of 

the indifferent consumer on the line, the demand of firm 1 is the following:
6
 

 

The first part of (4) refers to the case where  X ≥ 1 and, consequently, firm 1 attracts 

all the demand. In part 2, X belongs to the interval [½+v/2, 1]. In part 3, there exists a 

fictitious indifferent consumer situated in the commercial area [½ - v/2, ½ + v/2] and, 

consequently, each firm attracts its own hinterland only. Part 4 refers to the case where 

the indifferent consumer lives in the region [0, ½ - v/2]. Finally, part 5 reflects the case 

where  X ≤ 0  and consequently, no consumer buys at firm 1. 

Since there are no production costs, the benefit functions are Bi = pi Di  for all i. 

Given (3), (4) and the fact that D2 = 1 – v – D1, the corresponding expressions for the 

firms’ benefit functions are as follows: 

                                                
6
 The demand of firm 2 is simply D2 = 1 - v – D1 
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3.2. Equilibrium existence 

We now analyze the existence of a Nash-price equilibrium for given locations. Given 

(x1, x2), a Nash-price equilibrium is a pair (p1
*
, p2

* 
) such that each firm selects the price 

which maximizes profits, considering the other firm’s equilibrium price as given. That 

is, (p1
*
, p2

* 
) satisfies the following: 

Bi(pi
*
, pj

* 
) ≥ Bi (pi, pj

* 
), for all i and  j, i ≠  j 

It is well known that Nash price equilibrium exists under quadratic transportation 

costs when there are no restrictions on firms and consumers’ locations, see 

D’Aspremont et al. (1979). However, we now show that the equilibrium fails to exist 

under those restrictions, i.e., when v ≥ 0. The result is now summarized in the following: 

Proposition 1. Given v ≥ 0, the only possible Nash-price equilibrium in the linear 

model implies that p1
* 
= p2

* 
= 0  and  z = 0. 

This result is quite surprising. In fact, one would expect prices’ equilibria to exist if 

firms differentiated as much as they can to obtain maximum profits. Also, given the 

symmetry of the problem, one would also expect these prices to be equal. In fact, this is 

what the literature on spatial differentiation predicts, at least when there are no 
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restrictions on firms and consumers’ locations. However, when these location 

restrictions apply, we find that there exist no possible firms’ locations for which such a 

price equilibrium exists other than the minimum differentiation result, which yields to 

Bertrand’s solution. 

The explanation of this result is the following. Assume that, initially, the two firms 

charge the same price (including zero as a possibility) and each one locates at one 

extreme of the commercial area. Then, each firm attracts consumers of its own 

hinterland only. The reason is that there exists a separation between the firms and, 

therefore, there is a transportation cost associated with travelling from one firm to the 

other. Knowing this, one of the firms may decide to increase the price to increase its 

revenues, at least till consumers of its own hinterland are indifferent between this and 

the other firm. But then, the other firm may decide to decrease its price to start attracting 

consumers of the other hinterland. And the first firm may decrease its price as well to 

try to recover some of the lost consumers. Etc. In summary, no possible price 

equilibrium exists when firms differentiate as much as they can. Moreover, the same 

type of argument can be applied when there is some differentiation between the firms, 

not necessarily maximum. As a consequence, the only possible equilibrium is no 

separation between firms and competition a la Bertrand. 

 

4.  Equilibrium existence in the circular model 

In this section, we analyze the equilibrium existence in the circular model. We 

present the results in the same way as those of the previous section, first determining the 

demand functions and then analyzing the existence of the sequential equilibrium. 

4.1. Demand functions 

To obtain the demand functions, we first calculate the location of the indifferent 

consumer(s) in the circle. Remember that the indifferent consumer satisfies (2). To do 

this, we first distinguish three regions in the area where consumers live, depending on 

the way they take to travel to the firms. These are regions A, B and C (Figure 2). 

Locations of consumers in these areas satisfy   xA ∈ [v, x1+½], xB ∈ [x1+½, x2+½ ], and 
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xC ∈ [x2+½, 1], respectively. Thus, all consumers in region A travel clockwise whereas 

all consumers in C travel counter clockwise, independently of the selected firm. In the 

case of region B, only consumers who choose firm 2 travel clockwise. 

We first concentrate on region A to obtain the location of the indifferent consumer X. 

Considering (1) and (2), XA satisfies the following: 

p1 + (XA – x1)
2
 = p2 + (XA – x2)

2
, 

since any consumer in region A travels clockwise. Thus, the location of the indifferent 

consumer in this region is:  

 

Since XA ∈ [v, x1+½] , it is easy to see that there exists an indifferent consumer in 

region A characterized by (5) if and only if z (2v - q) ≤ p2 – p1 ≤ z (1 - z). Since, by 

definition, v ≥ q/2 , a necessary condition for  XA to exist is clearly  p2 ≥ p1. Else, all 

consumers in region A would prefer firm 2, since it is the nearest firm. Given region A 

and XA, all consumers to the right of XA travel clockwise to firm 1, and all consumers to 

the left of XA travel clockwise to firm 2. 

In region B, consumers selecting firm 2 travel clockwise while the remaining 

consumers travel counter clockwise. Therefore, the location of the indifferent consumer 

in this region, XB,  satisfies the following: 

p1 + [(1 – XB ) + x1]
2
 = p2 + (XB – x2)

2
 

Operating in this expression, we obtain: 

 

Since XB ∈ [x1+½, x2+½], there exists an indifferent consumer in region B if and 

only if  -z (1 - z) ≤ p2 – p1 ≤ z (1 - z). Here, it is interesting to see that both p1 ≥ p1 and p1 

≤ p2 are valid for XB to exist. In fact, in the particular case where p1 = p2, the indifferent 

consumer is located exactly opposite to the equidistant point between the firms, q/2. 
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Thus, consumers to the right of XB select firm 2 travelling clockwise, whereas 

consumers to the left of XB choose firm 1 travelling counter clockwise. 

Finally, all consumers in region C travel counter clockwise. Therefore, the location 

of the indifferent consumer in this region, XC satisfies the following: 

p1 + [(1 – XC) + x1)
2
 = p2 + [(1 – XC) + x2]

2 
, 

from which we obtain: 

 

Since XC ∈ [x2+½, 1], we can conclude that there exists an indifferent consumer in 

region C if and only if  - z (1 - z) ≤ p2 – p1 ≤ - zq.  In this case, a necessary condition for 

XC to exist is p2 ≤ p1. Else, all consumers in region C would select firm 1, their nearest 

firm. Thus, given region C and XC, all consumers in [x2+½, XC] travel counter clockwise 

to firm 1 while the remaining consumers travel counter clockwise to firm 2. 

Next, a relevant question to derive the demand functions is to determine the number 

of indifferent consumers along the residential area. This crucially depends on the prices 

difference, p2 - p1. By our assumptions, we have - z (1-z) < - zq < z (2v-q) < z (1-z). 

Therefore, considering all the previous analysis, there exist two indifferent consumers 

when - z (1-z) <  p2 – p1 < - zq, those given by expressions (6) and (7). Also, there exist 

two indifferent consumers when z (2v-q) < p2 – p1 < z (1-z), those given by expressions 

(5) and (6). However, there is only one indifferent consumer given by (6) when - zq < 

p2 – p1 < z (2v-q). In the remaining cases, only one firm attracts all the demand. 

Consequently, the demand function of firm 1 can be expressed as follows:
7
 

                                                
7
 The corresponding demand of firm 2 is simply D2 = 1- v – D1  
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Firms’ profits are Bi = Dipi, since production costs are zero. Therefore, considering 

(5), (6), (7), (8) and D2 = 1 - v – D1  we have: 

 

In the next subsection, we analyze the existence of the sequential equilibrium in the 

circular model. 

4.2. Equilibrium existence 

For given locations, a Nash-price equilibrium is a pair (p1
*
, p2

* 
) such that each firm 

selects the price which maximizes profits, considering the other firm’s equilibrium price 

as given. That is, (p1
*
, p2

* 
) satisfies: 

Bi(pi
*
, pj

* 
) ≥ Bi (pi, pj

* 
), for all i and  j, i ≠  j                             (9) 
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We now characterize the equilibrium in the following proposition. The result also 

shows that such equilibrium does not necessarily exist for all the possible locations of 

the firms.
8
 

Proposition 2. Given v ≥ 0, the Nash-price equilibrium in the circular model is the 

following: 

p1* = (1/3)(1 – z)(3 – q – v)  p2* = (1/3)(1 – z)(3 + q – 4v)  (10) 

Such equilibrium exists if and only if (v, q, z) ∈ A  

In contrast with the linear model, we have now determined location regions where a 

Nash price equilibrium can exist. This region is clearly dependent on the length of the 

commercial area. In Figure 3, we illustrate that the equilibrium region increases with v 

(we analyze the particular cases where v = 1/4, v =1/3, and v = 1/2). In the horizontal 

axis we measure z, the distance between the firms, and in the vertical axis we measure 

q, the double of the centrality within the commercial area. The valid region A is shown 

shadowed. 

 

Figure 3: Equilibrium regions for v=1/4, v=1/3 and v=1/2. 

                                                
8
 The set A in the proposition is properly defined in the Appendix. 
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5. Concluding comments 

In this paper, we have shown that, under location restrictions of both firms and 

consumers, the sequential equilibrium may fail to exist. This result is particularly 

important since we have considered the case of quadratic transportation costs, an 

assumption which undoubtedly leads to existence and uniqueness of the equilibrium in 

the two traditional linear and circular models of spatial competition. 

We have found that, while there is an equilibrium region in the circular model for 

which a Nash price equilibrium may exist, however there are no feasible firms’ 

locations in the linear model for which we can obtain such equilibrium. In other words, 

while it is still possible to explain some degree of differentiation in the circular model 

under location restrictions, however this is not possible under linear specifications. 

It is interesting to note that we have imposed two types of restrictions in firms and 

consumers’ locations. First, we have established an area where firms must locate. 

Second, we have prevented consumers from locating in that area. This second restriction 

is the one which breaks the sequential equilibrium down in both models. In fact, it is 

rather simple to prove that equilibrium exists under firms’ location restrictions but no 

consumers’ location restrictions. 

 

6. Appendix 

Proof of Proposition 1. We first analyze whether there exists a Nash-price 

equilibrium in the region R2 = {(p1, p2) / p1 – p2 ∈ [- z (2 – q), z (q – 1 - v]}. If 

equilibrium were to exist in this region, it would be the following: 

p1* = (1/3) z (2 + q – 4v)     p2* = (1/3) z (4 - q – 2v)  (11) 

and the corresponding profits would be 

B1(p1*, p2*) = (1/18) z (2 + q – 4v)
2
 B2(p1*, p2*)=(1/18) z (4 - q – 2v)

 2
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Considering (11), we have  p1*- p2* = (2/3) z (q-1-v). We now have to verify that 

(p1*, p2*) ∈ R2. It is clear that –z (2-q) < p1*- p2*, since, by our assumptions, q < 2(2-v). 

However, p1*- p2* ≤ z (q-1-v) would require  q ≥ 1 + v, which, by our assumptions 

holds only when q = 1 + v. Therefore, this would mean that  p1* =  p2* + z (q-1-v), and 

consequently, the indifferent consumer would be located at  v + ½. 

Using the same argument, we can also conclude that there exists no equilibrium in 

the region R4 = {(p1, p2) / p1 – p2 ∈ [ z ( q -.1 + v), z q]} 

Finally, in region R3 = {(p1, p2) / p1 – p2 ∈ [ z (q – 1 – v), z (q – 1 + v)]}, there exists 

no equilibrium either. If it were to exist, it would be such that: 

p1* = p2 + z (q - 1 + v)     p2* = p1 + z (q - 1 – v), 

since firms’ profits are increasing with p1 in region R3. However, there exists a 

contradiction between p1* and p2*, since v > 0. 

Therefore, there exists no Nash price equilibrium in this model, except when v = 0. 

This also implies z = 0 and consequently, p1* = p2* = 0, which corresponds to 

Bertrand’s solution. 

Proof of Proposition 2. For given locations, if a Nash price equilibrium were to 

exist, it would be such that   p1 – p2 ∈ [- z (2v – q), z q]. Considering (9), the 

expressions for the equilibrium prices and the corresponding firms’ profits at the 

equilibrium are: 

p1* = (1/3)(1 – z )(3 - q – 2v)    p2* = (1/3)(1 – z )(3 + q – 4v)  (12) 

B1(p1*, p2*) = (1/18) (1 – z )(3 - q – 2v)
2 

     B2(p1*, p2*)=(1/18) )(1 – z )(3 + q – 4v)
2
 

To guarantee that (12) is a Nash equilibrium, we need to ensure that the prices 

differences belong to the appropriate range and that each price is a best response for 

each firm given the other firm’s price. That is: 

(i)   p1 – p2 ∈ [ z ( q -.1 + v), z q] 

(ii)  B1(p1
*
, p2

* 
) ≥ B1 (p1, p2

* 
), for all   p1 ≥ 0 
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(iii) B2(p1
*
, p2

* 
) ≥ B2 (p1

*
, p2

 
), for all   p2 ≥ 0 

Considering (12), we obtain that condition (i) is satisfied if and only if: 

 

To ensure (ii), we fix p2
*
 and first analyze firm 1’s best response in the region 

R32 = {p1 / p1 – p2*∈ [- z (1 – z), - z (2v - q)]}. Define: 

 

First, we guarantee that  p1** ∈ R32 , which is true if and only if: 

 

Now, we ensure that  B1(p1
*
, p2

* 
) ≥ B1 (p1

**
, p2

* 
) by means of the following 

condition: 

4z (3 – q – 2v)
2
 – [3z (1 – 2v) + (3 + q – 4v)]

 2 
≥ 0   (18) 

If (16) is not satisfied, then p1
** 
≤ p2

* 
- z (1 - z). Therefore, B1 (p1

*
, p2

* 
) ≥ B1 (p2

*
- 

z(1-z), p2
* 

) if and only if: 

 q
2
 + 2q (5v – 6) + [-20v

2
 + 6v (5 – 3z) – 9 (1 – 2z)]  ≥ 0  (19) 

If (17) is not satisfied, we then have p1
** 
≤  p2

* 
- z (2v - q). In this case, we have 

B1(p1
*
, p2

* 
) ≥ B1 (p1, p2

* 
) for all p1 ∈ R32.

 
 

We now study firm1’s best response within R34  = {p1 / p1 – p2* ∈ [zq,  z (1 – z)]}. 

We define: 
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To guarantee that p1***∈ R34, it is necessary and sufficient to have  

 

Ensuring B1(p1
*
, p2

* 
) ≥ B1(p1***, p2

* 
) is equivalent to having: 

4 z (3 – q - 2v)
2
 – [3 z + (3 + q - 4v)]

2
 ≥ 0   (22) 

If (21) is not satisfied, then B1(p1
*
, p2

* 
) ≥ B1 (p1, p2*

 
) for all p1 ∈ R34. 

 
Summarizing, condition (ii) is satisfied if and only if the following restrictions 

apply: 

- If (16) and (17) hold, then (18) must hold. 

- If (16) does not hold, then (19) must hold. 

- If (21) holds, then (22) must hold. 

We now study the conditions under which (iii) is satisfied. We fix p1
*
 given by (12) 

and we analyze firm 2’s best response in the region R’32 = { p2 / p1* – p2 ∈ [- z (1 – z), - 

z (2v - q)]} 

We define 

 

Ensuring  p2*** ∈ R’32 is equivalent to have 

 

Now, B2(p1
*
, p2

* 
) ≥ B1(p1*, p2*** ) is satisfied if and only if  
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 4 z (4v – q - 3)
2
 – [3 z + (3 - q - 4v)]

2
 ≥ 0   (24) 

If (23) is not satisfied, we then have p1* -  p2*** ≥
 
- z (2v - q). In this case, we have 

B2(p1
*
, p2

* 
) ≥ B1 (p1*, p2

 
) for all p2 ∈ R’32. 

Now, we study firm 2’s best response in R’34  = {p2 / p1* – p2 ∈ [zq,  z (1 – z)]}. We 

define: 

 

Now, p2** ∈ R’34  if and only if 

 

And B2(p1
*
, p2

* 
) ≥ B1 (p1*, p2**

 
) if and only if 

4 z (4v – q - 3) – [3 z (1 - 2v) + (3 - 2v - q)]
2
 ≥ 0   (27) 

If (25) is not satisfied, it’s easy to see that B2(p1
*
, p2

* 
) ≥ B1 (p1*, p2

 
) for all p2 ∈ R’34. 

If (26) is not satisfied, then we have to ensure B2(p1
*
, p2

* 
) ≥ B1 (p1*, p1*- z(1 – z)), 

this expression is equivalent to 

 (3 + q - 4v)
2
 –6 (1 - v) [(3 - 2v - q) – 3z]

2
 ≥ 0    (28) 

Summarizing, condition (iii) holds if and only if the following restrictions apply: 

- If (23) holds, then (24) must hold. 

- If (25) and (26) hold, then (27) must hold. 

- If (26) does not hold, then (28) must hold. 

The set A is composed by all the requirements needed for conditions (i), (ii) and (iii) 

to subsist. Thus, a price equilibrium exists if and only if (v, q, z) ∈ A.  
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