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Abstract 

 

 

We use a flexible parametric hyperbolic distance function to estimate environmental efficiency 

when some outputs are undesirable. Cuesta and Zofio (J. Prod. Analysis (2005), 31-48)  

introduced this distance function specification in conventional input-output space to estimate 

technical efficiency within a stochastic frontier context. We extend their approach to accommodate 

undesirable outputs and to estimate environmental efficiency within a stochastic frontier context. 

This provides a parametric counterpart to Färe et al.’s popular nonparametric environmental 

efficiency measures (Rev. Econ. Stat. 75 (1989), 90-98). The distance function model is applied to 

a panel of U.S. electricity generating units that produce marketed electricity and non-marketed SO2 

emissions. 
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1. Introduction 

 

 Most firms produce multiple outputs that are difficult or undesirable to aggregate. This 

necessitates replacing production functions with distance functions in a primal analysis of 

producer performance. Input- and output-oriented distance functions, introduced by Debreu 

(1951), Malmquist (1953) and Shephard (1953,1970), are now the cornerstones of primal analysis 

of producer performance. Nonparametric distance functions (Charnes et al. (1978)) dominate 

empirical analysis, although flexible parametric distance functions have been employed (Lovell et 

al. (1994), Paul et al. (2000)). 

A particularly significant example of multiple output production involves the simultaneous 

production of desirable marketed outputs and undesirable, typically non-marketed, byproducts 

such as emissions and pollutants. Because byproducts are rarely marketed, they are rarely priced, 

and so environmental performance analysis is frequently based on a primal representation of 

technology. However conventional distance functions are not well suited for environmental 

performance analysis because they measure performance radially, in terms of the ability to expand 

all outputs (or contract all inputs) equiproportionately. They do not discriminate between desirable 

outputs and their undesirable byproducts. As Zofío and Prieto (2001;67) remark, output distance 

functions treat the two sets of outputs symmetrically −a business as usual strategy, while what is 

required is a distance function that treats desirable and undesirable outputs asymmetrically.  

 Färe et al. (1985) introduced such a distance function, a hyperbolic distance function that 

measures producer performance in terms of the ability to expand outputs and contract inputs 

equiproportionately. Conventional radial distance functions are oriented toward expanding outputs 

or contracting inputs, and so are special cases of hyperbolic distance functions. Later Färe et al. 

(1989) (FGLP) adapted a nonparametric hyperbolic distance function to the measurement of 

environmental performance. This enabled them to treat desirable and undesirable outputs 

asymmetrically, by measuring environmental performance in terms of the ability to expand 

desirable outputs and contract undesirable byproducts equiproportionately. A more recent choice 

when treating outputs and/or inputs asymmetrically can be found in Chambers et al. (1996), who 

introduced an alternative characterization of the production technology by way of the directional 

distance function. Chung et al. (1997) presented the first extension of this distance function for 

environmental efficiency measurement. 

These theoretical breakthroughs have spawned a growing literature in environmental 

performance analysis. Beyond the seminal contributions, empirical applications based on 

hyperbolic distance functions include Ball et al. (1994, 2004), Hernández-Sancho, Picazo-Tadeo 
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and Reig-Martinez (2000), Zaim and Taskin (2000), Zofío and Prieto (2001), Prieto and Zofío 

(2004). Among those using a directional distance function we find Weber and Domazlicky (2001), 

Domazlicky and Weber (2004) and Picazo-Tadeo, Reig-Martinez Hernández-Sancho (2005). All 

these applications have one common feature. They have been developed within a nonparametric 

framework that relies on mathematical programming techniques to calculate the hyperbolic 

distance function. These techniques extend Data Envelopment Analysis (DEA) to identify those 

producers that are environmentally efficient, and form convex combinations of them to construct a 

best practice environmental performance frontier for the remaining inefficient producers. However 

these techniques have two drawbacks: (i) except under constant returns to scale the program is 

nonlinear, and (ii) the model being deterministic, inference is not possible without bootstrapping 

(Simar and Wilson, 2004). These drawbacks motivate the use of stochastic frontier techniques to 

estimate a hyperbolic distance function. 

However the use of stochastic frontier techniques to estimate a hyperbolic distance 

function has been stalled because the existing output- or input-oriented parametric specifications 

do not allow for an asymmetric treatment of desirable and undesirable outputs.1 A step in the right 

direction has been taken by Färe et al. (2005), who use mathematical programming techniques to 

construct a parametric (quadratic) directional distance function to assess the ability of firms to 

improve their environmental efficiency by simultaneously increasing desirable outputs and 

reducing undesirable outputs. This model is easy to implement, but it remains vulnerable to the 

second drawback above. 

We extend a recent contribution of Cuesta and Zofio (2005) to develop a hyperbolic 

distance function model that is both parametric and stochastic. This model is based on a translog 

specification of production technology introduced by Christensen et al. (1971, 1973). It provides a 

flexible parametric and stochastic counterpart to the influential FGLP (1989) model that is 

nonparametric and deterministic. It also provides a stochastic and hyperbolic alternative to the 

Färe et al. (2005) model, which is directional and deterministic.  

The structural difference between our model and that of Färe et al. (2005) is the use of 

different distance functions. While their model is based on a directional distance function 

represents the amount by which desirable outputs can be expanded and undesirable outputs and/or 

inputs can be contracted in an additive manner, our hyperbolic distance function represents the 

proportion by which desirable outputs can be expanded and undesirable outputs and/or inputs can 

be contracted in a multiplicative manner. The different properties that these distance functions 

satisfy have an important influence on their parametric specification. The directional distance 

                                                           
1 Several authors had tried to overcome the lack of analytical tools in the parametric field proposing SFA 
alternatives that nevertheless did not treat outputs asymmetrically, e.g. Reinhard et al. (1999) and Murty and 
Kumar (2002).  
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function satisfies a translation property, which can be imposed easily on a quadratic specification. 

The hyperbolic distance function counterpart of this property is the almost homogeneity property, 

which can be imposed easily on a translog specification.  

In Section 2 we introduce the analytical foundations of the production technology, and we 

emphasize the properties a hyperbolic distance function oriented toward environmental performance 

measurement should satisfy. Compared to a conventional output distance function, our hyperbolic 

specification allows desirable and undesirable outputs to vary in the same proportion, but in 

opposite directions. We enhance the hyperbolic definitions by allowing for further proportional 

reduction of inputs. As our intention is to provide the parametric counterparts to the nonparametric 

distance functions proposed by FGLP (1989), in Section 3 we introduce a pair of translog 

environmental hyperbolic distance function formulations. In Section 4 we develop the empirical 

specification and the estimation procedure, which is based on the maximum likelihood panel data 

model of Pitt and Lee (1981), as extended by Battese and Coelli (1988). In Section 5 we provide an 

empirical application involving a large database of U.S. electric utilities previously analyzed by Färe 

et al. (2005), in which the desirable output is electricity generated and the undesirable byproduct is 

SO2 emissions. Finally, some conclusions are drawn in Section 6. 

 

2. Hyperbolic Distance Functions and Environmental Efficiency  

 

We consider a production technology transforming input vectors xi = (x1i ,..., xKi) ∈ K
+ℜ  into 

output vectors ui = (u1i,..., uVi) ∈ P
+ℜ , consisting of desirable and undesirable output subvectors vi = 

(v1i,..., vMi) ∈ M
+ℜ  and wi = (w1i,..., wSi) ∈ R

+ℜ , and where the subscript i = (1,2,...,N) refers to a set 

of observed producers.2 The technology can be represented by the production possibility set 

 

{ }K PT= ( , , ): , ( , ) , can produce ( , ) ,x v w x v w x v w+ +∈ℜ ∈ℜ     (1) 

 

which is assumed to be a compact set satisfying the axioms found in Färe and Primont (1995). This 

production structure can be expressed in equivalent terms through the output correspondences, x → 

P(x) ⊆ P
+ℜ , which represents the set of all u = (v, w) output vectors obtainable from x. This output 

correspondence is inferred from the production possibility set as P(x)={(v, w): (x, v, w) ∈T}, while 

the graph can be inferred from the output correspondence as T = {(x, v, w): (v, w) ∈ P(x), x ∈ K
+ℜ }. 

                                                           
2 As we introduce the parametric counterpart to Färe et al. (1989) we adopt their notation to ease 
comparability. 
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Thus, relying on Färe, Grosskopf and Lovell (1985:46), it is verified that (x, v, w) ∈ T ⇔ (v, w) ∈ 

P(x).  

 The production technology also can be represented by a hyperbolic distance function, which 

for a given amount of inputs represents the maximum expansion of the desirable output vector and 

equiproportionate contraction of the undesirable output vector that places a producer on the boundary 

of the technology T.  

 

Definition 1: The hyperbolic distance function DH: K
+ℜ  × M

+ℜ  × R
+ℜ  → ℜ+ U {+∞} is defined by 

 

   ( ) { }HD , inf 0 : ( , / , ) Tx,v w x v w= θ > θ θ ∈ .               (2) 

 

The hyperbolic distance function inherits its name from the hyperbolic path that it follows 

toward the production frontier. It has the virtue of treating desirable and undesirable outputs 

asymmetrically, thus providing an environmentally friendly characterization of the production 

technology. The range of the hyperbolic distance function is 0 < DH(x, v, w) ≤ 1. If the technology 

satisfies the customary axioms, then the hyperbolic distance function satisfies the following 

properties: (i) it is almost homogeneous (Aczel (1966, Chs.5,7), Lau (1972)), DH.1: DH(x, µw, µ-1w) 

= µDH(x, v, w), µ > 0, (ii) non-decreasing in desirable outputs, DH.2: DH(x, λv, w) ≤  DH(x, v, w), λ ∈ 

[0,1], (iii) non-increasing in undesirable outputs, DH.3: DH(x, v, λw) ≤  DH(x, v, w), λ  ≥ 1, and (iv) 

non-increasing in inputs, DH.4: DH(λx, v, w) ≤  DH(x, v, w), λ  ≥ 1. 

A simpler characterization of the technology is provided by Shephard’s (1970) output 

distance function, which represents the maximum feasible expansion of the desirable output vector 

required to reach the boundary of the technology set T. 

 

Definition 2: The output distance function DO: K
+ℜ  × M

+ℜ  × R
+ℜ  → ℜ+ U {+∞} is defined by 

 

   ( ) { }OD , inf 0 : ( / , ) Tx,v w x,v w= ϕ > ϕ ∈                (3) 

 

 The output distance function has range 0 < DO(x, v, w) ≤ 1. It is homogeneous of degree one 

in outputs, (i) DO.1: DO(x, µv, w) = µDO(x, v, w), µ > 0, (ii) non-decreasing in outputs, DO.2: DO(x, 

λv, w) ≤  DO(x, v, w), λ ∈[0,1], while (iii-iv) it is non-increasing in undesirable outputs and inputs, 

DO.3: DO(x, v, λw) ≤ DO(x, v, w), λ ≥ 1, and DO.4: DO(λx, v, w) ≤ DO(x, v, w), λ ≥ 1. 
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Finally, to cover all the alternative efficiency measures defined by FGLP (1989) −except 

for those that define the technology ignoring undesirable outputs− we can also represent 

technology with an enhanced hyperbolic distance function, which retains its environmental 

interpretation, but does not hold inputs constant as its hyperbolic and output counterparts so, 

calling for further proportional reductions on the inputs side.  

 

Definition 3: The enhanced hyperbolic distance function DE: K
+ℜ  × M

+ℜ  × R
+ℜ  → ℜ+ U {+∞} is 

defined as 

 

   ( ) { }ED , inf 0 : ( , / , ) Tx,v w x v w= φ > φ φ φ ∈ .               (4) 

 

As the previous functions, it has range is 0 < DE(x, v, w) ≤ 1, and besides the last three 

properties already stated for the hyperbolic distance function DH.2−DH.4, it satisfies a more inclusive 

degree of almost homogeneity given by DE.1: DE(µ-1x, µv, µ-1w) = µDE(x, v, w), µ > 0, 

 

Definition 4: A function F(x, v, w) is almost homogeneous of degrees k1, k2, k3 and k4 if 

 

   31 2 4kk k k(µ ,µ ,µ ) µ ( , , ), µ 0F x v w F x v w= ∀ > .              (5) 

 

The output distance function DO(x,v,w) is almost homogeneous of degrees 0, 1, 0, 1. The 

environmental hyperbolic distance function DH(x,v,w) is almost homogeneous of degrees 0, 1, -1, 

1, and the enhanced environmental hyperbolic distance function DE(x,v,w) is almost homogeneous 

of degrees –1, 1, -1, 1.3  

As FGLP (1989) discuss, the hyperbolic and enhanced hyperbolic distance functions (2) 

and (4) are well suited for defining measures of environmental efficiency. Our hyperbolic distance 

function (2) corresponds to their hyperbolic output efficiency measure, while our enhanced 

hyperbolic distance function (4) corresponds to their hyperbolic productive efficiency measure.4 

Since both distance functions fully characterize the technology assuming weak disposability, 

HD ( , ) 1 ( , , ) Tx,v w x v w≤ ⇔ ∈  and ED ( , ) 1 ( , , ) Tx,v w x v w≤ ⇔ ∈ , their magnitudes signaling 

                                                           
3 Cuesta and Zofio (2005;34) prove the almost homogeneity property when the hyperbolic distance function 
is defined ignoring undesirable outputs: ( ) { }HD inf 0 : ( , / ) Tx,v x v= δ > δ δ ∈ , which can be easily 
extended to DH(x,v,w) and the remaining distance functions. 
4 Our version of the output distance function (3) differs from the FGLP (1989;93) conventional hyperbolic 
output efficiency measure, which excludes undesirable outputs from the technology set and is defined as 

( ) { }OD inf 0 : ( , / ) Tx,v x v= ϕ > ϕ ∈  
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whether a producer belongs to the isoquant subset of T: Isoq P(x) = {(v, w): (v, w) ∈ P(x), (v/λ, wλ) 

∉ P(x), 0 < λ < 1} or Isoq T = {(x, v, w): (x, v, w) ∈ T, (xλ, v/λ, wλ) ∉ T, 0 < λ < 1}. Thus if DH 

(x, v, w) = 1 or DE (x, v, w) = 1, the production occurs respectively on Isoq P(x) or Isoq T, and is 

said to be weakly efficient. Alternatively, if DH (x, v, w) < 1 or DE (x, v, w) < 1, the producer could 

improve environmental performance by expanding production of marketed outputs and reducing 

undesirable pollutants and inputs, and is said to be inefficient.  

 

 

3. Translog Hyperbolic Distance Functions 

 

In this section we develop three specifications of a hyperbolic translog distance function. 

This popular functional form provides a flexible approximation to the unknown production 

technology, and it proves to be quite amenable to the imposition of almost homogeneity 

restrictions. 

We depart from Definition 4. Assuming that F(x, v, w) is continuously differentiable, to be 

almost homogeneous it must satisfy 

 
K M R

1 2 3 4
1 1 1

k k k kk m r
k m rk m r

F F F
x v w F

x v w= = =

∂ ∂ ∂
+ + =

∂ ∂ ∂∑ ∑ ∑ .             (6) 

 

For a translog specification of F(x,v,w), 

 

    

K K K M M M

0
1 1 1 1 1 1

R R R K M K R

1 1 1 1 1 1 1
M R

1 1

1 1ln ln ln ln ln ln ln
2 2

1ln ln ln ln ln ln ln
2

ln ln , ( 1

k ki kl ki li m mi mn mi ni
k k l m m n

r ri rs ri si km ki mi kr ki ri
r r s k m k r

mr mi ri
m r

F x x x v v v

w w w x v x w

v w i

= = = = = =

= = = = = = =

= =

=α + α + α + β + β +

χ + χ + δ + ς +

υ =

∑ ∑∑ ∑ ∑∑

∑ ∑∑ ∑∑ ∑∑

∑∑ ,2,...,N),

          (7) 

 

we can focus on the relevant expressions needed to impose the alternative homogeneity degrees 

corresponding to the hyperbolic (2), output (3), and enhanced hyperbolic (4) distance functions. 

Dividing (6) by F, and noting that with a logarithmic specification 
k

k

k x
F

F
x

x
F

ln
ln

∂
∂

=
∂
∂ , 

ln
ln

m

m m

vF F
v F v
∂ ∂

=
∂ ∂

, and ln
ln

r

r r

wF F
w F w
∂ ∂

=
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, the relevant partial derivatives for the translog case (7) 

are     
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K M R

1 1 1

ln ln ln ln ( 1,2,...,K)
ln k kl l km m kr r

k m rm

F x v w k
x = = =

∂
= α + α + δ + ς =

∂ ∑ ∑ ∑ ,     (8)

 
M K R

1 1 1

ln
ln ln ln ( 1, 2, ..., M)

ln m mn n km k mr r
n k rm

F
v x w m

v = = =

∂
=β + β + δ + υ =

∂ ∑ ∑ ∑ , and               (9)  

  
R K M

1 1 1

ln ln ln ln ( 1, 2,..., R)
ln r rs s kr k mr m

s k mr

F w x v r
w = = =

∂
=χ + χ + ς + υ =

∂ ∑ ∑ ∑ .                 (10)          

                  

Here we derive the parametric formulation corresponding to the hyperbolic distance 

function, but we also include at the end of this section expressions corresponding to its output and 

enhanced hyperbolic distance functions counterparts, which can be easily obtained following the 

same steps. For the translog hyperbolic distance function (2), almost homogeneity of degrees 0, 1, -

1, 1 must be satisfied. Departing from (6), this requires  

 

    
M R

1 1

ln ln 1
ln lnm rm r

F F
v w= =

∂ ∂
− =

∂ ∂∑ ∑ .               (11) 

 

For the translog case substituting (9) and (10) into (11) yields 

 

                

M M K R

1 1 1 1
R R K M

1 1 1 1

( ln ln ln )

( ln ln ln ) 1.

m mn n km k mr r
m n k r

r rs s kr k mr m
r s k m

v x w

w x v

= = = =

= = = =

β + β + δ + υ −

χ + χ + ς + υ =

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
             (12) 

 

From (12) the necessary (1+M+K+R) restrictions that ensure almost homogeneity of degrees 0, 1, 

-1, 1 are  

 

            
M R

1 1
1,m r

m r= =

β − χ =∑ ∑               (13) 

   
M M

1 1
0, 1, 2,..., Mmn mr

n m
m

= =

β − υ = =∑ ∑ ,                           (14) 

               K,,...,2,1,0
K

1

K

1

==ς−δ∑ ∑
= =

k
k k

krkm  and             (15) 
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R R

1 1
0, 1, 2,..., R.mr rs

r s
r

= =

υ − χ = =∑ ∑              (16) 

 

It is possible to impose this set of restrictions on the translog hyperbolic distance function 

by modifying the approach introduced by Lovell et al. (1994). Using the almost homogeneity 

condition (5) and choosing the Mth desirable output for normalizing purposes, µ=1/vM, and we 

obtain 

                          

( )H
H M

M M

D , ,
D , ,

x v wvx wv
v v

⎛ ⎞
=⎜ ⎟

⎝ ⎠
,                          (17)  

 

which yields 
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iwv
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  (18) 

where *
miv = vmi/vMi and *

riw = wrivMi. For the normalizing output vMi the ratio *
miv  is equal to one, 

and so all terms involving the normalizing output are null. This does not occur for undesirable 

outputs, which is why the summations involving *
miv  in (18) are over M−1, while summations 

involving *
riw  are over R. It is straightforward to verify that the translog hyperbolic distance 

function satisfies properties DH.1- DH.4.  

As previously anticipated, we can follow the same procedure with regard to the almost 

homogeneity restrictions and specific conditions that must be satisfied to obtain the translog output 

(3) and enhanced hyperbolic (4) distance functions. The expression for the translog output distance 

function is 
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 (19) 

 

while the expression for the translog enhanced hyperbolic distance function is 
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 (20) 

 

where *
kix = xkivMi.  

 

4. Implementing the Translog Hyperbolic Distance Function through SFA  

 

In a stochastic framework one may think of the distance that separates a producer from the 

production frontier as the combined result of inefficiency and random noise reflecting events beyond 

producers’ control. Enhancing our model to allow for a multi-period framework, the three stochastic 

translog panel data specifications can be formulated as  

    

         

( ) N),...,2,1(),,,,,;,,(/Dln **
MH =ω+υςδχβα= iwvxTLv itititititi ,           (21) 

 

( ) N),...,2,1(),,,,,;,,(/Dln *
MO =ω+υςδχβα= iwvxTLv itititititi ,           (22) 

 

( ) N),...,2,1(),,,,,;,,(/Dln ***
ME =ω+υςδχβα= iwvxTLv itititititi ,              (23) 

 

for the hyperbolic (18), output (19) and enhanced hyperbolic (20) distance functions. In these 

formulations deviations from one are accommodated in a composed error h ( ) exp  (  )iit it   + uε = ω  

(Aigner et al. (1977)), comprising the one-sided component ui
 that captures time invariant 
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inefficiency, which is assumed to have a half normal distribution ui ∼⏐N(0, 2σu )⏐, and the standard 

random term symmetrically distributed around zero, ωit ∼N(0, 2σv ). Since – ln vMit corresponds to the 

dependent variable and lnDHi, lnDOi and lnDEi are the one sided distance components ui, these 

expressions can be reformulated to obtain the actual hyperbolic, output, and enhanced hyperbolic 

distance functions to be estimated: 

 

  * *
Mln  ( , , ; , , , , ) ( ) ( 1,2,...,N),it it it it it iv TL x v  w  ,  u i− = α β χ δ ς υ + ω − =           (24) 

 
*

Mln  ( , , ; , , , , ) ( ) ( 1,2,...,N),it it it it it iv TL x v  w  ,  u i− = α β χ δ ς υ + ω − =  and            (25) 

 
* * *

Mln  ( , , ; , , , , ) ( ) ( 1,2,...,N).it it it it it iv TL x y  z  ,  u i− = α β χ δ ς υ + ω − =           (26) 

 

We estimate these panel data specifications using standard maximum-likelihood 

techniques introduced by Pitt and Lee (1981) and extended by Battese and Coelli (1988) to obtain 

the individual conditional distribution of the one sided errors, )εE( t ii  u . Finally, time invariant 

hyperbolic efficiency estimates can be calculated for each firm substituting these values into the 

following expressions: 

 
* *

Hexp[ ln  ( , , ; , , , , ) ] exp ( )TE Di i iit it it =   x v  w  ,   =   -  uα β χ δ ς υ ,              (27) 

 
*

Oexp[ ln  ( , , ; , , , , ) ] exp ( )TE Di i iit it it =   x v  w  ,   =   -  uα β χ δ ς υ , and           (28) 

 
*

Eexp[ ln  ( , , ; , , , , ) ] exp ( )TE Di i iit it it =   x v  w  ,   =   -  uα β χ δ ς υ .            (29) 

 

 

5. An application to SO2 emissions from electric utilities  

 

5.1 Data and model 

We illustrate the translog hyperbolic, output and enhanced hyperbolic distance functions 

by calculating the efficiency scores for a set of U.S. electric utilities. Firm level annual data refers 

to particular boilers whose technology is represented by one desirable output, megawatt hours of 

electricity generated, MWh (v), one undesirable output, tons of SO2 emissions (z), and three 

inputs: generating capacity in mill. MW (x1), homogenous fuel measured in million BTU (x2) and 
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units of labor (x3). Electricity production, generating capacity, and fuel consumption data come 

from the Annual Steam Electric Unit Operation and Design Report, published within the 

Department of Energy by the Energy Information Administration, EIA767. SO2 emissions are 

available from the Acid Rain Program database compiled by the Environmental Protection 

Agency. With regard to the last input, labor data is reported by the Federal Energy Regulatory 

Commission in its Electric Utility Annual Report. Further details on the different assumptions that 

have been made to elaborate these variables and how this database has been assembled, can be 

found in Färe et al. (2005).  Table 1 shows the mean firm values over the 1993 and 1997 period 

and overall descriptive statistics for each variable. 

 

Table 1. Mean firm values and overall descriptive statistics 

Variable Mean  Standard Dev. Minimum  Maximum 
  

 v −  MWh 1,774,512 1,401,741 4,352 7,933,261 
 w −  SO2 Tons  25,419 26,902 3 201,667 
 x1 − MWatt  348 249 19 1,300 
 x2 − Mill. BTU  17,704,876 13,482,714 47,659 77,800,003 
 x3 – Units   278 234 2 1,282 
Source: Färe et al. (2005).  

 

The particular translog hyperbolic, output and enhanced hyperbolic distance function that 

have been estimated are the counterparts to (24), (25) and (26), but allowing for a time dummy that 

captures the presence of neutral technical change from 1993 to 1997, as well as other temporal 

effects. Specifically,  
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To avoid convergence problems and ease parameters interpretation, all variables have been 

corrected prior to estimation, i.e. each output −desirable and undesirable− and input variables are 

divided by their geometric mean.  Proceeding this way, first order coefficients can be regarded as 

distance elasticities evaluated at the sample means. Finally, since for this particular application 

there is just one desirable output, the almost homogeneity conditions are imposed using electricity 

production values. 

 

5.2. Results and discussion  

Table 2 presents the obtained maximum likelihood estimates of the alternative stochastic 

models. These MLE parameters for the hyperbolic (30), output (31) and enhanced hyperbolic (32) 

distance functions’ specifications, and their associated standard errors allow us to determine (a) the 

effect that the undesirable output and the inputs have on the distance functions, and (b) whether the 

magnitude corresponding to each direct partial elasticity is statistically significant or not. In all 

three formulations the undesirable output parameters χ1 present the expected negative sign as any 

increase in sulfur dioxide emissions would increase the value of the distance functions. A similar 

reasoning applies to generating capacity, fuel, and labor inputs −αk, as any increment in their 

amounts would also increase the distance to the frontier. Furthermore, except for the generating 

capacity elasticity α1 −an expected result when dealing with utilities whose maximum installed 

capacity should be able to match peak demand, the t-ratios indicate that the remaining estimated 

parameters are significantly different from zero. These results ensure that the estimated translog 

hyperbolic, output and enhanced hyperbolic distance functions comply with the aforementioned 

monotonicity conditions, and reflect that, at the sample mean, they are non-increasing in 

undesirable outputs and inputs.  
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In all three specifications the elasticity values of sulfur dioxide emissions χ1, when 

compared to the input elasticities, range at the lower end, matching those of generating capacity α1, 

and showing its relatively small importance when characterizing the alternative distance functions. 

Particularly, when compared to fuel α2, and labor α3 elasticities, we see that the energy input 

constitutes the variable essentially responsible for any change in electricity production. The 

coefficient ψ97 corresponding to the dummy intended to capture neutral technical change also 

presents a negative sign, and is statistically significant in the first specification. Its value reflecting 

the existence of an upward shift in the environmental frontier −technical progress− by a cumulated 

aggregate value of 0,95%, in the five years period. The fact that technical progress exists in this 

specification indicates that the leading firms are able to increase electricity production while 

making use of more environmentally friendly technologies −for a graphical representation of the 

industry technological progress see figure 4 in Färe et al. (2005;483).  

Considering the environmental hyperbolic distance function parameters (30) as the baseline 

for comparisons with the output and enhanced hyperbolic specifications, we see that the elasticity 

values for the hyperbolic and output distance functions are about the same except for the undesirable 

output parameter χ1, as both of them leave aside inputs reductions, and represent an output 

enhancing strategy when reaching the production frontier. This is not the case when we take into 

account the enhanced hyperbolic specification, which also includes an inputs reduction approach. 

Here we notice that its associated elasticity values are about half the value of those estimated for the 

hyperbolic distance function. This is consistent with the underlying theory. Had we imposed constant 

returns to scale in our specifications as in Cuesta and Zofio (2005), we could have recalled an 

additional property of the hyperbolic distance function, DH.5: DH (x, v, w; CRS) = DE(x, v, w; CRS)2 , 

which for a translog specifications yields DH.5: ln DH (x, v, w; CRS) = 2 ln DE(x, v, w; CRS), and the 

enhanced hyperbolic distance function parameters would be one half of those estimated for the 
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hyperbolic distance function.5 In fact, the same justification applies for the above mentioned 

difference between the SO2 parameters of the hyperbolic and output distance functions, being the 

parameter χ1 in this latter specification about one half of the parameter of the former specification. 

 

Table 2. Estimated parameters for the alternative distance functions. 

Distance 
Function DH(x, v, w), (30) DO(x, v, w), (31) DE(x, v, w), (32) 

Parameter 
Estimated 

Value t-statistic Estimated 
Value t-statistic Estimated 

Value t-statistic 

α0 -0.0633 -9.3088 -0.0677 -9.5352 -0.0355 -11.0938 
α1 -0.0133 -0,8210 -0.0143 -0.8773 -0.0122 -1.5062 
α2 -0.9440 -49.1667 -0.9745 -56.0057 -0.4780 -53.7079 
α3 -0.0294 -3.3793 -0.0260 -2.9545 -0.0127 -2.8222 
α11 0.1556 3.1820 0.2014 4.1355 0.0937 3.9205 
α22 0.0492 1.0446 0.0606 1.6117 0.0462 1.9660 
α33 -0.0201 -1.4889 -0.0215 -1.5809 -0.0122 -1.7941 
α12 -0.1433 -3.3718 0.0289 3.3605 -0.0787 -3.4367 
α13 -0.0284 -1.4416 -0.0261 -3.4800 -0.0092 -0.9388 
α23 0.0448 2.3957 0.0022 0.4783 0.0262 2.9111 
χ1 -0.0183 -3.8125 -0.0088 -1.7959 -0.0045 -1.8750 
χ11 -0.0082 -1.4386 0.0008 0.1333 0.0006 0.2069 

11ς  0.0288 3.3882 0.0289 3.3605 0.0110 2.5581 
21ς  -0.0078 -0.6667 -0.0261 -3.4800 -0.0122 -2.9048 
31ς  0.0083 1.8864 0.0022 0.4783 0.0012 0.5455 

ψ97 -0.0095 -2.1591 -0.0047 -1.0217 -0.0027 -1.2273 
σ2 0.0177 9.461 0.0181 9.5263 0.0044 8.8000 
λ 0.0712 6.430 0.0724 6.4071 0.0718 6.5273 

Mean L.L.F. 1.1464  1.1323  1.8455  
Mean T.E. 0.9366  0.9373  0.9671  

Source: Own elaboration. 
Note: The following parameterization applies: σ2 =σ2

u+σ2
ω, λ = σ2

ω / σ2
u 

 

Once the alternative translog distance functions’ parameters have been estimated, it is 

possible to estimate firm specific efficiency scores making use of expressions (27), (28) and (29). 

With regard to technical efficiency, the significant parameters σ2 and λ indicate that in all three 

cases the one sided error is a relevant source when explaining a producer’s deviation from the 

                                                           
5 Cuesta and Zofio (2002) define and provide an example of this equivalence between the translog hyperbolic 
and output distance functions, which is recalled here for the hyperbolic and enhanced hyperbolic distance 
functions.     
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transformation function. For the hyperbolic distance function baseline specification, average 

environmental technical efficiency is 0.9366, showing how US electric utilities can improve its 

productive performance by increasing its desirable output by 6.77% (1 / 0.9366 = 1.0677), while 

simultaneously reducing SO2 emissions by 6.34% (1 − 0.9366 = 0.0634). This means that on 

average the industry could increase its electricity production from 1,774,512 MWh to 1,894,646 

MWh, while reducing SO2 from 25,419 tons to 23,807 tons. Applying the additive directional 

distance function counterpart to our hyperbolic distance function, Färe et al. (2005;481) found that 

on average, production electricity and SO2 emissions could be respectively increased and reduced 

by about 20%. This difference between average efficiency values clearly suggests that our translog 

hyperbolic distance function specification, being stochastic, allocates a significant amount of the 

one sided error the to the random noise term ωit. An amount that is considered as inefficiency in the 

deterministic quadratic directional distance function of Färe et al. (2005), hence explaining the 

higher inefficiency values of the latter model −ceteris paribus the different specifications. 6    

While similar calculations can be made for the output distance functions, it is worth noting 

that the mean technical efficiency value of the enhanced hyperbolic distance function is much 

higher than those corresponding to the hyperbolic distance function. This result can be justified on 

the grounds that the enhanced hyperbolic distance function represents a more comprehensive path 

toward the production frontier in so far as firms can adjust both sets of outputs –desirable and 

undesirable- as well as inputs. Therefore, in this last specification DE(x, v, w) inefficiency is shared 

among desirable output increases and undesirable outputs and inputs reductions, while in the output 

oriented models it hinges on both desirable and undesirable outputs DH(x, v, w), or just desirable 

outputs DO(x, v, w). In fact, our proposal to estimate alternative distance function models matching 

the efficiency measures proposed by FGLP (1989), yields compatible results to those obtained by 

these authors, as with regards to the ordering of mean technical efficiency values. No matter 

                                                           
6 Note that Färe et al. (2005;484) are not able to recover technical efficiency estimates from their stochastic 
model due to specification and/or estimation problems, and therefore finally decide to apply corrected OLS. 
Not surprisingly the values they obtain are similar in magnitude to those derived from their deterministic 
model following Aigner and Chu (1968).   
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whether non-parametric or parametric techniques are employed, the most comprehensive models 

including desirable outputs increases and undesirable outputs and inputs reductions yield higher 

efficiency values than their partially oriented counterparts, i.e. do not take into account all outputs 

and input dimensions. Therefore, it should be comforting to note that all these analytics are entirely 

consistent with production theory.  

 

6. Conclusions 
 

This paper introduces new definitions and estimation procedures of parametric distance 

functions intended to be applied in environmental efficiency and productivity studies. Departing 

from a recent paper by Cuesta and Zofio (2005), we extend their parametric specification of a 

translog hyperbolic distance function to mirror the theoretical and non-parametric techniques of 

FGLP (1989), who in their path breaking article treated the outputs vector asymmetrically by 

allowing equiproportional desirable outputs expansion and undesirable outputs contraction. The 

paper discusses the relevant properties that characterize the environmental hyperbolic graph distance 

function, and compares it to its traditional output distance function, as well as an enhanced definition 

that additionally calls for inputs reductions −all of which can be consistently identified with the 

alternative efficiency measures introduced by FGLP (1989). It then proceeds to develop the 

functional conditions necessary to implement them within a translog parametric framework, 

particularly those restrictions that ensure that these specifications satisfy the almost homogeneity 

properties discussed by Aczel (1967).  

We show that the translog hyperbolic and enhanced hyperbolic distance functions can be 

easily implemented within an stochastic frontier analysis framework and relying on conventional 

econometric techniques. The particular specification that has been chosen to illustrate our efficiency 

analysis based on a translog distance function corresponds to Battese and Coelli’s (1988) maximum 

likelihood panel data methodology. For the empirical application we provide the translog counterpart 

of the study carried out by Färe et al. (2005), who apply a directional distance functions approach 



 

 18

using a quadratic specification.  

Given the wide non-parametric DEA application of the FGLP (1989) hyperbolic graph 

efficiency model, we believe that our translog hyperbolic distance function should prove quite useful 

to econometricians interested in developing the analytical and statistical potential of regression 

analysis applied to environmental performance. 
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