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Abstract

We derive statistical arbitrage bounds for the buying and selling
price of European derivatives under incomplete markets. In this paper,
incompleteness is generated due to the fact that the market is dry, i.e.,
the underlying asset cannot be transacted at certain points in time. In
particular, we re¯ne the notion of statistical arbitrage in order to ex-
tend the procedure for the case where dryness is random, i.e., at each
point in time the asset can be transacted with a given probability. We
analytically characterize several properties of the statistical arbitrage-
free interval, show that it is narrower than the super-replication in-
terval and dominates somehow alternative intervals provided in the
literature. Moreover, we show that, for su±ciently incomplete mar-
kets, the statistical arbitrage interval contains the reservation price of
the derivative.

1 Introduction

In complete markets and under the absence of arbitrage opportunities, the
value of a European derivative must be the same as the cheapest portfolio
that replicates exactly its value at any given point in time. However, in the
presence of some market imperfections, markets may become incomplete,
and it is not possible to exactly replicate the value of theEuropean derivative
at all times anymore. Nevertheless, it is possible to derive an arbitrage-free
range of variation for the value of the derivative. This interval depends on
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two di®erent factors. First, on the nature of market incompleteness; second,
on the notion of arbitrage opportunities.

In what follows we consider that market incompleteness is generated
by the fact that agents cannot trade the underlying asset on which the
derivative is written whenever they please. In fact, and as opposed to the
traditional asset pricing assumptions, markets are very rarely liquid and
immediacy is not always available. As Longsta® (1995, 2001, 2004) recalls,
the relevance of this fact is pervasive through many ¯nancial markets. The
markets for many assets such as human capital, business partnerships, pen-
sion plans, saving bonds, annuities, trusts, inheritances and residential real
estate, among others, are generally very illiquid and long periods of time
(months, sometimes years) may be required to sell an asset. This point
becomes extremely relevant for the case of option pricing when we consider
that it is an increasingly common phenomenon even in well-established se-
curities markets, as illustrated by the 1998 Russian default crisis, leading
many traders to be trapped in risky positions they could not unwind.

To address the impact of this issue on derivatives' pricing, we consider
a discrete-time setting such that transactions are not possible within a sub-
set of points in time. Although clearly very stylized, the advantage of this
setting is that it incorporates in a very simple way the notion of market
illiquidity as the absence of immediacy. Under such illiquidity we say that
markets are dry. In this framework, dryness changes what is otherwise a
complete market into a dynamically incomplete market. This was also the
approach in Amaro de Matos and Ant~ao (2001) when characterizing the
speci¯c superreplication bounds for options in such markets and its impli-
cations. We further extend this setting by assuming that transactions occur
at each point in time with a given probability, re°ecting a more realistic
ex-ante uncertainty about the market.

As stressed above, there is not a unique arbitrage-free value for a deriva-
tive under market incompleteness. However, for any given derivative, port-
folios can be found that have the same payo® as the derivative in some states
of nature, and higher payo®s in the other states. Such portfolios are said to
be superreplicating. Holding such a portfolio should be worth more than the
option itself and therefore, the value of the cheapest of such portfolios should
be seen as an upper bound on the selling value of the option. Similarly, a
lower bound for the buying price can be constructed. The nature of the
superreplicating bounds is well characterized in the context of incomplete
markets in the papers by El Karoui and Quenez (1991,1995), Edirisinghe,
Naik and Uppal (1993) and Karatzas and Kou (1996). The superreplicat-
ing bounds establish the limits of the interval for arbitrage-free value of the
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option. If the price is outside this range, then a positive pro¯t is attain-
able with probability one. Therefore, the equilibrium prices at which the
derivative is transacted should lie between those bounds.

Most of the times, however, these superreplicating bounds are trivial, in
the sense that they are too broad, not allowing a useful characterization of
equilibrium prices' vicinity. As an alternative, Bernardo and Ledoit (2000)
propose a utility-based approach, restricting the no-arbitrage condition to
rule out investment opportunities o®ering high gain-loss ratios, where gain
(loss) is the expected positive (negative) part of excess payo®. In this way,
narrower bounds are obtained. Analogously, Cochrane and Sa¶a-Requejo
(2000) also restrict the no-arbitrage condition by not allowing transactions of
\good deals", i.e. assets with very high Sharpe ratio. Following Hansen and
Jagannathan (1991), they show that this restriction imposes an upper bound
on the pricing kernel volatility and leads to narrower pricing implications
when markets are incomplete.

Given a set of pricing kernels compatible with the absence of arbitrage
opportunities, Cochrane and S¶aa-Requejo exclude pricing kernels implying
very high Sharpe ratios, whereas Bernardo and Ledoit exclude pricing ker-
nels implying very high gain-loss ratios for a benchmark utility. Notice that,
for a di®erent utility, Bernardo and Ledoit would exclude a di®erent subset of
pricing kernels, for the same levels of acceptable gain-loss ratios. Also notice
that the interval designed by Cochrane and S¶aa-Requejo is not necessarily
arbitrage free, and therefore does not necessarily contain the equilibrium
price.

In order to avoid ad-hoc thresholds in either Sharpe or gain-loss ratios,
or to make some parametric assumptions about a benchmark pricing kernel,
as in Bernardo and Ledoit (2000), the work of Bondarenko (2003) introduces
the notion of statistical arbitrage opportunity, by imposing a weak assump-
tion on a functional form of admissible pricing kernels, yielding narrower
pricing implications as compared to the superreplication bounds. A statisti-
cal arbitrage opportunity is characterized as a zero-cost trading strategy for
which (i) the expected payo® is positive, and (ii) the conditional expected
payo® in each ¯nal state of the economy is nonnegative. Unlike a pure arbi-
trage opportunity, a statistical arbitrage opportunity may allow for negative
payo®s, provided that the average payo® in each ¯nal state is nonnegative.
In particular, ruling out statistical arbitrage opportunities imposes a novel
martingale-type restriction on the dynamics of securities prices. The impor-
tant properties of the restriction are that it is model-free, in the sense that
it requires no parametric assumptions about the true equilibrium model,
and continues to hold when investors' beliefs are mistaken. Although Bon-
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darenko's interval can be shown to be in the arbitrage-free region, it does
not necessarily contain the equilibrium value of the derivative.

In this paper we extend the notion of statistical arbitrage opportunity to
the case where the underlying asset can be transacted at each point in time
with a given probability, and compare the statistical arbitrage-free bounds
with the superreplication bounds. We show that the statistical arbitrage-free
interval is narrower than the pure arbitrage bounds, and show also that, for
su±ciently incomplete markets (probability not too close to 1), the statistical
arbitrage interval contains the reservation price of the derivative. We also
provide examples that allow comparison with the results of Cochrane and
Sa¶a-Requejo (2000) and discuss the comparison with Bernardo and Ledoit
(2000).

This paper is organized as follows. In section 2, the model is presented
and the pure arbitrage results are derived. In section 3 the notion of sta-
tistical arbitrage in the spirit of Bondarenko (2003) is de¯ned. In section
4, the main results are presented. In Section 5 we ¯rst characterize the
reservation prices and then show that, in a su±ciently dry market, they are
contained in the statistical arbitrage interval. In Section 6 we illustrate how
the statistical arbitrage-free interval somehow dominates alternative inter-
vals provided in the literature. In section 7 some numerical examples are
presented in order to illustrate some important properties of the bounds. In
the last section several conclusions are presented.

2 The Model

Consider a discrete-time economy with T periods, with a risky asset and
a riskless asset. At each point in time the price of the risky asset can be
multiplied either by U or by D to get the price of the next point in time.
Equilibrium requires that U > R > D, where R denotes one plus the risk-free
interest rate. At time t = 0 and t = T transactions are certainly possible.
However, at t = 1; :::; T ¡ 1 there is uncertainty about the possibility of
transaction of the risky asset. Transactions will occur with probability p
at each of these points in time. A European Derivative with maturity T is
considered.

Consider the Binomial tree process followed by the price of the risky
asset. Let the set of nodes at date t be denoted by It; and let each of the
t +1 elements of It be denoted by it = 1; : : : ; t + 1. For any t0 < t, let I it

t0

denote the set of all the nodes at time t0 that are predecessors of a given
node it: A path on the event tree is a set of nodes w = [t2f0;1;:::;Tgit such
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that each element in the union satis¯es it¡1 2 Iitt¡1: Let  denote the set of
all paths on the event tree:

The payo®s of a European derivative, at each terminal node, will be de-
noted GiTT : At each node it; the stock price is given by Sitt = U t+1¡itDit¡1S0:
Moreover, at each node it; there is a number ¢itt representing the number of
shares bought (or sold, if negative), and a number Bitt denoting the amount
invested (or borrowed, if negative) in the risk-free asset. Hence, at t there
are t + 1 values of ¢itt , composing a vector ¢t ´ (¢1

t ; : : : ;¢t+1
t ) 2 Rt+1:

Similarly, we construct the vector Bt ´ (B1
t ; : : : ;Bt+1

t ) 2 Rt+1:

De¯nition 1 A trading strategy is a portfolio process µt = (¢t; Bt) ; com-
posed of ¢t units of the risky asset and an amount Bt invested in the riskless
asset, such that the portfolio's cost is ¢tSt + Bt for t = 0;1; : : :T ¡ 1:

In order to ¯nd the upper (lower) bound of the arbitrage-free range
of variation for the value of a European derivative we consider a ¯nancial
institution that wishes to be fully hedged when selling (buying) that deriva-
tive. The objective of the institution is to minimize (maximize) the cost of
replicating the exercise value of the derivative at maturity. The value deter-
mined under such optimization procedure avoids what is known as arbitrage
opportunities, re°ecting the possibility of certain pro¯ts at zero cost.

This section is organized as follows. We ¯rst characterize the upper
bound, and then the lower bound for the interval of no-arbitrage admissi-
ble prices. For each bound, we ¯rst deal with the complete market case,
and then with the fully incomplete market case, ¯nally introducing random
incompleteness.

2.1 The upper bound in the case p = 0 and p = 1:

First, we present the well-known case where p = 1. The usual de¯nition of
an arbitrage opportunity in our economy is as follows.

De¯nition 2 (Pure Arbitrage in the case p = 1) In this economy, an
arbitrage opportunity is a zero cost trading strategy µt such that

1. the value of the portfolio is positive at any ¯nal node, i.e., ¢iT¡1
T¡1SiTT +

RBiT¡1T¡1 ¸ 0; for any iT¡1 2 IiTT¡1 and all iT 2 IT ; and
2. the portfolio is self-¯nancing, i.e., ¢it¡1t¡1Sitt + RBit¡1

t¡1 ¸ ¢itt S
it
t +Bitt ;

for any it¡1 2 Iitt¡1; all it 2 It and all t 2 f0; :::;T ¡ 1g :
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The upper bound for the value of the European option is the maximum
value for which the derivative can be transacted, without allowing for ar-
bitrage opportunities. This is the value of the cheapest portfolio that the
seller of the derivative can buy in order to completely hedge his position
against the exercise at maturity, without the need of additional ¯nancing at
any rebalancing dates. Hence, for p = 1; the upper bound is C1

u; given by

C1
u = min

f¢t;Btgt=0;::::;T¡1
¢0S0 + B0

subject to ¢iT¡1
T¡1SiTT + RBiT¡1

T¡1 ¸ GiTT ; with iT¡1 2 I iTT¡1 and all iT 2 IT ;
and the self-¯nancing constraints ¢it¡1

t¡1 Sitt + RBit¡1t¡1 ¸ ¢itt S
it
t + Bitt ; for all

it¡1 2 Iitt¡1; all it 2 It and all t 2 f0; :::; T ¡ 1g ; where the constraints re°ect
the absence of arbitrage opportunities. This problem leads to the familiar
result

C1
u =

1
RT

TX

j=0

µ
T
j

¶µ
R ¡D
U ¡D

¶jµU ¡ R
U ¡ D

¶T¡j
GT+1¡j
T :

Consider now the case where p = 0. In this case, the notion of a trading
strate#iTgy satisfying the self-¯nancing constraint is innocuous, since the
portfolio µt cannot be rebalanced during the life of the option. Under the
absence of arbitrage opportunities, the upper bound for the value is C0

u
satisfying

C0
u = min

f¢0 ;B0g
¢0S0 +B0

subject to ¢0SiTT + RT¢0 ¸ GiTT ; for all iT 2 IT : In this case, the bound
C0
u can be shown to solve the maximization problem on a set of positive

constants f#iTg ; with
PT+1
iT=1 #iT = 1;

C0
u = max

#iT

1
RT

XT+1

iT=1
#iTGiTT

subject to

S0 =
1

RT
XT+1

iT=1
#iTS

iT
T ;

For instance, if a call option with exercise K is considered, we have1

C0
u =

1
RT

·µ
RT ¡ DT

UT ¡DT

¶¡
UTS0 ¡K

¢+ +
µ

UT ¡RT

UT ¡ DT

¶¡
DTS0 ¡ K

¢+
¸

:

1See Amaro de Matos and Ant~ao (2001).
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2.2 The lower bound in the case p = 0 and p = 1:

The lower bound for the value of an American derivative is the minimum
value for which the derivative can be transacted without allowing for arbi-
trage opportunities. This is the value of the most expensive portfolio that
the buyer of the option can sell in order to be fully hedged, and without the
need of additional ¯nancing at rebalancing dates.

For p = 1, the lower bound for the value of the derivative under the
absence of arbitrage opportunities is thus C1

l ; given by

C1
l = max

f¢t;Btgt=0;::::;T¡1
¢0S0 + B0

subject to ¢iT¡1
T¡1SiTT + RBiT¡1

T¡1 · GiTT , with iT¡1 2 I iTT¡1 and all iT 2 IT ;
and the self-¯nancing constraints ¢it¡1

t¡1 Sitt + RBit¡1t¡1 · ¢itt S
it
t + Bitt ; for all

it¡1 2 Iitt¡1; all it 2 It and all t 2 f0; :::; T ¡ 1g ; where the constraints re°ect
the absence of arbitrage opportunities This problem leads to the familiar
result

C1
l = 1

RT

TX

j=0

µ
T
j

¶µ
R ¡ D
U ¡D

¶jµU ¡R
U ¡ D

¶T¡j
GT+1¡j
T ; (1)

that coincides with the solution obtained for C1
u:

In the case where p = 0; the lower bound for the value of the derivative
is C0

l ; satisfying

C0
l = max

f¢0 ;B0g
¢0S0 +B0

subject to ¢0ST+RTB0 · GiTT : As above, it follows that, for a set of positive
constants f#iTg ; with

PT+1
iT=1 #iT = 1; this bound is given by

C0
u = min

#iT

1
RT

XT+1

iT=1
#iTG

iT
T

subject to

S0 =
1

RT
XT+1

iT=1
#iTS

iT
T :
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In the case of a call option with exercise K,we have2

C0
l =

1
RT

Ã
RT ¡UT¡(i+1)Di+1

UT¡iDi ¡UT¡(i+1)Di+1

!
¡
UT¡iDiS0 ¡ K

¢+ (2)

+
1

RT

µ
UT¡iDi ¡ RT

UT¡iDi ¡ UT¡(i+1)Di+1

¶¡
UT¡i¡1Di+1S0 ¡K

¢+ :

where i is de¯ned as the unique integer satisfying Un¡(i+1)Di+1 < Rn <
Un¡iDi, and 0 · i · n ¡ 1:

2.3 The Bounds on Probabilistic Markets

In the aforementioned cases we considered the cases where either p = 0 or
p = 1. However, if p is not equal to neither 0 nor 1, the formulation has to
be adjusted. If the risky asset can be transacted with a given probability
p 2 (0;1), then the usual de¯nition of arbitrage opportunity reads as follows.

De¯nition 3 (Pure Arbitrage for p 2 (0;1)) In this economy, an arbi-
trage opportunity is a zero cost trading strategy such that

1. the value of the portfolio is positive at any ¯nal node, i.e.,

¢itt S
iT
T + RT¡tBitt ¸ 0;

it 2 I iTt and all iT 2 IT ; and the self-¯nancing constraints
2. the portfolio is self-¯nancing, i.e.,

¢it¡jt¡j S
it
t + RjBit¡jt¡j ¸ ¢itt S

it
t + Bitt ;

for all it¡j 2 I itt¡j; all it 2 It and all t 2 f0; :::;T ¡ 1g :

The upper bound Cpu is the solution of the following problem:

Cpu = min
f¢t ;Btgt=0;:::;T¡1

¢0S0 +B0

where ¢t;Bt 2 Rt+1; t = 0; :::; T ¡ 1; subject to the superreplicating condi-
tions ¢itt S

iT
T + RT¡tBitt ¸ GiTT ; with it 2 IiTt and all iT 2 IT ; and the self-

¯nancing constraints ¢it¡jt¡j S
it
t +RjBit¡jt¡j ¸ ¢itt S

it
t +Bitt for all it¡j 2 Iitt¡j ;

all it 2 It and all t 2 f0; :::; T ¡ 1g :
On the other hand, the lower bound Cpl solves the following problem:

2See Amaro de Matos and Ant~ao (2001).
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Cpl = max
f¢t ;Btgt=0;:::;T¡1

¢0S0 +B0

where ¢t; Bt 2 Rt+1; t = 0; :::;T ¡ 1; subject to the conditions ¢itt S
iT
T +

RT¡tBitt · GiTT ; with it 2 I iTt and all iT 2 IT ; and the self-¯nancing con-
straints ¢it¡jt¡j S

it
t +RjBit¡jt¡j · ¢itt S

it
t +Bitt for all it¡j 2 I itt¡j ; all it 2 It and

all t 2 f0; :::; T ¡ 1g :
Notice that the constraints in the above optimization problems are im-

plied by the absence of arbitrage opportunities and do not depend on the
probability p:3 Therefore, neither Cpu nor Cpl will depend on p: We are now
in conditions to relate these values to C0

u and C0
l as follows.

Theorem 4 For p 2 (0; 1) the upper and lower bound for the prices above do
not depend on p: The optimization problems above lead to the same solutions
as when p = 0:

Proof. Consider ¯rst the case of the upper bound. The constraints
characterizing Cpu include all the constraints characterizing C0

u: Thus, Cpu ¸
C0
u. Now, let ¢0

0 and B0
0 denote the optimal values invested, at time t = 0;

when p = 0. The trading strategy ¢pt = ¢0
0 and Bpt = RtB0

0, for all
t = 1; :::; T ¡ 1, is an admissible strategy for any given p, hence Cpu = C0

u:
The case of the lower bound is analogous.

The intuition for this result is straightforward. The upper (lower) bound
of the European derivative remains the same as when p = 0; because with
probability 1 ¡ p it would not be possible to transact the stock at each
point in time. In order to be fully hedged, as required by the absence of
arbitrage opportunities, the worse scenario will be restrictive in spite of its
possibly low probability. The fact that no intermediate transactions may
occur dominates all other possibilities.

The above result is strongly driven by the de¯nition of arbitrage oppor-
tunities. Nevertheless, if this notion is relaxed in an economic sensible way,
a narrower arbitrage-free range of variation for the value of the European
derivative may be obtained, possibly depending now on p: This is the subject
of the rest of the paper.

3This happens since, in order to have an arbitrage opportunity, we must ensure that,
whether market exists or not at each time t 2 f1; :::;T ¡ 1g ; the agent will never lose
wealth. Therefore, the optimization problem cannot depend on p:
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3 Statistical Arbitrage Opportunity

Consider the economydescribed in the previous section. LetTp = f1; :::; T ¡ 1g
denote the set of points in time. At each of these points there is market with
probability p; and there is no market with probability 1 ¡ p: The existence
(or not) of the market at time t corresponds to the realization of a random
variable yt that assumes the value 0 (when there is no market) and 1 (when
there is market). This random variable is de¯ned for all t 2 Tp and it is
assumed to be independent of the ordinary source of uncertainty that gen-
erates the price process. We can therefore talk about a market existence
process. In order to construct one such process, let us start with the state
space. Let #(Tp) denote the number of points in Tp: At each of these points,
market may either exist or not exist, leading to 2#(Tp) possible states of
nature. We then have the collection of possible states of nature denoted by
̂ = fvigi=1;:::;2#(Tp) ; each vi corresponding to a distinct state. Moreover,

let F̂ = F̂1; : : : ; F̂T¡1; where F̂t is the ¾-algebra generated by the random
variable yt. Let py be the probability associated with the random variable
yt: For all t 2 Tp; we have py (yt = 1) = p and py (yt = 0) = 1 ¡ p:

3.1 The expected value of a portfolio

We now construct a random variable that allows to construct the expected
future value of a portfolio in this setting. For t < t0; let xt;t0 be a random
variable identifying the last time that transactions take place before date t0;
given that we are at time t; and transactions are currently possible. Let ̂t
be the subset of ̂ such that ̂t =

n
vi 2 ̂ : yt (vi) = 1

o
: Then,

xt;t0 : ̂t!
©
t; : : : ; t0 ¡ 1

ª

Let pxt;t0 be the probability associated with xt;t0: Then,

pxt;t0
¡
xt;t0 = t

¢
= (1 ¡ p)t

0¡t¡1 :

Moreover, for a given s 2 (t; t0) ;

pxt;t0
¡
xt;t0 = s

¢
= p (1 ¡ p)t

0¡s¡1 :

Also note that
Xt0¡1
s=t

pxt;t0
¡
xt;t0 = s

¢
= (1 ¡ p)t

0¡t¡1 +
Xt0¡1
s=t

p (1 ¡ p)t
0¡s¡1 = 1;
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as it should.
Consider a given trading strategy (¢t; Bt)t=0;::: ;T ; where (¢t; Bt) ´

(¢itt ; B
it
t )it2It is a (t + 1)¡dimensional vector. Consider a given path w

and (is)s2ft;::: ;Tg ½ w. Suppose that the agent is at a given node it; where
rebalancing is possible. As there is uncertainty about the existence of mar-
ket at the future points in time, there is also uncertainty about the portfolio
that the agent will be holding at a future node it0: In fact, the portfolio at
it0 may be any of

³
¢itt ; B

it
t

´
;
³
¢it+1
t+1 ;Bit+1t+1

´
; : : : ; or

³
¢it0¡1
t0¡1 ; Bit0¡1t0¡1

´
; where

(is)s2ft;::: ;t0¡1g ½ w:
Clearly, the expected value of a given trading strategy at node it0, given

that we are at node it; is

E
pxt;t0
it

h
¢ixx Sit0 + Rt0¡xBixx

i
=

X
s=t;::: ;t0¡1

pxt;t0
¡
xt;t0 = s

¢ h
¢iss S

i
t0 +Rt0¡sBiss

i
;

where we use x to short notation for xt;t0:

3.2 Statistical versus pure arbitrage

A pure arbitrage opportunity is a zero-cost portfolio at time t, such that the
value of each possible portfolio at node iT is positive, i.e.,

¢it+jt+j S
iT
T +RT¡t¡jBit+jt+j ¸ 0

for all it+j such that it is a predecessor, j = 0;1; : : : ;T ¡ t ¡ 1 and

E
pxt;T
it

h
¢ixx SiTT +RT¡xBixx

i
> 0;

together with the self-¯nancing constraints

¢itt S
it+j
t+j +Rj¡tBitt ¸ ¢it+jt+j S

it+j
t+j + Bit+jt+j ;

for all it+j such that it is a predecessor, and j = 1; : : : ;T ¡ t ¡ 1:
If statistical arbitrage is considered, however, an arbitrage opportunity

requires only that, at node iT ; the expected value of the portfolio at T is
positive,

E
pxt;T
it

h
¢ixx SiTT +RT¡xBixx

i
¸ 0;

together with weaker self-¯nancing conditions. Let us regard these latter
conditions in some detail.
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Suppose that we are at a given node it: If there is market at the next
point in time we then have, for sure, the portfolio

³
¢itt ;B

it
t

´
at time t + 1.

Hence, if node it+1 is reached, the self-¯nancing condition is

¢itt S
it+1
t+1 +RBitt ¡

³
¢it+1
t+1Sit+1

t+1 + Bit+1
t+1

´
¸ 0

Consider now that t +2 is reached. At time t there is uncertainty about
the existence of the market at time t + 1: Hence, at time t + 2 we can ei-
ther have the portfolio

³
¢itt ; B

it
t

´
or the portfolio

³
¢it+1
t+1 ;Bit+1t+1

´
: Under the

concept of statistical arbitrage, we want to ensure that, in expected value,
we are not going to lose at node it+2: Hence, the self-̄ nancing condition
becomes
X
s=t;t+1

pxt;t+2 (xt;t+2 = s)
³
¢iss Sit+2t+2 +Rt+2¡sBiss

´
¸

³
¢it+2t+2St+2t+2 + Bit+2

t+2

´

More generally, for any t at which transaction occurs and t < t0 < T; the
statistical self-¯nancing condition becomes

E
pxt;t0
it

h
¢ixx Sit0t0 +Rt0¡xBixx

i
¸

³
¢it0t0 Sit0t0 +Bit0t0

´

De¯nition 5 4 A statistical arbitrage opportunity is a zero-cost trading
strategy for which

1. At any node it, the expected value of the portfolio at any ¯nal node
is positive, i.e.,

E
pxt;¶T
it

h
¢ixxt;TS

i
T + RT¡xBixxt;T

i
¸ 0

4This notion of Arbitrage Opportunity is in the spirit of Bondarenko (2003). In his
de¯nition 2, a Statistical Arbitrage Opportunity (SAO) is de¯ned as a zero-cost trading
strategy with a payo® ZT = Z (FT ), such that

(i) E [ZT jF0 ] > 0; and
(ii) E [ZT jF0; »T ] ¸ 0; for all »T ;

where »t denotes the state of the Nature at time t; and Ft = (»1; : : : ; »t) is the market
information set, with F0 = Á. Also, the second expectation is taken at time t = 0 and
is conditional to the terminal state »T . However, notice that eliminating SAO's at time
t = 0 does not imply the absence of SAO's at future times t 2 [1; T ¡ 1]. Hence, in order
to incorporate a dynamically consistent absence of SAO's, we re¯ne the de¯nition of a
SAO as a zero-cost trading strategy with a payo® ZT = Z (FT ), such that

(i) E [ZT jF0 ] > 0; and
(ii) E [ZT jFt; »T ] ¸ 0; for all »T and all t 2 [0;T ¡ 1] :
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for any it 2 It and t 2 f0;1; : : : ;T ¡ 1g; and
2. The portfolio is statistically self-¯nancing, i.e:,

E
pxt;¶t0
it

h
¢ixxt;t0S

i
t0 + Rt

0¡xBixxt;t0
i

¡
³
¢it0t0 Sit0t0 +Bit0t0

´
¸ 0

for any it 2 It; t0 > t, t 2 f0;1; : : : ;T ¡ 2g and t0 2 f1; : : : ;T ¡ 1g :

The two de¯nitions of arbitrage are related in the following.

Theorem 6 If there are no statistical arbitrage opportunities, then there
are no pure arbitrage opportunities.

Proof. If there is a pure arbitrage opportunity then the inequalities
present in the de¯nition of arbitrage opportunity, de¯nition 3, are respected.
Hence, as these expressions are the terms under expectation in the de¯nition
of Statistical Arbitrage opportunity, presented in de¯nition 5, there is also
a statistical arbitrage opportunity.

The set of portfolios that represent a pure arbitrage opportunity is a
subset of the portfolios that represent a statistical arbitrage opportunity, i.e.,
there are portfolios that, in spite of not being a pure arbitrage opportunity,
represent a statistical arbitrage opportunity.

In order to have a statistical arbitrage opportunity it is not necessary
(although it is su±cient) that the value of the portfolio at the ¯nal date is
positive. It is only necessary that, for all t, the expected value of the portfolio
at the ¯nal date is positive.

Consider now the self-¯nancing conditions under statistical arbitrage.
When rebalancing the portfolio it is not necessary (although it is su±cient)
that the value of the new portfolio is smaller than the value of the old one.
This happens because future rebalancing is uncertain, leading to uncertainty
about the portfolio that the agent will be holding in any future moment. In
order to avoid a statistical arbitrage opportunity it is only necessary that
the expected value of the portfolio at a given point in time is larger than the
value of the rebalancing portfolio.

Finally, notice that the concept of statistical arbitrage opportunity re-
duces to the usual concept of arbitrage opportunity in the limiting case
p = 0:

3.3 Augmented measures

For technical reasons, we now de¯ne an augmented probability space Q on
. In order to do that, we de¯ne a semipath m from it to it0, which is a set

13



of nodes m = [k2ft;::: ;t0gik such that ik 2 I ik+1k : Let +
it ;it0

denote the set of
semipaths from it to it0:

De¯nition 7 An augmented probability space in  is a set of probabilitiesn
q(iT ;T);m(it ;t)

o
such that it 2 It; m 2 +

it ;iT , t = 0; : : : ;T and

X

iT

T¡1X

t=0

X

it

X

m
q(iT ;T);m(it ;t)

= 1;

De¯nition 8 A modi¯ed martingale probability measure is an augmented
probability measure Q 2 Q which satis¯es

(i)

S0 =
1

RT
X

fiT2IT g
qiTSiTT

where

qiT =
T¡1X

t=0

X
n
it :it2IiTt

o

X
n
m2+

it ;iT

o
q(iT ;T);m(it ;t)

SiTT ;

(ii)

SiT¡1
T¡1 =

1
R

X
n
iT :iT¡12IiTT¡1

o
¼(iT ;T);m(it;t) SiTT

with
X

n
iT :iT¡12IiTT¡1

o
¼(iT ;T);m
(it;t) = 1

and

¼(iT ;T);m
(it ;t) =

1
¥

T¡1X

t=0
pxt;T (xt;T = T ¡ 1)

X
n
it :it2I

iT¡1
t

o

X
n
m2+

it;iT
:iT¡12m

o
q(iT ;T);m(it;t)

where

¥ =
T¡1X

t=0
pxt;T (xt;T = T ¡ 1)

X
n
iT :iT¡12IiTT¡1

o

X
n
it:it2I

iT¡1
t

o

X
n
m2+

it ;iT
:iT¡12m

o
q(iT ;T);m(it ;t) ;

14



(iii) there exists
n

®(it0 ;t
0);m

(it;t)

o
;for all it0 2 It0; it 2 It; m 2 +

it ;iT and
t0 > t for all t = 0; : : : ;T ¡ 1 such that, for all 0 < k < T;

Sikk =
1

RT¡k
X

n
iT :ik2I

iT
k

o
µ(iT ;T);m(it ;t)

SiTT +
X

t0>k

1
Rt0¡k

"(it0 ;t
0);m

(it;t)
Sit0t0 ;

where X
n
iT :ik2IiTk

o
µ(iT ;T);m(it;t) +

X

t0>k

"(it0 ;t
0);m

(it;t) = 1

and

µ(iT ;T);m(it ;t) =
1
£

kX

t=0
pxt;T (xt;T = k)

X
n
it:it2Iikt

o
X

n
m2+

it;iT
:ik2m

o
q(iT ;T);m(it;t)

"(it0 ;t
0);m

(it ;t)
=

1
£

X

t<k

pxt;t0
¡
xt;t0 = k

¢X
n
it:it2Iikt

o
X

n
m2+

it;it¶
:ik2m

o
®(it0 ;t

0);m
(it;t)

with

£ =
X

n
iT :ik2I

iT
k

o

kX

t=0
pxt;T (xt;T = k)

X
n
it :it2Iikt

o
X

n
m2+

it;iT
:ik2m

o
q(iT ;T);m(it;t)

+

X

t0>k

X

t<k

pxt;t0
¡
xt;t0 = k

¢X
n
it :it2Iikt

o
X

n
m2+

it ;it¶
:ik2m

o
®(it0 ;t

0);m
(it;t) :

We denote by QS: the set of modi¯ed martingale probability measure.
Such measures will help writing down the upper and lower bounds for the
value of European derivatives under the absence of statistical arbitrage op-
portunities.

4 Main Results

4.1 The upper bound

4.1.1 The Problem

The problem of determining the upper bound of the statistical arbitrage-free
range of variation for the value of a European derivative, can be stated as

Cu = min
f¢t ;Btgt=0;:::;T¡1

¢0S0 + B0

15



where

¢t;Bt 2 Rt+1; t = 0; :::;T ¡ 1

subject to the conditions of a positive expected payo®

E
pxt;¶T
it

£
¢ixx SiT + RT¡xBixx

¤ ¸ GiTT ;

for any it 2 It and t 2 f0;1; : : : ;T ¡ 1g 5; and self-¯nancing conditions

E
pxt;¶t0
it

h
¢ixx Sit0 +Rt0¡xBixx

i
¡

³
¢it0t0 Sit0t0 + Bit0t0

´
¸ 0

for any it 2 It; t0 > t, t 2 f0; 1; : : : ; T ¡ 2g and t0 2 f1; : : : ; T ¡ 1g 6:

Example 9 Illustration of the optimization problem with T = 3. The evo-
lution of the price underlying asset can be represented by the tree in ¯gure
1.

t=3t=2t=1t=0 t=3t=2t=1t=0

Figure 1: Evolution of the undelying asset' price.

In what concerns the evolution of the price process there are eight di®er-
ent states, i.e.,  = fwigi=1;::: ;8 : The problem that must be solved in order
to ¯nd the upper bound is the following.

Cu = min
f¢t;Btgt=0;:::;2

¢0S0 + B0

where

f¢0; B0g = f(¢0;B0)g
f¢1; B1g =

©¡
¢1

1;B
1
1
¢

;
¡
¢2

1; B
2
1
¢ª

f¢2; B2g =
©¡

¢1
2;B

1
2
¢

;
¡
¢2

2; B
2
2
¢
;
¡
¢3

2; B
3
2
¢ª

5For each it there are 2(T¡t) paths, and as a result, 2(T¡t)(t+ 1) restrictions at time t.
The total number of restrictions is

PT¡1
t=0 2(T¡t)(t+ 1):

6For each it there are
PT¡1
t0=t+1 2

t0¡t: Hence, for each t there are (t+ 1)
PT¡1
t0=t+1 2

t0¡t :
Hence, there are

PT¡2
t=0 (t+ 1)

PT¡1
t0=t+1 2

t0¡t restrictions.
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subject to the conditions of a positive expected payo®
h
¢i22 Si33 + RBi22

i
¸ Gi33 ;

for all i3 2 I3 and i2 2 I2 such that i2 2 Ii32 : (these are 6 constraints);

p
h
¢i22 Si33 +RBi22

i
+ (1 ¡ p)

h
¢i11 Si33 + R2Bi11

i
¸ Gi33

for all i3 2 I3; i2 2 I2 and i1 2 I1 such that i2 2 Ii32 : and i1 2 I i21 ; i.e., i1; i2
and i3 belong to the same path (these are 8 constraints) and

£
p2 + p (1 ¡ p)

¤ h
¢i22 Si33 + RBi22

i
+ p (1 ¡ p)

h
¢i11 Si33 + R2Bi11

i
+

+(1 ¡ p)2
h
¢0Si33 + R3Bi22

i
¸ Gi33

for all i3 2 I3; i2 2 I2 and i1 2 I1 such that i2 2 Ii32 : and i1 2 I i21 ; i.e., i1;
i2 and i3 belong to the same path (these are 8 constraints). Moreover, the
self-¯nancing constraints must also be considered

¢0Si11 +RB0 ¸ ¢i11 Si11 + Bi11

for any i1 2 I1 (2 constraints),

(1 ¡ p)
h
¢0Si22 + R2Bi22

i
+ p

h
¢i11 Si22 +RBi11

i
¸ ¢i22 Si22 + Bi22

for any i2 2 I2 and i1 2 I1 such that i1 2 Ii21 ; i.e., i1;and i2 belong to the
same path (these are 4 constraints) and, ¯nally,

¢i11 Si22 + RBi11 ¸ ¢i22 Si22 + Bi22

for any i2 2 I2 and i1 2 I1 such that i1 2 Ii21 ; i.e., i1;and i2 belong to the
same path (these are 4 constraints).

4.1.2 Solution

Theorem 10 There exists a modi¯ed martingale probability measure, qiT 2
QS; such that the upper bound for arbitrage-free value of a European option
can be written as

Cu = max
qiT2QS

1
RT

X
fiT2IT g

qiTGiTT : (3)
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Proof. See proof in appendix A.1.

Remark 11 If a Call Option is considered, the values for qiT ; in a model
with two periods are explicitly calculated in appendix A.3. In that case it
can be shown that for a strictly positive p; the q1; q2 and q3 are also strictly
positive.

In what follows we characterize some relevant properties of Cu:

1. Cu · C0
u

Proof. Let ¢0
0 and B0

0denote the optimal values invested, at time
t = 0; in the stock and in the risk-free asset respectively, when p = 0.
The trading strategy ¹¢t = ¹¢P=0

0 and ¹Bt = Rt ¹Bp=00 , for t = 1; :::; T¡1,
is an admissible strategy for any given p. As a result, the solution of
the problem for any p cannot be larger that the value of this portfolio
at t = 0 (which is C0

u).

2. Cu ¸ C1
u:

Proof. Consider the trading strategy
¡¹¢¤
t ; ¹B¤

t
¢
t=0;::: ;T¡1 that solves

the maximization problem that characterizes the upper bound for a
p 2 (0;1) : This is an admissible strategy for the case p = 1, because
it is self-¯nancing, i.e.,

¢it¡1
t¡1Sitt + RBit¡1

t¡1 ¸ ¢itt S
it
t +Bitt ;

and superreplicates the payo® of the European derivative at maturity,
i.e.,

¢iT¡1
T¡1SiTT + RBiT¡1

T¡1 ¸ GiTT :

Hence, the solution of the problem for p = 1 cannot be higher than
the value of this portfolio at t = 0 (which is Cu).

3. limp!0 Cu = C0
u and limp!1 Cu = C1

u:

Proof. See Appendix A.4

An example for a Call Option and T=2 is also show in appendix A.4.

4. Cu is a decreasing function of p.

Proof. See Appendix A.4
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5. For a Call Option and T = 2, we can prove that

Cu · pC1
u +(1 ¡ p)C0

u

meaning that the probabilistic upper bound is a convex linear combi-
nation of the perfectly liquid upper bound and the perfectly illiquid
upper bound.

Proof. See appendix A.4.

4.2 The Lower Bound

The organization of this section is analogous to the section for the upper
bound.

4.2.1 The Problem

The problem of determining the lower bound of the statistical arbitrage-free
range of variation for the value of an European derivative, can be stated as

Cl = max
f¢t;Btgt=0;:::;T¡1

¢0S0 + B0

where

¢t;Bt 2 Rt+1; t = 0; :::;T ¡ 1

subject to the conditions of a positive expected payo®

E
pxt;¶T
it

£
¢ixx SiT + RT¡xBixx

¤ · GiTT ;

for any it 2 It and t 2 f0;1; : : : ;T ¡ 1g 7;and self-¯nancing conditions

E
pxt;¶t0
it

h
¢ixx Sit0 +Rt0¡xBixx

i
¡

³
¢it0t0 Sit0t0 + Bit0t0

´
· 0

for any it 2 It; t0 > t, t 2 f0; 1; : : : ; T ¡ 2g and t0 2 f1; : : : ; T ¡ 1g 8:
7As in the upper bound case, for each it there are 2(T¡t) paths, and as a result,

2(T¡t)(t+ 1) restrictions at time t. The total number of restrictions is
PT¡1
t=0 2(T¡t)(t+ 1):

8As in the upper bound case, for each it there are
PT¡1
t0=t+1 2

t0¡t : Hence, for each t
there are (t + 1)

PT¡1
t0=t+1 2

t0¡t: Hence, there are
PT¡2
t=0 (t+ 1)

PT¡1
t0=t+1 2

t0¡t restrictions.
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4.2.2 Solution

Theorem 12 There exists an modi¯ed martingale probability measure, qiT 2
QS; such that the upper bound for arbitrage-free value of an European option
can be written as

Cl = min
qiT 2QS

1
RT

X
fiT2ITg

qiTGiTT :

Proof. The proof is analogous to the upper bound.

Remark 13 If a call option is considered, the values for qiT ; in a model
with two periods are explicitly calculated in appendix B.2. In that case it
can be shown that for a strictly positive p; the q1; q2 and q3 are also strictly
positive.

In what follows we characterize some relevant properties of Cl :

1. Cl ¸ C0
l :

2. Cl · C1
l :

3. limp!0 Cl = C0
l and limp!0 Cl = C1

l :

An example for a call option and T = 2 is shown in appendix ??

4. Cl is a increasing function of p.

The proofs of these properties are analogous to those presented for the
upper bound.

5 Utility Functions and Reservation Prices

In this section we show that the price for which any agent is indi®erent be-
tween transacting or not transacting the derivative, to be called the reser-
vation price of the derivative, is contained within the statistical arbitrage
bounds derived above.

Let ut (:) denote a utility function representing the preferences of an
agent at time t. The argument of the utility function is assumed to be the
consumption at time t. Let y be the initial endowment of the agent, and Zt
denote the vector of consumption at time t; i.e., Zt =

³
Zitt

´
it2It

: Let ½ be
a discount factor. If an agent sells a European derivative by the amount C;
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and that derivative has a payo® at maturity given GiTT , the maximum utility
that he or she can attain is

u¤sell (C;p) = sup
f¢t;Btgt=0;:::;T¡1

EG;P
0

XT

t=0
½tut (Zt)

subject to

Z0 +¢0S0 + B0 · C + y

Zitt + ¢itt S
it
t + Bitt · ¢

iitt¡j
t¡j S

it
t +RjB

iitt¡j
t¡j

ZiTT · ¢
i
iT
T¡j
T¡jS

iT
T + RjB

i
iT
T¡j
T¡j ¡GiTT

for all iT 2 IT ; it 2 It, j · t and t = 1; : : : ; T ¡ 1 where EG;P
0 denotes a

bivariate expected value, at t = 0, with respect to the probability P induced
by the market existence and the probability G underlying the stochastic
evolution of the price process.

Similarly, if the agent decides not to include derivatives in his or her
portfolio, the maximum utility that he or she can attain is given by

u¤ (p) = sup
f¢t ;Btgt=0; :::;T¡1

EG;P
0

XT

t=0
½tut (Zt)

subject to

Z0 + ¢0S0 +B0 · y

Zitt + ¢itt S
it
t + Bitt · ¢

iitt¡j
t¡j S

it
t +RjB

iitt¡j
t¡j

ZiTT · ¢
i
iT
T¡j
T¡j S

iT
T + RjB

i
iT
T¡j
T¡j

Lemma 14 In the case of random dryness, there is p¤ > 0 such that, for
all p < p¤; the utility attained selling the derivative by Cu, is larger than the
utility attained if the derivative is not included in the portfolio.

u¤sell (Cu; p) ¸ u¤ (p) :

Proof. Let, for a given p; f¢t; Btgt=0;:::;T¡1 denote the solution of the
utility maximization problem with no derivative and f¢ut ;But gt=0;:::;T¡1 de-
note the solution of the minimization problem that must be solved to ¯nd
the upper bound if statistical arbitrage opportunities are considered (see
section 4.1). Moreover, let

©
¢sellt ;Bsellt

ª
t=0;:::;T¡1 denote an admissible so-

lution of the utility maximization problem when the agent sells one unit of
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the derivative. Now, consider the limit case, when p approaches zero. In
that case, the portfolio

n
¢sellt ;Bsellt

o
t=0;:::;T¡1

´ f¢t +¢ut ;Bt + But gt=0;:::;T¡1

is an admissible solution of the utility maximization problem when the agent
sells one unit of derivative by Cu. The reason is as follows. The constraint
set of the problem that must be solved to ¯nd the upper bound is continuous
in p: Hence, when p ! 0; the solution of the problem is f¢ut ;But gt=1;::: ;T¡1 =©
¢u0 ;RtBu0

ª
where f¢u0;Bu0g is the solution of following problem
½

min
¢;B

¢S0 + B s.a. ¢SiTT + RTB ¸ GiTT ;8iT
¾

:

As C = Cu = ¢u0S0 + B0; the portfolio f¢ut ;But gt=1;::: ;T¡1 is an ad-
missible solution of the utility maximization problem when one unit of the
derivative is being sold. Moreover, it guarantees a positive expected utility.9
Hence, the portfolio

©
¢sellt ; Bsellt

ª
t=0;:::;T¡1 is also admissible solution for the

optimization problem, when one unit of the derivative is being sold, which
guarantees a higher payo® than the portfolio f¢t;Btgt=0;:::;T¡1 : Hence,

u¤sell (Cu; 0) ¸ u¤ (0) :

Continuity on p of both u¤sell and u¤ ensure the result.

Remark 15 Notice that the existence of p¤ follows from the continuity of
the utilities in p: Furthermore, it is possible to have p¤ = 1. Examples with
di®erent values of p¤ are given in the end of this paper. The range of values
p < p¤ characterizes what was vaguely described as \su±ciently incomplete
markets" in the introduction.

The reservation price for an agent that is selling the option is de¯ned
as the value of C that makes u¤sell (C;p) = u¤ (p). Let Ru denote such
reservation price.

Theorem 16 For all p < p¤ we have Ru · Cu:

Proof. The optimal utility value;

u¤sell (C; p) = sup
f¢t ;Btgt=0;:: :;T¡1

C + y ¡ (¢0S0 +B0) + EG;P
0

XT

t=1
½tut (Zt) ;

9It su±ces to consider Z0 = y; Zit = 0 and ZiT = ¢SiTT +RTB ¡GiTT ¸ 0:
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is increasing in C: This, together with lemma 14 leads to the result.
The same applies for the case when the agent is buying a derivative. In

that case, if an agent is buying the derivative by C, the maximum utility
that he or she can attain is

u¤buy (C;p) = sup
f¢t;Btgt=0;:::;T¡1

EG;P
0

XT

t=0
½tut (Zt)

subject to

Z0 + ¢0S0 +B0 · ¡C + y

Zitt + ¢itt S
it
t + Bitt · ¢

iitt¡j
t¡j S

it
t +RjB

iitt¡j
t¡j

ZiTT · ¢
i
iT
T¡j
T¡jS

iT
T + RjB

i
iT
T¡j
T¡j +GiTT

Lemma 17 In the case of random dryness, there is p¤ > 0 such that, for
all p < p¤; the utility attained buying the derivative by Cl, is larger than the
utility attained if the derivative is not included in the portfolio.

u¤buy (Cl; p) ¸ u¤ (p) :

Proof. The proof is analogous to the one in proposition 14
Let Rl denote the reservation selling price, i.e., the price such that

u¤ (p) = u¤buy (Rl; p).

Theorem 18 For all p < p¤ we have Rl ¸ Cpl :

Proof. The proof is analogous to the one presented in theorem (16).
However, in this case the utility is a decreasing function of C; and we obtain

u¤buy (Cl; p) ¸ u¤ (p) ) Rl ¸ Cl:

Several illustrations are presented in section 7.

6 Comparisons with the Literature

In what follows we compare our methodology with others in the literature,
namely Bernardo and Ledoit (2000) and Cochrane and Sa¶a-Requejo (2000).
Cochrane and Sa¶a-Requejo (2000) introduce the notion of \good deals", or
investment opportunities with high Sharpe ratios. They show that ruling out
investment opportunities with high Sharpe ratios, they can obtain narrower
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bounds on securities prices. However, as stressed in Bondarenko (2003), not
all pure arbitrage opportunities qualify as \good deals". Moreover, for a
given set of parameters we found out that in order to contain the reservation
prices of a risk neutral agent the interval is more broad than the one that
was obtained in our formulation.

We ¯rst provide a simple example to compare our bounds with pure
arbitrage bounds.

Example 19 Consider a simple two periods example, where transactions
are certainly possible at times t = 0 and t = 2: At time t = 1 there are
transactions with a given probability p = 0:65: The initial stock price is
S0 = 100 and it may either increase in each period with a probability 0:55; or
decrease with a probability 0:45: We take and U = 1:2;D = 0:8 and R = 1:1:
A call option that matures at time T = 2 with exercise price K = 80 is
considered. Using pure arbitrage arguments we ¯nd the following range of
variation for the value of the call option

[33:88; 37:69]

Using the notion of statistical arbitrage opportunity, the above range gets
narrower and is given by

[34:31; 35:17] ;

clearly narrower that the above interval.
If markets were complete (p = 1), the value of the option would be 34:71.

Also, the reservation price10 for a risk neutral agent is equal to 35:09. Notice
that both intervals include the complete market value and the reservation
price.

We now use the same example to compare our methodology with the
one presented by Cochrane and Sa¶a-Requejo (2000). We show that either
our interval is contained in theirs, or else, their interval do not contain the
above mentioned reservation price.

With the Sharpe ratio methodology the lower bound is given by

C
¹

= min
fmg

E
©
m [S2 ¡K;0]+

ª

10In this example, the reservation price for an agent who is buying the derivative coin-
cides with that of an agent who is selling it.
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subject to

S0 = E [mS2] ; m ¸ 0; ¾ (m) · h
R2 ;

where S0 is the initial price of the risky asset, and S2 is the price of the risky
asset at time t = 211: The upper bound is

¹C = max
fmg

E
©
m [S2 ¡ K; 0]+

ª

subject to

p = E [mS2] ;m ¸ 0; ¾ (m) · h
R2 :

Example 20 In order to compare the statistical arbitrage interval with the
Sharpe ratio bounds, we must choose the ad-hoc factor h so as to make one
of the limiting bounds to coincide. If we want the upper bound of the Sharpe
Ratio methodology to coincide with the upper bound obtained with statistical
arbitrage, we must take h = 0:3173: In that case, the lower bound will be
33:88 and the range of variation will be

[33:88; 35:17] ;

worse than the statistical arbitrage interval.
Alternatively, if we want the lower bound of the Sharpe Ratio methodology

to coincide with the lower bound obtained with statistical arbitrage, we must
take h = 0:28359:12 In that case, the upper bound will be 34:49 and the range
of variation will be

[34:31; 34:49] :

Although this interval is tighter than the statistical arbitrage interval, it does
not contain the reservation price for a risk neutral agent.

In a di®erent paper Bernardo and Ledoit (2000) preclude investments
o®ering high gain-loss ratios to a benchmark investor, somehow analogous

11As stressed by Cochrane and Sa¶a-Requejo, in a former paper Hansen and Jagannathan
(1991) have shown that a constraint on the discount factor volatility is equivalent to impose
an upper limit on the Sharpe ratio of mean excess return to standard deviation.

12In order to get a lower bound higher than 33:88 it is necessary to impose aditionally
that m > 0: If that were not the case, then the lower bound would only be de¯ned for h
¸ 0:2980 and would be equal to 33:88:
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to the \good deals" of Cochrane and S¶aa-Requejo. The criterion, however,
is di®erent since Bernardo and Ledoit (2000) propose a utility-based ap-
proach, as stressed in the Introduction. In this way, the arbitrage-free range
of variation for the value of the European derivative is narrower than in
the case of pure arbitrage. Let ~z+ denote the (random) gain and ~z¡ de-
note the (random) loss of a given investment opportunity. The utility of a
benchmark agent characterizes a pricing kernel that induces a probability
measure, according to which the expected gain-loss ratio is bounded from
above

E (~z+)
E (~z¡)

· ¹L:

The fair price is the one that makes the net result of the investment to
be null. In other words, for a benchmark investor, it would correspond to
the pricing kernel that would make

E
¡
~z+ ¡ ~z¡

¢
= 0 , E (~z+)

E (~z¡)
= 1:

This last equality characterizes the benchmark pricing kernel for a given
utility.

Notice that the fair price constructed in this way coincides with our
de¯nition of the reservation price. Therefore, by choosing ¹L larger than
one, the interval built by Bernardo and Ledoit contains by construction the
reservation price of the benchmark agent.

On the other hand, the arbitrary threshold ¹L can be chosen such that
their interval is contained in the statistical arbitrage-free interval.

The disadvantages, however, are clear. First, the threshold is ad-hoc,
just as in the case of Cochrane and S¶aa-Requejo; second, the constructed
interval depends on the benchmark investor; and ¯nally, the only reservation
price that is contained for sure in that interval, is the reservation price of
the benchmark investor. In other words, we cannot guarantee that the
reservation price of an arbitrary agent, di®erent from the benchmark, is
contained in that interval.

7 Numerical Examples

7.1 Upper and Lower Bounds

In this section several numerical examples are provided in order to illustrate
the properties of the upper and lower bounds presented in the previous
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sections.
Using numerical examples we can conclude that, for a call option,

Cu · pC1
u+ (1 ¡ p)C0

u:

If the Call Option is sold by the expected value of the call, regarding the
existence (or not) of market, there will be an arbitrage opportunity in sta-
tistical terms. The reason is that the agent that sells the call option can
buy a hedging portfolio (in a statistical sense) by an amount smaller than
the expected value of the call option. As a result, there is an arbitrage op-
portunity, because he is receiving more for the call option than is paying for
the hedging portfolio.
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Figure 2: The Upper and Lower Bounds for a European Call Option with
di®erent value of p in a two period model, with U = 1:2, R = 1:1, D = 0:8;
S0 = 100 and K = 80:

However, in what concerns the lower bound, it is not possible to conclude
whether Cl · pC1

l +(1¡p)C0
l or Cl ¸ pC1

l +(1¡p)C0
l : That depends on the

value of the parameters. Although in the two-period simulation in Figure 2
we seem to have the former case, the three period example in Figure 3 seems
to suggest the latter, since the lower bound behaves as a concave function
of p for most of its domain.
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Figure 3: The Upper and Lower Bounds for a European Call Option with
di®erent value of p in a three period model, with U = 1:3, R = 1, D = 0:6;
S0 = 100 and K = 100:

Finally, we may use Figure 4 to illustrate several features.
The Upper and Lower bounds of an European Call Option for di®erent

values of p and K (K = 80, K = 100, K = 120, K = 140 e K = 160) in a
three period model, with U = 1:2; R = 1:1; D = 0:8 and S = 100.

First, let us regard the situations in this Figure that are related to pure
arbitrage. This includes the value of the derivative under perfectly liquid
(p = 1) and perfectly illiquid (p = 0) markets. In the former case, the
unique value of the derivative clearly decreases with the exercise price K; as
it should. In the latter, both the upper bound C0

u and the lower bound C0
l

also decrease with K: More curiously, however, the spread C0
u ¡ C0

l has a
non-monotonic behaviour. Obviously this di®erence is null for K less than
the in¯mum value of the stock at maturity and must go to zero as the strike
approaches the supremum of the stock's possible values at maturity. In the
middle of this range it attains a maximum. In our numerical example we
observe that the maximum value of the spread is attained for K close to
120.
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Figure 4: The Upper and Lower bounds of an European Call Option for
di®erent values of p and K (K = 80, K = 100, K = 120, K = 140 e
K = 160) in a three period model, with U = 1:2; R = 1:1; D = 0:8 and
S = 100.

Regarding the statistical arbitrage domain when p 2 (0; 1) ; we notice
that all the above remarks remain true. Figure 4 also suggests that, for any
given p; the spread attains its maximum for the same value of K as before.
Notice that the spread Cu¡Cl decreases with p for ¯xed strike K converging
to zero as p ! 1: Hence, although somehow di®erent from the traditional
de¯nition of arbitrage, the notion of statistical arbitrage seems to provide a
very nice bridge, for 0 < p < 1, between the two extreme cases above (p = 0
and p = 1), where the original concept of arbitrage makes sense. This is
illustrated in a more direct way in Figure 5.

A third issue driven by Figure 4 is that coexisting derivatives may restrict
more the no-arbitrage interval. As an example, suppose that derivatives
with K = 120 and K = 140 coexist. When p = 0, the upper bound for
K = 140 is above the lower bound when K = 120. In order to avoid arbitrage
opportunities, the equilibrium selling price of the K = 120 derivative has to
be above the equilibrium buying price of the K = 140 derivative. Otherwise
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Figure 5: The Spread (Cu ¡ Cl) of an European Call Option for di®erent
values of K and p (p = 0; : : : ;1 with increments of 0:1) in a three period
model, with U = 1:2; R = 1:1; D = 0:8 and S = 100.

one would buy the K = 120 derivative with the proceeds of selling the
K = 140 derivative, to get a net positive payo® at maturity at no cost.
This implies that the upper bound of the K = 140 derivative should be
the equilibrium selling price of the K = 120 derivative and not necessarily
the bound we derived above. This situation stresses the limitation that
our bounds were constructed assuming that there was only one derivative
that, aditionally, was not part of the replicating portfolio. In fact, the
presence of more derivatives may help to complete the market, making the
overlapping arbitrage-free regions not viable. As markets become complete,
the arbitrage-free regions shrink to a point, corresponding to the unique
value of the derivatives under complete markets.

7.2 Utility and Reservation Prices

In this section we illustrate several aspects related to the determination of
the reservation price. In Figure 6 we represent the utility of an agent in
three di®erent situations. Without the derivative; a short position on the
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derivative, when the instrument is sold by the statistical arbitrage upper
bound; and a long position on the derivative when the instrument is bought
by the statistical arbitrage lower bound. Notice that for p = 0 the best
situation is the short position on the derivative and the worst is without
trading the derivative. This is consistent with lemma 14 and lemma 17.
Notice that there is a value of p such that, for larger probabilities, the
utility without trading the derivative is no longer the worst. That critical
value of p is what we called p¤:
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Figure 6: Utility value for the following parameters: U = 1:3, D = 0:6,
R = 1, S0 = 100, K = 100, ½ = 1=R, q = 0:5, y = 50 and T = 3.

Figure 7 represents the statistical arbitrage-free interval together with
the reservation price for a risk neutral agent. By construction, the proba-
bility associated to the point where the reservation price coincides with the
upper bound, corresponds to the critical probability p¤: Notice from Figure
6 that the utility of the position associated to a long position on the deriva-
tive is always above the utility without trading the derivative. This implies
that the reservation price is always above the lower bound. Likewise, the
fact that the utility of the short position on the derivative goes below the
utility without trading the derivative, implies that the reservation price goes
above the upper bound.
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Figure 7: Statistical Arbitrage free bounds and reservation prices for the
following parameters: U = 1:3, D = 0:6, R = 1, S0 = 100, K = 100,
½ = 1=r, q = 0:5, y = 40 and T = 3.

32



8 Conclusion

In this paper we have characterized the statistical arbitrage-free bounds for
the value of an option written on an asset that may not be transacted.
This statistical arbitrage-free interval is by construction tighter than the
usual arbitrage-free interval, obtained under the superreplication strategy.
In that sense, our result is close to the results of Bernardo and Ledoit (2000)
and Cochrane and Sa¶a-Requejo (2000). By using a concept of statistical ar-
bitrage, in the spirit of Bondarenko's (2003), we were able to avoid the arbi-
trary threshold that led the former approaches to constrain the arbitrage-free
interval.

In a framework characterized by the fact that transactions of the un-
derlying asset are possible with a given probability, we derived the range of
variation for the statistical arbitrage-free value of an European derivative.
If transactions were possible at all points in time there would be a unique
arbitrage-free value for the European derivative that is contained in the sta-
tistical arbitrage-free range. Moreover, the statistical arbitrage-free range is
contained in the arbitrage-free range of variation if the market is perfectly
illiquid. The upper bound is a decreasing function in the probability of ex-
istence of the market and the lower bound is a increasing function. They
are asymptotically well behaved both when p ! 0 and when p ! 1.

Finally, we could also prove that, in the case of random illiquidity, the
reservation prices (both for selling and buying positions) are contained in
the statistical arbitrage-free range of variation for the value of the European
Option.
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A Some Proofs on the Solution of the Upper Bound
for Statistical Arbitrage Opportunities

A.1 Proof of theorem 10

Proof. For any given path m 2 +
it;iT let ¸(iT ;T);m

(it ;t)
be the dual variable

associated with the superreplication constraint

E
pxt;¶T
it

hX
s=t;::: ;t0¡1

pxt;t0
¡
xt;t0 = s

¢ h
¢iss S

i
t0 +Rt0¡sBiss

ii
¸ GiTT

with ik 2 Iik+1k and k = t; : : : ; T ¡ 1: Let niTt be the number of nodes that
are predecessors of node iT at time t; where niTt is given by

niTt = minfT ¡ (iT ¡ 1) ; iT ¡ 1;T ¡ tg + 1

At each node it; that is a predecessor of iT ; there are #
³
+
it ;iT

´
paths to

reach iT : For any given path m 2 +
it ;it0

let ®(it0 ;t0);m
(it ;t)

be the dual variable
associated with the self-¯nancing constraints

E
pxt;¶t0
it

h
¢ixxt;t0S

i
t0 + Rt

0¡xBixxt;t0
i

¡
³
¢it0t0 Sit0t0 +Bit0t0

´
¸ 0:

Considering nit0t be the number of nodes that are predecessors of node it0 at
time t we have

nit0t = min
©
t0 ¡ (it0 ¡ 1) ; it0 ¡ 1; t0 ¡ t

ª
+1

At each node it that is a predecessor of it0 there are #
³
+
it ;it0

´
.

The problem that must be solved in order to ¯nd the upper bound of
the range of variation of the arbitrage-free value of an European derivative
is a linear programming problem. Its dual problem is

min
i̧T

T+1X

j=1

¸iTGiTT

where ¸iT is the sum of the dual variables associated with the positive ex-
pected payo® constraints that have the right member equal to GiTT ; i.e.,

i̧T =
T¡1X

t=0

X

fit:it2Itg

X
n
m2+

it ;iT

o
¸(iT ;T);m(it ;t)

SiTT
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The ¯rst set of constraints is of nonnegativity of each dual variable, i.e,
¸(iT ;T );m(it ;t)

;®(it0 ;t
0);m

(it;t)
¸ 0: The other set of constraints consists of equality con-

straints, one constraint associated with each variable of the primal problem.
As there are

2
XT¡1
t=0

(t +1) = 2
1 + (T ¡ 1 + 1)

2
T = T (T + 1)

primal variables there are also T (T + 1) constraints of the dual problem,
which are equality constraints because the variables of the primal problem
are free.

The constraint for ¢0 is:

px0;T (x0;T = 0)
·P
iT2IT

P
m2+

i0 ;iT
¸(iT ;T);m(i0 ;0)

SiTT

¸
+®(1;1)

(i0;0)
S1
1 + ®(2;1)

(i0;0)
S2
1

+
PT¡1
t=2

½Qt¡1
j=1 py (yj = 0)

Pn
it :i02Iit0

o P
m2+

i0 ;it
®(it ;t);m
(i0 ;0)

Sitt

¾
= S0

The constraint for B0 is:

px0;T (x0;T = 0)RT
P
iT2IT

P
m2+

i0;iT
¸iT ;mi0 + R

³
®(1;1)
(i0;0)

+ ®(2;1)
(i0 ;0)

´

+
PT¡1
t=2

½Qt¡1
j=1py (yj = 0)Rt

Pn
it :i02Iit0

o P
m2+

i0 ;it
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(i0 ;0)

¾
= 1

For the constraint that concerns ¢ik the term in ¸ is

px0;T (x0;T = k)
P
m2+

i0k;iT

Pn
iT :i02IiT0

o ¸(iT ;T );m(i0;0)
SiTT +

px1;T (x1;T = k)
Pn
i1:i12Iik1
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:ik2m
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¸

The terms that involve ® are
P
t<k

P
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·
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Hence, the constraint for ¢ik is

Pk
t=0

·
pxt;T (xt;T = k)

Pn
iT :ik2IiTk

o Pn
it :it2Iikt

o Pn
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The constraint for Bik is:
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Note that if k = T ¡ 1;the constraint for ¢iT¡1 the constraint for ¢ik is

PT¡1
t=0

·
pxt;T (xt;T = T ¡ 1)
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The constraint for BiT¡1 is

PT¡1
t=0

·
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The left member of each constraint is a linear combination of the vari-
ables of the dual problem. The right member is equal to S0 and 1 for the
dual constraints associated with the variables ¢0 and B0,respectively: For
the remaining constraints the right member is equal to zero. First, let us
consider only the constraints associated with primal variables ¢'s. For a
given iT the terms involving ¸ in the dual constraints regarding ¢ik is

pxt;T (xt;T = k)
X

n
it:it2Iikt

o

X
n
m2+

it;iT
:ik2m

o
¸(iT ;T);m
(it;t)
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Summing up all the constraints that concern ¢ik with ik 2 Ik the term
associated with and the term associated with SiT is

pxt;T (xt;T = k)
X

fit :it2Itg

X
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Hence, summing up over all constraints associated with primal variables
¢'s we have that the terms in ¸ associated with SiTT are
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Still considering only the constraints associated with primal variables
¢'s; in what follows we describe the terms in ®. For a given Sitt ; the terms
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As,
t¡1X

s=k

pxk;t (xk;t = s) = 1

the above equations sum up to zero. Summing up over all Sitt a zero will
also be obtained. Hence, if all dual constraints that concern Sitt are summed
up, the following relation is obtained:
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Now, proceeding in a similar way but considering the dual constraints asso-
ciated with B¶s: Because the right member of the constraints is equal to 0,
excepting the one associated B0; we multiply each constraint by a constant.
The constraint associated with the variable Bik is multiplied by Rk: Then,
all the constraints associated with B¶s are summed up, and
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equation (4) can be written as
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A.2 Proof of theorem 10 with T=3

Proof. As the problem sketched in the example of section to obtain the up-
per bound is a linear programming problem, considering Sitt = U t¡(it¡1)Dit¡1;
its dual is written as follows:

min½
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subject to the non-negativity constraints of the dual variables
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constraints, each one associated with a variable of the primal problem. The
constraint associated with ¢0 is given by

(1 ¡ p)2
"
¸(1;3)(0;0)S

1
3 +

P
m=1;2;3

¸(2;3);m
(0;0) S2

3 +
P

m=1;2;3
¸(3;3);m
(0;0) S3

3 +¸(4;3)
(0;0)S

4
3

#

+®(1;1)
(0;0)S

1
1 +®(2;1)

(0;0)S
2
1+

+(1 ¡ p)
h
®(1;2)
(0;0)S

1
2 +

³
®(2;2);1
(0;0) +®(2;2);2

(0;0)

´
S2
3 + ®(3;2)

(0;0)S
3
2

i
= S0

(5)

The constraint associated with B0 is given by

(1 ¡ p)2 R3

"
¸(1;3)
(0;0) +

P
m=1;2;3

¸(2;3);m(0;0) +
P

m=1;2;3
¸(3;3);m
(0;0) + ¸(4;3)(0;0)

#

+R
³
®(1;1)
(0;0) +®(2;1)

(0;0)

´
+ (1 ¡ p)R2

h
®(1;2)
(0;0) + ®(2;2);1

(0;0) + ®(1;2);2
(0;0) +®(3;2)

(0;0)

i
= 1

(6)
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The constraint associated with ¢1
1 is given by

(1 ¡ p)

"
¸(1;3)
(1;1)S

1
3 +

P
m=1;2

¸(2;3);m
(1;1) S2

3 +¸(3;3)
(1;1)S

3
3

#
+

+p (1 ¡ p)

"
¸(1;3)
(0;0)S

1
3 +

P
m=1;2

¸(2;3);m
(0;0) S2

3 + ¸(3;3);1(0;0) S3
3

#
+

¡®(1;1)
(0;0)S

1
1 + p

h
®(1;2)
(0;0)S

1
2 + ®(2;2);1

(0;0) S2
2

i
+ ®(1;2)

(1;1)S
1
2 + ®(2;2)

(1;1)S
2
2 = 0

(7)

The constraint associated with B1
1 is given by

(1 ¡ p)R2

"
¸(1;3)
(1;1) +

P
m=1;2

¸(2;3);m
(1;1) +¸(3;3)

(1;1)

#
+

+p (1 ¡ p)R2

"
¸(1;3)
(0;0) +

P
m=1;2

¸(2;3);m
(0;0) +¸(3;3);1

(0;0)

#
+

¡®(1;1)
(0;0) + pR

h
®(1;2)
(0;0) + ®(2;2);1

(0;0)

i
+ R

h
®(1;2)
(1;1) +®(2;2)

(1;1)

i
= 0

(8)

The constraint associated with ¢2
1 is given by

(1 ¡ p)

"
¸(2;3);3(1;1) S2

3 +
P
m=1;2

¸(3;3);m
(1;1) S3

3 + ¸(4;3)(1;1)S
4
3

#
+

+p (1 ¡ p)

"
¸(2;3);3
(0;0) S2

3 +
P
m=2;3

¸(3;3);m(0;0) S3
3 +¸(4;3)

(0;0)S
4
3

#
+

¡®(2;1)
(0;0)S

2
1 + p

h
®(2;2);2
(0;0) S2

2 + ®(3;2)
(0;0)S

3
2

i
+ ®(2;2)

(2;1)S
2
2 + ®(3;2)

(2;1)S
3
2 = 0

(9)
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The constraint associated with B2
1 is given by

(1 ¡ p) R2

"
¸(2;3);3(1;1) +

P
m=1;2

¸(3;3);m
(1;1) + ¸(4;3)(1;1)

#
+

+p (1 ¡ p)R2

"
¸(2;3);3
(0;0) +

P
m=2;3

¸(3;3);m(0;0) +¸(4;3)
(0;0)

#
+

¡®(2;1)
(0;0) + pR

h
®(2;2);2
(0;0) + ®(3;2)

(0;0)

i
+ R

h
®(2;2)
(2;1) +®(3;2)

(2;1)

i
= 0

(10)

The constraint associated with ¢1
2 is given by

¸(1;3)(1;2)U
3S0 +¸(2;3)

(1;2)U
2DS0 + p

³
¸(1;3)
(1;1)U

3S0 +¸(2;3);1
(1;1) U2DS0

´

+p
³
¸(1;3)(0;0)U

3S0 + ¸(2;3);1(0;0) U 2DS0

´
¡ ®(1;2)

(0;0)U
2S0 ¡®(1;2);1

(1;1) U 2S0 = 0
(11)

The constraint associated with B1
2 is given by

R
h
¸(1;3)(1;2) + ¸(2;3)(1;2)

i
+ pR

h
¸(1;3)
(1;1) + ¸(2;3);1(1;1)

i

+pR
h
¸(1;3)(0;0) + ¸(2;3);1(0;0)

i
¡®(1;2);1

(0;0) ¡®(1;2)
(1;1) = 0

(12)

The constraint associated with ¢2
2 is given by

¸(2;3)(2;2)S
2
3 +¸(3;3)

(2;2)S
3
3 + p

h³
¸(2;3);2(1;1) +¸(2;3)

(2;1)

´
S2
3 +

³
¸(3;3)
(1;1) + ¸(3;3);1(2;1)

´
S3
3

i

+p
h³

¸(2;3);2
(0;0) +¸(2;3);3

(0;0)

´
S2
3 +

³
¸(3;3);1(0;0) + ¸(3;3);2(0;0)

´
S3
3

i

¡
h
®(2;2);1
(0;0) + ®(2;2);2

(0;0)

i
S2
2 ¡

h
®(2;2)
(1;1) + ®(2;2)

(2;1)

i
S2
2 = 0

(13)

The constraint associated with B2
2 is given by

R
h
¸(2;3)
(2;2) +¸(3;3)

(2;2)

i
+ pR

h
¸(2;3);2(1;1) + ¸(2;3)(2;1) + ¸(3;3)

(1;1) +¸(3;3);1
(2;1)

i

+pR
h
¸(2;3);2
(0;0) + ¸(2;3);3(0;0) + ¸(3;3);1(0;0) + ¸(3;3);2(0;0)

i

¡
h
®(2;2);1
(0;0) +®(2;2);2

(0;0)

i
¡

h
®(2;2)
(1;1) + ®(2;2)

(2;1)

i
= 0

(14)
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The constraint associated with ¢3
2 is given by

¸(3;3)(3;2)UD2S0 + ¸(4;3)(3;2)D
3S0 + p

h
¸(3;3);2
(2;1) UD2S0 + ¸(4;3)(2;1)D

3S0

i

+p
h
¸(3;3);3(0;0) UD2S0 +¸(4;3)

(0;0)D
3S0

i
¡®(3;2)

(0;0)D
2S0 ¡®(3;2)

(1;1)D
2S0 = 0

(15)

The constraint associated with B3
2 is given by

R
h
¸(3;3)(3;2) + ¸(4;3)(3;2)

i
+ pR

h
¸(3;3);2(2;1) +¸(4;3)

(2;1)

i
+

+pR
h
¸(3;3);3(0;0) + ¸(4;3)(0;0)

i
¡ ®(3;2)

(0;0) ¡ ®(3;2)
(1;1) = 0

(16)

Summing up equations (5), (7), (9), (11),(13) and (15) we obtain

S0 =
³
¸(1;3)(0;0) +¸(1;3)

(1;1) +¸(1;3)
(1;2)

´
S1
3+

+

Ã
P

m=1;2;3
¸(2;3);m
(0;0) +

P
m=1;2

¸(2;3);m
(1;1) +¸(2;3)

(2;1) + ¸(2;3)(1;2) + ¸(2;3)(2;2)

!
S2
3

+

Ã
P

m=1;2;3
¸(3;3);m
(0;0) + ¸(3;3)(1;1) +

P
m=1;2

¸(3;3);m
(2;1) + ¸(3;3)(2;2) + ¸(3;3)(3;2)

!
S3
3

+
³
¸(4;3)
(0;0) +¸(4;3)

(2;1) +¸(4;3)
(3;2)

´
S4
3

(17)

Multiplying equations (8) and (10) by R and equations (12), (14) and
(15) by R2 and then summing up with equation (6) we obtain

¸(1;3)
(0;0) +

P
m=1;2;3

¸(2;3);m(0;0) +
P

m=1;2;3
¸(3;3);m(0;0) + ¸(4;3)(0;0)+

¸(1;3)(1;1) +
P
m=1;2

¸(2;3);m(1;1) + ¸(3;3)(1;1) +¸(2;3)
(2;1) +

P
m=1;2

¸(3;3);m(2;1) +¸(4;3)
(2;1)+

+¸(1;3)(1;2) + ¸(2;3)(1;2) + ¸(2;3)(2;2) +¸(3;3)
(2;2) +¸(3;3)

(3;2) +¸(4;3)
(3;2) = 1

R3

Hence, denoting

q(it0 ;t
0)

(it ;t) = R3¸(it0 ;t
0)

(it ;t)
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and

q1 = q(1;3)(0;0) + q(1;3)(1;1) + q(1;3)(1;2)

q2 =
P

m=1;2;3
q(2;3);m(0;0) +

P
m=1;2

q(2;3);m(1;1) + q(2;3)(2;1) + q(2;3)(1;2) + q(2;3)(2;2)

q3 =
P

m=1;2;3
q(3;3);m(0;0) + q(3;3)(1;1) +

P
m=1;2

q(3;3);m(2;1) + q(3;3)(2;2) + q(3;3)(3;2)

q4 = q(4;3)(0;0) + q(4;3)(2;1) + q(4;3)(3;2)

we can rewrite (17) as

S0 = 1
R3

£
q1S1

3 + q2S2
3 + q3S3

3 + q4S4
3
¤

with qi are de¯ed above and q1 + q2 + q3 + q4 = 1:
Taking into consideration equation (10), equation (9) can be rewritten

as

S1
2 = 1

R

h
¼(1;3)
(1;2)S

1
3 + ¼(2;3)(1;2)S

2
3

i

where

¼(1;3)
(1;2) =

¸(1;3)(1;2)+p¸
(1;3)
(1;1)+p¸

(1;3)
(0;0)

¸(1;3)(1;2)+p¸
(1;3)
(1;1)+p¸

(1;3)
(0;0)+¸

(2;3)
(1;2)+p¸

(2;3);1
(1;1) +p¸(2;3);1(0;0)

¼(2;3)
(1;2) =

¸(2;3)(1;2)+p¸
(2;3);1
(1;1) +p¸(2;3);1(0;0)

¸(1;3)(1;2)+p¸
(1;3)
(1;1)+p¸

(1;3)
(0;0)+¸

(2;3)
(1;2)+p¸

(2;3);1
(1;1) +p¸(2;3);1(0;0)

and ¼(1;3)(1;2) + ¼(2;3)
(1;2) = 1: Proceeding in an analogous way with constraints

(13), (14), (15) and (16) we obtain

S2
2 =

1
R

h
¼(2;3)
(2;2)S

2
3 + ¼(3;3)(2;2)S

3
3

i

where

¼(2;3)
(2;2) =

(̧2;3)
(2;2)+p

³
(̧2;3);2
(1;1) +¸(2;3)(2;1)+¸

(2;3);2
(0;0) + (̧2;3);3

(0;0)

´

¸(2;3)(2;2)+p
³
¸(2;3);2(1;1) +¸(2;3)(2;1)+

(̧2;3);2
(0;0) +¸(2;3);3(0;0)

´
+¸(3;3)(2;2)+p

³
¸(3;3)(1;1)+

(̧3;3);1
(2;1) +¸(3;3);1(0;0) +¸(3;3);2(0;0)

´

¼(3;3)
(2;2) =

(̧3;3)
(2;2)+p

³
(̧3;3)
(1;1)+¸

(3;3);1
(2;1) +¸(3;3);1(0;0) + (̧3;3);2

(0;0)

´

¸(2;3)(2;2)+p
³
¸(2;3);2(1;1) +¸(2;3)(2;1)+

(̧2;3);2
(0;0) +¸(2;3);3(0;0)

´
+¸(3;3)(2;2)+p

³
¸(3;3)(1;1)+

(̧3;3);1
(2;1) +¸(3;3);1(0;0) +¸(3;3);2(0;0)

´

with ¼(2;3)
(2;2) +¼(3;3)

(2;2) = 1; and

S3
2 =

1
R

h
¼(3;3)
(3;2)S

3
3 + ¼(4;3)(3;2)S

4
3

i
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where

¼(3;3)
(3;2) =

¸(3;3)(3;2)+p
³
¸(3;3);2(2;1) +¸(3;3);3(0;0)

´

¸(3;3)(3;2)+p
³
¸(3;3);2(2;1) +¸(3;3);3(0;0)

´
+¸(4;3)(3;2)+p

³
¸(4;3)(2;1)+¸

(4;3)
(0;0)

´

¼(4;3)
(3;2) =

¸(4;3)(3;2)+p
³
¸(4;3)(2;1)+¸

(4;3)
(0;0)

´

¸(3;3)(3;2)+p
³
¸(3;3);2(2;1) +¸(3;3);3(0;0)

´
+¸(4;3)(3;2)+p

³
¸(4;3)(2;1)+¸

(4;3)
(0;0)

´

with ¼(3;3)
(3;2) +¼(4;3)

(3;2) = 1:
Moreover, using equations (7), (8), (9) and (10) we have

S1
1 =

1
R2

h
µ(1;3)(1;1)S

1
3 + µ(2;3)(1;1)S

2
3 + µ(3;3)(1;1)S

3
3

i
+

1
R

h
"(1;2)(1;1)S

1
2 + "(2;2)(1;1)S

2
2

i

where

µ(1;3)(1;1) =
R2

h
(1¡p)¸(1;3)(1;1)+p(1¡p)¸

(1;3)
(0;0)

i

£

µ(2;3)(1;1) =
R2

"
(1¡p) P

m=1;2
¸(2;3);m(1;1) +p(1¡p) P

m=1;2
¸(2;3);m(0;0)

#

£

µ(3;3)(1;1) =
R2

h
(1¡p)¸(3;3)(1;1)+p(1¡p)¸

(3;3);1
(0;0)

i

£

"(1;2)(1;1) =
R

h
p®(1;2)(0;0)+®

(1;2)
(1;1)

i

£ ; "(2;2)(1;1) =
R

h
p®(2;2);1(0;0) +®(2;2)(1;1)

i

£

£ = R2
h
(1 ¡ p)¸(1;3)(1;1) + p (1 ¡ p)¸(1;3)(0;0)

i

+R2

2
4(1 ¡ p)

X

m=1;2
¸(2;3);m(1;1) + p (1 ¡ p)

X

m=1;2
¸(2;3);m
(0;0)

3
5

+R2
h
(1 ¡ p)¸(3;3)(1;1) + p(1 ¡ p)¸(3;3);1(0;0)

i
+ R

h
p®(1;2)

(0;0) +®(1;2)
(1;1) + p®(2;2);1

(0;0) +®(2;2)
(1;1)

i

and

S2
1 = 1

R2

h
µ(1;3)(2;1)S

2
3 + µ(2;3)(2;1)S

3
3 + µ(3;3)(2;1)S

4
3

i
+ 1

R

h
"(1;2)(2;1)S

2
2 + "(2;2)(2;1)S

3
2

i
, with

µ(1;3)(2;1) =
R2

h
(1¡p)¸(2;3);3(1;1) +p(1¡p)¸(2;3);3(0;0)

i

¨

µ(2;3)(2;1) =
R2

"
(1¡p) P

m=1;2
¸(3;3);m(1;1) +p(1¡p) P

m=2;3
¸(3;3);m(0;0)

#

¨

µ(3;3)(2;1) =
R2

h
(1¡p)¸(4;3)(1;1)+p¸

(4;3)
(0;0)(1¡p)

i

¨

"(1;2)(2;1) =
R

h
p®(2;2);2(0;0) +®(2;2)(2;1)

i

¨ , "(2;2)(2;1) =
R

h
p®(3;2)(0;0)+®

(3;2)
(2;1)

i

¨
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¨ = R2
h
(1 ¡ p)¸(2;3);3(1;1) + p(1 ¡ p) ¸(2;3);3(0;0)

i

+R2

2
4(1 ¡ p)

X

m=1;2

¸(3;3);m(1;1) + p (1 ¡ p)
X

m=2;3

¸(3;3);m
(0;0)

3
5 +

+R2
h
(1 ¡ p)¸(4;3)

(1;1) + p¸(4;3)(0;0) (1 ¡ p)
i

+ R
h
p®(2;2);2

(0;0) +®(2;2)
(2;1) + p®(3;2)

(0;0) + ®(3;2)
(2;1)

i
:

A.3 Upper Bound for T=2

For T = 2 the problem that must be solved to ¯nd the upper bound of the
arbitrage free range of variation is the following

Cu = min
f¢0 ;B0 ;¢1

1;B
1
1 ;¢

2
1 ;B

2
1g

¢0S0 + B0

subject to the conditions of positive expected payo® at time t = 0;

p
¡
¢1

1U
2S0 + RB1

1
¢

+(1 ¡ p)
¡
¢0U 2S0 +R2B0

¢
¸

¡
U 2S0 ¡K

¢+(18)
p
¡
¢1

1UDS0 +RB1
1
¢
+ (1 ¡ p)

¡
¢0UDS0 +R2B0

¢
¸ (UDS0 ¡K)+

p
¡
¢2

1UDS0 + RB2
1
¢

+(1 ¡ p)
¡
¢0D2S0 +R2B0

¢
¸ (UDS0 ¡K)+

p
¡
¢2

1D2S0 + RB2
1
¢

+(1 ¡ p)
¡
¢0D2S0 +R2B0

¢
¸

¡
D2S0 ¡ K

¢+(19)

positive expected payo® at time t = 1;
¡
¢1

1U 2S0 +RB1
1
¢

¸
¡
U2S0 ¡K

¢+
¡
¢1

1UDS0 +RB1
1
¢ ¸ (UDS0 ¡ K)+ (20)

¡
¢2

1UDS0 +RB2
1
¢

¸ (UDS0 ¡ K)+ (21)
¡
¢2

1D
2S0 +RB2

1
¢ ¸ ¡

D2S0 ¡K
¢+

and self-¯nancing,

¢1
1US0 + B1

1 · ¢0US0 +RB0 (22)
¢2

1DS0 + B2
1 · ¢0DS0 +RB0: (23)
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Construct the Lagrangean

L = ¢0S0 +B0 +

+¸(1;2)(0;0)

h¡
U 2S0 ¡K

¢+ ¡ p
¡
¢1

1U 2S0 +RB1
1
¢

¡ (1 ¡ p)
¡
¢0U2S0 + R2B0

¢i
+

+¸(2;2);1(0;0)
£
(UDS0 ¡K)+ ¡ p

¡
¢1

1UDS0 +RB1
1
¢
¡ (1 ¡ p)

¡
¢0UDS0 +R2B0

¢¤

+¸(2;2);2(0;0)
£
(UDS0 ¡K)+ ¡ p

¡
¢2

1UDS0 +RB2
1
¢
¡ (1 ¡ p)

¡
¢0D2S0 + R2B0

¢¤

+¸(3;2)(0;0)

h¡
D2S0 ¡ K

¢+ ¡ p
¡
¢2

1D2S0 + RB2
1
¢

¡ (1 ¡ p)
¡
¢0D2S0 + R2B0

¢i

+®(2;1)
(0;0)

£
¢1

1US0 + B1
1 ¡¢0US0 ¡RB0

¤

+®(1;1)
(0;0)

£
¢2

1DS0 + B2
1 ¡ (¢0DS0 + RB0)

¤

+¸(1;2)(1;1)

h¡
U 2S0 ¡K

¢+ ¡
¡
¢1

1U
2S0 +RB1

1
¢i

+¸(2;2)(1;1)
£
(UDS0 ¡K)+ ¡

¡
¢1

1UDS0 + RB1
1
¢¤

+¸(2;2)(2;1)
£
(UDS0 ¡K)+ ¡ ¡

¢2
1UDS0 + RB2

1
¢¤

+¸(3;2)(2;1)

h¡
D2S0 ¡ K

¢+ ¡ ¡
¢2

1D
2S0 +RB2

1
¢i

The solution is characterized by

¸(2;2);1(0;0) = ¸(2;2);2
(0;0) = ¸(1;2)(1;1) = ¸(3;2)(2;1) = 0

and

¸(1;2)
(0;0);¸

(3;2)
(0;0);®

(2;1)
(0;0); ®

(1;1)
(0;0);¸

(2;2)
(1;1);¸

(2;2)
(2;1) ¸ 0

Using the fact that equations (18), (19), (22), (23), (20) and (21) are
binding the optimal values ¢¤

0; B¤
0; ;¢1¤

1 ; B1¤
1 ;¢2¤

1 ; B2¤
1 can be obtained. In

particular, ¢¤
0 e B¤

0 are given by
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¢¤
0 =

¡
U 2S0 ¡ K

¢+ h
(U ¡ R) (R ¡ D) + p (R ¡ D)2

i

S0¤
(24)

¡
¡
D2S0 ¡ K

¢+ h
(U ¡R) (R ¡D) + p (R ¡U )2

i

S0¤
¡p (UDS0 ¡K)+

£¡2DR +2RU + D2 ¡U 2¤

S0¤

B¤
0 = ¡

¡
U 2S0 ¡K

¢+ h
D2 (U ¡R) (R ¡D) + pUD (R ¡D)2

i

R2¤

+

¡
D2S0 ¡K

¢+ h
U 2 (U ¡R) (R ¡D) + pUD (R ¡U )2

i

R2¤

+
pR (UDS0 ¡K)+

¡
¡2DU2 + RU2 ¡RD2 + 2D2U

¢

R2¤

where

¤ = U2 £
(U ¡ R) (R ¡ D) ¡ p

¡¡R2 +4RD ¡DU
¢¤

¡D2 £
(U ¡ R) (R ¡ D) ¡ p

¡¡R2 ¡ UD +4RU
¢¤

The remaining equations are also satis¯ed.
As a result, after some trivial algebra, we obtain

Cu = ¢¤
0S0 +B¤

0 =
1

R2

h
q1

¡
U 2S0 ¡K

¢+ + q2 (UDS0 ¡K)+ + q3
¡
D2S0 ¡K

¢+i

with

q1 =
(U ¡R) (R ¡ D)

¡
R2 ¡D2¢ + p(R ¡ D)2

¡
R2 ¡ UD

¢

¤

q2 = p
(R ¡ D)2

¡
U2 ¡R2

¢
+ (R ¡ U)2

¡
R2 ¡D2

¢

¤

q3 =
(U ¡R) (R ¡ D)

¡
U 2 ¡ R2

¢
+ p(R ¡ U)2

¡
UD ¡R2

¢

¤

It is easy to check that q1; q2; q3 ¸ 0 and q1 + q + q3 = 1:
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A.4 Proofs of the Properties and Examples

A.4.1 Property 3

1. Proof. Let the set of admissible solutions that characterize the upper
bound for the case p 2 (0;1) be denoted by A (p) ;where A (p) is a
correspondence such that

A (p) : [0; 1] ! Rt(t+1):

The portfolio (¢;B) = (¢it; Bit)it2It; t=0;::: ;T¡1 2 Rt(t+1) is said to
be an admissible solution for the problem de¯ned in section 4.1.1 if
(¢;B) 2 A (p) :
Moreover, let A (p = 0) and A (p = 1) denote, respectively, the admis-
sible solutions for the problems characterizing the upper bound in the
case p = 0 and p = 1; presented in section 2.1.
By the Theorem of the Maximum,13 if the constraint correspondence
A (p) is continuous and if the objective function is continuous on p,
then the value of the objective function in the optimum is also contin-
uous on p.
First consider the case p ! 1: In this case, limp!1A (p) = A (p = 1) :
Hence,

lim
p!1

Cpu = Cpu (p = 1) = C1
u:

However, the same does not apply when p ! 0: In this case

lim
p!0

A (p) µ A (p = 0)

which implies that

Cpu (p = 0) ¸ C0
u:

However, using property 1, we conclude Cpu (p = 0) = C0
u:

Example 21 (for T=2.) When p ! 0, and in the case of a Call Option,
which means that the market is completely illiquidity, the optimal values of
¢0 and B0 in expression (24) converge to

¢¤
0 =

¡
U2S0 ¡K

¢+ ¡ ¡
D2S0 ¡K

¢+

S0 [U2 ¡ D2]

B¤
0 =

U2 ¡
D2S0 ¡ K

¢+ ¡ D2 ¡
U2S0 ¡ K

¢+

R2 (U2 ¡D2)
13See, for instance, Mas-Collel et al. (1995), page 963.
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then,

lim
p!0

Cpu = ¢¤
0S0 + B¤

0

= 1
R2

·µ
R2 ¡ D2

U 2 ¡D2

¶ ¡
U 2S0 ¡K

¢+ +
µ

U 2 ¡ R2

U2 ¡D2

¶¡
D2S0 ¡K

¢+
¸

;

i.e., limp!0 Cpu = C0
u: On the other hand, when p ! 1, which means that

there is no illiquidity, the optimal values of ¢0 and B0 in expression (24)
converge to

¢¤
0 =

¡
U 2S0 ¡K

¢+ (R ¡ D) ¡
¡
D2S0 ¡ K

¢+ (U ¡ R) + (UDS0 ¡K)+ (U ¡ 2R +D)
S0R (U ¡ D)2

B¤
0 = ¡ D (R ¡D)

R2 (U ¡ D)2
¡
U2S0 ¡ K

¢+ +
U (U ¡R)

R2 (U ¡D)2
¡
D2S0 ¡K

¢+

+
[¡D (U ¡R) + U (R ¡D)]

R2 (U ¡D)2
(UDS0 ¡ K)+

then,

lim
p!0

Cpu = ¢¤
0S0 + B¤

0

=
1

R2

2X

j=0

µ
2
j

¶µ
R ¡D
U ¡ D

¶j µU ¡ R
U ¡D

¶2¡j ¡
U jDT¡jS0 ¡ K

¢+ ;

i.e., limp!0Cpu = C1
u:

A.4.2 Property 4

Proof. Consider the trading strategy
¡ ¹¢¤
t ; ¹B¤

t
¢
t=0;::: ;T¡1 that solves the

maximization problem that characterizes the upper bound for a p 2 (0;1) :
Fix a given path w, such that (it)t=0;::: ;T 2 w: For each path we have T

superreplicating constraints, one for each t 2 f0; : : : ;T ¡ 1g : For T ¡ 1;

¹¢¤
iT¡1S

iT
T + R ¹B¤

iT¡1 ¸ GiTT ;

for t = T ¡ 2

(1 ¡ p)
³

¹¢¤
iT¡2

SiTT + R2 ¹B¤
iT¡2

´
+ p

³
¹¢¤
iT¡1

SiTT + R ¹B¤
iT¡1

´
¸ GiTT ;
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which can be rewritten as

(1 ¡ p)
h

¹¢¤
iT¡2S

iT
T + R2 ¹B¤

iT¡2 ¡GiTT
i

+ p
h

¹¢¤
iT¡1S

iT
T + R ¹B¤

iT¡1 ¡ GiTT
i

¸ 0;

for t = T ¡ 3

(1 ¡ p)2
³

¹¢¤
iT¡3S

iT
T +R3 ¹B¤

iT¡3

´
+ p (1 ¡ p)

³
¹¢¤
iT¡2S

iT
T +R2 ¹B¤

iT¡2

´
+

+
£
p (1 ¡ p) + p2

¤³
¹¢¤
iT¡1

SiTT + R ¹B¤
iT¡1

´
¸ GiTT ;

which can be rewritten as

(1 ¡ p)2
h
¹¢¤
iT¡3

SiTT + R3 ¹B¤
iT¡3

¡ GiTT
i

+ p
h
¹¢¤
iT¡1

SiTT + R ¹B¤
iT¡1 ¡GiTT

i

+p(1 ¡ p)
h

¹¢¤
iT¡2

SiTT + R2 ¹B¤
iT¡2

¡GiTT
i

¸ 0;

More generally, for t

Eit = Eit+1 +(1 ¡ p)T¡t¡1
³
¢¤
itS
iT
T + RT¡tB¤

it

´
+

¡ (1 ¡ p)T¡t¡1
³
¢¤
it+1S

iT
T +RT¡tB¤

it+1

´

= Eit+1 +(1 ¡ p)T¡t¡1
h³

¢¤
itS
iT
T + RT¡tB¤

it

´
¡

³
¢¤
it+1S

iT
T + RT¡tB¤

it+1

´i
¸ 0

By backward induction since T = t¡1;we can prove that Eit+1 is positive.
Hence, if Eit is positive for a given p it will also be positive for another p;
because when p increases (1 ¡ p)T¡t¡1 decreases. Hence, whatever the sign
of

³
¢¤
itS
iT
T + RT¡tB¤

it

´
¡

³
¢¤
it+1S

iT
T +RT¡tB¤

it+1

´

Eit will remain positive.
The same applies for the self-¯nancing conditions.

A.4.3 Property 5

The upper bound of the ask price in a complete market can be written as

C1
u =

1
R2

h
¼liq1

¡
U 2S0 ¡K

¢+ +¼liq2 (UDS0 ¡ K)+ + ¼liq3
¡
D2S0 ¡ K

¢+i
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with

¼liq1 =
(R ¡D)2

(U ¡D)2

¼liq1 =
(R ¡ D) (U ¡ R)

(U ¡D)2

¼liq1 =
(U ¡R)2

(U ¡D)2

and the upper bound of the ask price in an illiquid market can be written
as

C0
u =

1
R2

h
¼illiq1

¡
U 2S0 ¡ K

¢+ +¼illiq3
¡
D2S0 ¡ K

¢+i

with

¼illiq1 =
R2 ¡ D2

U 2 ¡ D2

¼illiq3 =
U 2 ¡ R2

U 2 ¡ D2

Hence, the upper bound for the ask price in a random dry market can
be written

Cpu = ®C1
u+ (1 ¡ ®)C0

u (25)

with

® = p
R(U¡D)2

(U¡R)(U+D)(R¡D)

1 + p
h

R(U¡D)2
(U¡R)(U+D)(R¡D) ¡ 1

i

1 ¡ ® =
1 ¡ p

1 + p
h

R(U¡D)2
(U¡R)(U+D)(R¡D) ¡ 1

i

Taking the derivative of ® with respect to p we obtain

@®
@p

=
R (U ¡ D)2 (R + D) (U ¡R) (U + D)

¡
R2 ¡ D2

¢
n
(U ¡R) (U + D) (R2 ¡D2) + p

h
(R ¡D)2U (R + D) + (U ¡ R)2 D (R + D)

io2 ¸ 0
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Hence, taking the derivative of C0
u with respect to p we conclude that

C0
u is a decreasing function of p;

@Cpu
@p

=
@®
@p

C1
u¡ @®

@p
C0
u

=
@®
@p

¡
C1
u¡ C0

u
¢

· 0:

Taking the second derivative we can also conclude that Cpu is a convex func-
tion with respect to p;

@2Cpu
@p2

=
@2®
@p2

C1
u ¡ @2®

@p2
C0
u

=
@2®
@p2

¡
C1
u¡ C0

u
¢

as

@2®
@p2

· 0

we have

@2Cpu
@p2

¸ 0:

Alternative proof: After some algebra we obtain that following relation
between ®; in equation (25) and p:

® > p

So, as

Cask liq0 ¡ Cask illiq0 · 0

we obtain,

(p¡ ®)
³
Cask liq0 ¡ Cask illiq0

´
¸ 0

pCask liq0 + (1 ¡ p)Cask illiq0 ¡
h
®Cask liq +(1 ¡ ®)Cask illiq

i
¸ 0

and follows that

Cask0 · pCask liq0 +(1 ¡ p)Cask illiq0 :
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B Some Proofs on the Solution of the Lower Bound
for Statistical Arbitrage Opportunities

B.1 Proof of theorem 12

Proof. The problem that must be solved in order to ¯nd the upper bound of
the range of variation of the arbitrage-free value of an European derivative
is a linear programming problem. Its dual problem is

max
i̧T

T+1X

j=1

i̧TGiTT

where ¸iT is the sum of the dual variables associated with the positive ex-
pected payo® constraints that have the right member equal to GiTT , i.e.,

i̧T =
T¡1X

t=0

X

fit:it2Itg

X
n
m2+

it ;iT

o
¸(iT ;T);m(it ;t)

SiTT

The ¯rst set of constraints is of nonnegativity of each dual variable, i.e,
¸(iT ;T );m(it ;t)

;®(it0 ;t
0);m

(it;t)
¸ 0: The other set of constraints consists of equality con-

straints, one constraint associated with each variable of the primal problem.
The other set are equality constraints which are equal to the ones obtained
for the upper bound. Using the same argument as in the proof of theorem
1 the proof is straightforward.

B.2 Lower Bound for T=2

For T = 2 the problem that must be solved to ¯nd the lower bound of the
arbitrage free range of variation is the following

Cl = max
f¢0;B0;¢1

1 ;B
1
1 ;¢

2
1;B

2
1g

¢0S0 +B0

subject to the conditions of positive expected payo® at time t = 0;

p
¡
¢1

1U2S0 + RB1
1
¢

+(1 ¡ p)
¡
¢0U 2S0 +R2B0

¢
·

¡
U 2S0 ¡K

¢+

p
¡
¢1

1UDS0 +RB1
1
¢
+ (1 ¡ p)

¡
¢0UDS0 +R2B0

¢
· (UDS0 ¡K)+

p
¡
¢2

1UDS0 + RB2
1
¢

+(1 ¡ p)
¡
¢0D2S0 +R2B0

¢
· (UDS0 ¡K)+

p
¡
¢2

1D
2S0 + RB2

1
¢

+(1 ¡ p)
¡
¢0D2S0 +R2B0

¢
·

¡
D2S0 ¡ K

¢+
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positive expected payo® at time t = 1;
¡
¢1

1U
2S0 +RB1

1
¢ · ¡

U2S0 ¡K
¢+

¡
¢1

1UDS0 +RB1
1
¢

· (UDS0 ¡ K)+
¡
¢2

1UDS0 +RB2
1
¢ · (UDS0 ¡ K)+

¡
¢2

1D2S0 +RB2
1
¢

·
¡
D2S0 ¡K

¢+

and self-¯nancing,

¢1
1US0 + B1

1 ¸ ¢0US0 +RB0

¢2
1DS0 + B2

1 ¸ ¢0DS0 +RB0:

The Lagrangean of the problem is

L = ¢0S0 +B0 +

+¸(1;2)(0;0)

h¡
U 2S0 ¡K

¢+ ¡ p
¡
¢1

1U
2S0 +RB1

1
¢

¡ (1 ¡ p)
¡
¢0U2S0 + R2B0

¢i
+

+¸(2;2);1(0;0)
£
(UDS0 ¡K)+ ¡ p

¡
¢1

1UDS0 +RB1
1
¢¡ (1 ¡ p)

¡
¢0UDS0 +R2B0

¢¤

+¸(2;2);2(0;0)
£
(UDS0 ¡K)+ ¡ p

¡
¢2

1UDS0 +RB2
1
¢
¡ (1 ¡ p)

¡
¢0D2S0 + R2B0

¢¤

+¸(3;2)(0;0)

h¡
D2S0 ¡ K

¢+ ¡ p
¡
¢2

1D
2S0 + RB2

1
¢

¡ (1 ¡ p)
¡
¢0D2S0 + R2B0

¢i

+®(2;1)
(0;0)

£
¢1

1US0 + B1
1 ¡¢0US0 ¡RB0

¤

+®(1;1)
(0;0)

£
¢2

1DS0 + B2
1 ¡ (¢0DS0 + RB0)

¤

+¸(1;2)(1;1)

h¡
U 2S0 ¡K

¢+ ¡ ¡
¢1

1U
2S0 +RB1

1
¢i

+¸(2;2)(1;1)
£
(UDS0 ¡K)+ ¡

¡
¢1

1UDS0 + RB1
1
¢¤

+¸(2;2)(2;1)
£
(UDS0 ¡K)+ ¡

¡
¢2

1UDS0 + RB2
1
¢¤

+¸(3;2)(2;1)

h¡
D2S0 ¡ K

¢+ ¡
¡
¢2

1D2S0 +RB2
1
¢i

The constraints that are binding depend on the value of the parameters.
First, if R2 ¡ UD < 0 and p > UD¡R2

UD¡R2+R(U¡D)or R2 ¡ UD > 0 and p >
R2¡UD

R2¡UD+R(U¡D) the optimal solution of the dual problem is characterized by

¸(1;2)(0;0) = ¸(3;2)
(0;0) = ¸(2;2)

(1;1) = ¸(2;2)(2;1) = 0
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and

¸(2;2);1(0;0) ;¸(2;2);2
(0;0) ; ®(2;1)

(0;0);®
(1;1)
(0;0);¸

(1;2)
(1;1) ;¸

(3;2)
(2;1) ¸ 0:

Second, if R2¡UD < 0 and p < UD¡R2
UD¡R2+R(U¡D) the optimal solution of the

dual problem is characterized by

¸(1;2)(0;0) = ¸(2;2);1(0;0) = ¸(1;2)
(1;1) = ¸(2;2)

(1;1) = ®(1;1)
(0;0) = 0

and

¸(2;2);2(0;0) ;¸(3;2)
(0;0);®

(2;1)
(0;0); ¸

(2;2)
(2;1); ¸

(3;2)
(2;1) ¸ 0:

Finally, if R2¡UD > 0 and p < R2¡UD
R2¡UD+R(U¡D) the optimal solution of the

dual problem is characterized by

¸(2;2);2(0;0) = ¸(3;2)(0;0) = ¸(2;2)
(2;1) = ¸(3;2)

(2;1) = ®(2;1)
(0;0) = 0

and

¸(1;2)(0;0); ¸
(2;2);1
(0;0) ;®(1;1)

(0;0); ¸
(1;2)
(1;1); ¸

(2;2)
(1;1) ¸ 0:

Hence, after some algebra the lower bound can be written as:

Cl = q1
£
U 2S0 ¡K

¤+ + q2 [UDS0 ¡ K]+ + q3
£
U 2S0 ¡ K

¤+ (26)

with

q1 =
(R ¡ D)2

¡
UD ¡ R2

¢
+ p (U ¡ R) (R ¡D)

¡
D2 ¡R2

¢

R2
h
(U ¡R)2 (D2 ¡ UD) + (R ¡ D)2 (UD ¡D2) + p (U ¡R) (R ¡ D) (D2 ¡ U2)

i

q2 =
(U ¡R)2

¡
D2 ¡R2

¢
+(R ¡ D)2

¡
R2 ¡U 2

¢

R2
h
(U ¡R)2 (D2 ¡ UD) + (R ¡ D)2 (UD ¡D2) + p (U ¡R) (R ¡ D) (D2 ¡ U2)

i

q3 =
(U ¡R)2

¡
R2 ¡ UD

¢
+ p (U ¡ R) (R ¡D)

¡
R2 ¡ U2¢

R2
h
(U ¡R)2 (D2 ¡ UD) + (R ¡ D)2 (UD ¡D2) + p (U ¡R) (R ¡ D) (D2 ¡ U2)

i

if R2 ¡ UD < 0 and p > UD¡R2
UD¡R2+R(U¡D)or R2 ¡ UD > 0 and p >

R2¡UD
R2¡UD+R(U¡D) ,

Cl =
1

R2

·
R2 ¡D2

D (U ¡ D)
[UDS0 ¡ K]+ + UD ¡R2

D (U ¡D)
£
D2S0 ¡ K

¤+
¸

(27)
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if R2 ¡UD < 0 and p < UD¡R2
UD¡R2+R(U¡D) and

Cl =
1

R2

·
R2 ¡ UD
U (U ¡D)

£
U2S0 ¡K

¤+ +
U2 ¡R2

U (U ¡ D)
[UDS0 ¡ K]+

¸
(28)

if R2 ¡UD > 0 and p < R2¡UD
R2¡UD+R(U¡D) :

B.3 Example on Property 3

Example 22 (for T=2) When p ! 0, which means that the market is
completely illiquidity, the values of the lower bound are given by (27) or (28)
depending on R2 ¡ UD 7 0. These values coincide with the ones presented
in (2) for T=2. On the other hand, when p ! 1, which means that there is
no illiquidity, the values of q1; q2 and q3 presented in (26) tend to

lim
p!1

q1 =
(R ¡ D)2

¡
UD ¡R2¢+ (U ¡ R) (R ¡ D)

¡
D2 ¡ R2¢

R2 (U ¡ R)2 (D2 ¡ UD)+ R2 (R ¡ D)2 (UD ¡ U2)+ R2 (U ¡ R) (R ¡ D) (D2 ¡U 2

=
(R ¡ D)2

R2 (U ¡ D)2

lim
p!1

q2 =
(U ¡R)2

¡
D2 ¡ R2¢ + (R ¡D)2

¡
R2 ¡U 2¢

R2 (U ¡ R)2 (D2 ¡ UD)+ R2 (R ¡ D)2 (UD ¡ D2)+ R2 (U ¡ R) (R ¡ D) (D2 ¡U 2

= 2
(R ¡ D) (U ¡R)

R2 (U ¡ D)2

lim
p!1

q3 =
(U ¡ R)2

¡
R2 ¡UD

¢
+(U ¡R) (R ¡D)

¡
R2 ¡ U2

¢

R2 (U ¡ R)2 (D2 ¡ UD)+ R2 (R ¡ D)2 (UD ¡ D2)+ R2 (U ¡ R) (R ¡ D) (D2 ¡U 2

(U ¡ R)2

R2 (U ¡ D)2

then,

lim
p!0

Cl =
(R ¡ D)2

R2 (U ¡ D)2
£
U 2S0 ¡K

¤+ + 2
(R ¡D) (U ¡ R)

R2 (U ¡D)2
[UDS0 ¡ K]+

+
(U ¡ R)2

R2 (U ¡D)2
£
U2S0 ¡K

¤+

which coincides with Cl; presented in equation (1).
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