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Abstract

Over the years, several formalizations of games with a continuum

of players have been given. These include those of Schmeidler (1973),

Mas-Colell (1984) and Khan and Sun (1999). Unlike the others, Khan

and Sun (1999) also addressed the equilibrium problem of large fi-

nite games, establishing the existence of a pure strategy approximate

equilibrium in sufficiently large games. This ability for their formal-

ization to yield asymptotic results led them to argue for it as the right

approach to games with a continuum of players.

We challenge this view by establishing an equivalent asymptotic

theorem based only on Mas-Colell’s formalization. Furthermore, we

show that it is equivalent to Mas-Colell’s existence theorem. Thus, in

contrast to Khan and Sun (1999), we conclude that Mas-Colell’s for-

malization is as good as theirs for the development of the equilibrium

theory of large finite games.

Keywords : Nash Equilibrium; Asymptotic Results; Pure Strategies; Ap-

proximate equilibria.
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1 Introduction

Nash (1950)’s celebrated existence theorem asserts that every finite normal-

form game has a mixed strategy equilibrium. However, in many contexts

mixed strategies are unappealing and hard to interpret, leading naturally to

the question of the existence of pure strategy Nash equilibria.

Schmeidler (1973) was successful in obtaining an answer to the above

question. He showed that in a special class of games — in which each player’s

payoff depends only on his choice and on the average choice of the others —

a pure strategy Nash equilibrium exists in every such game with a continuum

of players.

Schmeidler’s formalization parallels that of Nash in that players have a

finite action space, there is a function assigning to each of them a payoff

function in a measurable way and the equilibrium notion is formalized in

terms of a strategy, i.e., as a measurable function from players into actions.

The difference is that, while in Nash (1950) there is a finite number of players

(which, in particular, makes the measurability conditions trivial), in Schmei-

dler (1973) the set of players is the unit interval endowed with the Lebesgue

measure.

Although natural, Schmeidler’s formalization entails serious difficulties.

As shown by Khan, Rath, and Sun (1997), Schmeidler’s theorem does not

extend to general games — in fact, one has to assume that either the action

space or the family of payoff functions is denumerable in order to guarantee

the existence of a pure strategy equilibrium (see Khan and Sun (1995) and

Carmona (2005b)).

Motivated by this, Khan and Sun (1999) reformulated the theory of non-
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atomic games by modeling the set of players as a Loeb space. This reformu-

lation allowed them to obtain an existence theorem for general games, thus

dispensing with any countability assumption. This result allowed them to

show that, with an appropriate assumption, all sufficiently large finite games

have an approximate equilibrium. This major success, among others, led

them to argue for games on Loeb spaces as the right model of large games.

In this paper, we challenge this view by proving an equivalent asymptotic

theorem using neither games on Loeb spaces nor non-standard analysis (es-

sential to their results). In fact, we show that our result, and therefore, Kahn

and Sun’s, is equivalent to Mas-Colell’s Theorem (see Mas-Colell (1984)) on

the existence of an equilibrium distribution for non-atomic games. These

results suggest that Mas-Colell’s formalization of the equilibrium theory of

large games — in which the equilibrium notion is formulated in terms of

distributions and not as a strategy — is as good as that of Khan and Sun

for the development of the asymptotic theory of large games.

The equivalence between the asymptotic existence theorem and Mas-

Colell’s theorem gives us a way, at least for the existence of equilibria, to

go back and forth between an exact result for the non-atomic case and an

approximate result for the asymptotic large finite case. We strengthen this

relation between the two models by characterizing the equilibrium distribu-

tions of non-atomic games in terms of approximate equilibria in large finite

games. This provides a simple and direct way of relating non-atomic games

to large finite games that dispenses with the use of non-standard analysis.

Although general characterizations are possible (see Carmona (2004)),

for the purpose of establishing the asymptotic existence theorem, we need
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a simple and surprisingly particular characterization result. Indeed, we can

focus on games with a continuum of players with a finite action space and

with finitely many characteristics belonging to an equicontinuous family. It

states that a distribution of actions ξ of any such game G is an equilibrium

if and only if for all sequences {Gk} of finite games converging to G (in

the sense that the distributions over characteristics converge), there exists

a corresponding sequence {fk} of εk – equilibria with the property that εk

converges to 0 and the sequence of distributions induced by fk converges

to ξ. It is then clear that any property that an equilibrium distribution

over action has, translates into a corresponding approximate version of it for

all large finite games, and vice versa. Although this characterization result

holds only in the special class of games described above, we can nevertheless

use it for general games, simply by approximating any such game by games

in the special class in which the theorem holds. This is the reason why

we can use it to establish the equivalence between the asymptotic existence

theorem and Mas-Colell’s theorem, which applies to general games (i.e., to

games with general compact metric spaces of actions and with characteristics

that may not be equicontinuous). Although the characterizations we develop

in Carmona (2004) apply directly to the general case, the characterization

presented here is more useful to our purpose due to the bounds on εk and

on the distance between the distributions induced by fk and ξ, which the

special case makes possible.

The above characterization result, and those of Carmona (2004), can

be interpreted as showing that Mas-Colell’s model is asymptotically imple-

mentable, a criterion defended by Khan and Sun (1999), among others. Fur-
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thermore, by construction, it also frees the theory of large games from the

homogeneity and measurability concerns1 by focusing directly on distribu-

tions.

As Aumann (1964) pointed out, large games are an idealization of large

finite games, and so the actual space of players has no particular signifi-

cance. Given this, a strategy has no more significance than the distribution

it induces. As we have argued, this distribution is all we need to obtain

the existence of an approximate equilibrium in large finite games. There-

fore, judging Mas-Colell’s distributional formalization of large games by the

criteria emphasized by Khan and Sun (1999), it becomes very appealing.

The paper is organized as follows. In Section 2, we introduce our no-

tation and basic definitions. In Section 3, we present our characterization

result. Our asymptotic result and its equivalence with Mas-Colell’s theorem

are stated in Section 4. In Section 5, we establish several asymptotic results

for games with an action space endowed with a linear structure and in which

players’ payoffs depend on the distribution of choices only through the av-

erage of players’ choices. These results are all obtained as corollaries to our

asymptotic result. In Section 6, we allow players to choose mixed strategies

and players’ payoffs to depend on the distribution of mixed strategies chosen.

We then show that an asymptotic result also holds in this setting. In Section

7, we provide two examples that show that neither can we obtain an exact

version for our asymptotic result, nor can we dispense with the equiconti-

1The homogeneity property holds when two strategies with the same distribution can

be related (by an automorphism). Regarding measurability, the concern is that requiring a

strategy to be a measurable function can be a restrictive assumption, namely by imposing

some sort of continuity on player’s responses. See Khan and Sun (1999) for details.
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nuity assumption that we use. In Section 8, we present a correct version of

Khan and Sun’s asymptotic theorem (we give an example showing that the

theorem fails as they have stated it), and then show that this correct version

is equivalent to our asymptotic theorem. Section 9 concludes.

2 Notation and Definitions

In the class of normal-form games we consider, all players have a common

pure strategy space X. We assume that X is a compact metric space. Since

the focus is on a property that depends on the number of players, we will

index any game by the number of its players. Thus, Gn is a normal-form

game in which the set of players is Tn = {1, . . . , n}, and each has X as its

choice set. A strategy is then a function f : Tn → X. Obviously, a strategy

f can also be thought of as the vector (f1, . . . , fn) in Xn.

A game Gn is then specified by the vector of payoff functions, one for each

player. In this paper we will focus on a special class of games in which each

player’s payoff depends on his strategy and on the distribution of strategies

chosen by the other players. Let M(X) be the set of Borel probability

measures on X endowed with the Prohorov metric ρ. Given a strategy f in

a game with n players, the distribution of actions is denoted by νn ◦ f−1 ∈
M(X) and is defined as follows:

νn ◦ f−1(B) =
|{t ∈ Tn : f(t) ∈ B}|

n
(1)

for any Borel set B ⊆ X. Clearly, νn ◦ f−1(B) equals the fraction of players

that play an action in the set B. To each player t, we associate a contin-

uous function Vn(t) : X × M(X) → R with the following interpretation:
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Vn(t)(x, µ) is player t’s payoff when he plays action x and facing the distrib-

ution µ. Then, for any strategy f , player t’s payoff function is

Un(t)(f) = Vn(t)(f(t), νn ◦ f−1), (2)

for any strategy f . We denote this class of games by H and we represent a

game Gn ∈ H by Gn = ((Tn, νn), Vn, X).

We let U denote the space of all continuous, real-valued functions on

X ×M(X) with the sup norm. Thus, Vn is a function from Tn to U .

Given a strategy f , x ∈ X, and t ∈ T , let f \t x denote the strategy

obtained if player t changes his choice from f(t) to x. Formally, f \t x

denotes the strategy g defined by g(t) = x, and g(t̃) = f(t̃), for all t̃ 6= t.

For any ε ≥ 0, we say that f ∗ is an ε – equilibrium of a game Gn if, for all

t ∈ Tn,

Un(t)(f ∗) ≥ Un(t)(f ∗ \t x)− ε for all x ∈ X. (3)

Thus, in an ε – equilibrium all players are close to their optimum by choosing

according to f ∗. A strategy f ∗ is a Nash equilibrium of G if f ∗ is an ε –

equilibrium of Gn for ε = 0.

A game with a continuum of players is described by a Borel probability

measure ψ on U . It can be represented by the distribution induced by a

function from the unit interval, endowed with the Lebesgue measure, into U :

ψ = λ ◦V −1, where V : [0, 1] → U is measurable and λ denotes the Lebesgue

measure. Therefore, we also represent a game with a continuum of players

by G = (([0, 1], λ), V,X).

Given a Borel probability measure τ on U × X, we denote by τU and

τX the marginal distributions of τ on U and X respectively. The expression

u(x, τ) ≥ u(X, τ) means u(x, τ) ≥ u(x′, τ) for all x′ ∈ X.
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Given a game ψ and ε ≥ 0, a Borel probability measure τ on U × X is

an ε – equilibrium distribution for ψ if

1. τU = ψ, and

2. τ({(u, x) ∈ U ×X : u(x, τX) ≥ u(X, τX)− ε}) = 1.

Roughly, in an ε – equilibrium distribution almost all players are within

ε of their best replies. An equilibrium distribution is an ε – equilibrium

distribution with ε = 0.

A Borel probability measure ξ on X is an ε – equilibrium distribution

over actions for ψ if there exists an ε – equilibrium distribution τ for ψ such

that ξ = τX .

A strategy in a game G = (([0, 1], λ), V, X) with a continuum of players

is a measurable function f : [0, 1] → X. For each t ∈ [0, 1], the payoff of

strategy f is

U(t)(f) = V (t)(f(t), λ ◦ f−1). (4)

For all ε ≥ 0, an ε – equilibrium is a strategy f satisfying

U(t)(f ∗) ≥ U(t)(f ∗ \t x)− ε (5)

for all x ∈ X and almost all t ∈ [0, 1]

Let C be a finite set and µ a probability measure on C. In this case,

we will sometimes write µl instead of µ({l}), whenever l ∈ C and also µ =

(µ1, . . . , µL), with L = |C|. This notation also suggests that a measure with

a finite support can be thought of as a vector in some Euclidean space. We

will also write ||µ|| = maxl∈C |µl|, i.e., ||µ|| is the sup norm of the vector
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(µ1, . . . , µL). Note that a sequence of measures {µn}∞n=1 on C converges to µ

if and only if limn→∞ ||µn − µ|| = 0.

Let K be a subset of U . We say that K is equicontinuous (or, that the

family K of functions is equicontinuous) if for all η > 0 there exists a δ > 0

such that max{ρ(µ, τ), d(x, y)} < δ implies

|V (x, µ)− V (y, τ)| < η

for all V ∈ K and for all x, y ∈ X and µ, τ ∈ M(X) (see Rudin (1976,

p. 156)). In our framework, equicontinuity can be interpreted as placing “a

bound on the diversity of payoffs” (see Khan, Rath, and Sun (1997)). For

all δ > 0, let

ωV (δ) = sup{|V (x, µ)− V (y, τ)| : max{d(x, y), ρ(µ, τ)} < δ}

denote the modulus of continuity of V and

ωK(δ) = sup
V ∈K

ωV (δ).

Of course, if K is equicontinuous, then limδ→0 ωK(δ) = 0.

3 A Characterization of Equilibrium Distri-

butions

In this section we characterize equilibrium distributions of some simple games

with a continuum of players. These are games with a finite number of charac-

teristics and actions and with payoff functions selected from an equicontinu-

ous family. Despite all these restrictive assumptions, this result is enough to
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establish the existence of pure strategy approximate equilibria in large finite

games.

Theorem 1 Let X be a finite set, m = |X| and K be an equicontinuous

subset of U . Then, the following holds for all games G = (([0, 1], λ), V, X)

with a continuum of players such that V ([0, 1]) is a finite subset of K and

for all ε ≥ 0:

A distribution ξ on X is an ε – equilibrium distribution over actions of

G if and only if for all games Gn = ((Tn, νn), Vn, X) with a finite number

of players in which Vn(Tn) is a subset of V ([0, 1]) there exists a strategy

fn : Tn → X such that

1. fn is ε + 2ωK (m||λ ◦ V −1 − νn ◦ V −1
n ||+ (m2 + 1)/n) – equilibrium of

Gn and

2. ‖νn ◦ f−1
n − ξ‖ ≤ ‖λ ◦ V −1 − νn ◦ V −1

n ‖+ m
n
.

In order to illustrate the idea of Theorem 1, consider the particular case

of a sequence of games {Gn} with a finite number of players with Vn(Tn) ⊆
V ([0, 1]) and with ||λ◦V −1−νn◦V −1

n || converging to zero. In this case, we can,

intuitively, say that the sequence {Gn} converges to G. If ξ is an equilibrium

distribution over actions of G, then Theorem 1 guarantees the existence of

an εn – equilibrium fn of Gn satisfying εn → 0 and ||νn ◦ f−1
n − ξ|| → 0.

That is, finite games that are close to G have approximate equilibria, with a

degree of approximation close to zero, whose induced distributions are close

to ξ.

Conversely, the existence of approximate equilibria of games converging to

G, with a vanishing degree of approximation and with induced distributions
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converging to ξ, is enough to show that ξ is an equilibrium distribution over

actions of G.

The strength of Theorem 1, which is crucial to the asymptotic result, is

that the degree of approximation involved depends only on ε, on the equicon-

tinuous family K, on the number of pure strategies m, on the Euclidian dis-

tance between the distributions of characteristics ||λ ◦ V −1 − νn ◦ V −1
n || and

on the number of players n. In particular, it is independent of the particular

games G and Gn that we are considering. So, if ε and the set of actions

is fixed, and we are considering games G and Gn with the same distribu-

tion of characteristics, then the degree of approximation depends only on n.

This fact is at the core of our asymptotic result: once n is sufficiently large,

equilibria will have nice properties.

Proof of Theorem 1. Let X be a finite set and K be an equicontinuous

subset of U . Let ε ≥ 0 and let G = (([0, 1], λ), V, X) be a game with a

continuum of players such that V ([0, 1]) is a finite subset of K. Let β =

λ ◦ V −1. Let supp(β) = {V1, . . . , VL}.
(Necessity) Let ξ be an ε – equilibrium distribution over actions of G and

let µ be an ε – equilibrium distribution of G such that ξ = µX . We can

represent µ as follows:

µ1,1 µ1,2 · · · µ1,m

µ2,1 µ2,2 µ2,m

...

µL,1 µL,2 µL,m

ξ1 ξ2 ξm
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Note that
∑m

i=1 µl,i = βl for all 1 ≤ l ≤ L. Since µ is an ε – equilibrium

distribution, it follows that if µl,i > 0 then

Vl(xi, ξ) ≥ Vl(x, ξ)− ε (6)

for all x ∈ X.

Let Gn be a game with a finite number of players such that Vn(Tn) is a

subset of V ([0, 1]). For all 1 ≤ l ≤ L, let Tn,l = {t ∈ Tn : Vn(t) = Vl} and

γn,l = |Tn,l|. Then, γn = (γn,1, . . . , γn,L) is such that γn/n = νn ◦ V −1
n .

Let 1 ≤ l ≤ L be given. Define

Sl = {ei : µl,i > 0} ,

where E = {e1, . . . , em} is the standard basis of Rm. Define St = Sl if t ∈ Tn,l.

If γn,l > 0, it follows that, Sl ⊆ 1
γn,l

∑
t∈Tn,l

St. Also, we have that

µl

βl

=

(
µl,1

βl

, . . . ,
µl,m

βl

)
∈ co(Sl)

and so

µl

βl

∈ co


 1

γn,l

∑
t∈Tn,l

St


 =

1

γn,l

∑
t∈Tn,l

co(St).

Define

τ =
L∑

l=1

γn,l

n

µl

βl

=
∑

l:γn,l>0

γn,l

n

µl

βl

. (7)

Then, for all 1 ≤ i ≤ m, it follows that

|µi − τi| ≤
L∑

l=1

µl,i

βl

∣∣∣γn,l

n
− βl

∣∣∣ ≤
∥∥∥β − γn

n

∥∥∥ ,

and so

‖ξ − τ‖ ≤
∥∥∥β − γn

n

∥∥∥ . (8)
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Hence, by Lemma 1,

ρ(ξ, τ) ≤ m
∥∥∥β − γn

n

∥∥∥ . (9)

Furthermore,

τ ∈
∑

l:γn,l>0

γn,l

n

1

γn,l

∑
t∈Tn,l

co(St) =
1

n

∑
t∈Tn

co(St).

Thus, by the Shapley-Folkman Theorem (see Rashid (1983, p. 9)), it follows

that there are n points (αt)t∈Tn such that αt ∈ co(St), for all t ∈ Tn,

τ =
1

n

∑
t∈Tn

αt

and

|{t ∈ Tn : αt 6∈ St}| ≤ m.

Let 1 ≤ l ≤ L and define Pn = {t ∈ Tn : αt ∈ E}. Define a strategy fn

as follows: if t ∈ Pn, then let ei be such that αt = ei and define fn(t) = xi;

if t ∈ P c
n := Tn \ Pn and Vt = Vl, choose 1 ≤ i ≤ m such that µl,i > 0 and

define fn(t) = xi. By (6), it follows that

Vt(fn(t), ξ) ≥ Vt(x, ξ)− ε

for all t ∈ Tn and x ∈ X.

Let σ = νn ◦ f−1
n . We claim that

||τ − σ|| ≤ m

n
. (10)

Let 1 ≤ i ≤ m. We have that

σi =
∑
t∈Pn

αt(i)

n
+

∑

t∈P c
n∩f−1

n (xi)

1

n

14



and

τi =
n∑

t=1

αt(i)

n
.

Therefore, letting χf−1(xi) denote the characteristic function of f−1(xi), we

obtain that

|τi − σi| = 1

n

∣∣∣∣∣∣
∑
t∈P c

n

(
αt(i)− χf−1(xi)

)
∣∣∣∣∣∣
≤ 1

n

∑
t∈P c

n

∣∣αt(i)− χf−1(xi)

∣∣ ≤ m

n
(11)

and so ||τ − σ|| ≤ m/n.

Since νn ◦ f−1 = σ and ‖ξ − τ‖ ≤ ‖β − γn/n‖, then ‖νn ◦ f−1 − ξ‖ ≤
‖β − γn/n‖ + m/n. This establishes assertion 2 in the statement of the

Theorem.

By Lemma 1, ρ(τ, νn ◦ f−1
n ) ≤ m2/n since νn ◦ f−1

n = σ. Also, by Lemma

2, it follows that

ρ(νn ◦ f−1
n , νn ◦ (fn \t x)−1) ≤ 1

n

for all t ∈ Tn and x ∈ X. Hence, using (9), it follows that

ρ(νn ◦ f−1
n , ξ) ≤ m

∥∥∥β − γn

n

∥∥∥ +
m2

n
(12)

and

ρ(νn ◦ (fn \t x)−1, ξ) ≤ m
∥∥∥β − γn

n

∥∥∥ +
m2 + 1

n
. (13)

For convenience, let θ = m
∥∥β − γn

n

∥∥ + m2+1
n

. Hence, for all t ∈ Tn and

x ∈ X, we obtain

Vt(fn(t), νn ◦ f−1
n ) ≥ Vt(fn(t), ξ)− ωK(θ)

≥ Vt(x, ξ)− ε− ωK(θ)

≥ Vt(x, νn ◦ (fn \t x)−1)− ε− 2ωK(θ).

(14)

15



Therefore, fn is a pure ε + 2ωK(m‖β− γn/n‖+ (m2 + 1)/n) – equilibrium of

Gn.

(Sufficiency) Let ξ be a distribution over X satisfying the condition. Let

{qn} ⊆ QL
+ be such that qn → β. Consider first the case in which there exists

γn = (γn,1, . . . , γn,L) ∈ NL such that qn = γn/n, for all n ∈ N. Define, for all

n, a game Gn = ((Tn, νn), Vn, X) where Vn satisfies |{t ∈ Tn : Vn(t) = Vl}| =
γn,l for all 1 ≤ l ≤ L.

For all n, let fn satisfy 1 and 2. Consider the sequence {νn ◦ (Vn, fn)−1}.
Taking a subsequence if necessary, we may assume that it converges. Let

µ = limn νn ◦ (Vn, fn)−1. Then, µU = β = λ ◦ V −1 and µX = ξ since,

respectively, νn ◦ V −1
n = γn/n and ||νn ◦ f−1

n − ξ|| ≤ ||β − γn/n||+ m/n → 0.

Since νn ◦ (Vn, fn)−1 converges to µ, fn is an ε + 2ωK(m
∥∥β − γn

n

∥∥ + m2+1
n

) –

equilibrium of Gn and limn(m
∥∥β − γn

n

∥∥+ m2+1
n

) = 0, it follows, by Lemma 5,

that µ is an ε – equilibrium distribution of G. Thus, ξ is an ε – equilibrium

distribution over action of G.

We turn now to the general case. For all n ∈ N, there exists αn ∈ NL

and mn ∈ N such that qn = αn/mn and {mn}n is increasing. Consider a

sequence {σk/k} satisfying σk = αn if k = mn. Defining a game Gk as above,

we obtain a strategy fk satisfying 1 and 2, for all k ∈ N. Then, we consider

the subsequence {νkj
◦ (Vkj

, fkj
)−1}j, where kj = mj for all j ∈ N. Then,

νkj
◦ V −1

kj
converges to β, and we can use a similar argument as above.
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4 Existence of Pure, Approximate Equilibria

in Large, Equicontinuous Games

In this section we state our asymptotic result. It says that all sufficiently large

games have a pure ε – equilibrium, provided that players’ payoff functions

are selected from an equicontinuous family.

Theorem 2 Let K be an equicontinuous subset of U . Then, for all ε > 0

there exists N ∈ N such that n ≥ N and Vn(Tn) ⊆ K implies that Gn ∈ H
has a pure ε – equilibrium.

Theorem 2 is an approximation result: it guarantees the existence of an

approximate equilibrium in pure strategies if the game is sufficiently large.

Essentially, we are approximating not only pure strategy Nash equilibria, but

also games with a continuum of players, in which the conclusion of Theorem

2 holds exactly. This is how we proceed: we associate, to any sufficiently

large finite game, a game with a continuum of players having the same dis-

tribution of payoff functions. By Mas-Colell’s existence theorem, we obtain

an equilibrium distribution. An important lemma (Lemma 4 in Appendix

A.1) then shows that there exists an approximate equilibrium with finite sup-

port. We then restrict players to this finite set of actions, and since the set

of players characteristic is a finite subset of an equicontinuous family, we can

apply Theorem 1 to this approximate equilibrium. In this way, we construct

a pure approximate equilibrium for the original finite game.

Proof of Theorem 2. Let ε > 0. Let δ > 0 be such that ωK(δ) < ε/3

and let {x1, . . . , xm} ⊆ X be given by Lemma 4 and corresponding to η =
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min{ε/3, δ}. Finally, let N ∈ N be such that ωK(m2+1
n

) < ε/3 and 1/n < δ

for all n ≥ N .

Let Gn be a game in H with n ≥ N . Consider the following game

with a continuum of players: G = (([0, 1], λ), V, X) where V (t) = Vn(i) if

t ∈ Ti := [ i−1
n

, i
n
) for 1 ≤ i ≤ n−1 and V (t) = Vn(n) if t ∈ Tn = [n−1

n
, 1]. Note

that λ◦V −1 = νn◦V −1
n . Since V ([0, 1]) is finite and is a subset of K, it follows

by Lemma 4 that G has ε/3 – equilibrium f with f([0, 1]) ⊆ {x1, . . . , xm}.
By Theorem 1, there exists a ε/3+ωK((m2+1)/n) – equilibrium fn of the

game ((Tn, νn), Vn, {x1, . . . , xm}). Let t ∈ Tn and x ∈ X. Then, there exists

xi ∈ {x1, . . . , xm} such that d(x, xi) < δ. Note that ρ(νn ◦ (fn \t xi)
−1, νn ◦

(fn \t x)−1) < 1/n < δ. Hence,

Vt(fn(t), νn ◦ f−1
n ) ≥ Vt(xi, νn ◦ (fn \t xi)

−1)−
(

ε

3
+ ωK

(
m2 + 1

n

))

≥ Vt(x, νn ◦ (fn \t x)−1)−
(

ε

3
+ ωK

(
m2 + 1

n

)
+ ωK(δ)

)

> Vt(x, νn ◦ (fn \t x)−1)− ε.

(15)

Therefore, fn is an ε – equilibrium of Gn.

Theorem 2 is clearly related to Mas-Colell’s, which states that an equi-

librium exists for all games with a continuum of players.

Theorem 3 (Mas-Colell) An equilibrium distribution exists for all games

µ ∈M(U).

In fact, our construction shows that Theorem 2 is a consequence of Mas-

Colell’s existence theorem. But more is true: as Theorem 4 below shows, the

two results are equivalent. This implies that Theorem 2 is the asymptotic

version of Mas-Colell’s existence theorem.
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Theorem 4 Theorem 2 holds if and only if Theorem 3 holds.

The equivalence between the two results means that they are simply two

different ways of expressing the same phenomenon: the existence of pure

strategy Nash equilibria can be addressed either in its exact version in games

with a continuum of players or in an approximate version in large, equicon-

tinuous games. This result clearly stresses the relation between equilibrium

distributions of games with a continuum of players and approximate equilib-

ria of large finite games.

Proof of Theorem 4. Since we have established Theorem 2 using

Theorem 3 (which is essential to Lemma 4), it is enough to show that we can

prove Theorem 3 with Theorem 2.

Let µ be a game with a continuum of players. Then, by Parthasarathy

(1967, Theorem II.6.3, p.44), there exists a sequence {µk} ⊆ M(U) such that

µk converges to µ, supp(µk) is finite and µk({v}) ∈ Q for all v ∈ supp(µk).

Let supp(µk) = {V 1
k , . . . , V Lk

k }, where V l
k ∈ U for all 1 ≤ l ≤ Lk and

βl
k

tk
= µk({V l

k}). (16)

Let k ∈ N be fixed. Then {V l
k}1≤l≤Lk

is an equicontinuous subset of U .

Define the following set of games Gγtk = ((Tγtk , νγtk), Vγtk , X) for all γ ∈ N.

That is, Gγtk has γtk players, each has X as his choice set and their payoff

functions are defined in the following way: Vγtk : Tγtk → U is such that it

associates V l
k to γβl

k players, for all 1 ≤ l ≤ Lk.

By Theorem 2, Gγktk has a 1/k – equilibrium fγktk : Tγktk → X if γk is

sufficiently large. Let τk = νγktk ◦ (Vγktk , fγktk)
−1 ∈ M(U × X). We may

assume that γktk > k, by choosing γk large enough.
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Since τU ,k converges to µ, it follows that {µ, τU ,1, τU ,2, . . .}, and so {τU ,k}k

is tight by Hildenbrand (1974, Theorem 32 and 33, p. 49 and 50). Also,

since M(X) is compact, then {τX,1, τX,2, . . .} is tight by Hildenbrand (1974,

Theorem 34, p. 50). Thus, {τk}k is tight (Hildenbrand (1974, Theorem 35,

p. 50)) and, taking a subsequence if necessary, we may assume that {τk}
converges (Hildenbrand (1974, Theorem 31, p. 49)). Let τ = limk τk. Then,

by Lemma 5 it follows that τ is an equilibrium distribution of τU = µ.

Another aspect that stresses the asymptotic nature of Theorem 2 is that

it requires a class of payoff functions for which an equilibrium is sure to

exist whenever the game has a continuum of players. In particular, it is

false for games in which players have general payoff functions. As a simple

example, consider ε = 1/4, and the following games Gn with X = {H, T}
and n ≥ 2: players 1 and 2 play the matching pennies (see Table 1), while

the remaining players are indifferent between all strategies (i.e., Un(t)(f) = 0

for all strategies f).

1\2 H T

H 1,−1 −1, 1

T −1, 1 1,−1

Table 1: Payoff Function for the Matching Pennies

Then, if f is a pure strategy, it follows that at least one of players 1 and

2 is not 1/4 – optimizing. This implies that f cannot be a 1/4 – equilibrium.

Therefore, Gn has no pure, 1/4 – equilibrium for all n ≥ 2.

20



5 Games based on the Averages of Individual

Choices

Khan and Sun (1999) also consider the case in which the action space is

endowed with a linear structure and each player’s payoff depends only on his

choice and on the average of players’ choices. In this section, we establish

an existence result for this case, as well. In particular, we show that an

approximate equilibrium exists in all equicontinuous, and sufficiently large

games if

1. the action space is a weakly compact subset of a separable Banach

space and the average is a Bochner integral,

2. the action space is a norm compact subset of a Banach space and the

average is again a Bochner integral,

3. the action space is a weak* compact subset of the dual of a separable

Banach space and the average is a Gel’fand integral and

4. the action space is a denumerable subset of R∞.

We emphasize that these results are obtained as corollaries of Theorem

2. Although a direct argument is possible, this highlights the additional

generality of considering games in which each player’s payoff depends on

the distribution of players’ choices when compared with games in which it

depends only on the average of players’ choices.
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5.1 Bochner Integral with the Weak Topology

In this subsection, assume that X is a weakly compact subset of a separable

Banach space B. Let co(X) denote the closed convex hull of X, which is also

weakly compact (see Diestel and Uhl (1977, Theorem 11, p. 51)). It follows

from Dunford and Schwartz (1957, Theorem V.6.3, p. 434) that both X

and co(X) are metrizable. Finally, let Uw be the space of weakly continuous

real-valued functions on X × co(X) endowed with the sup norm.

If f : Tn → X is a pure strategy in a game with n players, let
∫

Tn
fdνn

denote its Bochner integral. Clearly,
∫

Tn

fdνn =
1

n

n∑
t=1

f(t) ∈ co(X).

In this case, we associate to each player t a weakly continuous function Vn(t) :

X × co(X) → R and define player t’s payoff function as

Un(t)(f) = Vn(t)

(
f(t),

∫

Tn

fdνn

)
, (17)

for any strategy f : Tn → X. We denote this class of games by Hw.

Corollary 1 Let K be an equicontinuous subset of Uw. Then, for all ε > 0

there exists N ∈ N such that n ≥ N and Vn(Tn) ⊆ K implies that Gn ∈ Hw

has a pure ε – equilibrium.

5.2 Bochner Integral with the Norm Topology

In this subsection, assume that X is a norm compact of a Banach space B.

Then, co(X) is also norm compact (see Diestel and Uhl (1977, Theorem 12,

p. 51)). We let Unorm be the space of norm continuous real-valued functions

on X × co(X) endowed with the sup norm.
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Finally, we let Hnorm be the class of games defined as in Subsection 5.1,

except that now players’ payoff functions belong to Unorm (and X is norm

compact).

As in Khan, Rath, and Sun (1997), Corollary 1 also applies to the case of

norm compact action spaces. Note that X is weakly compact. Thus, since

norm continuous functions on norm compact sets are weakly continuous, we

obtain the following existence result.

Corollary 2 Let K be an equicontinuous subset of Unorm. Then, for all

ε > 0 there exists N ∈ N such that n ≥ N and Vn(Tn) ⊆ K implies that

Gn ∈ Hnorm has a pure ε – equilibrium.

5.3 Gel’fand Integral

In this subsection, let B∗ be the dual of a separable Banach space B and

assume that X is a weak* compact subset of B∗. Then, co(X) is also weak*

compact. It follows from Rudin (1971, Theorem 3.16, p. 70) that both X

and co(X) are metrizable. Finally, let Ug be the space of weak* continuous

real-valued functions on X × co(X) endowed with the sup norm.

If f : Tn → X is a pure strategy in a game with n players, let
∫

Tn
fdνn

denote its Gel’fand integral. Clearly,

∫

Tn

fdνn =
1

n

n∑
t=1

f(t) ∈ co(X).

We associate to each player t a weak* continuous function Vn(t) : X ×
co(X) → R and define player t’s payoff function as

Un(t)(f) = Vn(t)

(
f(t),

∫

Tn

fdνn

)
, (18)
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for any strategy f : Tn → X. We denote this class of games by Hg.

Corollary 3 Let K be an equicontinuous subset of Ug. Then, for all ε > 0

there exists N ∈ N such that n ≥ N and Vn(Tn) ⊆ K implies that Gn ∈ Hg

has a pure ε – equilibrium.

5.4 Games with Denumerably Many Actions in R∞

In this subsection, we consider the class of games defined in Section 5 of

Khan, Rath, and Sun (1997). Let R∞ be the space of all real sequences

equipped with the product topology. The standard basis vectors are denoted

by {ei}∞i=1. We let the space of actions be X = {ei}∞i=0 with e0 ≡ 0. Again,

co(X) denotes the closed convex hull of X, which is equal to the set of all

sequences of real numbers chosen from the closed unit interval. Finally, let

U∞ be the space of continuous real-valued functions on X × co(X) endowed

with the sup norm.

The following definitions are from Khan, Rath, and Sun (1997). If (T, T , ν)

is a probability space, then a function f : T → R∞ is measurable if f−1({ei}) ∈
T . In this case, ∫

T

fdν =
∞∑
i=1

eiν(f−1({ei})).

In particular, if µ ∈M(X), then
∫

X
idµ =

∑∞
i=1 eiµ({ei}) and so we trivially

obtain the following change of variable formula:
∫

T

fdν =

∫

X

idν ◦ f−1.

Furthermore, if j ∈ N and πj : R∞ → R is the projection onto the jth

coordinate, then πj is a simple function and its Lebesgue integral is
∫

X
πjdµ =

µ({ej}).
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If f : Tn → X is a pure strategy in a game with n players, then, clearly,

∫

Tn

fdνn =
1

n

n∑
t=1

f(t) ∈ co(X).

In this case, we associate to each player t a continuous function Vn(t) :

X × co(X) → R and define player t’s payoff function as

Un(t)(f) = Vn(t)

(
f(t),

∫

Tn

fdνn

)
, (19)

for any strategy f . We denote this class of games by H∞.

Corollary 4 Let K be an equicontinuous subset of U∞. Then, for all ε > 0

there exists N ∈ N such that n ≥ N and Vn(Tn) ⊆ K implies that Gn ∈ H∞

has a pure ε – equilibrium.

6 Mixed Strategies

In this section, we allow players to choose mixed strategies. In this context,

a mixed strategy for a player is a Borel probability measure on the set of his

pure strategies. Thus, a mixed strategy is a function f : Tn →M(X), while

a pure strategy is a function g : Tn → X. Note that a pure strategy can

be seen as a mixed strategy, simply by associating X with the degenerate

probability measures on X.

Given a strategy f in a game with n players, the distribution of players’

choices is νn ◦ f−1, now an element of M(M(X)). Consequently, players’

payoff functions are elements of Um, which we use to denote the space of all

continuous, real valued functions on X ×M(M(X)).
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As in Section 2, we associate to each player a function Vn(t) : X ×
M(M(X)) → R with the following interpretation: Vn(t)(x, µ) is player t’s

payoff when he plays action x and facing the distribution µ. Then, for any

strategy f , player t’s payoff function is

Un(t)(f) =

∫

X

Vn(t)(x, νn ◦ f−1)dft(x). (20)

We let Hm denote this class of games.

Since M(X) is (homeomorphic to) a closed subset of M(M(X)), then

each game Gn in which mixed strategies are allowed induces a game G̃n in H
simply by restricting players’ payoff functions to X ×M(X). Furthermore,

if K ⊆ Um is equicontinuous, then K̃ ⊆ U defined by restricting the domain

in this way is also equicontinuous. Thus, for all K ⊆ Um and all ε > 0, if n is

sufficiently large, then G̃n has a pure strategy ε/3 – equilibrium f : Tn → X.

It is easy to see that f is also an ε – equilibrium of Gn since for every t ∈ Tn

and f̃t ∈M(X),

Vn(t)(f(t), νn ◦ f−1) ≥
∫

X

Vn(t)(x, νn ◦ f−1)df̃t(x)− 2ε

3

≥
∫

X

Vn(t)(x, νn ◦ (f \t f̃t)
−1)df̃t(x)− ε.

(21)

Note that both inequalities hold since Vn(Tn) is a subset of an equicontinuous

family in Um and if n is sufficiently large to imply that the change from

νn ◦ (f \t x)−1 to νn ◦ f−1 and from νn ◦ f−1 to νn ◦ (f \t f̃t)
−1, respectively,

produces at most a change of ε/3 in players’ payoffs. Thus, we obtain the

following existence result.

Theorem 5 Let K be an equicontinuous subset of Um. Then, for all ε > 0

there exists N ∈ N such that n ≥ N and Vn(Tn) ⊆ K imply that Gn ∈ Hm

has a pure ε – equilibrium.
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An interesting question that arises once we consider mixed strategy is if

all Nash equilibria can be approximately purified. In Carmona (2005a), we

show that the answer is no.

7 On the Need for Equicontinuity

In this section, we show that in general, we cannot obtain a pure strategy

Nash equilibrium even in equicontinuous large games. The exact version of

Theorem 2 (i.e., with ε = 0) therefore holds only in the limit case of games

with a continuum of players. As an easy consequence, we also show that it is

not possible to dispense with the equicontinuity assumption used in Theorem

2.

The idea of the example is simple: each player has two actions, zero or

one, to choose from. Player 1 wants to mismatch the average (if everyone

else chooses 1, he prefers 0, and vice versa), while player 2 wants to match.

For half of the remaining players, 0 is the dominant strategy, while 1 is the

dominant strategy for the other half. This last condition forces the average

to close to 1/2 and pins down the behavior of all the players, except for

players 1 and 2. At this point, we are in a matching pennies situation: if

a strategy prescribes different actions for them, then player 2 would like to

deviate to match player 1’s choice; if a strategy prescribes the same action

for both of them, then player 1 would like to deviate to mismatch player 2’s

choice. Hence, no pure equilibrium can exist.

Here are the details. Let n ≥ 4 be even. Let Tn = {1, . . . , n} be par-

titioned into four sets: Tn,1 = {1}, Tn,2 = {2}, Tn,3 and Tn,4 satisfying
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|Tn,3| = |Tn,4| = n/2− 1.

Let X = {0, 1}. Let i : X → X be the identity function, νn be the

uniform measure on Tn and µ ∈M(X).

Let αn = 1 (below, we will change it). Define payoff functions as follows:

Vn(1)(x, µ) = αn(−1)x

(∫

X

idµ− 1

2

)
. (22)

For player 2, define Vn(2)(x, µ) = −Vn(1)(x, µ).

Define

W3(x, µ) =





10 if x = 1

0 if x = 0.
(23)

and W4 = −W3. For a player t ∈ T3, let Vn(t) = W3, while for a player t ∈ T4

let Vn(t) = W4.

Let Gn be as defined above whenever n ≥ 4 is even. In the other case,

define Gn by setting Vn(t) = V3 for all t ∈ Tn.

Note that if f : Tn → X is a strategy then

∫

X

idνn ◦ f−1 =
n∑

t=1

f(t)

n
.

We claim that if n ≥ 4 is even, then Gn has no pure strategy Nash equilib-

rium. We prove the above claim by contradiction. Let f be a Nash equilib-

rium. Then,

f(t) =





1 if t ∈ T3

0 if t ∈ T4.
(24)

Regarding f(1) and f(2), we consider the four possible cases.

Case 1 is when f(1) = 1 and f(2) = 0. In this case,

n∑
t=1

f(t)

n
=

1

2
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and
n∑

t=1

(f \2 1)(t)

n
=

1

2
+

1

n
.

Therefore, Vn(2)(f(2), νn◦f−1) = 0 and Vn(2)(1, νn◦(f\21)−1) = αn

(
1
2

+ 1
n
− 1

2

)
.

Hence,

Vn(2)(1, νn ◦ (f \2 1)−1)− Vn(2)(f(2), νn ◦ f−1) =
αn

n
=

1

n
> 0, (25)

a contradiction.

Case 2 is when f(1) = 0 and f(2) = 1. Then,
∑n

t=1
f(t)
n

= 1
2

and
∑n

t=1
(f\20)(t)

n
= 1

2
− 1

n
. Therefore, Vn(2)(0, νn ◦ (f \2 0)−1)− Vn(2)(f(2), νn ◦

f−1) = αn

n
= 1

n
> 0, a contradiction.

Case 3 is when f(1) = f(2) = 0. In this case,
∑n

t=1
f(t)
n

= n/2−1
n

= 1
2
− 1

n

and
∑n

t=1
(f\11)(t)

n
= 1

2
. Therefore, Vn(1)(1, νn ◦ (f \1 1)−1)− Vn(1)(f(1), νn ◦

f−1) = αn

n
= 1

n
> 0, a contradiction.

Finally, we consider the case f(1) = f(2) = 1. In this case,
∑n

t=1
f(t)
n

=

n/2−1+2
n

= 1
2
+ 1

n
and

∑n
t=1

(f\10)(t)
n

= 1
2
. Therefore, Vn(1)(0, νn ◦ (f \1 0)−1)−

Vn(1)(f(1), νn ◦ f−1) = αn

n
= 1

n
> 0, a contradiction. This proves the claim.

Note that the family of payoff functions used, which equals

{V1(1), V1(2),W3, W4},

is equicontinuous. But, despite this, we cannot guarantee the existence of a

pure strategy Nash equilibrium, even if n is large.

This example can be easily modified to show that the conclusion of Theo-

rem 2 fails, if we drop the equicontinuity assumption. Simply define αn = 2n,

for all n ∈ N. Similarly to what we have done above, we can show that, if

29



n ≥ 4 is even, then Gn has no pure 1 – equilibrium.2

Note that, in this case, the family of payoff functions is equal to

{V3, V4}
⋃
∪∞n=1{Vn(1), Vn(2)}.

Since limn→∞ αn = ∞, it follows that it is not equicontinuous. This accounts

for the failure of the conclusion of Theorem 2.

8 Relation with Khan and Sun (1999)

Khan and Sun (1999) stated an asymptotic existence theorem for large games

based on non-standard methods. For the class of games we consider here,

they state the following result: Let {Gn}∞n=1 ⊆ H be a tight sequence of

games (i.e., the sequence {νn ◦ V −1
n }∞n=1 ⊆ M(U) is tight). Then, for all

ε > 0 there exists N ∈ N such that for all n ≥ N there exists f : Tn → X

such that for all t ∈ Tn and all x ∈ X,

Vn(t)(f(t), νn ◦ f−1) ≥ Vn(t)(x, νn ◦ f−1)− ε. (26)

However, we can modify the example presented in Section 7 to show that

this statement is false.3

2Again, we assume that a 1 – equilibrium exists. Then, players in T3 must play 1 and

players in T4 must play 0. We then consider the four possible case for players 1 and 2.

The above formulas show that there is at least one player whose gain from deviation is

αn/n = 2 > 1, which is a contradiction.
3The reason we need to modify the example is that our equilibrium notion is different

than theirs. Theirs assumes that a player’s deviation does not affect the distribution of

actions. Note that the family of payoff functions used in our second example in Section 7

(i.e., when αn = 2n) is tight, and so it also shows that the above conclusion fails for our

equilibrium concept.
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The difficulty with the statement in Khan and Sun (1999) is that there is

a small fraction of players whose payoff function might be extremely sensitive

to small changes in the distribution of choices. Thus, we cannot guarantee

that those players are almost optimizing.

This suggests that their result is valid if we define approximate equilibria

by requiring that a large fraction of players is almost optimizing. Formally,

for all ε, η ≥ 0, a strategy f is an (ε, η) – equilibrium of Gn if

|{t ∈ Tn : Un(t)(f) ≥ Un(t)(f \t x)− ε for all x ∈ X}|
n

≥ 1− η. (27)

Regarding this notion, we obtain the following existence result.4

Theorem 6 Let Γ ⊆ H be a tight family of games. Then, for all ε > 0 and

η > 0 there exists N ∈ N such that n ≥ N and implies that Gn ∈ Γ has a

pure (ε, η) – equilibrium.

This is the correct statement of Kahn and Sun’s result, which was also

pointed out by Sun (2005). This result is, however, equivalent to our Theorem

2.5

Theorem 7 Theorem 2 holds if and only if Theorem 6 holds.

Of course, this implies that Kahn and Sun’s theorem is also equivalent

to Mas-Colell’s. In fact, this is how we prove the above result: it is easier to

compare both our Theorem 2 and Kahn and Sun’s with Mas-Colell’s than to

compare them directly. As is typically the case, non-atomic games are easier

to study and are, therefore, useful even when one is only interested in large

finite games.

4Its proof is a simple variation of that of Theorem 2 and is presented in Appendix A.4.
5Its proof is a simple variation of that of Theorem 4 and is presented in Appendix A.5.
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9 Concluding Remarks

The main objective of this paper is to argue for Mas-Colell’s formalization

of the equilibrium theory of large games in terms of distributions. We follow

his approach and show that:

1. for any equicontinuous family of payoff functions and any ε > 0, all

sufficiently large games have a pure ε – equilibrium;

2. the above asymptotic result is equivalent to Mas-Colell’s and

3. it is also equivalent to Khan and Sun’s.

Therefore, we can construct an equilibrium theory of large finite games using

Mas-Colell’s model, which is as rich as the one developed by Kahn and Sun

(and as rich as the theory obtained by Mas-Colell for games with a continuum

of players). To put it differently, the existence of pure strategy Nash equilibria

in games with a continuum of players can be studied equivalently to the

existence of pure approximate equilibria in large, equicontinuous games.

These results provide an additional example of the type of results showing

that approximate equilibria of finite games have the same, or approximately

the same, properties as equilibria of continuum games. In this way, it stresses

the close relationship between equilibria of games with a continuum of players

and approximate equilibria of games with a finite number of players.
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A Appendix

A.1 Lemmata

In this appendix, we prove several results needed for our main results. Lemma

1 deals with measures with a finite support, which can be thought of as a

vector in some Euclidean space. Roughly, Lemma 1 says that the Prohorov

distance between two measures whose support is contained in some finite set

is proportional to their Euclidean distance.

Lemma 1 Let τ, µ ∈ M(X) be such that supp(τ) ∪ supp(µ) ⊆ Ψ, where Ψ

is a finite set. If there exists ε > 0 such that |τl− µl| ≤ ε for all 1 ≤ l ≤ |Ψ|,
then ρ(τ, µ) ≤ |Ψ|ε.

Proof. Let ε > 0 and B ⊆ X be Borel measurable. Then,

τ(B) =
∑

l∈Ψ∩B

τl ≤
∑

l∈Ψ∩B

(µl + ε) ≤
∑

l∈Ψ∩B

µl + |Ψ|ε ≤

µ(B|Ψ|ε(B)) + |Ψ|ε.

(28)

Similarly, we can show that µ(B) ≤ τ(B|Ψ|ε(B)) + |Ψ|ε. This implies that

ρ(τ, µ) ≤ |Ψ|ε.
Lemma 2 shows that in large games, deviations by a small fraction of

players have a small impact on the distribution of actions.

Lemma 2 Let Gn ∈ H be a game and let f and g be strategies. If

|{t ∈ Tn : f(t) 6= g(t)}|
n

≤ γ, (29)
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then

ρ(νn ◦ f−1, νn ◦ g−1) ≤ γ. (30)

Proof. Let µ = νn ◦ f−1 and τ = νn ◦ g−1. Let B ⊆ X be Borel

measurable. Then,

τ(B) =
|{t : g(t) ∈ B}|

n
≤|{t : f(t) ∈ B}|

n
+
|{t : f(t) 6= g(t)}|

n
=

µ(B) +
|{t : f(t) 6= g(t)}|

n
≤

µ(Bγ(B)) + γ.

(31)

Similarly, we can show that µ(B) ≤ τ(Bγ(B))+γ. This implies that ρ(τ, µ) ≤
γ.

In particular, we have that ρ(νn◦f−1, νn◦(f\tx)−1) ≤ 1/n for all strategies

f , players t ∈ Tn and actions x ∈ X.

Lemma 3 establishes the existence of an approximate equilibrium distri-

bution with finite support for games with finitely many characteristics.

Lemma 3 Suppose that µ ∈ M(U) has finite support and let τ be an equi-

librium distribution of µ. Then, there exists a sequence {τk}∞k=1 ⊆M(U×X)

such that

1. τk converges to τ ,

2. τU ,k = µ for all k,

3. τX,k has finite support for all k,

4. supp(τk) ⊆ supp(τ) for all k and
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5. for all ε > 0, there exists K ∈ N such that

τk ({(u, x) : u(x, τX,k) ≥ u(X, τX,k)− ε}) = 1,

for all k ≥ K.

Proof. Let supp(µ) = {u1, . . . , un}. Letting Di = {x ∈ X : (ui, x) ∈
supp(τ)} for all 1 ≤ i ≤ n, the fact that τU = µ readily implies that

supp(τ) = ∪n
i=1({ui} ×Di). This follows because supp(τ) ⊆ ∪n

i=1({ui} ×X)

since ∪n
i=1({ui} ×X) is closed and τ(∪n

i=1({ui} ×X)) =
∑n

i=1 τU({ui}) = 1.

For all 1 ≤ i ≤ n, define ci = µ({ui}) and

τi(B) = τ({ui} × B)/ci

for all Borel subsets B of X. For latter use, we claim that

supp(τ) = ∪n
i=1 ({ui} × supp(τi)) .

Since ∪n
i=1 ({ui} × supp(τi)) is closed and

τ (∪n
i=1 ({ui} × supp(τi))) =

∑
i

τ({ui} × supp(τi)) =
∑

i

ciτi(supp(τi)) = 1,

it follows that supp(τ) ⊆ ∪n
i=1 ({ui} × supp(τi)). Conversely, recall that

supp(τ) = ∪n
i=1{ui} ×Di. Since supp(τ) is closed, one easily sees that Di is

closed. Furthermore,
∑n

i=1 τ({ui}×Di) = τ(supp(τ)) = 1 and τ({ui}×Di) ≤
τ({ui}×X) = ci imply that τ({ui}×Di) = ci, that is, τi(Di) = 1. Therefore,

supp(τi) ⊆ Di and so, {ui}× supp(τi) ⊆ {ui}×Di. Finally, one obtains that

∪n
i=1 ({ui} × supp(τi)) ⊆ ∪n

i=1 ({ui} ×Di) = supp(τ).

The measure τi can be thought of as a measure in supp(τi), a closed

(and therefore, compact) subset of X. Then, there exists a sequence {τi,k}k

35



such that supp(τi,k) is a finite subset of supp(τi) and τi,k converges to τi in

supp(τi). Since supp(τi) is closed in X, then, by Lemma 6, we have that τi,k

converges to τi in X.

Let C be a Borel measurable subset of U ×X. Then, let Bi = {x ∈ X :

(ui, x) ∈ C} and define

τk(C) =
n∑

i=1

ciτi,k(Bi).

Note that τU ,k({ui}) = ci for all 1 ≤ i ≤ n and so τU ,k = µ for all k.

Also, it is clear that τX,k has finite support for all k. Furthermore, since

τk({(ui, x)}) = ciτi,k({x}) and so τk({(ui, x)}) > 0 if and only if τi,k({x}) > 0,

it follows that

supp(τk) = ∪n
i=1 ({ui} × supp(τi,k)) .

This immediatly implies that supp(τk) ⊆ supp(τ) for all k, since supp(τi,k) ⊆
supp(τi).

We claim that τk converges to τ . This follows since, if h : U ×X → R is

continuous and bounded, then x 7→ h(ui, x) is also continuous and bounded

for all 1 ≤ i ≤ n, and so

∫

U×X

hdτk =
n∑

i=1

∫

{ui}×X

hdτk =
n∑

i=1

∫

X

h(ui, x)dτi,k(x)

→
n∑

i=1

∫

X

h(ui, x)dτi(x) =

∫

U×X

hdτ.

We finally establish property 5. For convenience, for all η ≥ 0 and σ ∈
M(U × X), let Bη

σ = {(u, x) ∈ U × X : u(x, σX) ≥ u(X, σX) − η}, and

Bσ = B0
σ if η = 0. Let ε > 0. Since Bτ is closed and τ(Bτ ) = 1, then

supp(τ) ⊆ Bτ . Hence, supp(τk) ⊆ Bτ for all k.
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Let δ > 0 be such that max{d(x, y), ρ(µ, ν)} < δ implies that |u(x, µ) −
u(y, ν)| < ε/2 for all u ∈ {u1, . . . , un}.

Let K ∈ N be such that ρ(τX,k, τX) < δ for all k ≥ K. Then, supp(τk) ∩
Bτ ⊆ supp(τk) ∩ Bε

τk
, since if (u, x) ∈ supp(τk) ∩ Bτ and y ∈ X then

u(x, τX,k) > u(x, τX) − ε/2 ≥ u(y, τX) − ε/2 > u(y, τX,k) − ε since u ∈
{u1, . . . , un}. So

τk(B
ε
τk

) = τk(supp(τk) ∩Bε
τk

) ≥ τk(supp(τk) ∩Bτ ) = τk(supp(τk)) = 1. (32)

This concludes the proof.

Lemma 4 strengthens the conclusion of Lemma 3, whenever the set of

players’ characteristics is a finite subset of an equicontinuous family. It guar-

antees the existence of a finite set of actions with the property that all the

above games have an approximate equilibrium strategy taking values in this

finite set. The strength of this result is that the finite set works uniformly

for all such games, i.e., it depends only on the equicontinuous set and on the

degree of approximation desired.

Lemma 4 Let K be an equicontinuous subset of U . Then, for all η > 0,

there exists {x1, . . . , xm} ⊆ X such that the following holds:

1. X = ∪m
i=1Bη(xi) and

2. if G = (([0, 1], λ), V, X) is such that V ([0, 1]) is finite, then there exists

a strategy g such that g([0, 1]) ⊆ {x1, . . . , xm} and

V (t)(g(t), λ ◦ g−1) > V (t)(X, λ ◦ g−1)− η

for all t ∈ V −1(K).
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Consequently, if V ([0, 1]) is a subset of K, then g is an η – equilibrium.

Proof. Let η > 0. Since K is equicontinuous, there exists δ > 0 such

that max{d(x, y), ρ(µ, ν)} < δ implies that |u(x, µ) − u(y, ν)| < η/3 for all

x, y ∈ X, µ, ν ∈M(X) and u ∈ K. We can choose δ < η.

Let {x1, . . . , xm} be such that X = ∪m
j=1Bδ/2(xj). Define B1 = Bδ/2(x1)

and Bj = Bδ/2(xj) \
(∪j

l=1Bδ/2(xl)
)
, 2 ≤ j ≤ m.

Let G be such that V ([0, 1]) is a finite subset of U . By Mas-Colell Theo-

rem, G has an equilibrium distribution. It follows from Lemma 3 that G has

an η/3 – equilibrium distribution with finite support and so a pure strategy

η/3 – equilibrium f (this follows easily from Liaponov’s Theorem (see Rudin

(1971, Theorem 5.5, p. 120))).

Define g : [0, 1] → {x1, . . . , xm} by g(t) = xj if f(t) ∈ Bj. Then, clearly

|f(t)− g(t)| < δ/2. This implies that

{t ∈ [0, 1] : g(t) ∈ D} ⊆ {t ∈ [0, 1] : f(t) ∈ Bδ/2(D)}

for all Borel measurable subsets D of X and so

λ ◦ g−1(D) ≤ λ ◦ f−1(Bδ/2(D)) + δ/2.

Similarly, one can show that λ ◦ f−1(D) ≤ λ ◦ g−1(Bδ/2(D)) + δ/2. Thus,

ρ(λ ◦ g−1, λ ◦ f−1) ≤ δ/2.

This implies that for all t ∈ V −1(K) and all x ∈ X,

V (t)(g(t), λ ◦ g−1) > V (t)(f(t), λ ◦ f−1)− η

3

≥ V (t)(x, λ ◦ f−1)− 2η

3

> V (t)(x, λ ◦ g−1)− η.

(33)
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In particular, if V ([0, 1]) ⊆ K, then g is an η – equilibrium of G.

Lemma 5 is used to draw conclusions for games with a continuum of

players from properties of large finite games. It uses the definition of (ε, η)

– equilibrium, given in Section 8. Furthermore, it considers a more general

case in which a game Gn = ((Tn, νn), Vn, X) with finitely many players has

|Tn| players (not necessarily equal to n), and νn is the uniform measure on

Tn.

Lemma 5 Let G = (([0, 1], λ), V,X) be a game with a continuum of players,

τ be a distribution on U ×X satisfying τU = λ◦V −1 and ε ≥ 0. Suppose that

{Gn}∞n=1 is a sequence of games with a finite number of players and {fn}∞n=1

is a sequence of strategies satisfying:

1. |Tn| → ∞,

2. fn is an (εn, ηn) – equilibrium of Gn,

3. εn ≥ ε, εn → ε,

4. ηn ≥ 0, ηn → 0 and

5. νn ◦ (Vn, fn)−1 converges to τ ,

then τ is an ε – equilibrium distribution of G.

Lemma 5 is slightly more general than the sufficiency part of Theorem 1

in Carmona (2004). We include its proof for the sake of completeness.

Proof. Let τn = νn ◦ (Vn, fn)−1. For all x ∈ supp(τn,X) and y ∈ X, define

τx,y
n,X as follows: τx,y

n,X(x) = τn,X(x) − 1/|Tn|, τx,y
n,X(y) = τn,X(y) + 1/|Tn| and

τx,y
n,X(x̄) = τn,X(x̄) for all x̄ in the support of τn,X that are different from x and
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from y. Let Bεn
τn

= {(u, x) ∈ supp(τn) : u(x, τn,X) ≥ u(y, τx,y
n,X)−εn for all y ∈

X}. Also, let Bε
τ = {(u, x) ∈ U ×X : u(x, τX) ≥ u(X, τX)− ε}.

Since τn converges to τ , then τX,n converges to τX . Taking a subsequence

if necessary, we can assume that |Tn| ↗ ∞, ρ(τX , τX,n) ↘ 0, εn ↘ ε and

ηn ↘ 0. Let θn = ρ(τX , τX,n) + 2/|Tn|; clearly, θn ↘ 0. Since, for all

x ∈ supp(τn,X) and y ∈ X,

ρ(τX , τx,y
n,X) ≤ ρ(τX , τX,n) + ρ(τn,X , τx,y

n,X)

≤ ρ(τX , τX,n) +
1

|Tn| ,
(34)

it follows that ρ(τX , τx,y
n,X) < θn.

Define, for each u ∈ U ,

βn(u) = sup
x∈X,ν∈M(X)

{|u(x, ν)− u(x, τX)| : ρ(ν, τX) < θn}.

Since u is continuous on X ×M(X), which is compact, it follows that u is

uniformly continuous. Thus, βn(u) ↘ 0 as n → ∞. We claim that βn is

continuous in U .

Let η > 0. Define δ < η/2. Then if ||u − v|| = supy∈X,φ∈M(X) |u(y, φ) −
v(y, φ)| < δ, we have for any x ∈ X, and ν ∈M(X) such that ρ(ν, τX) < θn

|v(x, ν)− v(x, τX)| ≤ |v(x, ν)− u(x, ν)|+ |u(x, ν) + u(x, τX)|+
+ |v(x, τX)− u(x, τX)| < δ + βn(u) + δ,

(35)

and so βn(v) ≤ 2δ + βn(u) < η + βn(u). By symmetry, βn(u) < η + βn(v),

and so |βn(u)− βn(v)| < η. Hence, βn is continuous, as claimed.

Given the definition of βn, we have that Bεn
τn
⊆ Dn := {(u, x) ∈ U ×X :

u(x, τX) ≥ u(X, τX)− εn − 2βn(u)}. Since βn is continuous, we see that Dn

is closed, and so Borel measurable. Thus, τn(Dn) ≥ 1− ηn. Also, Dn ↘ Bε
τ .
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Let n ∈ N be given. Then, if k ≥ n, it follows that τk(Dn) ≥ τk(Dk) ≥ 1−
ηk ≥ 1−ηn, and so τ(Dn) ≥ lim supj τj(Dn) ≥ 1−ηn by Parthasarathy (1967,

II.6.1(c)). Hence, τ(Bε
τ ) = limn τ(Dn) = 1. Therefore, τ is an equilibrium

distribution of G.

The following lemma shows that the convergence of a sequence of mea-

sures can be studied with respect to any closed set containing both their

support and the support of the limit measure.

Lemma 6 Let X be a metric space and µ, µn ∈M(X) for all n ∈ N. Let C

be a closed subset of X satisfying supp(µn), supp(µ) ⊆ C. Then, µn ⇒ µ in

C if and only if µn ⇒ µ in X.

Proof. (Necessity) Let h : X → R be bounded and continuous. Then

h|C is also bounded and continuous, and so

∫

C

hdµn →
∫

C

hdµ.

Thus, ∫

X

hdµn =

∫

C

hdµn →
∫

C

hdµ =

∫

X

hdµ.

It follows that µn ⇒ µ in X.

(Sufficiency) Let h : C → R be bounded and continuous. Then by the

Tietze-Urysohn extension theorem, there exists a bounded, continuous func-

tion h∗ : X → R such that h∗(x) = h(x) for all x ∈ C. Therefore,

∫

X

h∗dµn →
∫

X

h∗dµ,

and ∫

X

h∗dµ =

∫

C

h∗dµ =

∫

C

hdµ
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(and similarly,
∫

X
h∗dµn =

∫
C

hdµn for all n ∈ N). Therefore,
∫

C
hdµn →

∫
C

hdµ. It follows that µn ⇒ µ in C.

A.2 Proof of Corollaries 1, 3 and 4

The proof of each corollary follows the same idea. Hence, we will present it

only for the case of Corollary 1.

Let ε > 0. Let V ∈ K and i : X → X denote the identity function in X.

Define v : X ×M(X) → R by

v(x, µ) = V

(
x,

∫

X

idµ

)

for all x ∈ X and µ ∈M(X).

Note that i is Bochner integrable and
∫

X
idµ ∈ co(X) for all µ ∈M(X).

Furthermore, if µk converges to µ, then
∫

X
idµk converges weakly to

∫
X

idµ

and so v is continuous.

Let g : X ×M(X) → X × co(X) be defined by g(x, µ) = (x,
∫

X
idµ). In

order to apply Theorem 2, it remains to show that K̃ defined by {u ∈ U :

u = v ◦ g for some v ∈ K} is equicontinuous.

Let d denote the metric in co(X). Let ε > 0 and let δ > 0 be such that

|v(x, z)− v(y, w)| < ε whenever max{d(x, y), d(z, w)} < δ and v ∈ K.

Note that it is enough to show that there exists η > 0 such that ρ(µ, τ) < η

implies d(
∫

X
idµ,

∫
X

idτ) < δ.

Suppose, in order to reach a contradiction, that such η > 0 does not exist.

Then, for all k ∈ N there are {µk} and {τk} such that ρ(µk, τk) < 1/k and

d(
∫

X
idµk,

∫
X

idτk) ≥ δ. Since M(X) is compact, we may assume that there

exists µ such that µk converges to µ. Then, τk converges to µ and so both
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∫
X

idµk and
∫

X
idτk converge weakly to

∫
X

idµ. Hence, d(
∫

X
idµk,

∫
X

idτk) →
0, which is a contradiction.

Thus, K̃ is an equicontinuous subset of U . By Theorem 2, let N ∈ N be

such that n ≥ N implies that all games G̃n ∈ H with Ṽ (Tn) ⊆ K̃ have an ε

– equilibrium.

Let n ≥ N and Gn ∈ Hw be such that V (Tn) ⊆ K. Define G̃n ∈ H by

letting Ṽt = Vt ◦ g. Then, Ṽ (Tn) ⊆ K̃ and so there exists an ε – equilibrium

f : Tn → X. Thus,

Ṽt(f(t), νn ◦ f−1) ≥ Ṽ (x, νn ◦ (f \t x)−1)− ε

for all t ∈ Tn and x ∈ X.

Note that

Ṽt(f(t), νn ◦ f−1) = Vt ◦ g(f(t), νn ◦ f−1) = Vt

(
f(t),

∫

X

idνn ◦ f−1

)
,

Ṽt(x, νn ◦ (f \t x)−1) = Vt

(
x,

∫

X

idνn ◦ (f \t x)−1

)
,

∫

X

idνn ◦ f−1 =
1

n

n∑
t=1

f(t) =

∫

Tn

fdνn

and ∫

X

idνn ◦ (f \t x)−1 =
1

n

n∑

t̃=1

(f \t x)(t̃) =

∫

Tn

(f \t x)dνn.

Therefore,

Vt

(
f(t),

∫

Tn

fdνn

)
≥ Vt

(
x,

∫

Tn

(f \t x)dνn

)
− ε, (36)

and so f is an ε – equilibrium of Gn.
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A.3 Example for Section 8

Let n ≥ 4 be even. Let Tn = {1, . . . , n} be partitioned into four sets: Tn,1 =

{1}, Tn,2 = {2}, Tn,3 and Tn,4 satisfying |Tn,3| = |Tn,4| = n/2− 1.

Let X = {0, 1}. Let i : X → X be the identity function, νn be the

uniform measure on Tn and µ ∈M(X).

Let γ > 1,
1

1 + 2/n
< βn < 1

and

αn = max

{
2

βn + 2βn/n− 1
,

2

1− βn + 2βn/n
,

2

1− βn

}
. (37)

Clearly, αn > 0. In fact, αn →∞ since βn → 1.

Define payoff functions as follows:

Vn(1)(x, µ) = αn(−1)x

(
βn

∫

X

idµ− 1

2

)
. (38)

For player 2, define

W2(x, µ) =
2

γ − 1
(−1)x

(
1

2
− γ

∫

X

idµ

)
. (39)

and Vn(2) = W2.

Define

W3(x, µ) =





10 if x = 1

0 if x = 0.
(40)

and W4 = −W3. For a player t ∈ T3, let Vn(t) = W3, while for a player t ∈ T4

let Vn(t) = W4.

Let Gn be as defined above whenever n ≥ 4 is even. In the other case,

define Gn by setting Vn(t) = W3 for all t ∈ Tn. Clearly, the sequence {Gn}∞n=1
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is tight: let ε > 0 and let N ∈ N be such that 1/N < ε. Then, define

K = {W2,W3,W4}
⋃
∪N

n=1{Vn(1)}.

We have that νn ◦ V −1
n (K) ≥ 1− 1/n > 1− ε for all n ∈ N.

We claim that if n ≥ 4 is even, then there is no f : Tn → X such that,

for all t ∈ Tn and x ∈ X,

Vn(t)(f(t), νn ◦ f−1) ≥ Vn(t)(x, νn ◦ f−1)− 1 (41)

We prove the above claim by contradiction. Let f be a 1 – equilibrium.

Then, it follows that f(t) = 1 for all t ∈ T3 and f(t) = 0 for all t ∈ T4.

Regarding f(1) and f(2), we consider the four possible cases.

Case 1 is when f(1) = 1 and f(2) = 0. In this case,
∑n

t=1
f(t)
n

= 1
2
.

Therefore, Vn(2)(1, νn ◦ f−1)− Vn(2)(f(2), νn ◦ f−1) = 2
γ−1

(γ − 1) = 2 > 1, a

contradiction.

Case 2 is when f(1) = 0 and f(2) = 1. Then,
∑n

t=1
f(t)
n

= 1
2
. Therefore,

Vn(1)(1, νn◦f−1)−Vn(1)(f(1), νn◦f−1) = αn(1−βn) ≥ 2 > 1, a contradiction.

Case 3 is when f(1) = f(2) = 0. In this case,
∑n

t=1
f(t)
n

= n/2−1
n

= 1
2
− 1

n
.

Therefore, Vn(1)(1, νn ◦ f−1)− Vn(1)(f(1), νn ◦ f−1) = αn(1− βn + 2βn/n) ≥
2 > 1, a contradiction.

Finally, we consider the case f(1) = f(2) = 1. In this case,
∑n

t=1
f(t)
n

=

n/2−1+2
n

= 1
2

+ 1
n
. Therefore, Vn(1)(0, νn ◦ f−1) − Vn(1)(f(1), νn ◦ f−1) =

αn(βn + 2βn/n− 1) ≥ 2 > 1, a contradiction. This proves the claim.

Note that the family of payoff functions used, which equals

{W2,W3,W4}
⋃
∪∞n=1{Vn(1)},

is not equicontinuous. This is due to the fact that limn→∞ αn = ∞.
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A.4 Proof of Theorem 6

Theorem 6 can be proven using the same scheme used to prove Theorem 2.

Let ε > 0 and η > 0. Let K be such that νn ◦ V −1
n (K) > 1 − η for all

Gn ∈ Γ. Then, let {x1, . . . , xm} be given by Lemma 4. Following the proof

of Theorem 2, we can show that

Vn(t)(f(t), νn ◦ f−1) ≥ Vn(t)(x, νn ◦ (f \t x)−1)− ε

for all x ∈ X and all t ∈ V −1
n (K). Since, νn ◦V −1

n (K) > 1− η for all Gn ∈ Γ,

the result follows.

A.5 Proof of Theorem 7

It is enough to show that Theorem 6 implies Theorem 3. We can use the

same argument used in the proof of Theorem 4, except that fγktk is only a

(1/k, 1/k) – equilibrium of Gγktk . However, Lemma 5 still applies and the

conclusion follows.
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