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Abstract

We consider a two-player game in which one player can take a

costly action (i.e., to provide a favor) that is beneficial to the other.

The game is infinitely repeated and each player is equally likely to be

the one who can provide the favor in each period. In this context,

equality matching is defined as a strategy in which each player counts

the number of times she has given in excess of received and she gives

if and only if this number has not reached an upper bound.

We show that the equality matching strategy is simple, self-enforcing,

symmetric, and irreducible. Furthermore, we show that the utility for

each player is at least as high under equality matching as under any

other simple, self-enforcing, symmetric, and irreducible strategy of the

same complexity. Thus, we rationalize equality matching as being an

efficient way to achieve those properties.

This result is applied to risk sharing in village economies and used

to rationalize the observed correlations between individual consump-

tion and individual income and between present and past transfers

across individuals.
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1 Introduction

People that live in the villages of developing countries typically have a low

and highly volatile income. In the absence of insurance and credit markets,

informal institutions have developed there in order to allow for some risk

sharing across individuals. In fact, people in village economies transfer a

significant part of their income in order to assist those who have received a

low income (see, for example, Fafchamps and Lund (2003)).

This practice of transferring part of one’s income to assist others is an

example of the equality matching form of sociality defined in Fiske (1992). In

this form of behavior, each person maintains a balance, which increases one

unit when she takes a costly action and decreases one unit when she benefits

from a costly action taken by another person. This balance is then used to

decide whether or not she should take a costly action again: she will take it

if and only if the balance has not reached an upper bound. In the case of the

village economies, people not only transfer part of their income to those in

need (typically, referred to as a form of positive reciprocity), they also stop

giving if the other never reciprocates, or does not reciprocate enough (a form

of negative reciprocity). Indeed, as Fafchamps and Lund (2001, p. 28) have

shown, there is a significant negative correlation between current and past

transfers received by individuals in their sample.

Why do we observe equality matching? Is there a sense in which this

form of behavior is optimal? While one can easily explain the positive reci-

procity aspect of equality matching through repeated interaction, is it the

case that we can understand both its positive and negative aspect as being

simultaneously part of an optimal equilibrium behavior?
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In this essay, we provide an answer to these questions. We consider an

infinitely repeated two-player game with no discounting in which one player

can take a costly action (i.e., provide a favor) that is beneficial to the other,

and in which each player is equally likely to be the one who can provide

the favor in every period.1 Several authors have pointed out that many real

life institutions are self-enforcing, treat individuals symmetrically, cannot be

simplified, and their rules are simple to understand. Following their work, we

define a social institution as a repeated game strategy with those properties.

Then, we show that the equality matching strategy satisfies those properties

in an optimal way: the welfare of each player is at least as high under the

equality matching strategy as under any other social institution of the same

complexity. Hence, in this sense, equality matching is an optimal social

institution.

Most of the properties we focus on are standard. We follow Schotter

(1981, p. 24) in defining a social institution by a repeated game strategy.

Following the work of Aumann (1981), and Selten (1975) respectively, we say

that a strategy is simple if it can be represented by a finite automaton and

is self-enforcing if it is subgame perfect.2 The complexity of an automaton

1Thus, this game is a symmetric repeated dictator game, where by “symmetric” we

mean that in every period each player is equally likely to be the dictator. Naturally, we

assume that the benefit is higher than the cost of the action.
2An automaton is described by a set of states (one of which is specified to be the initial

state), by a transition function (which gives the next period’s state as a function of the

current period’s state and actions), and by a behavior function (which prescribes behavior

according to the state of the automaton). As Kalai and Stanford (1988) have shown, an

automaton is an equivalent way of describing a strategy, and so throughout this paper the

two terms will be used synonymously.
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is defined as the size of the state space as in Rubinstein (1986). Finally, an

automaton is symmetric if players use the same state space, initial state and

transition function and if players in the same situation play the same action.3

This notion is similar to that in Okuno-Fujiwara and Postlewaite (1995).

While the other properties we use require little comment, it is useful to

discuss in some detail the concept of irreducibility. Formally, an automaton

is irreducible if all its states can be reached from any other state. Note that

in a reducible automaton, there is a state s′ that is never reached from a

state s. Therefore, the automaton can be simplified when it reaches state s

by reducing state s′ in a way that it produces the same outcome. Thus, only

irreducible automata may be impossible to simplify.

Furthermore, we argue that irreducibility discards some strategies that

are based on empty threats when players care about the complexity of the

strategy they use. We illustrate this point using the grim-trigger strategy,

which can be represented by a two-state automaton with a cooperative state

and a punishment state (see Kalai (1990, p. 141)). Consider suggesting

to the players that they use grim-trigger. Player 1 could then reason as

follows: “Player 2 is using grim-trigger; if I did so as well then a favor is

provided in every period. However, if I use grim-trigger, I have to study the

history of the play in every period to determine whether someone has failed

to provide a favor in the past. I do not like to do that. Fortunately, there

is a better alternative: I do not look at the history, and I always provide

3We impose still an additional condition. As explained in footnote 8, an automaton

with the above properties induces a Markov chain on the set of states; in our definition of

symmetry, we require that its transition matrix be symmetric. See Section 2 for further

discussion.
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a favor when I can. This leads exactly to the same outcome, hence payoff,

and I do not have to bother to check what has happened in the past. I will

do this instead of grim-trigger.” This argument shows that, if players care

about complexity, then grim-trigger is not an outcome we should expect:

each player simply does not have an incentive to play it because he has a

less complex alternative way of obtaining the same payoff. This happens

precisely because grim-trigger is not irreducible, since the punishment state

is never reached from the cooperative state.4

In the particular context of village economies, a further reason for irre-

ducibility is that people may not want those who fail to reciprocate to be

severely punished. This may be the case since the people with whom any

person interacts are typically family members or close, long-term friends.

But what can “not too severely punished” mean? A possible meaning is

that nothing unusual happens if one deviates from the equilibrium strate-

gies. More precisely, that the actions taken after someone fails to reciprocate

when he should (i.e., outside the equilibrium path) are also taken regularly

in the regular course of the game (i.e., on the equilibrium path). But this is

clearly implied by irreducibility.

In conclusion, if we accept that social institutions are represented by fi-

nite, subgame perfect, symmetric and irreducible automata, then we can

rationalize equality matching as an optimal social institution. Furthermore,

in the particular case in which the costly action consists of transferring part

of an individual’s endowment, equality matching implies a particular pattern

4Formally, irreducibility is a necessary condition for semi-perfection, an equilibrium

concept developed by Rubinstein (1986).
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of individual consumption and transfers that is consistent with observed cor-

relations in village economies. In fact, it implies some risk sharing, which

is not complete due to its negative reciprocity aspect. Moreover, it im-

plies a positive correlation between individual consumption and current and

lagged individual income (documented in Townsend (1994), among others)

and a negative correlation between current and past transfers among individ-

uals (reported, for instance, in Fafchamps and Lund (2003) and La Ferrara

(2003)).

2 Related Literature

The rationale for equality matching is also analyzed by Abdulkadiroğlu and

Bagwell (2005). They study a repeated trust game with incomplete informa-

tion and, for most of the paper, they focus on payoffs that lie on a symmetric

self-generating line. They show that equality matching can be specified by a

symmetric self-generating line although not by the highest one. Nevertheless,

they show that the highest symmetric self-generating line can be implemented

in a way that reflects an intertemporal balancing of favors. The difference

between equality matching and this implementation is that the size of the

favor owed diminishes in neutral periods where no player can provide a favor,

but other than that, this optimal implementation is consistent with equal-

ity matching (accordingly, it was named sophisticated equality matching by

Abdulkadiroğlu and Bagwell (2005)).

Compared to the work of Abdulkadiroğlu and Bagwell (2005), our results

have the advantage of rationalizing equality matching exactly as described in

7



Fiske (1992) and in a complete information environment. This latter feature

is important since this seems to be a reasonable assumption in the context of

village economies. However, this requires a strengthening of the equilibrium

concept, namely the introduction of irreducibility.

The conclusion that it is reasonable that the size of the favor owed di-

minishes in neutral periods is also reached by Hauser and Hopenhayn (2004)

in a model similar to the one in Abdulkadiroğlu and Bagwell (2005) except

that time is continuous.5 Furthermore, they show that players would improve

their well-being if the rate of exchange between favors received and conceded

were to change with players’ balance (recall that in the equality matching

form of behavior described in Fiske (1992) this rate is always one).

In our model there is always a player that can provide a favor. However,

equality matching would still be optimal even if we relaxed this assumption.

The reason why the size of the favor owed does not diminish in neutral peri-

ods in our model is due to no discounting. Hence, there is no contradiction

between our results and those of Abdulkadiroğlu and Bagwell (2005) and

Hauser and Hopenhayn (2004), which depend on discounting. We can also

interpret this difference in the results as suggesting that, in certain circum-

stances, the no-discounting case provides a better description. This seems to

be the case not only in the examples provided by Fiske (1992), but also for

risk sharing in village economies: in fact, as Fafchamps and Lund (2003) have

shown, in their sample of rural Filipino households, risk is shared through

zero-interest informal loans with an open-ended repayment period. This is

5That equality matching is a (Markov perfect) equilibrium in such a model was estab-

lished first by Möbius (2001).
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just a form of equality matching in which there is no decrease in the amount

owed.

The reason why the dependence of the rates of exchange on the balance

is not part of the optimal equilibrium is due to our symmetry assumption. In

particular, this assumption requires that the transition matrix of the Markov

chain induced by an automaton be symmetric. If we drop this requirement,

which is not an intuitive economic condition, then it is possible to obtain a

strategy that yields a higher payoff to both players. For instance, let players’

possible values for their balance be any integer from 0 to 4 and let favors

provided increase the balance by 2 units if the balance of the player providing

it is 0 and by 1 unit otherwise. This change in the rate of exchange makes

favors more likely (since they take place unless the player that can provide

it has a balance of 4), thus increasing players’ payoffs.

However, the increase in the payoff obtained by dropping the above condi-

tion does not come without costs. In fact, this strategy is harder to sustain as

a subgame perfect equilibrium and so one needs to add an extra assumption.

Indeed, a player (say, player 1) could deviate by providing a favor only when

the “price” is high. This implies that the probability of reaching a balance

higher than 2 for player 1 is zero starting from a balance less than or equal

to 2. Hence, in the long run, player 1 is providing favor at a price of 2 and

receiving then at a price of 1. The disadvantage is that favors are less likely.

However, if the difference between the benefit of receiving a favor and the

cost of providing it is not sufficiently high, then the deviation is profitable.

In contrast, the only assumption needed to support the equality matching

strategy with a rate of exchange identically equal to one is simply that such
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difference be strictly positive.

Our results are also related to those regarding risk sharing in village

economies. When applied to this problem, our framework is similar to that

in Kocherlakota (1996), except for the following differences: we consider no-

discounting, an indivisible good, no aggregate uncertainty (in fact, there are

only two equally likely states and each player has a positive endowment in

only one of them), and, of course, a stronger equilibrium concept. The advan-

tage of our theory is that it has the potential to generate stronger correlations

between individual consumption and individual income, current and lagged,

and between current and past transfers. In particular, it generates non-zero

correlations even if consumers are extremely patient. This is in contrast to

the main results of Kocherlakota (1996) since: first, if players are sufficiently

patient, they predict that those correlations equal zero; second, as Koeppl

(2006) and Rincón-Zapatero and Santos (2006) have shown, this can still be

the case even if players are sufficiently impatient.

3 The Model

There are two players that interact in every period t ∈ N. In every period,

one of them can provide a favor to the other; we assume that this is decided

by nature, in a way that each player has in every period a 1/2 probability of

being the one who can provide the favor.

When a player provides a favor, he suffers a utility cost d > 0, and the

player receiving it obtains a positive utility u > 0. If the favor is not provided,

then both players receive zero utility. We assume that favors are efficient in
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the sense that their benefit exceeds their cost. That is, we assume that u > d.

Let N = {1, 2} stand for the set of players, Ω = {1, 2} for the set of states

of nature, and A = {P, NP} for the set of possible actions. We make the

convention that when the state of nature equals 1, only player 1 can provide

a favor, and so he chooses an action from the set A; similarly, when the

state of nature equals 2, player 2 is the one who can provide the favor. The

payoffs, which players receive period-wise, and which depend on the state of

nature and on the choice made by the player who can provide the favor, are

summarized in the following table:

ω\a P NP

1 −d, u 0,0

2 u,−d 0,0

Table 1: Stage Game Payoffs

We denote the period-wise payoffs as ui(ω, a).

We describe the behavior of each player in the repeated game by an

automaton. An automaton for player i is a triple Ii = ((Si, s̄i), Ti, Bi) where:

Si is a set of states ; s̄i ∈ Si is the initial state; Ti : Ω × Si × A → Si is a

transition function; and Bi : Si → A is a behavior function.

A pair of individual automata I = (I1, I2), or for short, an automaton,

together with a sequence of states of nature ω = {ωk}∞k=1 ⊆ Ω induce a

sequence of actions a(I, ω) = {ak}∞k=1 ⊆ A in the following way: a1 =

Bω1(s̄ω1), and ak = Bωk
(sk

ωk
), where sk

i = Ti(s
k−1
i , ak−1), for both i = 1, 2.6

6Recall that player i is the producer in period k if ωk = i, for all i = 1, 2.
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For ωn ∈ Ωn, we define the n−dimensional vector a(I, ωn) in a similar way

and let ak(I, ωn) denote its kth coordinate for all 1 ≤ k ≤ n.

Each player’s payoff in the repeated game depends on the payoff he re-

ceives in all periods, in the following way: first, for i = 1, 2, and n ∈ N, we

define a function Un
i (I) : Ωn → R by defining

Un
i (I)(ωn) =

1

n

n∑

k=1

ui(ωk, ak(I, ωn)), (1)

and we define

Un
i (I) =

1

2n

∑
ωn∈Ωn

Un
i (I)(ωn). (2)

Then, payoff of an automaton I for player i, i = 1, 2, is

Ui(I) = lim sup
n→∞

Un
i (I). (3)

By using the above payoff function, we are assuming that players are

extremely patient. In fact, as shown below, the payoff of any irreducible

automaton equals the limit, as the discount factor goes to one, of the payoffs

computed using the discounted sum criterion. Since players incur a cost

whenever they provide a favor, favors will occur in equilibrium only if players

are sufficiently patient. By using the above payoff function, we are able to

present our results in a clearer way, while allowing us to simplify some of the

proofs.

4 Equality Matching

In our framework, it is natural that players choose to provide favors, at least

at some times. However, since this is costly, the provision of favors will not
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be unconditional. One possible way of conditioning the provision of favors is

described by the equality matching form of sociality.

Under equality matching, a player will provide a favor if and only if he

has not given much more than he has received in the past. In other words,

the player that can provide a favor bases his decision on the number of times

he has given in excess of received, and chooses to provide it whenever this

number is below a certain threshold.

Formally, an equality matching automaton IM = (IM
1 , IM

2 ) with a threshold

M ∈ N is defined as follows: the set of states is

SM
1 = SM

2 = SM = {0, . . . , M}, (4)

and the initial state is s̄M ∈ SM .7 The transition function TM
1 = TM

2 = TM :

Ω× SM × A → SM is defined by:

TM(1,m, P ) =





m + 1 if m ≤ M − 1,

M if m = M
(5)

TM(2,m, P ) =





m− 1 if m ≥ 1,

0 if m = 0
(6)

TM(ω, m, NP ) = m, (7)

The interpretation is as follows: s ∈ SM represents the balance of player

1. Whenever player 1 provides a favor, her balance increases by 1 unit, except

when this balance has reached the upper bound M . Similarly, whenever she

receives a favor, her balance decreases by 1 unit, except when it has reached

7Two equality matching automata are distinct if and only if they differ in their initial

state. Since players do not discount the future, the initial state does not play any role in

our analysis.
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0. Since player 2’s balance is just M − s, the latter case occurs exactly when

player 2’s balance has reached the upper bound.

Player 1’s behavior function is defined by:

BM
1 (m) =





P if m < M,

NP otherwise;
(8)

Similarly, Player 2’s behavior function is defined as follows:

BM
2 (m) =





P if m > 0,

NP otherwise;
(9)

Intuitively, any player provides a favor if and only if the other player has a

positive balance, which occurs if and only if his own balance has not reached

the upper bound. The definition of IM does describe equality matching in

the sense that each player takes costly actions that benefit the other, but will

stop doing so if this other player does not reciprocate enough.

Note that the equality matching automaton satisfies many symmetry

properties. First, we have that players use a common state space, initial

state, and transition function: SM
1 = SM

2 , s̄M
1 = s̄M

2 , and TM
1 = TM

2 . Second,

some states can be associated in a natural way: if we define φ(m) = M −m,

we obtain a bijection φ : SM → SM , satisfying BM
1 (m) = BM

2 (φ(m)). Third,

the equality matching automaton induces a Markov chain on SM , described

by a symmetric transition matrix. In fact, if ΠM denotes such a matrix, one

easily sees that the nonzero entries of ΠM are:

π0,0 =
1

2
, π0,1 =

1

2

πm,m−1 =
1

2
, πm,m+1 =

1

2
, for all 0 < m < M

πM,M−1 =
1

2
, πM,M =

1

2
.

(10)
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Generalizing from the particular case of the equality matching automaton,

we say that an automaton I = (I1, I2) is symmetric if: (1) S1 = S2, T1 = T2,

and s̄1 = s̄2; (2) there exists a bijection φ : S → S such that B1(s) =

B2(φ(s)); and (3) I induces a Markov chain on S, described by a symmetric

transition matrix.8 Intuitively, the class of symmetric automata consists of

those in which different individuals in the same situation determined by the

realization of the uncertainty and with the same state are prescribed by the

same action.

5 Equality Matching as an Optimal Social In-

stitution

In our model the two players interact in every period of time. This inter-

action is described by an automaton I, which consist of a pair of individual

automata: I = (I1, I2). By changing each player’s automaton, we obtain

different outcomes, some of which may be unreasonable.

The first requirement we impose on the automaton that players use is

that it is self-enforcing. More precisely, we will require that each player,

given the other player’s behavior, has an incentive to act in the way that the

8Note that any finite automaton I satisfying (1) induces a Markov chain on S defined

by the following transition matrix Π:

πss′ =





1 if T (ω, s, Bω(s)) = s′ for all ω = 1, 2,

0 if T (ω, s, Bω(s)) 6= s′ for all ω = 1, 2,

1
2 otherwise.

(11)
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automaton prescribes for all possible contingencies. Formally, this amounts

to requiring that the automaton is a subgame perfect equilibrium.

Before giving the formal definition, we need the following notation: given

an automaton I = ((S, s̄), T, B), then (I, s) = ((S, s), T, B) denotes the

automaton that differs from I only in the initial state. We then say that

an automaton I is a subgame perfect equilibrium if for all i = 1, 2, s in

S = S1 × S2, and any player i’s automaton I ′i with initial state s′, we have

that

Ui(I, s) ≥ Ui((I
′
i, I−i), (s

′, s−i)). (12)

A second requirement we impose is that there are no obsolete states: all

states should be used regularly in the regular course of the game. As Rubin-

stein pointed out “[these] considerations have some similarity to phenomena

frequently observed in real life: social institutions, various types of organiza-

tions, and human abilities degenerate or are readily discarded if they are not

used regularly.” Formally, we say that a symmetric automaton I is irreducible

if the Markov chain induced by I is irreducible.9

The view that we take here is that, in our framework, only automata that

are finite, symmetric, subgame perfect, and irreducible can describe a social

institution. For N ∈ N, let AN be the set of all symmetric, irreducible, sub-

game perfect automata with a state space having no more than N elements.

Our main result is:

Proposition 1 For all N ∈ N, every equality matching automaton IM , with

9A Markov chain represented by a transition matrix Π is irreducible if for all states s,

and s′ there exists K ∈ N such that π
(K)
s,s′ > 0.
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M = N − 1, solves

max
I∈AN

U1(I) + U2(I).

Proposition 1 asserts that not only is the equality matching automaton

a symmetric, irreducible, subgame perfect automaton for any possible upper

bound M , but in fact, it is efficient within that class. In particular, any finite,

symmetric, irreducible, subgame perfect automaton can be (weakly) domi-

nated by the equality matching automaton of the same level of complexity.

In this sense, equality matching is an optimal social institution.

6 Risk Sharing in Village Economies

As an application of the framework in Section 3, we consider the problem

of risk sharing in village economies (see, among others, Kocherlakota (1996)

and Ligon, Thomas, and Worrall (2002)). This application is particularly

interesting since there is considerable empirical evidence that can be used

to test our results. As Proposition 2 below states, if players use equality

matching, then the correlation between current individual consumption and

current and lagged income is positive. Furthermore, it implies that current

individual net transfers are negatively correlated with the previous period’s

individual net transfers.

The model is like the one in Section 3. There are two players who interact

in every period n ∈ N. In every period, each person receives an endowment

of a single perishable and indivisible consumption good. The pair of endow-

ments belongs to {(0, 2), (2, 0)}, that is, one person receives 2 units of the

good while the other receives 0. The endowments are determined by na-
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ture: the set Ω = {1, 2} denotes the set of states of nature. The relationship

between endowments and the state of nature is as follows: if ω = 1 then

y = (y1
ω, y2

ω) = (2, 0), while if ω = 2 then y = (0, 2). The values of ω ∈ Ω are

drawn independently and are equally likely, i.e., each occurs with probability

equal to 1/2. Note that the aggregate endowment Y = y1 + y2 is always

equal to 2, i.e., there is no aggregate uncertainty.

The two individuals interact in the following way. At the beginning of

each period n ∈ N they are informed about the current value of ω. Then, the

player with 2 units of the good can choose to transfer 1 unit of his current

endowment to the other. We let tiω,t denote the transfer made by individual

i in state of nature ω in period n; it has to satisfy 0 ≤ tiω,n ≤ yi
ω and

tiω,n ∈ {0, 1}. Once the decision regarding transfers is made, each individual

consumes ci
ω,n = yi

ω − tiω,n + t−i
ω,n. The net transfer received by player 1 is

θω,n = t2ω,n − t1ω,n.

Individuals have the same period-wise utility function defined on con-

sumption levels u : {0, 1, 2} → R. We let u(0) = 0, u(1) = u and u(2) = u+d

and assume that u > d > 0. In this way u is strictly increasing and satisfies

the following form of strict concavity:

u(0) + u(2)

2
=

u + d

2
< u = u(1) = u

(
0 + 2

2

)
. (13)

For all i = 1, 2, we define ui : Ω× A → R as follows:

ui(ω, t) = u(yi
ω − ti + t−i). (14)

This game is the same as the one in Section 3: only one player can choose

to transfer; if she does, she loses d (since she consumes 1 unit instead of 2)

and the other player gains u (he consumes 1 unit instead of 0). Thus, the
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player with a high endowment is, effectively, like the player who can provide

a favor in the model of Section 3 and the costly action that she can take is

to transfer one unit of her endowment to the other player. Therefore, we can

define equality matching in the same way as before, and use Proposition 1

to conclude that for all N ∈ N, every equality matching automaton IM , with

M = N − 1, solves maxI∈AN
U1(I) + U2(I).

This behavior, in turn, implies that the pattern of consumption and trans-

fers satisfies the following properties.

Proposition 2 For every equality matching automation IM , there exists α >

0 such that

1. cov(c1
t , y

1
t−k|Yt−k) > 0 and

2. cov(θt, θt−1|Yt−1) < 0

for all t ≥ α and 0 ≤ k ≤ t− α.

It is easy to explain why this behavior leads to a positive correlation

between current individual consumption and current and lagged income. If

a consumer has a zero balance, she can consume if and only if she receives

a positive endowment. Also, a consumer with a zero endowment today and

a zero balance yesterday can consume today if and only if she received a

positive endowment yesterday. Thus, the equality matching form of behavior

can make current individual consumption and current and lagged individual

income move together. A similar intuition holds for transfers.
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7 Concluding Remarks

The main point of the paper is that the equality matching form of sociality

can be regarded as an optimal social institution. When applied to a simple

risk sharing problem, this conclusion provides an explanation for the observed

correlations between individual consumption and individual income, current

and lagged, and between current and past transfers in village economies.

As explained in Section 2, these correlations are stronger than those pre-

dicted in Kocherlakota (1996), at least when there is little or no discounting.

Unfortunately, it may be hard to empirically distinguish these two theories.

It can, nevertheless, be tested in the situation where there is evidence that

players are sufficiently patient.

Furthermore, they can also be tested by using experiments to find out how

players behave out of the equilibrium path. For instance, the experimental

subjects could be told that there has been a history of plays before they

start. Evidence on how players play out of the equilibrium path can be used

to distinguish the two approaches since, in contrast to the equality matching

strategy, the optimal strategy in Kocherlakota (1996) predicts that those

who fail to transfer as prescribed by the equilibrium strategies will remain in

autarky for at least a long period.

Just as experimental evidence can be useful to better understand our re-

sults, these can also be used to comment on some recent experimental studies

on village economies. One such study was done by Henrich, Boyd, Bowles,

Camerer, Fehr, Gintis, and McElreath (2001), who report experimental re-

sults on the one-shot ultimatum game played in fifteen village economies.

They found that the mean offers were substantially above zero, ranging from
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25 to 50 percent of the stake size, despite the fact that the game was played

just once and anonymously, and players were randomly matched.

Perhaps more importantly, they have shown that this behavior is consis-

tent with the typical everyday-life behavior in these economies. This observa-

tion suggests that repeated-game effects in experiments may be more subtle

than what is generally considered. Even if players understand that they are

playing a one-shot game, their behavior may be guided by the social norms of

their society, which are designed for everyday, repeated interaction. Hence,

their behavior will reflect not the optimal one-shot behavior, but rather the

optimal choices in familiar, recurrent situations that are similar to the game

being played.

Furthermore, as Kandori (1992) and Ellison (1994) have shown, we can

expect deviations from optimal one-shot behavior even when a large popu-

lation interacts in an anonymous, random matching way. Hence, the fact

that players in experiments play the game anonymously and are randomly

matched with other players may not be enough to test one-shot games.

If one accepts that the experimental evidence in Henrich et al. (2001)

reflects the behavior induced by optimal institutions, then our results can

be used to reconcile it with the canonical economic model of self-interested

players. In fact, our results imply that we should expect that people in village

economies transfer a considerable amount of their resources if they behave in

the way predicted by the optimal equilibrium in our model of self-interested

players.

However even if people are naive and play games by following their in-

stinct and their emotional impulses, it is still likely that their choices reflect
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the social institutions and culture of the society they live in. If, in fact,

the social institutions that endure are those that are simple, self-enforcing,

symmetric, and irreducible in an efficient way, then, the behavior of any in-

dividual will be well described by the canonical model, even if he is naive

and not completely self-interested.

A Appendix

A.1 Proof of Proposition 1

In this appendix, we prove Proposition 1. The first step of the proof is to show that

any equality matching automaton is symmetric, irreducible, and subgame perfect.

One easily sees that any equality matching automaton is symmetric. Since any

state can lead to the two adjacent states, with the convention that both state 0 and

state M are adjacent to themselves, one can conclude that any equality matching

automaton is irreducible.

To show that each equality matching automaton IM is a subgame perfect

equilibrium, we will start by considering the case in which players’ payoff in the

repeated game equals

U δ
i (ω,a) = (1− δ)

∞∑

k=1

δkui(ωk, ak), (15)

for all i, where δ ∈ (0, 1), ω = {ωk}∞k=1 ⊆ Ω, and a = {ak}∞k=1 ⊆ A. Existing

results guarantee that if IM is subgame perfect for all discount factors close to 1,

then IM is subgame perfect in our game.

The following lemma estimates the benefit for a given player i of having a

larger balance (which also implies that the other player will have a smaller one).

It shows that, with probability 1, either player i receives exactly one more favor

22



or provides exactly one less favor.

Lemma 1 Let m ∈ {0, . . . ,M − 1}. Then there is αm ∈ (0, 1) such that

lim
δ→1

1
1− δ

(U δ
i (IM ,m + 1)− U δ

i (IM ,m)) = αmu + (1− αm)d,

for i = 1, 2.

Proof. Because player 1’s case is symmetric to player 2’s, we deal only with

the first.

Step 1: Some definitions.

Denote m(0) = (m+1,M−m−1) and m′(0) = (m,M−m). Also, let Ω := Ω×
Ω×... be the countable infinite Cartesian product of Ω, and let (Ω,G, µ) denote the

usual corresponding probability space. A generic element of Ω is denoted by ω =

{ωt}∞t=1, where ωt ∈ Ω, for all t ∈ N. Given ω, let m(k)(ω) = (m1(k)(ω),m2(k)(ω))

denote the balance players have at the end of stage k if they started with m(0) and

let m′(k)(ω) denote the balance players have at the end of stage k if they started

with m′(0).

With this notation, we can write

1
1− δ

(U δ
1 (IM ,m + 1)− U δ

1 (IM ,m)) =

1
1− δ

(∫

Ω
U δ

1 (IM ,m + 1)(ω)dµ−
∫

Ω
U δ

1 (IM ,m)(ω)dµ

)
=

1
1− δ

(∫

Ω

[
U δ

1 (IM ,m + 1, )(ω)− U δ
1 (IM ,m)(ω)

]
dµ

)
,

(16)

where the last equality follows because both of the functions ω 7→ U δ
1 (IM ,m)(ω)

and ω 7→ U δ
1 (IM ,m + 1)(ω) are integrable.

Step 2: There exists {At, Bt}∞t=1 such that 1
1−δ (U δ

1 (IM ,m+1)−U δ
1 (IM , m, )) =

∞∑
t=1

dδt−1µ(Bt) +
∞∑

t=1
uδt−1µ(At).
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Let A1 := {ω ∈ Ω : m1(1)(ω) = 0 and ω1 = 2}; in A1 player 1 is able to

receive a favor under m but not under m′. Note also that m(1) = m′(1). So, for

ω ∈ A1, the difference in payoffs is u. That is, for ω ∈ A1,

U δ
1 (IM ,m + 1)(ω)− U δ

1 (IM ,m)(ω) = (1− δ)u. (17)

Let B1 := {ω ∈ Ω : m′
2(1)(ω) = 0 and ω1 = 1}; in B1 player i has to provide a

favor under m′ but not under m. Note also that m(1) = m′(1). Thus, for ω ∈ B1,

U δ
1 (IM ,m + 1)(ω)− U δ

1 (IM ,m)(ω) = (1− δ)d. (18)

We proceed by induction: let t ≥ 2. Let

At := {ω ∈ Ω\((t−1∪
k=1

Ak) ∪ (
t−1∪
k=1

Bk)) : m1(t)(ω) = 0 and ωt = 2)} (19)

and

Bt = {ω ∈ Ω\((t−1∪
k=1

Ak) ∪ (
t−1∪
k=1

Bk)) : m′
2(t)(ω) = 0 and ωt = 1}. (20)

Similarly as before, we have that for ω ∈ At,

U δ
1 (IM ,m + 1)(ω)− U δ

1 (IM ,m)(ω) = (1− δ)δt−1u, (21)

and for ω ∈ Bt,

U δ
1 (IM ,m + 1)(ω)− U δ

1 (IM ,m)(ω) = (1− δ)δt−1d. (22)

Finally let C = Ω\
[( ∞∪

t=1
At

)
∪

( ∞∪
t=1

Bt

)]
.

For each t ∈ N, At is measurable since it can be written as D1×· · ·×Dt×Ω×
Ω × · · · for some D1, . . . , Dt ⊆ Ω. Similarly, Bt is measurable for each t ∈ N and

so is C. Note also that for all j, k ∈ N, we have that Aj ∩Ak = ∅, Bj ∩Bk = ∅ and

Aj ∩Bk = ∅.

Claim 1 µ(C) = 0.
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Proof. Let Sn(ω) be the number of times that ωk = 1 in the first n periods.

If ω ∈ C, then it follows that m1(k)(ω) > 0 whenever ωk = 2, for all k. Therefore,

n−Sn (which equals the number of times that ωt = 2) is also the “amount spent”

by player 1 in the first n periods. Since the “amount received” by player 1 in the

first n periods is at most Sn, then for each n ∈ N, m1(0) + Sn ≥ n − Sn, that is

Sn/n ≥ 1/2 −m1(0)/2n. Hence C ⊆ ∞∩
n=1

{ω ∈ Ω : Sn(ω)
n ≥ 1

2 − m1(0)
2n }, which has

measure zero by lemma 2 applied to the sequence of random variables {Xn}∞n=1,

where for all n, Xn(ω) = χ{ω: ωn=1}.

Hence, we obtain

1
1− δ

(U δ
1 (IM ,m + 1)− U δ

1 (IM ,m)) =

1
1− δ

(
∞∑

t=1

∫

At

[U δ
1 (IM ,m + 1)(ω)− U δ

1 (IM ,m)(ω)]dµ+

+
∞∑

t=1

∫

Bt

[U δ
1 (IM , m + 1)(ω)− U δ

1 (IM ,m)(ω)]dµ) =

∞∑

t=1

uδt−1µ(At) +
∞∑

t=1

dδt−1µ(Bt).

(23)

Step 3: There exists αm ∈ (0, 1) such that

lim
δ→1

1
1− δ

(U δ
1 (IM , m + 1)− U δ

1 (IM ,m)) = αmu + (1− αm)d. (24)

By Abel’s theorem (see DePree and Swartz (1988, Theorem 11.17, p. 135)),

lim
δ→1

1
1− δ

(U δ
1 (IM ,m + 1)− U δ

1 (IM ,m)) = dµ(
∞∪

t=1
Bt) + uµ(

∞∪
t=1

At). (25)

So define αm := µ(
∞∪

t=1
At). Finally note that µ(

∞∪
t=1

At) ≥ (1
2)m(0) > 0, µ(

∞∪
t=1

Bt) ≥
(1
2)M−m(0), (

∞∪
t=1

At)∩ (
∞∪

t=1
Bt) = ∅ and that Ω = (

∞∪
t=1

At)∪ (
∞∪

t=1
Bt)∪C implying that

µ(
∞∪

t=1
At) + µ(

∞∪
t=1

Bt) = 1.

The following lemma was used above:
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Lemma 2 Let {Xn}∞n=1 be a sequence of independent and identically distributed

random variables with mean equal to ρ ≤ 1
2 and finite variance σ2 > 0 and let

c ∈ R. Then µ(
∞∩

n=1
{ω : Sn(ω)

n ≥ 1
2 − c

n}) = 0.

Proof. The result will follow from the Law of Iterated Logarithms: Let

{Yk}∞k=1 be independent and identically distributed random variables with E[Y1] = 0

and σ2(Y1) = 1. Then lim infn→∞ Sn√
2n log log n

= −1 almost surely (see Billingsley

(1995, Theorem 9.5, p. 154)).

Define Yn(ω) = Xn(ω)−ρ
σ and Sy

n(ω) =
∑n

k=1 Yk(ω). Then Sy
n(ω)
n = 1

σ

(
Sn(ω)

n − ρ
)
.

By the Law of Iterated Logarithms, there is Z ⊂ Ω with µ(Z) = 0 such that

lim infn→∞
Sy

n(ω)√
2n log log n

= −1, for all ω ∈ Ω \ Z. Let ω ∈ Ω \ Z. Then, since

infn≥k
Sy

n(ω)√
2n log log n

increases to lim infn→∞
Sy

n(ω)√
2n log log n

, it follows that infn≥k
Sy

n(ω)√
2n log log n

≤
−1, for all k ∈ N. That is, Sy

n(ω)√
2n log log n

≤ −1 infinitely often. Thus, for n large

enough,
Sn(ω)

n
≤ ρ− σ

√
2 log log n√

n
<

1
2
− c

n
(26)

infinitely often (the last inequality follows because, for n large enough, we have

that c < σ
√

2n log log n →∞). It follows then that ω /∈ ∞∩
n=1

{ω : Sn(ω)
n ≥ 1

2 − c
n};

hence
∞∩

n=1
{ω : Sn(ω)

n ≥ 1
2 − c

n} ⊆ Z and the result follows.

It is useful to use the discounted version of our game to show that IM is

subgame perfect, because in discounted games we can use the one-shot deviation

principle (see Abreu (1988).) For the particular case of an equality matching

automaton, we need to show that it is not profitable for a player to refuse to

provide a favor when the other has a positive balance, and to follow the equality

matching strategy afterwards.

If a player deviates by not providing a favor when the other has a positive

balance, his utility increases today by d, i.e., he gains by not having to provide the

favor. However, he starts the next period with one less unit on his balance, and
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the other player starts with one more unit. Thus, the following Lemma follows

from Lemma 1.

Lemma 3 There exists δ∗ ∈ (0, 1) such that for all δ ∈ (δ∗, 1), IM is subgame

perfect.

Proof. By Proposition 3.11 of Mertens and Parthasarathy (1987)) (or Proposi-

tion 1 of Abreu (1988)) it is enough to show that no player can profitably deviate

from IM by deviating just in the first stage. Again, because player 1’s case is

symmetric to player 2’s, we deal only with the first.

It is clear that player 1 does not want to deviate from BM
1 (M) = NP , since

by choosing P when his balance equals M he would reduce his utility today by d,

and receive the same future utility. So we are left with showing that he does not

want to deviate from BM
1 (m), for all m = 0, . . . , M − 1.

Let m ∈ {0, . . . , M − 1}. If player 1 deviates from BM
1 (m), and therefore

chooses NP , his utility will be equal to

Ū := (1− δ)δU δ
1 (IM ,m), (27)

while if he does not deviate, his utility will be equal to

U δ
1 (IM ,m) = (1− δ)(−d + δU δ

1 (IM ,m + 1)). (28)

Thus,

U δ
1 (IM ,m)− Ū = (1− δ)

[
−d + δ

1
1− δ

(U δ
1 (IM ,m + 1)− U δ

1 (IM ,m))
]

. (29)

By lemma 1,

− d + δ
1

1− δ
(U δ

1 (IM ,m + 1)− U δ
1 (IM , m)) →

δ→1

→
δ→1

−d + αmu + (1− αm)d > 0.
(30)
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Therefore, if we let δ∗ be such that for all δ > δ∗

−d + δ
1

1− δ
(U δ

1 (IM , m + 1)− U δ
1 (IM ,m)) > 0 (31)

for all m ∈ {0, . . . ,M − 1}, then

U δ
1 (IM , m)− Ū > 0 (32)

for all m ∈ {0, . . . ,M − 1}.
The second step of the proof is to show that Ui(IM ) ≥ Ui(I) for any i = 1, 2,

and any symmetric, irreducible, and subgame perfect automaton I with |S| ≤
|SM |. The following Lemma uses standard ergodic theorems for Markov chains to

compute the payoff of any symmetric, irreducible, and subgame perfect automaton.

Lemma 4 Let I ∈ AN . Then,

Ui(I) =
1

2 |S|
∑

s∈S

∑

ω∈Ω

ui(ω, B(s)). (33)

Proof. Let I ∈ AN , and let S̃ = Ω× S. Then I also induces a Markov chain

Π̃ on S̃ satisfying

π̃i,j = πi2,j2 , (34)

for all i = (i1, i2), and j = (j1, j2) in S̃.

Since Π is symmetric and irreducible, then so will be Π̃. Denoting s̃1 = (1, s̄1),

and s̃2 = (2, s̄2), we have that

Un
i (I) =

1
2n

n∑

k=1

∑

(ω,s)

π̃
(k)
s̃1,(ω,s)ui(ω, B(s)) +

1
2n

n∑

k=1

∑

(ω,s)

π̃
(k)
s̃2,(ω,s)ui(ω,B(s)). (35)

By Theorems A.1, and A.4 of Derman (1970), we have that

lim
n→∞

1
n

n∑

k=1

π̃
(k)
s̃i,(ω,s) =

1
2 |S| , (36)
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for i = 1, 2, since the uniform distribution is the unique stationary distribution of

Π̃. Thus,

Ui(I) = lim
n→∞Un

i (I) =
1

2 |S|
∑

s∈S

∑

ω∈Ω

ui(ω,B(s)). (37)

The following lemma states that in any subgame perfect equilibrium there has

to be a “punishment” state, which, in our model, corresponds to a player refusing

to provide a favor.

Lemma 5 Let I ∈ AN . Then, for all i = 1, 2, there exists s ∈ S such that

Bi(s) = NP.

Proof. Suppose that for some i ∈ {1, 2}, we have Bi(s) = P, for all s ∈ S. Let

Ĩ−i be such that B−i(s) = NP, for all s ∈ S, which implies that U−i(Ii, Ĩ−i) = u/2.

Suppose, in order to reach a contradiction, that I−i 6= Ĩ−i. Since I ∈ AN , then by

lemma 4 we obtain

U−i(I) ≤ u

2
− d

2|S| < U−i(Ii, Ĩ−i), (38)

a contradiction since I is a subgame perfect equilibrium. Thus, I−i = Ĩ−i, and so

Ui(I) = −d/2.

However, letting Ĩi be such that Bi(s) = NP, for all s ∈ S, we obtain

Ui(Ĩi, I−i) = Ui(Ĩ) = 0 > Ui(I). This shows that Ii is not a best response to

I−i, which is a contradiction.

With the above lemmas, we can prove Proposition 1.

Proof of Proposition 1. Let N ∈ N be given, and let M = N − 1. We first

establish that IM belongs to AN . It is clear that IM is symmetric, and since, for

all m ∈ SM ,

π
(M)
mM ≥ πmm+1 · · ·πM−1M︸ ︷︷ ︸

M−m terms

πMM · · ·πMM︸ ︷︷ ︸
m terms

> 0. (39)
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we obtain that for all m,m′ ∈ SM ,

π
(2M)
mm′ ≥ π

(M)
mMπ

(M)
Mm′ > 0; (40)

that is, the Markov Chain induced by IM is irreducible.

Finally, to show that IM is a subgame perfect equilibrium, we proceed as

follows: Let i = 1, and s ∈ SM . Given IM
2 , player 1 faces a Markovian decision

problem, where the state space is S̃ = Ω × S, the initial state is either (1, s)

or (2, s), each with 1/2 probability, and the transition probabilities ql,j(a) are as

follows: let l = (ω, m); if either ω = 2 or ω = 1, and a = P , then for all m ∈ SM ,

ql,j(a) =





1
2 if j = (1, TM (ω,m, Bω(m)))
1
2 if j = (2, TM (ω,m, Bω(m)))

0 otherwise.

(41)

If ω = 1, and a = NP then for all m ∈ SM ,

ql,j(a) =





1
2 if j = (1,m)
1
2 if j = (2,m)

0 otherwise.

(42)

By Corollary 3.1 in Derman (1970), there exists a finite automaton I∗1 that is a best

reply to IM
2 at state s. By Theorem A.1 in Derman (1970) and Abel’s Theorem

(see DePree and Swartz (1988, Theorem 11.17, p. 135)) we have that U1(IM , s) =

limδ→1 U δ
1 (IM , s), and also that U1((I∗1 , IM

2 ), s) = limδ→1 U δ
1 ((I∗1 , IM

2 ), s). By Lemma

3, it follows that U1(IM , s) ≥ U1((I∗1 , IM
2 ), s). Hence, IM

1 is a best reply to IM
2 at

state s. Using an analogous argument for i = 2, we conclude that IM is a subgame

perfect equilibrium.

It is left to show that U1(IM ) + U2(IM ) ≥ U1(I) + U2(I) for all I ∈ AN . For

each I ∈ AN , recall that by Lemma 4 we have

Ui(I) =
1

2 |S|
∑

s∈S

∑

ω∈Ω

ui(ω, B(s)). (43)
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Let SP = {s ∈ S : B2(s) = P} and SNP = {s ∈ S : B2(s) = NP}. By

symmetry, |SP | = |{s ∈ S : B1(s) = P}| and |SNP | = |{s ∈ S : B1(s) = NP}| .
Then, we obtain

U1(I) =
1

2 |S|

(∑

s∈S

u1(1, B(s)) +
∑

s∈S

u1(2, B(s))

)

=
1

2 |S| (−d |SP |+ u |SP |) =
|SP |
|S|

u− d

2
.

(44)

Because I is a subgame perfect equilibrium, |SNP | ≥ 1, and so |SP | = |S| −
|SNP | ≤ |S| − 1. Hence, it follows that,

U1(I) ≤ u− d

2

(
1− 1

|S|
)
≤ u− d

2

(
1− 1

M + 1

)
= U1(IM ). (45)

Since, by symmetry, U2(IM ) = U1(IM ) ≥ U1(I) = U2(I), the result follows.

A.2 Proof of Proposition 2

Since Yn(ω) = 2 for all n ∈ N and ω ∈ Ω, we have that cov(c1
t , y

1
t−k|Yt−k) =

cov(c1
t , y

1
t−k) for all 0 ≤ k < t.

For convenience, let µn denote the uniform measure on Ωn, i.e., µn(ωn) = 2−n

for all ωn ∈ Ωn.

By definition,

cov(c1
t , y

1
t−k) =

∑

ωt∈Ωt

1
2t

(c1
t (ω

t)− c̄1
t )(y

1
t−k(ω

t)− ȳ1
t−k) (46)

where ȳ1
t−k = 1. If qt(s) denotes the probability that in period t the state is

s ∈ {0, . . . , M}, then, c̄1
t = 1 + (qt(M)− qt(0))/2. Since limt→∞ qt(s) = 1/(M + 1)

for all s, then c̄1
t → 1. Hence, we may compute cov(c1

t , y
1
t−k) using c̄1 = 1 instead

of c̄1
t , by considering t sufficiently large.

Let σ1(s) denote the probability that the state st is s and ωt−k = 1; similarly,

let σ2(s) denote the probability that the state st is s when ωt−k = 2. We have

that σi(s) = µt({ωt ∈ Ωt : ωt−k = i and st(ωt−1) = s}) for i = 1, 2.
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If ωt = 1, st = M and ωt−k = 1 then y1
t−k = 2, c1

t = 2 and so

(c1
t (ω

t)− c̄1)(y1
t−k(ω

t)− ȳ1
t−k) = 1.

Similarly, if ωt = 1, st = M and ωt−k = 2 then y1
t−k = 0, c1

t = 2 and so

(c1
t (ω

t)− c̄1)(y1
t−k(ω

t)− ȳ1
t−k) = −1.

Given ωt = 1, in all remaining cases we have

(c1
t (ω

t)− c̄1)(y1
t−k(ω

t)− ȳ1
t−k) = 0,

since c1
t (ω

t) = 1 = c̄1.

For the case ωt = 2 we obtain

(c1
t (ω

t)− c̄1)(y1
t−k(ω

t)− ȳ1
t−k) =





−1 if st = 0 and ωt−k = 1,

1 if st = 0 and ωt−k = 2,

0 otherwise.

(47)

Then,

cov(c1
t , y

1
t−k) =

σ1(M)− σ2(M)
2

+
σ2(0)− σ1(0)

2
. (48)

Thus, it is enough to show that σ1(M) ≥ σ2(M) and σ2(0) > σ1(0).

For any s ∈ SM and ωk−2 = (ωt−k+1, . . . , ωt−1) let {si
j(s, ω

k−2)}t
j=t−k+1 denote

the sequence of states resulting from having state s in period t−k and ωt−k = i for

i = 1, 2. Using the definition of TM , one easily sees that s1
j (s, ω

k−2) ≥ s2
j (s, ω

k−2)

for any j, s and ωk−2. So, given s ∈ SM , if ωk−2 is such that s1
t (s, ω

k−2) = 0, then

s2
t (s, ω

k−2) = 0. Similarly, if ωk−2 is such that s2
t (s, ω

k−2) = M , then s1
t (s, ω

k−2) =

M . This implies that σ1(M) ≥ σ2(M) and σ2(0) ≥ σ1(0). Hence, it is enough

to show that there exists s ∈ SM , possible to reach at period t − k starting from

s̄M , for which the following holds: there exists ωk−2 such that s1
t (s, ω

k−2) > 0 and

s2
t (s, ω

k−2) = 0 since this implies σ2(0) > σ1(0).
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Let t ≥ α and 0 ≤ k ≤ t−α, i.e., t−k ≥ α. By choosing α > 0 sufficiently large,

any state s ∈ SM can be reached at period t−k starting from s̄M : simply take ω = 2

in the beginning in order to get to s = 0, then continue with ω = 2 to keep s = 0

until period t−k−s−1, and take ω = 1 from period t−k−s until period t−k−1. If

k is odd, let st−k = 0 and ωk−2 = (1, 2, 1, 2, . . .). This will produce s1
t (s, ω

k−2) = 1

and s2
t (s, ω

k−2) = 0. If k is even, let st−k = 1 and ωk−2 = (2, 1, 2, 1, . . .). Again,

this will produce s1
t (s, ω

k−2) = 1 and s2
t (s, ω

k−2) = 0. This completes the proof

that cov(c1
t , y

1
t−k|Yt−k) > 0.

Finally, we show that cov(θt, θt−1) < 0 if t is sufficiently large.

Since tiω,n ∈ {0, 1} for all n ∈ N and ω ∈ Ω, then

θ̄t = µt({ωt : st(ωt) > 0 and ωt = 2})− µt({ωt : st(ωt) < M and ωt = 1})

=
1− qt(0)− 1 + qt(M)

2
=

qt(M)− qt(0)
2

.
(49)

Letting θ̄ = 0, it follows that θ̄t converges to θ̄ and so we can use θ̄ to compute

cov(θt, θt−1) by considering t sufficiently large.

Note that (θt(ωt)− θ̄)(θt−1(ωt)− θ̄) = θt(ωt)θt−1(ωt) and that

θt(ωt)θt−1(ωt) =





1 if st(ωt) > 0, st−1(ωt) > 0, ωt = 2 and ωt−1 = 2,

1 if st(ωt) < M, st−1(ωt) < M,ωt = 1 and ωt−1 = 1,

−1 if st(ωt) > 0, st−1(ωt) < M,ωt = 2 and ωt−1 = 1,

−1 if st(ωt) < M, st−1(ωt) > 0, ωt = 1 and ωt−1 = 2.

(50)

Since, if ωt−1 = 2, then both st > 0 and st−1 > 0 if and only if st−1 > 1, it

follows that

µt(st > 0, st−1 > 0, ωt = 2, ωt−1 = 2) =
µt(st > 0, st−1 > 0, ωt−1 = 2)

2

=
µt(st−1 > 1, ωt−1 = 2)

2
=

∑M
s=2 qt(s)

4
.

(51)

Similarly, if ωt−1 = 1, then both st < M and st−1 < M if and only if st−1 <
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M − 1. Thus, it follows that

µt(st < M, st−1 < M, ωt = 1, ωt−1 = 1) =
µt(st < M, st−1 < M, ωt−1 = 1)

2

=
µt(st−1 < M − 1, ωt−1 = 1)

2
=

∑M−2
s=0 qt(s)

4
.

(52)

If ωt−1 = 1, then both st > 0 and st−1 < M if and only if st−1 < M . Thus, it

follows that

µt(st > 0, st−1 < M, ωt = 2, ωt−1 = 1) =
µt(st > 0, st−1 < M, ωt−1 = 1)

2

=
µt(st−1 < M, ωt−1 = 1)

2
=

∑M−1
s=0 qt(s)

4
.

(53)

Finally, if ωt−1 = 2, then both st < M and st−1 > 0 if and only if st−1 > 0.

Thus, it follows that

µt(st < M, st−1 > 0, ωt = 1, ωt−1 = 2) =
µt(st < M, st−1 > 0, ωt−1 = 2)

2

=
µt(st−1 > 0, ωt−1 = 2)

2
=

∑M
s=1 qt(s)

4
.

(54)

It then follows that cov(θt, θt−1) converges to

− lim
t→∞

qt(1) + qt(M − 1)
4

= − 1
2(M + 1)

. (55)

Hence, if t is sufficiently large, we conclude that cov(θt, θt−1) < 0.
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