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Abstract

New horizontally-differentiated goods involving product-specific net-
work effects are quite prevalent. Consumers’ market-wide preference
for each of these goods typically is initially unknown. Later, as sales
data begin to accumulate, agents learn market-wide preferences, which
thus become common knowledge. We study such a market, pinpoint-
ing the factors which determine whether the market-wide preferred
firm reinforces its lead as time elapses, penetration and under-cost
pricing prevail, and first- or last-mover effects in market-wide prefer-
ences occur.

JEL classification numbers: L11, L13.
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1 Introduction

NEW HORIZONTALLY-DIFFERENTIATED GOODS involving product-spe-

cific network effects often reach the market almost simultaneously

without consumers and firms knowing which is favored by the majority

of consumers. Recent examples are the consoles market where Nintendo,

Sony and Microsoft compete, or the storage-media market were Imation and

Iomega compete with the SuperDisk and Zip formats, respectively. In these

markets, network effects are present since consumers’ utility increases with

the number of other users.1 Quite frequently, such goods are incompatible,

implying that network effects are product specific. Thus, consumers who

bought the less well-liked good may find themselves stranded with the mi-

nority format.2 Even though when such goods are introduced, neither con-

∗We are grateful to Pedro Pita Barros and Cesaltina Pires for useful suggestions. We retain
sole responsibility for any shortcomings.

1In the examples cited, due to game sharing (a direct network effect) and variety (an
indirect network effect), and file swapping, respectively.

2A fact well known to Beta videotape-system patrons.
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sumers nor firms know which most consumers will prefer, as sales data be-

gin to accumulate, market-wide preferences become common knowledge.3

Also, a particular good may be preferred by the majority of consumers be-

cause of differences intrinsic to the goods, in which case such an advantage

lasts over time, or as a result of an initially more-successful advertising and

marketing campaign, in which case it may change.

For the sake of realism, to all these issues one must add horizontal

differentiation since consumers idiosyncratically differ in their valuation of

the competing goods’ characteristics.4

We consider a model where two firms compete in prices over two peri-

ods by selling horizontally-differentiated goods involving product-specific

network effects. Either product may be preferred by the majority of con-

sumers due to the non-observable realization of a random variable com-

mon to all consumers. This unobservable common term adds to the usual

idiosyncratic horizontal-differentiation term to determine gross surplus

which, added to the network benefit, yields willingness to pay. Thus, ini-

tial consumers who enjoy one good more than the other do not know if

the majority of other consumers also show the same relative preference,

or if this is instead an idiosyncratic trait. Afterwards, second-period con-

sumers become aware of which product enjoys a market-wide preference

upon observing first-period sales. We thus capture the idea that with time,

market-wide preferences become common knowledge.

Considering two periods, as well as profit-maximizing and information-

processing firms, allows us to capture strategic price decisions in this setup

where market-wide preferences must be learned. Not surprisingly, penetra-

tion pricing prevails as long as network effects are felt, and under-cost pric-

ing may occur depending on the relative strength of product differentiation

vs. the network effect.

We find that the firm that obtains the larger market share in the first

period reinforces its lead in the following period if and only if the network

effect is significant enough compared to the degree of product differenti-

ation. This finding contrasts sharply with that of Arthur and Ruszczynski

(1992), who show that a firm’s increase in market share, when it finds itself

3Imation discontinued the production of its SuperDisk drive perhaps as a consequence
of learning that most consumers preferred the Zip storage format.

4Thus, we explicitly capture in a dynamic setting the tension between horizontal differ-
ences that tend to split the market among firms, and network effects that induce the oppo-
site tendency.
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with a bigger installed base, depends on the discount rate.

By considering a variant of the model with two independent realizations

of the non-observable random variable, each affecting consumers buying in

one period, we are able to compare the case where a good’s preference

by the majority of consumers is unchanging in time to the case where

such preference may vary. The former depicts an advantage inherent to

the good (e.g., its design or performance) whereas the latter describes an

extrinsic and possibly fleeting advantage (for instance, resulting from a

more-successful introductory campaign). Surprisingly, this has a striking

impact on the previous paragraph’s conclusion. We find that in the latter

case, when a firm obtains the same market-wide preference in both periods,

it always reinforces its lead.

This variant of the model also allows one firm to be preferred by the

majority of consumers in one period, while the other firm benefits from

the very same advantage in the following period. In this case, we show that

a first-mover advantage prevails, a result that contrasts with that of Katz

and Shapiro (1986).5 Insofar as advertising budgets for promoting new net-

work goods aim at affecting market-wide preferences, this result provides

a rationale for the often-observed concentration of spending before and

during the launching of the new product, as opposed to later.

By considering yet another variant of the model where the realization of

the common term is known from the outset (i.e., which good is preferred

by the majority of consumers and by how much is common knowledge

resulting, for instance, from advanced testing reported by the media), we

show that the parameters’ range for which the firm with a larger installed

base after the first period increases its dominance in the second period

is smaller. Thus, one concludes that firms and initial consumers ignoring

which product enjoys a market-wide preference enlarges the set of circum-

stances under which one firm continually increases its market share as time

elapses.

Related issues have been discussed by a plethora of authors.6 However,

almost all studies assume within-period consumer preferences’ homogene-

ity, implying that the same firm captures the whole market in each pe-

riod while excluding horizontal-differentiation issues. Instead, we assume

within-period consumers’ heterogeneity while also departing from the lit-

5See Liebowitz and Margolis (1994, p. 143) who criticize this type of result.
6See Farrell and Klemperer (forthcoming) for a survey of the extant literature.
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erature in assuming that consumers and firms initially do not know (other)

consumers’ valuations with certainty, a realistic feature of paramount im-

portance when network effects are present.

The paper is organized as follows. In Section 2, we describe the model.

In Section 3, we solve it. In Section 4, we present the main results. Finally,

Section 5 briefly concludes. All material not needed for a quick under-

standing of the model, its solution and main results is found in several

appendices.

2 The Model

We consider a model with two periods. In each period, N consumers reach

the market and must decide which good to buy. All have unitary demand.

Regardless of when they reach the market, all consumers begin using the

good after the second period.7 Two firms, A and B, sell two differentiated

goods endowed with product-specific network effects, i.e., incompatible,

which are also denoted A and B, respectively. We assume that firms com-

pete in prices, which they set in each period. Without loss of generality, let

the cost of serving an additional consumer be zero.

The final size of network A is given by N (x1 + x2), where xi ∈ [0,1]

is the proportion of consumers who choose network A in period i = 1,2.

Each consumer enjoys a surplus resulting from the network effect, S, which

increases linearly at rate E > 0 with the final size of the network, i.e., S =
E × N (x1 + x2).8 Thus, E is a constant that measures the intensity of the

network effect.

In each period, consumers choose the good that offers the greater ex-

pected net surplus. To determine it, consumers must consider (i) the gross

surplus excluding the network effect, (ii) the expected network benefit which

depends on the expected network size and (iii) the price.

For each consumer, the difference between the gross surplus yielded by

network A and that yielded by network B is given by random variable v(·).
A consumer with a positive value of v(·) obtains a larger gross surplus

by choosing network A rather than B. Otherwise, it obtains a larger gross

surplus by choosing network B.

7This straightforwardly models situations where the two buying-periods’ time lengths
are insignificant when compared to the overall lifetime of the goods. We thus exclude the
durable goods’ issue, not juxtaposing it to the coordination issue at the root of network
goods’ markets. This modeling option is widespread in the literature.

8Thus, we adhere to Metcalfe’s law.
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Random variable v(·) equals the sum of two components, random vari-

able z, common to all consumers, and random variable a(·), specific to

each consumer, i.e., idiosyncratic:

v (xi, z) = a(xi)+ z.

The value of z measures how much, on average, all consumers prefer

network A to B. We assume it to have uniform distribution with support

[−w,w]:
z� U (−w,w) .

Random variable a(·) measures how much a particular consumer id-

iosyncratically prefers network A to B. It is built as follows. Assume that

consumers are uniformly distributed along the segment [0,1] with A lo-

cated at x = 0 and B located at x = 1. Let t measure the degree of product

differentiation between the two goods. A consumer located at x = 0, ceteris

paribus, prefers network A to B by an amount t, while a consumer located

at x = 1 prefers network B to A by the same amount. Therefore, a(xi) is

uniformly distributed with support [−t, t]:

a(xi) = t − 2txi, i = 1,2

xi� U (0,1)⇒ a� U (−t, t) .

We assume that each consumer knows the density functions of xi, a, z

and v(·), but can only observe the value taken by v(xi, z) in its particular

case.9 If a consumer observes v (·) taking a positive value, it knows that

its gross surplus of choosing A exceeds that of choosing B by the amount

v(·). However, it does not know if this is caused by a high realization

of z, in which case most consumers also prefer network A to B, or a low

realization of xi, in which case it is she or he that idiosyncratically enjoys

network A more than B.10

After defining e ≡ E × N, the net surplus of period-i consumers from

buying good A is given by

C + v (xi, z)+ e× (x̃1 + x̃2)− pAi ,

while the net surplus of buying good B is given by

C + e× (2− (x̃1 + x̃2))− pBi ,
9In plain words, each consumer knows how much it prefers one particular network over

the other, all else equal.
10As we will see, second-period consumers circumvent this informational problem by in-

ferring the realization of z from first-period sales.
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where x̃1 and x̃2 represent the expected first- and second-period market

shares of network A, and C is a constant sufficiently large for all the market

to be covered in equilibrium.

3 Solving the Model

This section contains the computations needed for solving the model and

is thus of limited interest to readers interested only in results. For these, it

is enough to know that equations (11) and (14) represent first- and second-

period demand, whereas equations (15), (12) and (13) represent first- and

second-period optimal prices when consumers and firms maximize utility

and profits, respectively, while optimally learning the extent of market-wide

preferences from sales data available at the end of the first period.

In order to choose a network, first-period consumers must compare the

net surpluses yielded by networks A and B. This determines the first-

period indifferent consumer, and thus first-period demand. First-period

consumers indifferent between the two networks are such that:

C + v (a (x1) , z)+ e (x̃1 + x̃2)− pA1 = C + e (2− (x̃1 + x̃2))− pB1 �
t − 2tx1 + z + e (x̃1 + x̃2)− pA1 = e (2− (x̃1 + x̃2))− pB1 �

x1 = pB1 − pA1 + z + t − 2e+ 2e (x̃1 + x̃2)
2t

. (1)

First-period demand is a function of the expectation of the networks’ mar-

ket shares, i.e., x̃1 and x̃2, which we must thus compute.

In order to obtain the estimated demand for network A in the first pe-

riod, x̃1, we assume that all consumers are rational insofar as estimated

demand equals expected demand:

x̃1 = E [x1|v] = pB1 − pA1 + E [z|v]+ t − 2e+ 2e (x̃1 + x̃2)
2t

�

= pB1 − pA1 + E [z|v]+ t − 2e+ 2ex̃2

2 (t − e) , (2)

where E [z|v] is the expectation of z by a first-period consumer who has

observed realization v (xi, z). Because the expected value of z is not the

same for all consumers, they can have different expectations of the demand

for network A in the first period.

This expected demand results in a unique and stable equilibrium when t

exceeds e. If instead e > t, this expected demand is based on an non-unique

and unstable equilibrium, in which case there are two other stable equilibria
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where all consumers choose one of the two networks. The reason is that

when the network effect dominates the degree-of-product-differentiation

effect, consumers may prefer to coordinate on all buying the same good

rather than splitting and choosing the good which they prefer. In the end,

the equilibrium turns out to be similar to one in which there is no product

differentiation at all. Since we want to analyze the case where product dif-

ferentiation also drives the results, we assume that t > e for now. However,

once we take into account the interaction between periods, this restriction

will be strengthened.11

In order to determine first-period demand, we also need to compute

the second-period expected demand, x̃2. For that, one must model second-

period consumers’ behavior as well as firms’ optimal second-period pricing.

Second-period consumers and firms, having observed the decisions of

first-period consumers, namely actual first-period quantity demanded x∗1 ,

correctly infer the value of z.12 Therefore, they determine exactly second-

period demand.

In order to choose a network, second-period consumers compare the

net benefit of adopting each network. A consumer indifferent between the

two networks is such that:

C + v (a (x2) , z)+ e
(
x∗1 + x2

)− pA2 = C + e (2− (x∗1 + x2
))− pB2 ,

which yields

x2 = pB2 − pA2 + z + t − 2e+ 2ex∗1
2 (t − e) , (3)

where x∗1 is the observed market share of network A at the end of the first

period.

First-period consumers do not know the realization of z, x∗1 and second-

period prices. Thus, they cannot determine the actual second-period de-

mand, but only the expected demand:

E [x2|v] = x̃2 =
E
[
pB2 |v

]
− E

[
pA2 |v

]
+ E [z|v]+ t − 2e+ 2ex̃1

2 (t − e) . (4)

First-period consumers determine expected second-period prices while

assuming that these are chosen by profit-maximizing firms. To calculate ex-

pected second-period prices, E
[
pA2 |v

]
and E

[
pB2 |v

]
, we consider firm A’s

profit-maximization problem in the second period, while bearing in mind

11See Appendix A for details.
12Appendix B explains this inference process in detail.
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that firms, too, have inferred the realization of z at the end of the first

period:

Max
pA2

pA2 x2N = pA2
pB2 − pA2 + z + t − 2e+ 2ex∗1

2 (t − e) N.

The f.o.c. equals

pB2 − pA2 + z + t − 2e+ 2ex∗1
2 (t − e) N − pA2

N
2 (t − e) = 0 �

pB2 + z + t − 2e+ 2ex∗1 = 2pA2 ,

whereas the s.o.c. equals − N
t−e and thus is strictly negative due to the as-

sumption that t > e.

By symmetry we have for firm B:

pA2 − z + t − 2ex∗1 = 2pB2 .

By solving the system of equations formed by these first-order conditions,

we obtain the prices charged in the second period:

pA2 = 1

3z + t + 2
3ex

∗
1 − 4

3e

pB2 = −1
3z + t − 2

3e− 2
3ex

∗
1 .

(5)

First-period consumers compute expected second-period prices:

E
[
pA2 |v

]
= 1

3E [z|v]+ t + 2
3ex̃1 − 4

3e

E
[
pB2 |v

]
= −1

3E [z|v]+ t − 2
3e− 2

3ex̃1.
(6)

By replacing these in (4), we obtain

x̃2 = t − 4
3e+ 2

3ex̃1 + 1
3E [z|v]

2 (t − e) . (7)

We now have two equations, (2) and (7), which together determine x̃1 and

x̃2 as a function of all known parameters, first-period prices and E [z|v].
By solving this system of equations, we obtain

x̃1 = 1
2
+ 3

2

(t − e)
(
pB1 − pA1

)
+ E [z|v]

(
t − 2

3e
)

3t2 − 6te+ 2e2
, (8)

and

x̃2 = 1
2
+ 1

2

e
(
pB1 − pA1

)
+ E [z|v] t

3t2 − 6te+ 2e2
. (9)

Appendix A makes it plain that only for t > 1.577e do we have a unique

and stable intermediate equilibrium without consumer bunching on a net-

work. Thus, we tighten the previously-made assumption t > e to this more

stringent inequality.
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We have finally computed x̃1 and x̃2 and are now ready to obtain first-

period demand. By replacing x̃1 and x̃2 in (1), one obtains

x1 = 1
2
+ z

2t
+ 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2

+ E [z|v] e (2t − e)
t (3t2 − 6te+ 2e2)

. (10)

At this point, one must tackle the inference problem encapsulated in

E [z|v], i.e, to compute the expectation of z by a consumer who observed

a given realization of v (xi, z). Given the assumptions made, the support

of v is [−t −w, t +w]. We now postulate that there are always some con-

sumers who value network A more than B while others have the opposite

valuation ordering when firms charge the same price and all consumers

expect both networks to attain the same final size. This amounts to assum-

ing that, whatever the realization of z, variable v can assume positive and

negative values depending on the value of a(xi). This is tantamount to

imposing t > w.13

We show in Appendix C how, given v , first-period consumers form their

expectation of z. Also, Appendix C makes it plain that first-period demand

is estimated by first-period consumers as follows:

(i) For consumers who observe a realization of v ∈ [t −w, t +w]:

x1 = 1
2
+ z

2t
+ 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2

+ (v +w − t) e (2t − e)
2t (3t2 − 6te+ 2e2)

.

(ii) For consumers who observe a realization of v ∈ [−t +w, t −w]:

x1 = 1
2
+ z

2t
+ 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2

. (11)

(iii) For consumers who observe a realization of v ∈ [−t −w,−t +w]:

x1 = 1
2
+ z

2t
+ 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2

+ (v + t −w)e (2t − e)
2t (3t2 − 6te+ 2e2)

.

Finally, though the first-period demand curve is estimated differently by

different consumers depending on their observed realization of v(·), Ap-

pendix C makes it plain that (11) is the relevant demand curve in a symmet-

ric equilibrium such that pA1 = pB1 . This has a very intuitive explanation.

Begin by viewing the first case above as representing consumers who are

quite “optimistic” about network A, the intermediate case as comprising

13Thus ensuring that the equilibrium values of x1 and x2 lie on [0,1], as will be made
clear shortly.
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the “middle grounders,” and the last one the “pessimists.” Appendix C

shows that “middle grounders” always determine market demand.14

To determine optimal first-period prices, firms have to take into account

their effect on second-period demand and prices. The lower is a firm’s first-

period price, the greater will be its quantity demanded, and thus, due to the

network effect, the greater will be its second-period demand and associated

optimal price. For this reason, we must determine second-period demand

and optimal prices as a function of first-period prices only.

By replacing (11) in (5), we obtain

pA2 = 1
3
z + t − e+ 1

3
ez
t
+
e (t − e)

(
pB1 − pA1

)
3t2 − 6te+ 2e2

, (12)

and

pB2 = −1
3
z + t − e− 1

3
ez
t
−
e (t − e)

(
pB1 − pA1

)
3t2 − 6te+ 2e2

. (13)

By replacing (11), (12) and (13) in (3), we obtain

x2 = 1
2
+

1
3z + 1

3
ez
t

2 (t − e) +
1
2

e
(
pB1 − pA1

)
3t2 − 6te+ 2e2

. (14)

The profit maximization problem of firm A is15

Max
pA1

ΠA = E [x1

(
pA1 , p

B
1

)
NpA1

]
+ E

[
x2

(
pA1 , p

B
1

)
NpA2

]
.

pA1 is not a random variable, but pA2 is because its value depends on the

realization of z. Therefore, we can write

Max
pA1

ΠA = E [x1

(
pA1 , p

B
1

)]
NpA1 + E

[
x2

(
pA1 , p

B
1

)
pA2
]
N.

We can now easily compute a symmetric equilibrium.16 By replacing (11),

(12) and (14) in the objective function, we obtain

ΠA = E


1

2
+ z

2t
+ 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2


NpA1 + E




1

2
+

1
3z + 1

3
ez
t

2 (t − e) +
1
2

e
(
pB1 − pA1

)
3t2 − 6te+ 2e2


×

×

1

3
z + t − e+ 1

3
ez
t
+
e (t − e)

(
pB1 − pA1

)
3t2 − 6te+ 2e2




N.

14Interestingly enough, even though “middle grounders” always determine actual
demand—i.e., indifferent consumers are necessarily “middle grounders”—they may be
wrong in their estimate of z. To see this, consider the case where the realization of z is
extreme, namely w, in which case “optimists” are nearer to correctly estimating market-
wide preferences (see Appendix C for details).

15The absence of discounting of second-period profits is in keeping with the remarks made
previously in fn. 7.

16Note that firms are symmetric at the beginning of the game.
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The first-order condition equals

1
2
N + 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2

N − 3
2

t − e
3t2 − 6te+ 2e2

NpA1 −
1
2

e (t − e)
3t2 − 6te+ 2e2

N −

−1
2

e (t − e)
3t2 − 6te+ 2e2

N + 1
2

2e2 (t − e)
(
pA1 − pB1

)
(3t2 − 6te+ 2e2)2

N = 0.

In a symmetric equilibrium we have pA1 = pB1 . Therefore,

1
2
− 3

2
t − e

3t2 − 6te+ 2e2
pA1 −

e(t − e)
3t2 − 6te+ 2e2

= 0.

Some more manipulation finally yields

pA1 = t −
5
3
e− 1

3
e2

t − e = p
B
1 . (15)

Equilibrium first-period prices depend positively on the degree of product

differentiation and negatively on the extent of the network effect. A de-

crease in price increases expected network size. Thus, the stronger is the

network effect, the greater is the impact of a decrease in price on each pe-

riod’s demand and so the lower is the first-period price which firms want

to charge.

The second derivative of the problem at hand equals
1
2 (t − e) −18t2+36te−11e2

(3t2−6te+2e2)2 . This second derivative is negative if t < 0.376e

or t > 1.623e. Since we have already seen that only for t > 1.577e do we

have a unique and stable equilibrium without full bunching on a network,

we must retain t > 1.623e as the relevant constraint.

4 Results

4.1 Evolution of market shares

4.1.1 Initially-unknown time-invariant market-wide preferences

We want to check whether or not in a market with network effects and

initial uncertainty concerning the market-wide preferences of consumers,

the firm which obtains the larger market share in the first period tends to

increase it in the next period.

Demand in both periods, given by (11) and (14), in a symmetric equilib-

rium collapses to

x1 = 1
2
+ 1

2
z
t

x2 = 1
2
+

1
3z + 1

3
ez
t

2 (t − e) .
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The first-period demand does not depend on the network effect because

the expected size of both networks is the same.

Simple computations show that a firm increases its market share in the

second period, x2 > x1, iff t < 2e. Recalling that we restrict our analysis to

t > 1.623e, we conclude that the firm that obtains the larger market share

in the first period will increase it in the second period iff t ∈ (1.623e,2e).

In other words, market dominance is reinforced if and only if the network

effect is strong enough vis-à-vis the degree of product differentiation.

The reason is that in the first period and when choosing its price, the

preferred firm does not know that it has the greater demand since z is

still unknown. So, it will charge a price lower than would have been opti-

mal. In the second period, once firms infer the realization of z, the firm

which realizes it has the higher demand will price accordingly.17 This mis-

pricing correction tends to reduce the firm’s market share. Its impact on

second-period equilibrium quantity demanded is proportional to the de-

gree of product differentiation, t. To see it, note that if t is rather close

to zero, the goods are very close substitutes, implying that any attempt by

the preferred firm to significantly increase price would result in the loss of

many sales.

Concurrently, consumers realize which firm is preferred by the major-

ity of consumers, i.e., they learn the realization of z. This tends to in-

crease that firm’s second-period market share due to the network effect

and, by the same token, reduce its opponent’s. If the network effect is

strong enough, the second effect dominates the first and the lead obtained

by one firm in the first period is reinforced in the second.

4.1.2 Unknown time-variable market-wide preferences

In Appendix D, we modify our model by replacing variable z by variables

z1 and z2 in the first and second periods, respectively. We further as-

sume that z1 and z2 are independent. This allows us to consider the case

where the market-wide advantage initially enjoyed by one firm may be non-

permanent. Interestingly, if one firm happens to enjoy the same advantage

in both periods, i.e. z1 = z2 = z, then this firm’s market share always

increases. In this case, neither the mispricing correction described pre-

viously, nor the network effect associated with second-period consumers

17Of course, the same applies mutatis mutandis to the other firm after it realizes that it is
less favored by consumers.
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learning the true value of z takes place. Thus, firms compete for second-

period consumers exactly as they did for first-period ones, except that the

initially-preferred firm now starts with the advantage of a larger installed

base. Thus, it obtains an even larger percentage of second-period con-

sumers than it did of first-period ones.

4.1.3 Known time-invariant market-wide preferences

In Appendix E, we develop another variant of our model where the real-

ization of z is common knowledge, and thus immediately observable by

first-period consumers. This accounts for the possibility that market-wide

preferences may be apparent from the outset, due, for example, to techni-

cal reviews of the new products appearing in the press. We use it to show

that z not being initially observable increases the range of circumstances

under which the firm that gains a larger installed base gets to increase its

market share subsequently.

In fact, when z is common knowledge from the outset, the interval of

parameters for which the firm that obtains the greater market share in the

first period increases it in the following period is reduced from t < 2e to

t < 1.694e. In this case, rational expectations ensure that the final size

of each network is known in advance by all consumers, and is thus the

same for first- and second-period consumers. Therefore, there is no reason

for the firm that obtains the greater market share in the first period to

increase it in the final period due to the network effect. The reason why we

still have a positive trend in market share is firms’ strategic pricing over

time. To see this, suppose that we also impose that prices should be time

invariant. Then, prices, as well as expected network size, are the same in

both periods, and so consumers will split between networks in the same

manner in both periods. Therefore, each firm will have the same market

share in both periods. In this case and despite the network effect, the firm

that obtains the larger market share in the first period will not increase it

in the following period.

4.2 Strategic Prices

4.2.1 Penetration pricing

In a market with network effects, firms may want to act strategically by

charging different prices in different periods even when costs and the de-

13



mand they face are the same. To examine this issue, we compare the prices

charged in each period. From (12), the second-period price charged by firm

A in a symmetric equilibrium equals

pA2 = t − e+
1
3
z + 1

3
ez
t
,

and thus, the average price charged in the second period equals

E
[
pA2
]
= t − e.

From (15), firm A’s first-period price equals

pA1 = t −
5
3
e− 1

3
e2

t − e .

The first-period price is smaller than the second-period average price.

4.2.2 Under-cost pricing

It is easy to show that under-cost pricing may occur. Simple computations

show that pA1 = t − 5
3e − 1

3
e2

t−e > 0 iff t > 2e. Recall that cost is nil. Thus,

if the degree of product differentiation is significant vis-à-vis the network

effect’s strength, firms will optimally price above cost in order to exploit

“their” idiosyncratic clients at the cost of a reduced first-period installed

base. Otherwise, if the network effect’s strength is significant vis-à-vis the

degree of product differentiation, firms will follow an under-cost pricing

strategy.

4.3 First-mover Advantage

We now determine whether in a model where market-wide preferences may

change over time, there is a first- or last-mover advantage in market-wide

preference. To do so, in Appendix D we consider a particular realization

profile of z1 and z2 such that, in the first period, firm A is the preferred

one (z1 = K > 0) while in the second period the symmetric situation oc-

curs (z2 = −K < 0). We conclude that if there are network effects—i.e.,

e > 0—then the firm which is preferred by consumers in the first period al-

ways obtains a larger total market share at the end of the two periods than

the firm preferred in the second period. Therefore, in this model there is

always a “first-mover advantage,” in contrast to the “last-mover advantage”

instances found in Katz and Shapiro (1986).

The reason for this is that in a market such as ours, in which individuals

cannot anticipate the future evolution of the network, a firm that obtains

14



a large market share in the first period benefits from the network effect in

the following period because agents observe that advantage. On the other

hand, the firm that gains advantage in the second period does not benefit

from the network effect in the first period because that advantage was not

anticipated by consumers.

5 Conclusion

We developed a two-period, differentiated-goods model of a market with

network effects and consumer and firm uncertainty concerning consumers’

overall valuation of the goods. We show that the firm that obtains the

larger market share in the first period increases its market share in the last

period if and only if the network effect is significant enough compared to

the degree of product differentiation as long as market-wide preferences

are time invariant. Strikingly, if market-wide preferences can vary over

time, then the firm with a larger installed base will always reinforce its lead

if it keeps enjoying the same market-wide preference.

The idea that, in a market with network effects, the firm that obtains a

larger market share in the initial period tends to subsequently increase it

is expressed by Varian and Shapiro (1999, pp. 174): “The new information

economy is driven by the economics of networks ( . . . ) positive feedback

makes the strong get stronger and the weak grow weaker.” We qualify this

observation in two respects. Most of the literature assumes homogeneous

consumers and no uncertainty concerning market-wide preferences. Thus,

the firm that wins in the first period immediately obtains 100% market

share. There are no gradual dynamics in which success begets success and

failure breeds failure, a feature that our model shows.

More importantly, we show that this is not always the case, depending

on the relative strength of the network effect vis-à-vis product differentia-

tion, as well as whether market-wide advantages are irreversible or fleeting.

Also, we show that uncertainty over market-wide preferences increases the

set of circumstances under which leaders amplify their market-share ad-

vantage.

Moreover, we show that in this context, firms do engage in penetration

pricing and may engage in under-cost pricing. Finally, we find that the

model shows a first-mover advantage concerning the market-wide prefer-

ence term, z. This provides a rationale for allocating advertising budgets

15



preferentially to pre-introduction promotion activities rather than to post-

introduction advertising, insofar as these are mechanisms affecting, and

possibly reversing, market-wide preferences.
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Appendix A

In this appendix we show that a unique and stable equilibrium without

bunching of all consumers on a network exists if and only if t > 1.577e,

i.e., iff the degree of product differentiation is large enough compared to

the intensity of the network effect.

For expositional clarity, we begin by showing that in a model with only

one period, a unique and stable equilibrium without full bunching exists if

and only if t > e.18 The result for the two-period model in the main text

then follows easily by analogy.

In a one-period model, the indifferent consumer is given by

C − tx1 + z + ex̃1 − pA = C − t (1− x1)+ e (1− x̃1)− pB,

from which we obtain the following demand function

x1 = pB − pA + z + t − e
2t

+ e
t
x̃1. (A.1)

A consumer’s estimate of x1 is then given by:

x̃1 = pB − pA + E [z|v]+ t − e
2t

+ e
t
x̃1

= 1
2
+ p

B − pA + E [z|v]
2 (t − e) . (A.2)

If t < e, the intermediate expectation of x1 given by equation (A.2),

namely 0 < x̃1 < 1, is not the only one possible. Two other extreme ex-

pectations concerning x1, namely x̃1 = 0 and x̃1 = 1, can consistently be

entertained by consumers as part of an equilibrium. This is so because

t < e implies that all consumers—including those located at the far-off end

of the horizontal-differentiation line—attach a higher value to belonging to

the network to which all other consumers belong than to staying with their

preferred network. In this case, equilibria involving complete bunching

may occur.

Moreover, the intermediate equilibrium is unstable when t < e. If con-

sumers hold an expectation slightly different from that given by (A.2), they

will all migrate towards one network. Equation (A.1) makes this clear if one

notes that t < e ⇒ e
t > 1—the latter being the coefficient affecting x̃1 on

the r.h.s. of (A.1)—implies ∂x1
∂x̃1

> 1.

18This is also the relevant interval in a model with two periods in which first-period con-
sumers do not take into account the impact of their decisions on second-period consumers.
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The extreme cases—in which all consumers are driven by the network

effect to coordinate on consuming the same good—are tantamount to hav-

ing no product differentiation at all.

We now consider the two-period model treated in the main text. Here,

first-period consumers know the impact of their decisions on their second-

period counterparts. The condition for a unique and stable intermediate

equilibrium is now more demanding since an increase in the expected value

of x1 leads to an increase in the expected value of x2 due to the network

effect. This, in turn, leads to an increase of the expected value of x1. Thus,

the incentives for all consumers to choose the same network are stronger,

and so the condition for a unique and stable intermediate equilibrium is

more demanding.

The first-period indifferent consumer is determined by

C − tx1 + z + e (x̃1 + x̃2)− pA1 = C − t (1− x1)+ e (2− (x̃1 + x̃2))− pB1 ,

from which we obtain

x1 = pB1 − pA1 + z + t − 2e+ 2e (x̃1 + x̃2)
2t

,

and finally

x̃1 = pB1 − pA1 + E [z|v]+ t − 2e+ 2ex̃2

2 (t − e) . (A.3)

From (7) in the main text, we have

x̃2 =
t − 4

3e+ 2
3ex̃1 + 1

3E [z|v]
2 (t − e) .

After replacing x̃2 in (A.3), we obtain

x̃1 =
pB1 − pA1 + E [z|v]+ t − 2e+ 2e t−

4
3 e+ 1

3E[z|v]
2(t−e)

2 (t − e) +
4
3e

2

4 (t − e)2 x̃1.

Now, the intermediate equilibrium is unique and stable iff the coefficient

affecting x̃1 on the r.h.s. of the previous equality is less than 1, i.e.,
4
3 e

2

4(t−e)2 <

1. This is the case iff t < 0.423e or t > 1.577e.
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Appendix B

In this appendix we show that second-period consumers and firms deduce

the realization of z upon observing x1, provided a condition on accuracy

of beliefs is met.

A first-period indifferent consumer is such that

C + a(x1)+ z + e (x̃1 + x̃2)− pA1 = C + e (2− (x̃1 + x̃2))− pB1 .

Thus, first-period demand equals

x1 = pB1 − pA1 + z + t − 2e+ 2e (x̃1 + x̃2)
2t

. (B.1)

The estimate of x1 by first-period consumers equals

E [x1|1, v] ≡ x̃1 = pB1 − pA1 + E [z|1, v]+ t − 2e+ 2e (x̃1 + x̃2)
2t

,

where E [x|1, v] denotes the estimate of random variable x by a first-

period consumer who has observed realization v (xi, z). Thus,

x̃1 = pB1 − pA1 + E [z|1, v]+ t − 2e+ 2ex̃2

2 (t − e) . (B.2)

A second-period indifferent consumer is such that

C + a(x2)+ z + e
(
x∗1 + E [x2|2, v]

)− pA2 = C + e (2− (x∗1 + E [x2|2, v]
))− pB2 ,

where E [x|2, v] denotes the estimate of random variable x by a second-

period consumer who has observed realization v (·). Thus, the second-

period demand curve equals

x2 = pB2 − pA2 + z + 2eE [x2|2, v]+ t − 2e+ 2ex∗1
2t

, (B.3)

which yields

E [x2|2, v] = pB2 − pA2 + E[z|2, v]+ t − 2e+ 2ex∗1
2 (t − e) . (B.4)

Substituting (B.4) in (B.3), we obtain

x2 = pB2 − pA2 + z + t − 2e+ 2ex∗1
2 (t − e) + eE [z|2, v]− ez

2t (t − e) .

We need to compute the expected value of x2 by first-period consumers:

x̃2 = E [x2|1, v] =
E
[
pB2 |1, v

]
− E

[
pA2 |1, v

]
+ E [z|1, v]+ t − 2e+ 2ex̃1

2 (t − e)
+eE [E [z|2, v] |1, v]− eE [z|1, v]

2t (t − e) , (B.5)
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where, from (6) in the main text, we have

E
[
pA2 |1, v

]
= 1

3
E [z|1, v]+ t + 2

3
ex̃1 − 4

3
e (B.6)

E
[
pB2 |1, v

]
= −1

3
E [z|1, v]+ t − 2

3
e− 2

3
ex̃1. (B.7)

By solving the equation system formed by equations (B.2), (B.5), (B.6) and

(B.7), we conclude that

x̃1 (E [z|1, v] , E [E [z|2, v] |1, v])

and

x̃2 (E [z|1, v] , E [E [z|2, v] |1, v]) .

By replacing these expressions in (B.1), we obtain

x1 = pB1 − pA1 + z + t − 2e+ 2ex̃1 (E [z|1, v] , E [E [z|2, v] |1, v])
2t

+2ex̃2 (E [z|1, v] , E [E [z|2, v] |1, v])
2t

.

Appendix C shows that E [z|1, v] = E [z] = 0 for a first-period indiffer-

ent consumer in a symmetric equilibrium, a fact known to second-period

consumers. Thus, we have

x1 = pB1 − pA1 + z + t − 2e+ 2e {x̃1 (E [E [z|2, v] |1])+ x̃2 (E [E [z|2, v] |1])}
2t

,

where we have simplified the notation by writing E [E [z|2, v] |1, v] simply

as E [E [z|2, v] |1] for a first-period indifferent consumer who acts based

on the posterior E [z|1, v] = E [z] = 0.

The only variables determining x1 whose values are unknown are z and

E [E [z|2, v] |1]. We can thus write:

z (x1, E [E [z|2, v] |1]) . (B.8)

In order to estimate the value of z after observing x∗1 , second-period con-

sumers first need to estimate the value of E [E [z|2, v] |1]. In fact,

E [z|2, v] = E [z (x∗1 , E [E [z|2, v] |1]) |2, v]

becomes

E [z|2, v] = z (x∗1 , E [E [E [z|2, v] |1] |2, v]) , (B.9)
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since x∗1 is observable by second-period consumers, they understand how

z (x1, E [E [z|2, v] |1]) is formed, and z is monotone in E [E [z|2, v] |1, v],
as inspection of (B.5) immediately shows.

We rule out equilibria based on E [E [E [z|2, v] |1] |2, v] ≠ E [E [z|2, v] |1].
In plain words, we rule out equilibria based on first-period indifferent con-

sumers forming beliefs on how second-period consumers estimate z which

second-period consumers misunderstand even though they possess all the

information which first-period indifferent consumers had at the time they

formed their beliefs. Then, from (B.8) and (B.9), we have E [z|2, v] = z, i.e.,

second-period consumers deduce the true value of z after observing x∗1 .

The same argument holds for firms in the second period.
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Appendix C

Determination of E [z|v]
From

v = a+ z
z� U (−w,w)
a� U (−t, t) ,

we have that v is itself a random variable with support [−t −w, t +w].
Moreover, it was also assumed that t > w.

Divide the support of v in three intervals.

(i) Intermediate values: v ∈ [−t +w, t −w].

When v ∈ [−t +w, t −w], for a given value of v , variable z can assume

all values in the interval [−w,w] . Also, for a given value of v , to each value

of z corresponds a unique value of a.19 Since a and z are both uniformly

distributed random variables, we conclude that for each value of v , variable

z can assume all values in its support with the same probability. Therefore,

the density function of z, given the realization of v , is

f [z|v] = 1
w − (−w), −w ≤ z ≤ w.

Thus, the posterior density function of z once a given value of v (xi, z) has

been observed, equals the prior density function of z:

E [z|v] = E [z] = 0.

For intermediate values of v , consumers cannot infer anything new about

the expected value of z by observing their own relative valuation of the two

networks as given by v .

In the extreme cases—high or low values of v—consumers can infer

something about the expected value of z by observing their own relative

valuation of the two networks. For instance, if a consumer observes a high

value of v , it infers that this value cannot be associated with a low value of

z and so the posterior expected value of z exceeds zero.

19To see this, consider the following example. If v = 0, then z = w ⇒ a = −w, and
z = 0 ⇒ a = 0, and z = −w ⇒ a = w.
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(ii) High values: v ∈ [t −w, t +w].

If v ∈ [t −w, t +w], then variable z cannot assume all values in

[−w,w]. In particular, z cannot assume values towards the low end of

its support, its posterior expected value no longer being zero but exceed-

ing it, instead. For a given value of v ∈ [t −w, t +w], z can assume values

in the interval [v − t,w]. Thus, the density function of variable z, given

the realization of v , is

f [z|v] = 1
w − (v − t) , v − t ≤ z ≤ w.

Therefore, the posterior expected value of z equals

E [z|v] = w + (v − t)
2

.

Therefore, E [z|v] can assume values between 0 (when v = t −w) and w

(when v = t +w).

(iii) Low values: v ∈ [−t −w,−t +w].

Similar computations yield

f [z|v] = 1
v + t − (−w), −w ≤ z ≤ v + t,

and

E [z|v] = v + t + (−w)
2

.

Therefore, E [z|v] can assume values between −w (for v = −t −w) and 0

(for v = −t +w).

First-period demand curve as a function of E [z|v]
For intermediate values of v , i.e., v ∈ [−t +w, t −w], we have E [z|v]
= 0. Then, (10) collapses to

x1 = 1
2
+ z

2t
+ 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2

.

For high values of v , i.e., v ∈ [t −w, t +w], we have E [z|v] = w+(v−t)
2

which, replaced in (10), yields

x1 = 1
2
+ z

2t
+ 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2

+ (v +w − t) e (2t − e)
2t (3t2 − 6te+ 2e2)

.
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For low values of v , i.e., v ∈ [−t −w,−t +w], we have E [z|v] =
v+t+(−w)

2 which, replaced in (10), yields

x1 = 1
2
+ z

2t
+ 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2

+ (v + t −w)e (2t − e)
2t (3t2 − 6te+ 2e2)

.

First-period demand curve

We now show that a first-period indifferent consumer has E [z|v] = 0 and

thus x1 = 1
2 + z

2t + 3
2
(t−e)(pB1−pA1 )
3t2−6te+2e2 is the first-period demand function.

Take any realization of z, say, z. By definition, v = z + a, a ∈ [−t, t]
and z ∈ [−w,w]. This, together with the assumption t > w, implies that

∃x1,0 < x1 < 1 : z + a(x1) = 0. Thus, for such a consumer located at

x1, we have v = 0 ∈ [−t +w, t −w]. From the first subsection of this

appendix, this implies E [z|v] = E [z] = 0.

Moreover, from (8) and (9), we have

x̃1 = 1
2
+ 3

2

(t − e)
(
pB1 − pA1

)
+ E [z|v]

(
t − 2

3e
)

3t2 − 6te+ 2e2

x̃2 = 1
2
+ 1

2

e
(
pB1 − pA1

)
+ E [z|v] t

3t2 − 6te+ 2e2
,

which, for a symmetric equilibrium and a consumer such that E [z|v] = 0,

implies x̃1 = x̃2 = 1
2 . Thus, such a consumer fulfills the equality C +

v (a (x1) , z) + e (x̃1 + x̃2) − pA1 = C + e (2− (x̃1 + x̃2)) − pB1 . Consumers

slightly to the right of x1 such that x1 > x1 while v ∈ [−t +w, t −w]
strictly prefer network B because v < 0 and x̃1 = x̃2 = 1

2 . Consumers

further to the right such that x1 > x1 and v ∈ [−t −w,−t +w] strictly

prefer network B because v < 0 and x̃1 = x̃2 < 1
2 . A similar argument

establishes that consumers to the left of x1 strictly prefer network A.
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Appendix D

In this appendix we analyze a model similar in almost all respects to the

one in the main text while assuming that the relative valuation of the two

networks, z, can change over time. We thus now define variables vj(·) as

the sum of two random variables: a(·) and zj, j = 1,2. We assume that

z1 and z2 are independent so that nothing can be inferred about z2 after

agents infer the realization of z1. Summarizing,

vj
(
xi, zj

)
= a(xi)+ zj

a (xi) = t − 2txi

xi� U (0,1)⇒ a� U (−t, t)
zj � U (−w,w) j = 1,2.

The first-period demand is similar to the one obtained in the main text:

x1 = pB1 − pA1 + z1 + t − 2e+ 2e (x̃1 + x̃2)
2t

. (D.1)

The expected demand is obtained as in the main text:

x̃1 = pB1 − pA1 + E [z1|v1]+ t − 2e+ 2ex̃2

2 (t − e) . (D.2)

The second-period demand function is determined as in the main text, ex-

cept that now the realization of z2 is unknown at the beginning of the

second period:

x2 = pB2 − pA2 + z2 + t − 2e+ 2ex∗1 + 2eE [x2|v2]
2t

. (D.3)

The second-period demand expected by a second-period consumer with

valuation v2 equals

E [x2|v2] = pB2 − pA2 + E [z2|v2]+ t − 2e+ 2ex∗1 + 2eE [x2|v2]
2t

.

Thus,

E [x2|v2] = pB2 − pA2 + E [z2|v2]+ t − 2e+ 2ex∗1
2 (t − e) . (D.4)

From (D.3), the second-period demand expected by a first-period consumer

with valuation v1 is

x̃2 = E [x2|v1] =
E
[
pB2 |v1

]
− E

[
pA2 |v1

]
+ E [z2|v1]

2t
+

+t − 2e+ 2ex̃1 + 2eE [E [x2|v2] |v1]
2t

,
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which simplifies to

x̃2 = E [x2|v1] =
E
[
pB2 |v1

]
− E

[
pA2 |v1

]
+ t − 2e+ 2ex̃1

2t
+

+2eE [E [x2|v2] |v1]
2t

, (D.5)

because E [z2|v1] = 0 since z1 and z2 are independent. From (D.4), we have

E [E [x2|v2] |v1] =
E
[
pB2 |v1

]
− E

[
pA2 |v1

]
+ E [E [z2|v2] |v1]+ t − 2e+ 2ex̃1

2 (t − e) .

One has E [E [z2|v2] |v1] = E [z2|v2] since z1 and z2 are independent.

Moreover, as shown in Appendix C for first-period indifferent consumers,

second-period indifferent consumers are such that E [z2|v2] = E [z2] = 0.

Thus, we have

E [E [x2|v2] |v1] =
E
[
pB2 |v1

]
− E

[
pA2 |v1

]
+ t − 2e+ 2ex̃1

2 (t − e) ,

which, replaced in (D.5), yields

x̃2 =
E
[
pB2 |v1

]
− E

[
pA2 |v1

]
+ t − 2e+ 2ex̃1

2 (t − e) . (D.6)

Second-period firms do not know the realization of z2 and act on the basis

of its expected value, namely 0. Moreover, as said above, firms know that

second-period demand is determined by consumers such that E [z2|v2] =
E [z2] = 0, i.e., by consumers whose posterior expectation of z2 equals the

prior and thus coincides with firms’ expectation of this variable. Thus, by

replacing (D.4) in (D.3) while bearing in mind that E [z2|v2] = E [z2] = 0,

we obtain the expected second-period demand faced by firm A, which we

denote by E [x2]:

E [x2] = pB2 − pA2 + t − 2e+ 2ex∗1
2 (t − e) . (D.7)

The profit maximization problem of firm A in the second period is

Max
pA2

E
[
pA2 x2N

]
.

Since pA2 is not a random variable, we can write

Max
pA2

pA2 E [x2]N = pA2
pB2 − pA2 + t − 2e+ 2ex∗1

2 (t − e) N.

The f.o.c. equals

pB2 − pA2 + t − 2e+ 2ex∗1
2 (t − e) N − pA2

1
2 (t − e)N = 0 �

pB2 + t − 2e+ 2ex∗1 = 2pA2 .
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The s.o.c. equals

− 1
t − e < 0.

By symmetry, we have for firm B

pA2 + t − 2ex∗1 = 2pB2 .

We can now solve the system of equations encompassing the first-order

conditions, obtaining 

pA2 = t + 2

3ex
∗
1 − 4

3e

pB2 = t − 2
3e− 2

3ex
∗
1 .

(D.8)

First-period consumers must determine the expected value of these prices:

E
[
pA2 |v1

]
= t + 2

3
ex̃1 − 4

3
e

E
[
pB2 |v1

]
= t − 2

3
e− 2

3
ex̃1.

By replacing them in (D.6), we obtain

x̃2 = t − 4
3e+ 2

3ex̃1

2 (t − e) . (D.9)

By substituting (D.9) in (D.2), we obtain

x̃1 = 1
2
+ 3

2

(t − e)
(
pB1 − pA1

)
+ (t − e)E [z1|v1]

3t2 − 6te+ 2e2
. (D.10)

By replacing (D.10) in (D.9), we obtain

x̃2 = 1
2
+ 1

2

eE [z1|v1]+ e
(
pB1 − pA1

)
3t2 − 6te+ 2e2

. (D.11)

By replacing (D.10) and (D.11) in (D.1), we obtain

x1 = 1
2
+ z1

2t
+ 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2

+ 1
2
e (3t − 2e)E [z1|v1]
t (3t2 − 6te+ 2e2)

.

As shown in Appendix C, in a symmetric equilibrium, the indifferent con-

sumers are such that E [z1|v1] = E [z1] = 0. So, the previous expression

collapses to

x1 = 1
2
+ z1

2t
+ 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2

. (D.12)

By replacing (D.12) in (D.8), we obtain

pA2 = t − e+ 1
3
ez1

t
+
e (t − e)

(
pB1 − pA1

)
3t2 − 6te+ 2e2

, (D.13)
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and

pB2 = t − e− 1
3
ez1

t
−
e (t − e)

(
pB1 − pA1

)
3t2 − 6te+ 2e2

. (D.14)

By replacing (D.12), (D.13) and (D.14) in (D.4), we obtain

E [x2|v2] = 1
2
+

1
3
ez1
t + E [z2|v2]+ e(t−e)(pB1−pA1 )

3t2−6te+2e2

2 (t − e) . (D.15)

By replacing (D.12), (D.13), (D.14) and (D.15) in (D.3), we obtain

x2 = 1
2
+ z1e

6t (t − e) +
z2

2t
+ 1

2

e
(
pB1 − pA1

)
3t2 − 6te+ 2e2

+ 1
2t
E [z2|v2] e
t − e .

Again, as Appendix C shows, in a symmetric equilibrium, demand is such

that E [z2|v2] = E [z2] = 0. Thus, the previous expression collapses to

x2 = 1
2
+ z1e

6t (t − e) +
z2

2t
+ 1

2

e
(
pB1 − pA1

)
3t2 − 6te+ 2e2

. (D.16)

The second-period demand depends on the random variable z2 as well as

the random variable z1, due to the network effect.

The profit maximization problem of firm A is

Max
pA1

E
[
x1

(
pA1 , p

B
1

)
pA1 + x2

(
pA1 , p

B
1

)
pA2
]
N,

or

Max
pA1

E
[
x1

(
pA1 , p

B
1

)]
NpA1 + E

[
x2

(
pA1 , p

B
1

)
pA2
]
N.

Replacing (D.12), (D.13) and (D.16) in the profit maximization problem, we
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obtain

Max
pA1

E


1

2
+ z1

2t
+ 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2


NpA1 +

+E



1

2
+ z1e

6t (t − e) +
z2

2t
+ 1

2

e
(
pB1 − pA1

)
3t2 − 6te+ 2e2


×

×

t − e+ 1

3
ez1

t
+
e (t − e)

(
pB1 − pA1

)
3t2 − 6te+ 2e2




N =

=

1

2
+ 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2


NpA1 + E

[
1
2

(
t − e+ 1

3
ez1

t

)
+

+1
2

e (t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2

+
(

z1e
6t (t − e) +

z2

2t

)(
t − e+ 1

3
ez1

t

)
+

+
(

z1e
6t (t − e) +

z2

2t

) e (t − e)(pB1 − pA1 )
3t2 − 6te+ 2e2

+

+1
2

e
(
pB1 − pA1

)
3t2 − 6te+ 2e2

(
t − e+ 1

3
ez1

t

)

+1
2

e
(
pB1 − pA1

)
3t2 − 6te+ 2e2

e (t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2




N.

The f.o.c. equals

1
2
N + 3

2

(t − e)
(
pB1 − pA1

)
3t2 − 6te+ 2e2

N − 3
2

(t − e)
3t2 − 6te+ 2e2

pA1N −
1
2

e (t − e)
3t2 − 6te+ 2e2

N −

−1
2

e
3t2 − 6te+ 2e2 (t − e)N −

1
2

e2 (t − e)2
(
pB1 − pA1

)
(3t2 − 6te+ 2e2)2

N = 0.

By symmetry, we have

1
2
− 3

2
t − e

3t2 − 6te+ 2e2
pA1 −

e (t − e)
3t2 − 6te+ 2e2

= 0,

or

pA1 = t −
5
3
e− 1

3
e2

t − e .

Thus, equilibrium first-period prices are the same as in the main text. As

to the s.o.c., we have

(t − e) −3
(
3t2 − 6te+ 2e2

)+ e2

(3t2 − 6te+ 2e2)2
,

which is negative if t > 5
3e, a restriction we now retain.

From (D.12) and (D.16), in a symmetric equilibrium, demand equals

x1 = 1
2
+ z1

2t

x2 = 1
2
+ z1e

6t (t − e) +
z2

2t
.
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If z1 = z2 > 0, and since t > e, than x1 < x2. Thus, if the average relative

valuation of the two networks is the same in both periods, i.e., if z1 = z2,

the firm with the larger market share in the first period will always increase

it in the following period.

We now consider another particular realization of the common terms

such that in the first period, firm A is the preferred one, i.e. z1 = K > 0,

whereas in the second period the symmetric case occurs, z2 = −K. In the

first period, firms charge the same price, and so the market share of A

equals

x1 = 1
2
+ 1

2
K
t
.

In the second-period, z2 = −K < 0, and A’s market share equals

x2 = 1
2
+ Ke

6t (t − e) −
1
2
K
t
.

When considering the two periods jointly, A always obtains a larger market

share iff e > 0:

x1 + x2 > 1 �
1
2
+ 1

2
K
t
+ 1

2
+ Ke

6t (t − e) −
1
2
K
t
> 1 �

Ke
6t (t − e) > 0.

Thus, there is always a first-mover advantage in market-wide preferences

whenever network effects are felt.
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Appendix E

In this appendix we develop a model similar to the one in the main text but

for the fact that random variable z is no longer unknown in the first period.

The first-period demand function is determined as in the main text. The

only difference is that now the exact value of z is common knowledge:

x1 = pB1 − pA1 + z + t − 2e+ 2e (x̃1 + x̃2)
2t

.

The expected value of x1 is now equal to its actual value, i.e., x1 = x̃1:

x1 = pB1 − pA1 + z + t − 2e+ 2e (x1 + x̃2)
2t

= pB1 − pA1 + z + t − 2e+ 2ex̃2

2 (t − e) . (E.1)

The second-period demand function and prices are determined as in the

main text:

x2 = pB2 − pA2 + z + t − 2e+ 2ex1

2 (t − e) (E.2)

pA2 = 1
3
z + t + 2

3
ex1 − 4

3
e. (E.3)

pB2 = −1
3
z + t − 2

3
e− 2

3
ex1 (E.4)

In contrast to the main text, since z is known from the outset, the expec-

tations of x2, pB2 and pA2 are equal to their actual value. By replacing (E.3)

and (E.4) in (E.2), we obtain

x2 =
1
3z + t − 4

3e+ 2
3ex1

2 (t − e) . (E.5)

By substituting (E.5) in (E.1), bearing in mind that x̃2 = x2, we obtain:

x1 = 1
2
+ 3

2

(t − e)
(
pB1 − pA1

)
+ z

(
t − 2

3e
)

3t2 − 6te+ 2e2
. (E.6)

By substituting (E.6) in (E.5), we obtain:

x2 = 1
2
+ 1

2

e
(
pB1 − pA1

)
+ zt

3t2 − 6te+ 2e2
. (E.7)

By substituting (E.6) in (E.3) and (E.4), we obtain:

pA2 = 1
3
z + t − e+

e (t − e)
(
pB1 − pA1

)
+ ez

(
t − 2

3e
)

3t2 − 6te+ 2e2
,

and

pB2 = −1
3
z + t − e−

e (t − e)
(
pB1 − pA1

)
+ ez

(
t − 2

3e
)

3t2 − 6te+ 2e2
.
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The first-period profit-maximization problem of firm A is

Max
pA1

(
x1

(
pA1 , p

B
1

)
pA1 + x2

(
pA1 , p

B
1

)
pA2
)
N,

or

Max
pA1


1

2
+ 3

2

(t − e)
(
pB1 − pA1

)
+ z

(
t − 2

3e
)

3t2 − 6te+ 2e2


NpA1 +

+

1

2
+ 1

2

e
(
pB1 − pA1

)
+ zt

3t2 − 6te+ 2e2


×

×

1

3
z + t − e+

e (t − e)
(
pB1 − pA1

)
+ ez

(
t − 2

3e
)

3t2 − 6te+ 2e2


N.

The f.o.c. equals

1
2

54pA1 t2e− 46pA1 te2 − 27pB1 t2e+ 22pB1 te2 − 26zt2e+ 20zte2 + 9t4 + 8e4

(3t2 − 6te+ 2e2)2
+

+1
2
−18pA1 t3 + 10pA1 e3 − 42t3e+ 66t2e2 − 40te3 + 9pB1 t3 − 4pB1e3 + 9zt3 − 4ze3

(3t2 − 6te+ 2e2)2
= 0.

The second derivative equals

−−27t2e+ 23te2 + 9t3 − 5e3

(3t2 − 6te+ 2e2)2
= −3t + e

3t2 − 6te+ 2e2
+ e2 (e− t)
(3t2 − 6te+ 2e2)2

.

As in the main text, one must have t > 1.577e in order to have a unique and

stable equilibrium without full bunching on one network. For t > 1.577e,

the expression immediately above is negative, ensuring that the s.o.c. is

verified.

The problem faced by firm B is

Max
pB1

(
1− x1

(
pA1 , p

B
1

))
NpB1 +

(
1− x2

(
pA1 , p

B
1

))
NpB2 ,

or

Max
pB1


1

2
− 3

2

(t − e)
(
pB1 − pA1

)
+ z

(
t − 2

3e
)

3t2 − 6te+ 2e2


NpB1 +

+

1− 1

2
− 1

2

e
(
pB1 − pA1

)
+ zt

3t2 − 6te+ 2e2


×

×

−1

3
z + t − e−

e (t − e)
(
pB1 − pA1

)
+ ez

(
t − 2

3e
)

3t2 − 6te+ 2e2


N.

The f.o.c. for firms B’s problem equals

−1
2

27pA1 t2e− 22pA1 te2 − 54pB1 t2e+ 46pB1 te2 − 26zt2e+ 20zte2 − 9t4 − 8e4

(3t2 − 6te+ 2e2)2
−

−1
2
−9pA1 t3 + 4pA1 e3 + 42t3e− 66t2e2 + 40te3 + 18pB1 t3 − 10pB1e3 + 9zt3 − 4ze3

(3t2 − 6te+ 2e2)2
= 0.
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Solving the system of equations formed by the two first-order conditions,

we obtain the optimal prices charged in the first period:

pB1 = −1
3

56e4 − 328te3 + 12ze3 − 60zte2 + 582t2e2 − 378t3e+ 78zt2e− 27zt3 + 81t4

(e− t) (14e2 − 54te+ 27t2)

pA1 = −1
3

56e4 − 328te3 − 12ze3 + 60zte2 + 582t2e2 − 378t3e− 78zt2e+ 27zt3 + 81t4

(e− t) (14e2 − 54te+ 27t2)
.

By replacing these in (E.6) and (E.7), we obtain

x1 = 1
2
+ 1

2
9zt − 2ez

14e2 − 54te+ 27t2

x2 = 1
2
+ 1

2
−4e2z + 15ezt − 9zt2

(e− t) (14e2 − 54te+ 27t2)
.

If z > 0, x1 and x2 exceed 1
2 as was to be expected. Moreover, x2 > x1 if

and only if t ∈ (1,577e,1.694e).
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