
One – Memory in Repeated Games∗

Mehmet Barlo
Sabancı University

Guilherme Carmona
Universidade Nova de Lisboa

Hamid Sabourian
University of Cambridge

November 17, 2006

Abstract

We study the extent to which equilibrium payoffs of discounted repeated games can be

obtained by 1 – memory strategies. First, we present robust examples of games in which

there is a subgame perfect equilibrium payoff profile that cannot be obtained by any 1 –

memory subgame perfect equilibrium. Then, a complete characterization of 1 – memory simple

strategies is provided, and it is employed to establish the following in games with more than

two players each having connected action spaces:

1. all subgame perfect equilibrium payoffs can be approximately supported by an ε – sub-

game perfect equilibrium strategy of 1 – memory,

2. all strictly enforceable subgame perfect equilibrium payoffs can be approximately sup-

ported by a 1 – memory subgame equilibrium, and

3. the subgame perfect Folk Theorem holds for 1 – memory strategies.

While no further restrictions are needed for the third result to hold in 2 – player games, an

additional restriction is needed for the first two: players must have common punishments.
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1 Introduction

The Folk Theorem of repeated games states that any individually rational payoffs can be sustained

as an equilibrium if the players are sufficiently patient (see Fudenberg and Maskin (1986) and

Aumann and Shapley (1994)). Such a multiplicity of equilibria arises because in repeated games at

any stage each player can condition his behavior on the past behavior of all the players. Such long

memories are clearly unreasonable.

Even when players are impatient, equilibrium strategies often require them to remember distant

pasts. In fact, Abreu (1988) characterized the subgame perfect equilibrium outcome paths of

discounted repeated games by using simple strategies which satisfy certain incentive conditions.

Specifically, a simple strategy profile induces n + 1 outcome paths (states): the given prescribed

play, and a punishment path for each of the n players. At any stage, unless there has been a

single player deviation, simple strategies make the play continue along the given outcome path. In

the case of a single player deviation, all the other players will punish the deviator with a player

specific outcome path. Thus, in particular, the behavior at a given state of the game may depend

unboundedly on the past. Therefore, because of the extensive memory dependence such simple

equilibria are also often regarded as unappealing when compared with those in which the current

behavior either does not depend on the past or depends at most on the behavior of the last few

periods.

In this paper, we restrict the set of strategies to those that depend only on what has happened

in the previous period. We shall refer to such behavior by 1 – memory strategies (in the literature

they are also known by 1-period recall strategies). We then ask whether or not we can obtain

the subgame perfect equilibrium (SPE) payoffs of complete information repeated games with 1 –

memory strategies. We address this issue for the case in which the set of actions available at any

stage of the game is sufficiently ”rich” (the stage game has a large number of actions).1

In Section 3, we first start with some repeated game examples with discounting showing that

the answer to the above question is negative. These examples have SPE payoffs that cannot be

1Sabourian (1998) characterizes the set subgame perfect equilibria with bounded memory for the case of repeated

games with no discounting and finite number of pure actions. Other works on repeated games with limited memory

include Kalai and Stanford (1988), Lehrer (1988), Aumann and Sorin (1989), Lehrer (1994), Neyman and Okada

(1999), Bhaskar and Vega-Redondo (2002) and Barlo and Carmona (2006).
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obtained with 1 – memory strategies. Moreover, these negative results are robust to perturbations

of stage game payoffs and discount factor. We also show that the equilibrium in the 2 – player

example cannot even be approximately supported as an ε – contemporaneous perfect equilibrium

(ε – CPE) with 1 – memory.2

Despite these strong negative examples, we demonstrate in the rest of the paper that the an-

swer to the above question is affirmative with some appropriate qualifications. Our main results

demonstrate, at least for repeated games with more than 2 players, that strategies with 1-period

memory are approximately enough to obtain all SPE payoffs of discounted repeated games if the

action space at each stage is sufficiently rich. More specifically, if the action spaces are connected

then our approximation results hold, for games with more than two players, in the following three

senses. First, any SPE payoff profile can be supported with a 1 – memory ε – CPE, for all ε > 0.

Second, if an SPE payoff profile is sustained by simple strategies with the property that the in-

centive conditions identified by Abreu (1988) hold strictly, then it can be approximated by a 1 –

memory SPE. Third, for generic games, in the limit as the discount factor converges to one, any

strictly individually rational payoff can be approximated by a 1 – memory SPE. We also show that

a similar result holds without the genericity assumption for the no discounting case. Furthermore,

if 1 – memory strategies can be conditioned on time, the limiting result for the case of the discount

factor converging to one is exact and not only an approximation.

The last sets of results with patient players also hold for 2 – player games. However, as the 2

– player example in Section 3 demonstrates, with arbitrary discount factors, the first two sets of

approximation results obtained for games with more than two players (the ε – CPE approximation

and the approximation of simple strategy equilibria that satisfy the Abreu type incentive conditions

strictly) do not necessarily extend to 2 – player games without further assumptions on the structure

of the equilibria. In Section 5, we demonstrate that these two approximation results also hold for

2 – player games if the equilibrium considered is such that the punishment path induced when one

player deviates is the same as that induced when the other player deviates.

These results, then, suggest, at least for games with more than two player, that the restriction to

2The notion of contemporaneous perfect epsilon equilibrium, introduced and analyzed by Mailath, Postlewaite,

and Samuelson (2005), demands that at every history no single handed deviation pays strictly more than ε than the

equilibrium continuation payoff.
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1 – memory strategies will not place severe limitations on equilibrium payoffs: It is approximately

enough for players to remember what has happened in the previous period in order to obtain any

SPE payoff. Furthermore, our results also demonstrate that the Folk Theorem does not depend on

the ability of players to remember more than the previous period. Thus, as long as players remember

the last period imposing bounds on memory does not reduce the abundance of equilibrium payoffs.

Clearly, not all strategies are 1 – memory strategies. For any equilibrium payoff profile, our

approach involves employing simple strategies which first can be implemented by remembering only

what has happened in the previous period, and second induce (approximately) the same equilibrium

profile. This requires each agent to identify the state of the play with 1 – memory. Such decoding

of the state of play by observing the outcome in the previous period is clearly possible with some

strategies. For example, consider the grim-trigger strategy profile in the infinitely repeated version

of the Prisoner’s Dilemma. Since in every period players need to know whether or not someone

defected in the first period, such a strategy profile has infinite memory. However, note that the

outcome path it induces can clearly be supported by the following 1 – memory strategy profile:

players start by cooperating; in the following stages of the game, each player cooperates if and only

if they both have cooperated in the previous stage. A more complicated example would be a path

that involves players playing the same action profile a for a finite number of periods T followed by

playing another profile b forever. Again, this path requires at least T – memory in order to know

when to switch to b. However, if there exists T distinct action profiles a1, . . . , aT each generating

payoffs close to those by a, then the path that plays the sequence a1, . . . , aT followed by playing b

forever approximates the original path in terms of payoffs and is implementable with 1 – memory.

This second example indicates that a path may be approximately implementable with 1 – mem-

ory if the set of action profile is sufficiently rich. However, to implement an (equilibrium) strategy

profile with 1 – memory, we need a great deal more than just being able to implement a specific

path. For example, in the case of a simple strategy profile, not only the equilibrium paths and all

the n punishment paths (where n denotes the number of the players) need to be implementable

with 1 – memory, but also it should be the case that (i) the action profiles used in the punishment

phase for any player occurs neither on the equilibrium path nor be used in the punishment phase

for other players, and (ii) any single deviation can be detected by observing the previous period.3

3For instance, it must be the case that a player being punished cannot, by deviating from the action that the
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Otherwise, it may not be possible for players to know the state of play with 1 – memory.

More formally, to rule out such ambiguities, we introduce a critical property, the notion of

confusion proofness of simple strategies. This notion turns out to be both necessary and sufficient

for players to find out in which phase of the n + 1 paths the play is in by observing only what has

happened in the previous period. In particular, our Proposition 1 establishes that a simple strategy

is 1 – memory if and only if it is confusion-proof.

We then establish our set of approximation results by showing that for any SPE payoff profile

there exists an (ε – ) equilibrium confusion proof simple strategy profile that approximate the

original equilibrium in the three senses mentioned above. In particular, in the discounting case,

payoffs of non-confusion proof simple strategies are approximated by making use of the notion of ε

– strict enforceability of a simple strategy, for any ε ≥ 0. This notion requires that at any date and

state, every player loses less than ε ≥ 0 by conforming with the simple strategy. Then, with the use

of connected action spaces we employ this slack to construct a confusion proof simple strategy profile

with a payoff arbitrarily close to the original one. Indeed, this construction is the key ingredient for

our discounting Folk Theorem with 1 – memory. But, because correlated strategies are not allowed,

the proof of our 1 – memory Folk Theorem becomes considerably more elaborate.

The above approach clearly cannot be applied when agents have a small (finite) number of

actions at each stage of the game (in this case 1 – memory would not be enough to obtain our

results — see Sabourian (1998)). On the other hand, rich (connected) action spaces endow the

agents with the capacity to “code” information about who-deviated-when into their play; thereby,

allow us to establish our results.

Notice, our richness of action space assumption is consistent with most standard games with

infinite action spaces because it is often assumed that the action space is a convex (and hence

connected) subset of some finite dimensional Euclidian space. Since the set of mixed strategies are

also convex, it also follows that our richness assumption is also satisfied in any repeated game (with

finite or infinite pure action space) in which at each stage the players are allowed to choose mixed

strategies and past mixed actions are observable as in Aumann (1964).4

It is very important to point out that replacing memory with a complex set of actions is not

punishments prescribe, give rise to an action profile on the equilibrium outcome.
4We use the term “mixed action” to denote individual randomization over the actions in the stage game.
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sufficient to obtain all equilibria even with a rich action space. The two repeated games examples,

one with two and another with three players, in Section 3 demonstrate this, in addition to showing

that the main difficulties and subtleties that can arise in implementing equilibria with 1 – memory.

In both examples the action space for each player at any stage consists of the set of mixed strategies

over two pure strategies and is therefore convex. Nevertheless, both have SPE payoffs that cannot

be obtained by 1 – memory. These examples are generic since they remain valid for any small

perturbations of the payoffs and/or the discount factor. Furthermore, the 2 – player equilibrium

example cannot even be approximated by a 1 – memory ε – CPE. As a result there is a type of

discontinuity associated with the 3 – player counter-example: even though it cannot be sustained

with 1 – memory SPE strategies, it can be supported by a 1 – memory ε – CPE for all ε > 0.

The explanation for not being able to implement the equilibrium in the 3 – player example with

1 – memory and for the associated discontinuity is that there is no slack in the incentive conditions

for the particular equilibrium payoff we consider; as a result there is no room to code information

about the past into agents’ behavior without violating the incentive conditions. The explanation for

the 2 – player counter-example is that when behavior depend only on the outcome in the preceding

periods, with two players and 1 – memory there are additional confusing instances that might arise

that does not occur when the number of players exceed two: when n > 2, it is considerably easier

to identify single player deviations than it is in the 2 – player case. For instance, consider the

following simple strategy in a 2 – player game: the equilibrium path consists of repetitions of an

action profile (a1, a2) and the punishment path for player 1 (resp., player 2) consists of repetitions

of (b1, b2) (resp., (c1, c2)). When players observe (b1, a2) in the last period, they cannot conclude

whether or not it was player 1 who deviated from the equilibrium path, or if it was player 2 who

deviated from the punishment path of player 1. This is clearly a problem unless both players have

a common punishment path, in which case they do not need know who has deviated. In contrast,

this confusing instance cannot arise with three or more players because, for any two players i and

j, it is always possible to use the last period actions of players other than i and j to find out if i or

j has deviated in the previous period.5

5Nevertheless, confusing instances can still occur in 3 – player games. If a player being punished has an opportunity

to mislead others to believe that in the previous period someone else was being punished (or that they were playing

along the equilibrium path), then such a strategy is not immune to confusion, and therefore, is not 1 – memory.
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Several other papers study the effects of restricting the strategies players can use in repeated

games. The most restrictive assumption is to consider 0 – memory strategies. In those, players play

the same action profile in every period, independently of the past — this corresponds to the notion

of stationary/Markov strategies. Clearly, the stationary subgame perfect equilibria are precisely

those that consist of playing a Nash equilibrium of the stage game at any subgame. Consequently,

it is quite surprising that the next step of dependence on the past, 1 – memory, is approximately

enough to characterize all equilibrium payoffs.

Another important class of repeated strategies are those represented by finite automata. Similar

results to the ones obtained here appeared in Kalai and Stanford (1988), as they have shown that all

subgame equilibrium payoffs can be approximately supported by finite automata as an approximate

equilibrium for sufficiently large automata. They do not assume that the action space is large

because they allow any finite size automata. Our results are different because we only consider

strategies with one period recall.

Memory in terms of recall used in this paper captures one aspect of complexity of a strategy.

There are clearly other aspects of complexity of a strategy. We do not address these in this paper. In

particular, we obtain our approximation results with 1 – memory/recall by using (cycle) paths that

involve different action profiles at each date. Such paths may be complex if we use an alternative

definition of complexity to the notion of memory (recall) we use in this paper. The objective here

is not to tackle this general issue of complexity but simply to characterize the implications of recall

restriction, and in particular, to explain how, with some qualifications, in repeated games with rich

action spaces players do not need to use much memory: remembering yesterday is almost enough

to support all SPE payoffs.

In Section 2, we provide the notation and the definitions. Section 3 presents two examples.

Section 4 establishes when an outcome path can be obtained with the use of 1 – memory strategies.

The discounting case is analyzed in Sections 5. In Section 6 we discuss our 1 – memory Folk

Theorems. Finally, in Section 7, we consider time-dependent strategies. All the proofs are in the

Appendix.
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2 Notation and Definitions

The stage game:

A normal form game G is defined by G =
(
N, (Si)i∈N , (ui)i∈N

)
, where N is a finite set of players,

Si is the set of player i’s actions and ui :
∏

i∈N Si → R is player i’s payoff function.

We assume that Si is a connected and compact metric space and that ui is continuous for all

i ∈ N . Note that if Si is convex, then Si is connected. Therefore, the mixed extension of any finite

normal form game satisfies the above assumptions.6

Let S =
∏

i∈N Si and S−i =
∏

j 6=i Si. Also, for any i ∈ N denote respectively the minmax payoff

and a minmax profile for player i by

vi = min
s−i∈S−i

max
si∈Si

ui(si, s−i),

mi ∈ arg min
s−i∈S−i

max
si∈Si

ui(si, s−i).

If G is a 2 – player game, a mutual minmax profile is m̄ = (m2
1,m

1
2).

The repeated game:

The supergame G∞ of G consists of an infinite sequence of repetitions of G. We denote the

action of any player i in G∞ at any date t = 1, 2, 3, . . . by st
i ∈ Si. Also, let st = (st

1, .., s
t
n) be the

profile of choices at t.

For t ≥ 1, a t – stage history is a sequence ht = (s1, . . . , st). The set of all t – stage histories is

denoted by Ht = St (the t – fold Cartesian product of S). We use H0 to represent the initial (0 –

stage) history. The set of all histories is defined by H =
⋃∞

t=0 Ht.

For all i ∈ N , player i’s strategy is a function fi : H → Si.
7 The set of player i’s strategies is

denoted by Fi, and F =
∏

i∈N Fi is the joint strategy space with a typical element f ∈ F.

Given a strategy fi ∈ Fi and a history h ∈ H, denote the strategy induced at h by fi|h; thus

(fi|h)(h̄) = fi(h, h̄), for every h̄ ∈ H. Also, let f |h = (f1|h, . . . , fn|h) for every f ∈ F and h ∈ H.

Any strategy f ∈ F induces an outcome at any date as follows:

π1(f) = f(H0) and πt(f) = f(π1(f), . . . , πt−1(f)) for any t > 1.

6More generally, the mixed extension of any normal form game with compact metric strategy spaces and continuous

payoff functions also satisfies the above assumptions.
7Notice that when G refers to the mixed extension of a normal form game, then the strategy in the repeated game

at any period may depend on past randomization choices which in such cases must be publicly observable.
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Denote the set of outcome paths by Π = S × S × · · · and define the outcome path induced by any

strategy profile f ∈ F by π(f) = {π1(f), π2(f), . . .} ∈ Π.

We consider the following memory restriction on the set of strategies in this paper. For any

history h ∈ H, the 1 – period tail of h is T (h) = st if h = (s1, . . . , st) for some t ≥ 1.

Definition 1 A strategy fi ∈ Fi has one period memory (henceforth called 1 – memory) if fi(h) =

fi(h̄) for any two histories h, h̄ ∈ H such that T (h) = T (h̄).

Notice that in the above definition the choice of action at any date t depends only on the last

stage of the supergame and not t; thus, 1 – memory strategies are independent of the calendar time.

We let F 1
i be the set of all player i’s strategies with 1 – memory, and F 1 =

∏
i∈N F 1

i .

For all i ∈ N , let Ui : F → R be player i’s payoff function in the supergame of G.

A strategy vector f ∈ F is a Nash equilibrium of G∞ if Ui(f) ≥ Ui(f̂i, f−i) for all i ∈ N and all

f̂i ∈ Fi. A strategy vector f ∈ F is a SPE of G∞ if f |h is a Nash equilibrium for all h ∈ H.

We also define a 1 – memory SPE as a SPE with the additional property that it has 1 – memory.8

3 Two Examples

In this section we present two examples of SPE payoffs that cannot be supported by any 1 – memory

SPE strategy profiles. The first example uses a 2 – player game while the second uses one with 3

players.

3.1 Two Players

Consider the following normal form game:

1\2 a b

a 4,4 2,5

b 5,2 0,0

8Notice that with this definition the equilibrium strategy of each player has 1 – memory but is best amongst

all strategies, including those with memory longer than one. Alternatively, we could have just required optimality

amongst the set of 1 – memory strategies. For the purpose of the results in this paper the two possible definitions

are equivalent.
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Assume that players can randomise. Let Si = [0, 1] for all i = 1, 2, where si ∈ Si is to be

interpreted as the probability assigned by player i to action a. Note that the minmax payoff is 2

for each player. In the case of player 1, it can only be obtained by m1 = (a, b), while m2 = (b, a)

is the only action profile leading to the minmax payoff of player 2. Moreover, both m1 and m2 are

Nash equilibria of the stage game. Finally, the mutual minmax profile is m̄ = (m2
1,m

1
2) = (b, b).

Now suppose that the above game is played infinitely often. If there are no bounds on the

memory then the payoff of (4, 4) is SPE for any discount factor δ ≥ 1/3. To see this consider the

following grim type pure strategy profile: (i) play (a, a) at each date on the equilibrium path, (ii)

punish deviations from (a, a) by player i = 1, 2 by playing mi forever (once in a punishment state

playing mi further deviations from mi are ignored and the play continues with mi). Clearly, at each

date this strategy profile induces a payoff of 4 for each player. Furthermore, the profile constitutes

a SPE: First, no player wants to deviate from the equilibrium path because 4 ≥ (1 − δ)5 + δ2 for

any δ ≥ 1/3; and second, no player wants to deviate from mi, i = 1, 2, since it is a best reply.

Unfortunately, the above SPE strategy profile cannot be implemented with 1 – memory, even

though the minmax action profiles for both agents are Nash equilibria of the stage game. This is

because the punishment of minmaxing a deviator creates confusing instances if at each stage the

players can only recall the outcome of the previous period. For example, the strategy profile is

ill-defined with 1 – memory if m1 = (b, a) is observed: it cannot be inferred if in the previous period

player 1 has deviated from (a, a) or if player 2 was being punished.

The impact of the 1 – memory restriction is, in fact, more profound than not being able to

implement the above strategy profile. In fact, we show in this section that there does not exist any

1 – memory SPE strategy profile inducing an average payoff of (4, 4) for δ = 1/3. This holds even

when mixed strategies are observable. In Appendix A.1 we also prove that this conclusion is robust

to perturbations in the discount factor, and payoffs simultaneously. Moreover, in Appendix A.2 we

generalize the result to show that the SPE payoff vector of (4, 4) cannot even be approximated by

a 1 – memory ε – CPE.

To establish the result of this section suppose otherwise; then there exists a 1 – memory SPE

f that induces an average payoff of (4, 4) for δ = 1/3. Since we assume mixed strategies are

observable and f has 1 – memory, there exist functions gi : [0, 1]2 → [0, 1] for all i = 1, 2 such that

fi(h) = gi(T (h)) for all h ∈ H \H0.
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Below we will obtain a contradiction in several steps. First, we show that the only way to

obtain an average payoff of (4, 4) is for f to play (a, a) repeatedly forever, i.e. it must be that

fi(H0) = gi(1, 1) = 1 for all i = 1, 2. Let p1 = f1(H0), q1 = f2(H0), pt = g1(pt−1, qt−1) and

qt = g2(pt−1, qt−1) for all t ∈ N. Since U1(f) = U2(f) = 4, it follows that

8 = U1(f) + U2(f) =
2

3

∞∑
t=1

8ptqt + 7(pt(1− qt) + qt(1− pt))

3t−1
. (1)

Now 8ptqt + 7(pt(1− qt) + qt(1− pt)) ≤ 8. Therefore, condition (1) holds only if pt = qt = 1 for all

t ∈ N. But this implies that fi(H0) = gi(1, 1) = 1 for all i = 1, 2.

Next, we show that if player 2 were to deviate from (a, a) by playing b, player 1 must punish by

assigning a zero probability to a in the period following the deviation: g1(1, 0) must equal 0. This

is because, since player 2 can guarantee himself a payoff of 2 in every period, this deviation would

at least yield him a return of (1− δ)5 + (1− δ)δ(4g1(1, 0) + 2(1− g1(1, 0))) + 2δ2 = 4 + 4/9g1(1, 0);

thus, this deviation is not profitable only if g1(1, 0) = 0. By a symmetric argument, g2(0, 1) = 0.

When the play in period 1 is (1, 0), we know that in the next period player 1 must play b.

However, this is rational only if g2(1, 0) is high, otherwise player 1 would be tempted to play a

instead of playing b. In fact, we show next that g2(1, 0) must be at least 1/6 in order for player 1

to punish player 2. To see this, consider for player 1 the strategy f̄1 of playing a in every history:

f̄1(h) = 1 for all h ∈ H. Then,

U1(f̄1, f2|(1, 0)) ≥ (1− δ)(2g2(1, 0) + 2) + 2δ = 2 +
4g2(1, 0)

3
.

Also, we have that

U1(f |(1, 0)) ≤ (1− δ)u1(g1(1, 0), g2(1, 0)) + 5δ = (1− δ)5g2(1, 0) + 5δ =
10g2(1, 0) + 5

3
.

Since f is a SPE, U1(f |(1, 0)) ≥ U1(f̄1, f2|(1, 0)). Hence, g2(1, 0) ≥ 1/6.

At this point the difference between the full memory and 1 – memory case is clear: In the full

memory case a deviation by player 1 from a leads player 2 to choose b forever, while in the 1 –

memory case although it leads player 2 to b in the first period after the deviation, in the second

period after the deviation player 2 would have to play a with a probability of at least 1/6 if 1 were

to play a in the first period after the deviation.
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Consequently, the punishment with 1 – memory is less severe. This implies that a profitable

deviation for player 1 exists: First player 1 chooses b, and then a forever. We obtain the required

contradiction since this deviation delivers player 1 a return of at least

5(1− δ) + 2δ(1− δ) + (4g2(1, 0) + 2(1− g2(1, 0)))δ2(1− δ) + 2δ3 = 4 +
4g2(1, 0)

27
≥ 4 +

2

81
> 4.

3.2 Three Players

Let G be the mixed extension of the following normal form game with three players: all players

have pure action spaces given by Ai = {a, b},

u3(a1, a2, a3) =





4 if a3 = a and

2 if a3 = b.

for all a1 ∈ A1 and a2 ∈ A2, u1 and u2 are defined by Table 1 above if a3 = a and arbitrarily if

a3 = b.

Clearly, a is a strictly dominant strategy for player 3. Therefore, if f is a SPE, then f3(h) = a

for all h ∈ H; thus, we are effectively in the same situation as in the above subsection. Therefore,

arguing as in the previous section, one can show that (4, 4, 4) is a SPE payoff that cannot be

supported by a 1 – memory SPE for δ = 1/3. Moreover, by the same arguments as in Appendix

A.1, this conclusion is robust to perturbations in the discount factor, and payoffs simultaneously.

4 Confusion-Proof Paths and 1 – Memory

Following Abreu (1988), f ∈ F is a simple strategy profile represented by n+1 paths (π(0), π(1), . . . ,

π(n)) if f specifies: (i) play π(0) until some player deviates singly from π(0); (ii) for any j ∈ N , play

π(j) if the jth player deviates singly from π(i), i = 0, 1, . . . , n, where π(i) is the ongoing previously

specified path; (iii) continue with the ongoing specified path π(i), i = 0, 1, . . . , n, if no deviations

occur or if two or more players deviate simultaneously. These strategies are simple because the play

of the game is always in only (n+1) states, namely, in state j ∈ {0, . . . , n} where π(j),t is played, for

some t ∈ N. In this case, we say that the play is in phase t of state j. A profile (π(0), π(1), . . . , π(n))

of n + 1 outcome paths is subgame perfect if the simple strategy represented by it is a SPE .
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Henceforth, when the meaning is clear, we shall use the term (π(0), π(1), . . . , π(n)) to refer to both

an n + 1 outcome paths as well as to the simple strategy profile represented by these paths. Also,

when referring to a profile of n+1 outcome paths, we shall not always explicitly mention n+1 and

simply refer to it by a profile of outcome paths.

Abreu (1988) used the concept of simple strategies to characterize the set of subgame perfect

equilibria. In this section, we consider simple strategy profiles that can be implemented with 1 –

memory. For this purpose, we introduce the notion of a confusion-proof profile of outcome paths

and show in Proposition 1 below that that a profile of outcome paths can be supported by a 1 –

memory simple strategy if and only if it is confusion proof. The construction used in Proposition 1

is our main tool and is used throughout the paper.

The notion of a confusion-proof profile of outcome paths is motivated by the following observa-

tions. For a profile of simple strategies to be supported by a 1 – memory simple strategy, players

need to find out the correct state of the play by only observing the action profile in the previous

period. This clearly is not always possible. To see this consider a simple strategy represented by the

profile of paths (π(0), π(1), . . . , π(n)). Then, three kinds of complications can arise if the strategies

have 1 – memory.

The first kind of complication happens when

π(i),t = π(j),r for some i, j ∈ {0, 1, . . . , n} and t, r ∈ N. (2)

That is, the action profile in phase t of state i is the same as that in phase r of state j . Since

players condition their behavior only last period’s action profile, the players cannot distinguish

between phase t of state i and phase r of state j, and therefore the simple strategy cannot be

implemented, unless π(i),t+1 = π(j),r+1.

The second kind of complication arises when

π
(i),t
−k = π

(j),r
−k for some i, j ∈ {0, 1, . . . , n}, k ∈ N and t, r ∈ N. (3)

In words, every player other than k ∈ N takes the same action in phase t of state i and in phase r of

state j. Then if, for example, the last period’s action profile is π(j),r, the players would not be able

to deduce whether the play in the previous period was in phase t of state i and player k deviated

to π
(j),r
k or whether it was in phase r of state j and no deviation occur. Since a deviation by player

13



k from π
(i),t
k to π

(j),r
k in phase t of state i is impossible to be detected by observing only the action

in the last period, the simple strategy cannot be implemented, unless π(i),t+1 = π(j),r+1 = π(k),1.

The third kind of complication appears when

π
(i),t
−l,m = π

(j),r
−l,m for some i, j ∈ {0, 1, . . . , n}, l, m ∈ N and t, r ∈ N. (4)

In words, all players other than l and m ∈ N take the same action both in phase t of state i, and

in phase r of state j. Then, if the last period’s action profile is given by (π
(i),t
l , π

(j),r
m , (π

(i),t
k )k 6=l,m) =

(π
(i),t
l , π

(j),r
m , (π

(j),r
k )k 6=l,m), players, looking back one period, can conclude that either player l or

player m has deviated. But, they cannot be certain of the identity of the deviator. Consequently,

both of them must be punished. This requires π(l) = π(m).

These observations are formalized below as follows. For any profile of outcome paths (π(0), π(1),

. . . , π(n)) ⊆ Πn+1, let

Ω ({i, t}, {j, r}) = {k ∈ N : π
(i),t
k 6= π

(j),r
k },

be the set of players whose actions in phase t of stage i and in phase r stage j are different.

Definition 2 A profile (π(0), . . . , π(n)) ∈ Πn+1 of outcome paths is confusion-proof if for any i, j ∈
{0, 1, . . . , n} and t, r ∈ N the following holds:

1. If Ω({i, t}, {j, r}) = ∅, then π(i),t+1 = π(j),r+1.

2. If Ω({i, t}, {j, r}) = {k} for some k ∈ N , then π(i),t+1 = π(j),r+1 = π(k),1.

3. If Ω({i, t}, {j, r}) = {k, l} for some k and l ∈ N , then π(k) = π(l).

The above observations, which motivated the definition of confusion-proof outcome paths, sug-

gest that confusion-proofness is necessary to support a profile of outcome paths with an 1 – memory

simple strategy. The next Proposition asserts that confusion-proofness is, in fact, not only a neces-

sary but also a sufficient condition to support a profile of outcome paths with 1 – memory.

Proposition 1 A profile of outcome paths is confusion-proof if and only if there exists a 1 – memory

simple strategy represented by it.

14



The 1 – memory strategy f supporting the confusion-proof profile of outcome paths (π(i))i=0,1,...,n

is as follows: If the last period of a given history equals π(j),t, for some j = 0, 1, . . . , n and t ∈ N,

then player i chooses π
(j),t+1
i . If only player k ∈ N deviated from the outcome π(j) in the last

period of the history, then player i chooses π
(k),1
i . Finally, if more then one player deviated from

the outcome π(j) in the last period of the history, then player i chooses π
(j),t+1
i (thus deviations

involving more than one player are ignored). Since f has 1 – memory and has the structure of a

simple strategy, we say that f is a 1 – memory simple strategy. As before, the profile (π(0), . . . , π(n))

represents f . The main task of the sufficiency part of the proof of Proposition 1 is to show that f

is well defined, which we show follows from (π(0), . . . , π(n)) being confusion-proof.

Before turning to the equilibrium characterization with 1 – memory, we shall next provide a set

of easily tractable sufficient conditions for a profile of outcome paths to be confusion-proof.

Lemma 1 A profile of outcome paths (π(0), π(1), . . . , π(n)) is confusion-proof if one of the following

conditions hold:

1. If n ≥ 3, then for all i, j ∈ {0, 1, . . . , n} and t, r ∈ N satisfying (i, t) 6= (j, r) the number of

players whose actions in phase t of stage i and in phase r stage j are different is at least three:

|Ω({i, t}, {j, r})| ≥ 3. (5)

2. If n = 2, then

(a) players have the same punishment path:

π(1) = π(2); (6)

(b) for all i, j ∈ {0, 1, 2} and t, r ∈ N satisfying (i, t) 6= (j, r) and i = 1 ⇒ j 6= 2 the actions

of each agent is distinct:

π
(i),t
l 6= π

(j),r
l for any l = 1, 2. (7)

The condition of the above Lemma for the case of three or more players is clearly sufficient for

confusion-proofness. Similarly, if (π(0), π(1), π(2)) satisfies (6) and (7) in a game with two players,

then for all i, j ∈ {0, 1, 2} and t, r ∈ N such that (i, t) 6= (j, r), it follows that |Ω({i, t}, {j, r})| = 2,
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except when i, j ∈ {1, 2}. This together with (6) imply that (π(0), π(1), π(2)) is confusion-proof when

n = 2.

Conditions (5) and (7), however, are not necessary for confusion-proofness in the case when n > 2

and n = 2, respectively. For instance, (π(0), . . . , π(n)) defined by π(j),t = s ∈ S for all j ∈ {0, . . . , n}
and t ∈ N is confusion-proof but it does not satisfy these conditions. Also condition (6) is not

necessary for confusion-proofness. To see that, let (π(0), π(1), π(2)) be defined by π(j),t = s ∈ S for

all j ∈ {0, 1} and t ∈ N, and by

π(2),t =





(s̄1, s2) if t = 1,

s if t ≥ 2.

Then, (π(0), π(1), π(2)) is confusion-proof but π(1) 6= π(2). However, as the following remark demon-

strates, with n = 2 the above example is the only possible confusion proof paths that violates

condition (6) and therefore identical punishment paths for both players is almost necessary for

confusion proofness in 2 – player games.

Remark 1 If n = 2 and (π(0), π(1), π(2)) is confusion-proof, then either π(1) = π(2) or there exists

i ∈ N , s = (si, s−i) ∈ S and s̄i ∈ Si such that π(i),t = s for all t ∈ N and for j ∈ N, j 6= i

π(j),t =





(s̄i, s−i) if t = 1,

s if t ≥ 2.

As it clear from the above, the analysis of the confusion proof simple paths, and hence 1 –

memory strategies, is considerably different for the case of 2 – player games from that with three or

more players. The basic difference between two cases is similar to that found in the implementation

literature. Here, as in there, when there are only two players, it may not be possible to detect which

of the two players have deviated and as a result both must be punished with the same punishment

path (condition (6)), whenever a deviation is detected.

5 Discounting

In this section, we assume that all agents discount the future returns by a common discount factor

δ ∈ (0, 1). Thus the payoff in the supergame G∞(δ) of G is now given by

Ui(f) = (1− δ)
∞∑

t=1

δt−1ui(π
t(f)).
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Also, for any π ∈ Π, t ∈ N, and i ∈ N , let V t
i (π) = (1 − δ)

∑∞
r=t δ

r−tui(πr) be the continuation

payoff of player i at date t if the outcome path π is played. For simplicity, we write Vi(π) instead

of V 1
i (π).

An outcome path π is a subgame perfect outcome path if there exists a SPE f such that π = π(f).

A profile of outcome paths (π(0), . . . , π(n)) ∈ Πn+1 is weakly enforceable if

V t
i (π(j)) ≥ (1− δ) max

si

ui(si, π
(j),t
−i ) + δVi(π

(i)) (8)

for all i ∈ N , j ∈ {0, 1, .., n} and t ∈ N.

From Abreu (1988), it is well known that weak enforceability is equivalent to subgame perfection.

More precisely, an outcome path π(0) is a SPE outcome path if and only if there exists a weakly

enforceable profile of outcome paths (π(0), . . . , π(n)).

In our setting we note that, by Proposition 1, any weakly enforceable, confusion-proof profile

of outcome paths can be supported by a 1 – memory simple SPE strategy. In particular, the same

holds for any SPE payoff vector that can be obtained by a confusion-proof profile of outcome paths.

Moreover, it is worthwhile to note that connectedness of strategy spaces is not needed for these

conclusions that are summarized in the following corollary to Proposition 1.

Corollary 1 Let u be SPE payoff vector that can be supported by a weakly enforceable, confusion-

proof profile of outcome paths. Then, there is a 1 – memory SPE strategy f such that U(f) = u.

In general, as was shown by the examples in Section 3, we cannot support all subgame perfect

payoff vectors by 1 – memory SPE strategies. In fact, the best that can be hoped for is to obtain

them approximately. There are three aspects involved in our approximations. The first involves

the equilibrium concept in question. To that regard, we employ the notion of contemporaneous

ε – perfect equilibrium (ε – CPE) that is formally defined as follows (see Mailath, Postlewaite,

and Samuelson (2005)): For all ε ≥ 0, a strategy profile f ∈ F is a contemporaneous ε – Nash

equilibrium of the supergame of G if for all i ∈ N , V t
i (π(f)) ≥ V t

i (π(f̂i, f−i)) − ε for all t ∈ N and

f̂i ∈ Fi. A strategy vector f ∈ F is a contemporaneous ε – perfect equilibrium of the supergame of

G if f |h is a contemporaneous ε – Nash equilibrium for every h ∈ H.

The second kind of approximation features the distance in the payoff space: given a SPE payoff

vector, can a payoff vector close to it be sustained with a 1 – memory SPE?
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The third approximation concerns the discount factor. With no memory restrictions, the Folk

Theorem states that any strictly individual rational payoff be supported in SPE for δ sufficiently

large. Does the same hold with 1 – memory?

Since any SPE has to be weakly enforceable, it turns out that a slack in the incentive equations

(8) is needed in order to perform the required approximations. This leads us to introduce the notion

ε – strictly enforceability of a SPE payoff vector.

Definition 3 For all ε ≥ 0, a payoff vector u ∈ Rn is a ε – strictly enforceable SPE payoff if there

exists a profile of n + 1 outcome paths (π̂(0), . . . , π̂(n)) such that Vi(π̂
(0)) = ui and

inf
t∈N

(
V t

i (π̂(j))−
(

(1− δ) max
si

ui(si, π̂
(j),t
−i ) + δVi(π̂

(i))

))
> −ε (9)

for all i ∈ N and all j ∈ {0, 1, . . . , n}.

Thus, an equilibrium simple strategy profile that induces an ε – strictly enforceable SPE payoff

is such that at any date and at any history, the maximum gain a player can make from one-period

deviation from the equilibrium strategy is less than ε.

For convenience, if u is an ε – strictly enforceable SPE payoff with ε = 0, we simply say that u

is a strictly enforceable SPE payoff.

Theorem 1 demonstrates that under certain conditions, any ε-strictly enforceable SPE payoff

can be approximately supported with a 1 – memory ε – CPE.

Theorem 1 Let ε ≥ 0 and u be an ε – strictly enforceable SPE payoff vector induced by the simple

strategy profile (π̂(0), . . . , π̂(n)). Then, for every η > 0 there is a 1 – memory ε – CPE strategy

profile f such that |U(f)− u| < η, provided that either n ≥ 3, or n = 2 and π̂(1) = π̂(2).

Remark 2 Note that when ε = 0, Theorem 1 shows that every neighborhood of any strictly en-

forceable SPE payoff profile contains a payoff profile that can be obtained with a 1 – memory SPE

if either n ≥ 3, or n = 2 and π̂(1) = π̂(2). Thus, in these cases, we can approximate a payoff profile

using subgame perfection with 1 – memory, if players strictly prefer to follow the associated simple

strategy at every subgame.

Although there are SPE payoff vectors which are not strictly enforceable (not satisfying Defin-

ition 3 for ε = 0), note that any SPE payoff profile is weakly enforceable, and hence is ε –strictly

enforceable for all ε > 0. This simple observation implies the following corollary to Theorem 1.
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Corollary 2 For every SPE payoff vector u ∈ Rn, and every η > 0, there is a 1 – memory η –

CPE strategy profile f such that |U(f) − u| < η, whenever either n ≥ 3, or n = 2 and there exist

a SPE simple strategy described by (π̂(0), π̂(1), π̂(2)) such that π̂(1) = π̂(2) and Vi(π̂
(0)) = ui for all

i ∈ N .

This corollary to Theorem 1 is in the same spirit as Theorem 4.1 of Kalai and Stanford (1988). It

shows that with three more players, given any η > 0, every SPE payoff vector can be approximately

obtained by a 1 – memory η – CPE. In other words, the value of any recall beyond observing the

last period, is arbitrarily small. Moreover, the same conclusion holds for 2 – player games if the

punishment paths needed to enforce the original equilibrium are the same for both players.

The proof of Theorem 1 involves showing that under the assumptions of the Theorem, together

with Si being connected and ui being continuous, the given profile of outcome paths (π̂(0), . . . , π̂(n))

supporting u as an ε – strictly enforceable SPE payoff vector can be approximated by a confusion-

proof profile of outcome paths (π̄(0), . . . , π̄(n)), that is arbitrarily close to the first in terms of the

distance in payoffs. This implies that the latter profile of outcome paths is also an ε – strictly

enforceable SPE. Applying Proposition 1 completes the proof.

Theorem 1 establishes that any strictly enforceable utility vector can be approximated by a

1 – memory SPE payoff vector. Can such 1 – memory implementation of strictly enforceable

utility be exact? Clearly, if a strictly enforceable utility vector u has the additional property

that it can be obtained by a confusion proof profile of outcome paths, (π̂(0), . . . , π̂(n)), then there

exists a 1 – memory simple strategy profile that supports u exactly. Even if (π̂(0), . . . , π̂(n)) is not

confusion-proof, but is strictly enforceable and the single path π̂(0) is implementable with 1 – memory

(π̂(0) does not involve any confusing instances), u can still be sustained exactly by a 1 – memory

SPE. As in the proof of Theorem 1, this can be established by constructing another punishment

profile (π̄(1), . . . , π̄(n)) such that (π̂(0), π̄(1), . . . , π̄(n)) is confusion-proof simple equilibrium and hence

1 – memory implementable.9 To show this formally, we shall next define a confusion-proof single

outcome path and a confusion-proof payoff vector.

A single outcome path π is free of confusion if it satisfies the following three conditions. First,

if the vector of actions is the same in two different periods, then the action profile in the period

following one of those periods must equal the action profile following the other period. Second, it

9In the next section, we shall use this observation to establish our Folk Theorem type results with 1 – memory.
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cannot be the case that there is exactly one player whose action is different in two given periods.

And third, with more than two players, it cannot be the case that there is exactly two players whose

actions are different in two given periods. These restrictions are described in Definition 4 below,

and are similar to those made in Definition 2. As before, the set of players that in a given outcome

path play a different actions in different periods is a key concept. Formally, for any outcome paths

π ∈ Π this set is defined by

Ω(t, r) = {i ∈ N : πt
i 6= πr

i } for any two periods t and r ∈ N.

Definition 4 A single path π ∈ Π is confusion-proof if the following properties hold:

1. |Ω(t, r)| = 0 for some t, r ∈ N, implies πt+1 = πr+1.

2. There are no t, r ∈ N with |Ω(t, r)| = 1.

3. If n > 2, then |Ω(t, r)| 6= 2 for all t, r ∈ N.

We define the set of Πcp to be the set of all single confusion-proof paths. Furthermore, a payoff

vector u is confusion-proof if it can supported by a single confusion-proof path: there exists π ∈ Πcp

such that V (π) = u.

Using the same techniques as in the proof of Theorem 1 one can prove the following Proposition.

Proposition 2 Suppose that u is supported by a single confusion-proof path π(0) ∈ Πcp. Assume also

that there exists n paths (π(1), . . . , π(n)) ∈ Πn such that (π(0), π(1), . . . , π(n)) is strictly enforceable.

Then, there is a 1 – memory SPE strategy f such that U(f) = u, provided that either n ≥ 3, or

n = 2 and π(1) = π(2).

Thus, confusion-proof strictly enforceable SPE payoffs are most well-suited for our goal of sup-

porting payoff vectors by 1 – memory SPE strategies. This makes it natural to ask whether we can

describe the set of such payoffs. In the next section, we will provide a partial description of that

set, for all sufficiently large discount factors.

Before considering the case of patient players, we would like to discuss the relation between the

examples presented in Section 3 and the results in this section. In the 3 – player example, recall

that we identified for δ = 1/3 a SPE (and Pareto optimal) payoff vector (4, 4, 4) which cannot be

20



supported by any 1 – memory equilibrium (the result was also robust to small perturbations of stage

game payoffs and/or δ). On the other hand, Corollary 2 displays that the same payoff vector can

arbitrarily closely be approximated with a 1 – memory ε – CPE, for all ε > 0. Indeed, it is not very

difficult to show that a stronger result holds: since this payoff can be supported by a confusion-proof

single path (repeating (a, a, a) forever), it can be obtained exactly in ε – CPE with 1 – memory,

for all ε > 0. Therefore, these observations imply that there is a discontinuity in the following

sense: even though the SPE payoff vector (4, 4, 4) can be obtained with a 1 – memory ε – CPE

for all ε > 0, it cannot be exactly sustained with 1 – memory SPE (the same discontinuity holds

if we perturb the stage game payoffs and/or δ). To see the nature of this discontinuity, note that

the payoff profile (4, 4, 4) cannot be obtained with a strictly enforceable simple strategy because

player 3 has a dominant strategy that induces a payoff of 4 at every stage game (therefore, the

continuation payoff of player 3 is the same at every history). This implies that the hypothesis of

Theorem 1 (and Proposition 2) on strict enforceability does not hold for (4, 4, 4) when ε = 0. On

the other hand, when ε exceeds zero the payoff at different histories do not have to be the same,

and as a result, (4, 4, 4) can be obtained as an ε – strictly enforceable simple strategy for ε > 0;

thus in the case of the example the hypothesis of Theorem 1 holds when ε > 0.

Considering the 2 – player example of Section 3, recall that when δ = 1/3 not only we identified

a SPE (and Pareto optimal) payoff vector (4, 4) which cannot be supported by any 1 – memory

SPE (the result is also robust to small perturbations of payoffs and/or δ), we also showed that (4, 4)

cannot even be approximated by a 1 – memory ε – CPE, for small ε > 0.10 Therefore, the conclusions

of the all the main results in this section (Theorem 1, Remark 5, Corollary 2 and Proposition 2)

do not hold for the payoff vector (4, 4) in our 2 – player example. The reason for this is that for

the 2 – player case all the results in this section require a common punishment path; whereas to

enforce the payoff vector (4, 4) (or a payoff close to it) as a SPE in the example requires different

punishment paths for the two players.11

10Thus, in this example there is not even a discontinuity with respect to the ε – CPE.
11Note that the payoff vector (4, 4) in the example when δ = 1/3 is not a strictly enforceable SPE. This implies

that this payoff vector is inconsistent with the hypothesis of Theorem 1, Remark 5 and Proposition 2 for another

reason other than the lack of common punishment paths. However, since the conclusion of the example is robust

to small perturbations of the payoffs, it follows that we can always construct another example in which a strictly

enforceable with different punishment paths cannot be implemented by a 1 – memory SPE, thus, highlighting that
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6 Folk Theorems

6.1 Folk Theorem with Discounting

Let D = co (u(S)), U = {y ∈ D : yi ≥ vi for all i ∈ N} and U0 = {y ∈ D : yi > vi for all i ∈ N}.
The set U (resp. U0) is the set of (resp. strictly) individually rational payoffs.

Fudenberg and Maskin (1986)’s Folk Theorem for repeated games with discounting establishes

that any strictly individually rational payoff profiles u ∈ U0 can be sustained as a SPE payoff

profile if the players are sufficiently patient and U has full-dimension (dim(U) = n). However, the

discussion in the previous section shows that a payoff profile u ∈ D can be sustained as a SPE with

1 – memory only if there exists a confusion proof single path that induces u.12 Our first result in

this section shows that if players are sufficiently patient then all u ∈ U0 with this property can be

implemented exactly by a 1 – memory SPE if u is bounded away from the boundary of U0 and the

full-dimensionality condition holds. Using this result, we shall then show that all u ∈ U can be

implemented approximately by a 1 – memory SPE.

Fix any discount factor δ < 1. Then for any α ∈ U0 let Λ(α, δ) ⊆ Π be the set of all single

confusion-proof outcome paths π ∈ Πcp such that the continuation payoff of every player i at each

date t if π is played is no less than αi:
13

Λ(α, δ) = {π ∈ Πcp : V t
i (π) ≥ αi for all i ∈ N and t ∈ N}.

Also, denote the set of confusion-proof payoff vectors that are supported by the set Λ(α, δ) by

C(α, δ) = {u ∈ Rn : u = V (π) for some π ∈ Λ(α, δ)}.

The next Proposition shows that all payoffs in C(α, δ) can be supported by 1 – memory SPE if

δ is sufficiently high.

Proposition 3 Suppose that either dim(U) = n or n = 2 and U0 6= ∅. Then for all α ∈ U0, there

exists δ̄ ∈ (0, 1) such that for all δ ≥ δ̄ the following holds: for all payoffs u ∈ C(α, δ) there exists

a 1 – memory SPE strategy f with U(f) = u.

the critical factor in the example is the lack of common punishment paths.
12This property clearly holds for all u ∈ D if the payoff space u(S) were convex. In this case D = u(S) and

therefore any payoff vector in D can be obtained by the repetition of the same action profile.
13Note that V t

i (π) depends on the discount factor δ but for ease of exposition we shall not make this explicit.
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Since any payoff u ∈ C(α, δ) can be sustained by a confusion proof single path it follows, by

Proposition 2, that to prove Proposition 3 it is sufficient to show that for sufficiently high discount

factor and any u ∈ C(α, δ) there exists a strictly enforceable simple strategy profile given by

(π(0), π(1), ..., π(n)) such that V (π(0)) = u, and furthermore, in the 2 – player case the punishment

paths are the same.

If the payoff space u(S) were convex (e.g. if correlated strategies were allowed), demonstrating

the existence of such a strictly enforceable simple strategy profile would be completely standard

and would follow in a relatively straightforward manner using the method developed in Fudenberg

and Maskin (1986) (in this case, as we mentioned in Footnote 6.1, any payoff vector u ∈ D can

be obtained by the repetition of the same actions, and therefore can be trivially sustained by a

confusion-proof single path).

However, in our set-up u(S) is not necessarily convex. This complicates the construction of the

required simple strategy profile (π(0), π(1), ..., π(n)) in the proof of Proposition 3. In particular, to

prove the result with more than two players, we construct, for each player i ∈ N , a punishment

path π(i) that minmaxes i (plays mi) for T periods and then plays another path π̂(i). The path π̂(i)

is chosen so that its payoff Vi(π̂
(i)) for player i to have the following four properties. First, it is

strictly below the payoff i receives on the equilibrium path at any date (i.e., Vi(π̂
(i)) < inft V

t
i (π(0))).

Second, it strictly exceeds the minmax payoff for i. Third, it is below its continuation payoff at any

date (i.e., Vi(π̂
(i)) ≤ V t

i (π̂(i)) for all t ∈ N). Fourth, it is below the payoff obtained by punishing

any other player at any date (i.e., Vi(π̂
(i)) ≤ V t

i (π̂(j)) for all j ∈ N \ {i} and all t ∈ N). All

these properties are intuitive. The first guarantees that a player that deviates from the equilibrium

payoff is punished regardless of the date of the deviation. The second and the third display the

typical “stick and carrot” nature of the punishments: players are punished more severely early

on. Finally, the fourth properties gives each player an incentive to punish deviators. Ensuring

these properties without assuming correlated strategies (or more generally without assuming u(S)

is convex) is complicated because each path π̂(i) may consist of playing a finite sequence of action

profiles repeatedly; as a result V t
i (π̂(i)) may not equal V t′

i (π̂(i)) for any two dates t and t′. With

correlated strategies the path π̂(i) could be constructed in such a way such that it involves playing

a single action profile repeatedly and therefore V t
i (π̂(i)) = V t′

i (π̂(i)) for all t and t′. Therefore, the

above four properties are easier to satisfy in the latter case than in the former (in fact, the third
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property is automatically satisfied in the latter case because since V t
i (π̂(i)) = V t′

i (π̂(i)) for all t and

t′).

In the case of two players, the structure of the proof is the same. However, since the punishment

path needs to be common to both players, it is considerably more difficult task to construct a

common punishment path with the above four properties. In addition, as in Fudenberg and Maskin

(1986), we need to use a mutual minmax action in the initial phase of the punishment path.

Proposition 3 shows that for all α ∈ U0, C(α, δ) is contained in the set of payoffs supported by

1 – memory SPE strategies for large δ. We shall now use this result to establish a 1 – memory Folk

Theorem result for the set of individually rational payoffs U . This is obtained by first establishing

that any u ∈ U can be approximated with a confusion-proof payoff profile in C(α, δ) if δ is sufficiently

close to one.

Lemma 2 Suppose that either dim(U) = n or n = 2 and U0 6= ∅. For all u ∈ U and ζ > 0 there

exists α ∈ U0 and δ̃ ∈ (0, 1) such that for all δ ≥ δ̃ there is ũ ∈ C(α, δ) with ||u− ũ|| < ζ.

Combining Proposition 3 and Lemma 2 we obtain the perfect 1 – memory Folk Theorem.

Theorem 2 Suppose that either dim(U) = n or n = 2 and U0 6= ∅. Then, for all u ∈ U and

ζ > 0, there exists δ∗ ∈ (0, 1) such that for all δ ≥ δ∗, there is a 1 – memory SPE strategy f with

||U(f)− u|| < ζ.

6.2 No Discounting

In this section we assume that players do not discount the future and are interested in the long-term

average payoff. The payoff in the supergame G∞(1) of G is now given by:

U∞
i (f) = lim inf

T→∞
1

T

T∑
t=1

ui(π
k(f)).

For all π ∈ Π and i ∈ N , we let V ∞
i (π) = lim infT→∞ 1

T

∑T
t=1 ui(π

t) be the supergame payoff of

player i when the path π is implemented. Finally, denote the set of confusion-proof payoffs in the

supergame G∞(1) that can be obtained through the repetition of a cycle by

C = {u ∈ Rn : u = V ∞
i (π) for some π ∈ Πcp that consists of a repetition of a cycle}.
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We shall now establish a similar Folk Theorem result for the no discounting case to that in the

previous section without assuming the full-dimensionality condition. First, we show that all strictly

individually rational payoffs in C can be supported by a 1 – memory SPE.

Proposition 4 For any payoff profile u ∈ U0 ∩ C there exists a 1 – memory SPE strategy profile

f with U∞(f) = u.

When n > 2, the proof of Proposition 4 for the case of a payoff profile u ∈ U0 ∩ C involves

constructing a confusion proof simple strategy profile (π(0), ..., π(n)) such that u = V ∞(π(0)) and

for each player i ∈ N the punishment path π(i) involve playing first a finite sequence of action

profiles with a payoff approximately close the minmax payoff vi for player i and then playing the

equilibrium path π(0). In the case of two players, the punishment phase for the two players are

identical and consists of a finite sequence that involve plays that induce payoffs close to the mutual

minmax payoffs followed by playing the equilibrium path π(0).

Since any strictly individually rational payoff u ∈ U can be approximated by payoff profiles in

the set U0, we shall next show, using the previous result, that any individually rational payoff u ∈ U
can be approximately implemented by a 1 – memory SPE strategy profile.14

Theorem 3 Suppose that U0 is nonempty. Then, for all u ∈ U and ζ > 0 there exists a 1 –

memory SPE strategy profile f with ‖U∞(f)− u‖ < ζ.

7 Time Dependent Strategies

The notion of a 1 – memory strategy implies that any such strategy cannot depend on the calendar

time. In particular, if π is the outcome path that a 1 – memory strategy f induces, then πt+1 = πr+1

provided that πt = πr. Thus, either the action profile prescribed in some date never repeats itself,

or it will form a loop. As we have mentioned before, these restrictions imply that, in general, not

all payoff vectors can be supported by 1 – memory strategies.

14By a similar argument as that in the proof of Proposition 4, it can also be shown that any u ∈ int(U0)∩V∞(Πcp)

can also be implemented exactly by a 1 – memory subgame perfect equilibrium profile. This can be established by

first noting that for any such u ∈ int(U0) ∩ V∞(Πcp) there exists another payoff u′ ∈ U0 ∩ C such that u ≥ u′.
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Important differences appear when time dependent 1 – memory strategies are allowed. Formally,

a strategy fi ∈ Fi for player i is a time dependent 1 – memory strategy if fi(h) = fi(h̄) for all

h, h̄ ∈ Ht satisfying T (h) = T (h̄) and all t ∈ N. Thus, a time dependent 1 – memory strategy

allows for fi(h) to differ from fi(h̄) even if T (h) = T (h̄), as long as h and h̄ have different lengths.

Thus, time dependence implies that all outcome paths (and thus all payoff vectors) can be sustained

by time dependent 1 – memory strategy profiles.

We are interested in supporting SPE payoffs with time dependent 1 – memory SPE strategies.

Regarding this goal, similar considerations apply as in Sections 5 with the additional property

that with time dependence we can strengthen our approximate implementation results to exact

implementation. For example, the following is the analogue of Theorem 1 for time dependent 1 –

memory strategies that can be obtained by a similar proof.

Theorem 4 Let ε ≥ 0 and u be an ε – strictly enforceable SPE payoff described by the simple

strategy (π̂(0), . . . , π̂(n)). Then, there exists a time dependent 1 – memory ε – CPE f with U(f) = u,

provided that either n ≥ 3, or n = 2 and π̂(1) = π̂(2).

From the above it should be clear that the advantage of using time dependent strategies is that

payoffs can be supported exactly, and not only approximately. The same applies in the context of

our Folk Theorems. In fact, there is no longer the need to focus on confusion-proof payoffs, since

any payoff can be supported by a time dependent 1 – memory strategy.

Formally, for all δ ∈ (0, 1) and α ∈ U0 let Λ̃(α, δ) ⊂ Π be the set of all outcome paths π ∈ Π such

that V t
i (π) ≥ αi for all i ∈ N and t ∈ N. Also, denote the set of payoff vectors that are supported

by the set Λ̃(α, δ) by

C̃(α, δ) = {u ∈ Rn : u = V (π, δ) for some π ∈ Λ̃(α, δ)}.

Then, because any payoff can be supported by a time dependent 1 – memory strategy, the

following analogue of Proposition 3 can be obtained by a similar proof.

Proposition 5 Suppose that either dim(U) = n or n = 2 and U0 6= ∅. Then for all α ∈ U0, there

exists δ̄ ∈ (0, 1) such that for all δ ≥ δ̄ the following holds: for all payoffs u ∈ C̃(α, δ) there exists

time dependent 1 – memory SPE strategy f with U(f, δ) = u.
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Consequently, with the use of time dependent strategies the 1 – memory Folk Theorem can be

stated without any approximations.

Theorem 5 For all payoffs u ∈ int(U0), there exists δ̄ ∈ (0, 1) such that for all δ ≥ δ̄ there exists

time dependent 1 – memory SPE strategy f with U(f, δ) = u.

A Appendix: Robustness of the 2 – player Example

A.1 Perturbing the stage game payoffs and the discount factor

We consider a perturbed version of the original game, where ε1, ε2, ρ1, ρ2 are sufficiently small and

possibly negative:

1\2 a b

a (4 + ε1, 4 + ε2) (2 + ρ1, 5)

b (5, 2 + ρ2) (0, 0)

We will prove that there is an open neighborhood of values for ε1, ε2, ρ1, ρ2 and δ, for which the

(full memory) SPE payoff of (4 + ε1, 4 + ε2) cannot be obtained by any 1 – memory SPE strategies.

As before, si ∈ Si = [0, 1] refers to the action (the probability assigned to a) by player i in the

stage game. Note, also that for sufficiently small values of ε1, ε2, ρ1, ρ2, the minmax payoff is (2+ρi)

for player i, m1 = (a, b), m2 = (b, a) and both m1 and m2 are Nash equilibria. The mutual minmax

profile is m̄ = (m2
1,m

1
2) = (b, b).

Now suppose the above game is played infinitely often. If there are no restrictions on the memory

then the payoff of (4+ ε1, 4+ ε2) is SPE: play a at each date with the threat of playing mi forever if

i deviates from (a, a), i = 1, 2 (further deviations are ignored). This strategy profile defined above

is subgame perfect, provided that δ satisfies the following inequality

δ ≥ 1− εi

3− ρi

for all i = 1, 2. (10)

To establish our claim suppose that, contrary to our claim, the payoff of (4 + ε1, 4 + ε2) can be

supported by a 1 – memory SPE f . But then there exists functions gi : [0, 1]2 → [0, 1] for all i = 1, 2

such that fi(h) = gi(T (h)) for all h ∈ H \H0.
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First, we will show that the payoff of (4 + ε1, 4 + ε2) can only be obtained by repeating (a, a)

forever. Let p1 = f1(H0), q1 = f2(H0), pt = g1(pt−1, qt−1) and qt = g2(pt−1, qt−1) for all t ∈ N. Since

U1(f) = 4 + ε1 and U2(f) = 4 + ε2, it follows that

8+
2∑

i=1

εi =
2∑

i=1

Ui(f) = (1−δ)
∞∑

t=1

δt−1((8+ε1+ε2)ptqt+(7+ρ1)(pt(1−qt))+(7+ρ2)qt(1−pt))). (11)

Since ((8 + ε1 + ε2)ptqt + (7 + ρ1)(pt(1 − qt)) + (7 + ρ2)qt(1 − pt)) ≤ 8 + ε1 + ε2 for small values

of ε1, ε2, ρ1, ρ2, condition (11) holds only if pt = qt = 1 for all t ∈ N. Hence, it follows that

fi(H0) = gi(1, 1) = 1 for all i = 1, 2.

Next, for any q ∈ S2 = [0, 1] consider a deviation by player 2 to a strategy f̄2 defined by

f̄2(H0) = q and f̄2(h) = 1 for all h ∈ H \H0. Then,

U2(f1, f̄2) ≥ (1− δ)[(4 + ε2)q + 5(1− q)] + (1− δ)δ[(4 + ε2)g1(1, q)

+ (2 + ρ2)(1− g1(1, q))] + (2 + ρ2)δ
2

= (1− δ)(5− q + ε2q) + (2 + ρ2)δ + δ(1− δ)(2 + ε2 − ρ2)g1(1, q).

Since f is a SPE, 4 + ε2 = U2(f) ≥ U2(f1, f̄2) implies

g1(1, q) ≤ (1− ε2)q

(2 + ε2 − ρ2)δ
+

(3− ρ2)δ + ε2 − 1

(2 + ε2 − ρ2)δ(1− δ)
. (12)

Symmetrically, for all p ∈ S1 = [0, 1]

g2(p, 1) ≤ (1− ε1)p

(2 + ε1 − ρ1)δ
+

(3− ρ1)δ + ε1 − 1

(2 + ε1 − ρ1)δ(1− δ)
. (13)

Consider next the strategy f̄1 for player 1 defined by f̄1(h) = 1 for all h ∈ H. Note that for all

q ∈ S2

U1(f̄1, f2|(1, q)) ≥ (1− δ)[(4 + ε1)g2(1, q) + (2 + ρ1)(1− g2(1, q))] + (2 + ρ1)δ

= (2 + ρ1) + (1− δ)(2 + ε1 − ρ1)g2(1, q).

and

U1(f |(1, q)) ≤ (1− δ)[(4 + ε1)g1(1, q)g2(1, q) + (2 + ρ1)g1(1, q)(1− g2(1, q))

+5(1− g1(1, q))g2(1, q)] + 5δ

= (1− δ)[(2 + ρ1)g1(1, q) + 5g2(1, q)− (3− ε1 + ρ1)g1(1, q)g2(1, q)] + 5δ

≤ (1− δ)[(2 + ρ1)g1(1, q) + 5g2(1, q)] + 5δ.

28



Again, since f is SPE we have U1(f |(1, q)) ≥ U1(f̄1, f2|(1, q)). This implies that

g2(1, q) ≥ −(2 + ρ1)g1(1, q)

(3− ε1 + ρ1)
+

2 + ρ1 − 5δ

(3− ε1 + ρ1)(1− δ)
for all q ∈ S2. (14)

Finally, we use inequalities (12), (13) and (14) to show that player 1 has a profitable deviation

from f , which contradicts the fact that f is a SPE. To show this, consider player 1 deviating from

the equilibrium path by choosing strategy f̃1 defined by f̃1(H0) = 0 and f̃1(h) = 1 for all h ∈ H \H0.

Then,

U1(f̃1, f2) ≥ 5(1− δ) + δ(1− δ)u1(1, g2(0, 1)) + δ2(1− δ)u1(1, g2(1, g2(0, 1))) + (2 + ρ1)δ
3

≥ 5(1− δ) + (2 + ρ1)δ + δ2(1− δ)(2 + ε1 − ρ1)g2(1, g2(0, 1)).

The second inequality in the above follows from u1(1, g2(0, 1)) ≥ 2 + ρ1 and u1(1, g2(1, g2(0, 1))) =

(2 + ε1 − ρ1)g2(1, g2(0, 1)) + (2 + ρ1).

Next, we seek a lower bound on g2(1, g2(0, 1)). Note first that, by (13), we have

g2(0, 1) ≤ (3− ρ1)δ + ε1 − 1

(2 + ε1 − ρ1)δ(1− δ)
:= ḡ2(0, 1).

This, together with (12), implies that

g1(1, g2(0, 1)) ≤ (1− ε2)g2(0, 1)

(2 + ε2 − ρ2)δ
+

(3− ρ2)δ + ε2 − 1

(2 + ε2 − ρ2)δ(1− δ)

≤ (1− ε2)ḡ2(0, 1)

(2 + ε2 − ρ2)δ
+

(3− ρ2)δ + ε2 − 1

(2 + ε2 − ρ2)δ(1− δ)
:= ḡ1(1, ḡ2(0, 1)).

But then, by (14), we obtain the desired lower bound on g2(1, g2(0, 1)) as follows:

g2(1, g2(0, 1)) ≥ −(2 + ρ1)g1(1, g2(0, 1))

(3− ε1 + ρ1)
+

2 + ρ1 − 5δ

(3− ε1 + ρ1)(1− δ)
≥

−(2 + ρ1)ḡ1(1, ḡ2(0, 1))

(3− ε1 + ρ1)
+

2 + ρ1 − 5δ

(3− ε1 + ρ1)(1− δ)
:= ḡ2(1, ḡ2(0, 1)).

Using the lower bound ḡ2(1, ḡ2(0, 1)) for g2(1, g2(0, 1)), we obtain

U1(f̃1, f2) ≥ 5(1− δ) + (2 + ρ1)δ + δ2(1− δ)(2 + ε1 − ρ1)ḡ2(1, ḡ2(0, 1)).

Now as δ → 1/3, εj → 0 and ρj → 0 for all j = 1, 2, it follows that ḡ2(0, 1) → 0, ḡ1(1, ḡ2(0, 1)) →
0 and ḡ2(1, ḡ2(0, 1)) → 1/6, which imply that

5(1− δ) + (2 + ρ1)δ + δ2(1− δ)(2 + ε1 − ρ1)ḡ2(1, ḡ2(0, 1)) → 4 +
2

81
.
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Therefore, there exists φ∗ > 0, ε∗j > 0, and ρ∗j > 0 such that for all |δ − 1/3| < φ∗, |εj| < ε∗j and

|ρj| < ρ∗j we have U1(f̃1, f2) > 4 + ε1, delivering the required contradiction.

Thus, for all values of (δ, ε1, ε2, ρ1, ρ2) which reside in B1 ∩ B2 where B1 = {(δ, ε1, ε2, ρ1, ρ2) :

4+ εj > 5δ+(1−δ)(2+ρj), j = 1, 2} and B2 = {(δ, ε1, ε2, ρ1, ρ2) : |δ−1/3| < φ∗, |εj| < ε∗j and |ρj| <
ρ∗j , j = 1, 2}, there exists a SPE payoff which cannot be obtained by 1 – memory SPE.

A.2 Contemporaneous ε – equilibrium approximation

Consider again the case of δ = 1/3 and ε1 = ε2 = ρ1 = ρ2 = 0. We now show that exists η > 0 and

ε′ > 0 such that no feasible payoff profile u ∈ Bη(4, 4) can be supported by a 1 – memory ε – CPE,

for all 0 ≤ ε ≤ ε′.

To show this fix any η > 0 and any feasible payoff profile u ∈ Bη(4, 4). We first show that if

π = {(pt, qt)}∞t=1 is such that V (π) = u, then p1 and q1 are both greater or equal to 1− 3η. We shall

demonstrate this for the case of p1; the reasoning for the case of q1 is analogous. Let γ = 1−3η and

Vt = V t
1 (π) + V t

2 (π), for all t ∈ N. Suppose, in order to reach a contradiction, that p1 < γ. Then

V1 =
2

3
(8p1q1 + 7p1(1− q1) + 7q1(1− p1)) +

V2

3
=

2

3
(7 + p1q1 − 7(1− p1)(1− q1)) +

V2

3
(15)

Note that u ∈ Bη(4, 4) implies that V1 = u1 + u2 > 8− 2η. But then, by (15) and p1 < γ we have

8− 2η <
2

3
(7 + γq1 − 7(1− γ)(1− q1)) +

V2

3
=

2

3
(−6γq1 + 7(γ + q1)) +

V2

3
.

But this implies that

V2 > 24− 6η + 12γq1 − 14(γ + q1) ≥ 10− 6η − 2γ = 8.

Since V2 ≤ 8, we have a contradiction.

Having shown that when η > 0 is small p1 and q1 are near one, the rest of the proof is similar to

that provided in the previous section. Therefore, as was done before, suppose contrary to our claim

that, for some small η > 0 and ε ≥ 0, the payoff u ∈ Bη(4, 4) can be supported by a 1– memory ε

– CPE f . Then, there exists functions gi : [0, 1]2 → [0, 1] for all i = 1, 2 such that fi(h) = gi(T (h))

for all h ∈ H \H0.
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Now, for any q ∈ S2 consider a deviation by player 2 to a strategy f̄2 defined by f̄2(H0) = q and

f̄2(h) = 1 for all h ∈ H \H0. Then,

U2(f1, f̄2) ≥ (1− δ)[4p1q + 5p1(1− q) + 2(1− p1)q]

+(1− δ)δ[4g1(p1, q) + 2(1− g1(p1, q))] + 2δ2

= (1− δ)(5p1 − 3p1q + 2q) + 2δ + δ(1− δ)2g1(p1, q).

Since f is ε – CPE, 4 + η > U2(f) ≥ U2(f1, f̄2)− ε implies

g1(p1, q) <
4 + η + ε− 2δ

2δ(1− δ)
− 5p1 − 3p1q + 2q

2δ
. (16)

Symmetrically, for all p ∈ S1

g2(p, q1) <
4 + η + ε− 2δ

2δ(1− δ)
− 5q1 − 3pq1 + 2p

2δ
. (17)

Consider next the strategy f̄1 for player 1 defined by f̄1(h) = 1 for all h ∈ H. Note that

U1(f̄1, f2|(p1, q)) ≥ (1− δ)[4g2(p1, q) + 2(1− g2(p1, q))] + 2δ

= 2 + (1− δ)2g2(p1, q),

for all q ∈ S2, and

U1(f |(p1, q)) ≤ (1− δ)[4g1(p1, q)g2(p1, q) + 2g1(p1, q)(1− g2(p1, q))

+5(1− g1(p1, q))g2(p1, q)] + 5δ ≤ (1− δ)(2g1(p1, q) + 5g2(p1, q)) + 5δ.

Again, since f is ε – CPE we have for all q ∈ S2

g2(p1, q) ≥ −2g1(p1, q)

3
+

2− 5δ − ε

3(1− δ)
. (18)

Finally, we use inequalities (16), (17) and (18) to show that for small η and ε player 1 has a prof-

itable deviation from f , which contradicts the fact that f is ε – CPE. To show this, consider player

1 deviating from the equilibrium path by choosing strategy f̃1 defined by f̃1(H0) = 0, f̃1(0, q1) = p1,

and f̃1(h) = 1 for all h ∈ H \ (H0 ∪ {(0, q1)}). Then,

U1(f̃1, f2) ≥ 5q1(1− δ) + δ(1− δ)u1(p1, g2(0, q1)) + δ2(1− δ)u1(1, g2(p1, g2(0, q1))) + 2δ3

≥ 5q1(1− δ) + 2δ + δ2(1− δ)2g2(p1, g2(0, q1))− 2δ(1− δ)(1− p1),
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because u1(p1, g2(0, q1)) ≥ 2p1 and u1(1, g2(p1, g2(0, q1))) = 2g2(p1, g2(0, q1)) + 2.

Next, we seek a lower bound on g2(p1, g2(0, q1)). Note first that, by (17), we have

g2(0, q1) ≤ 4 + η + ε− 2δ

2δ(1− δ)
− 5q1

2δ
:= ḡ2(0, q1).

This, together with (16), implies that

g1(p1, g2(0, q1)) ≤ 4 + η + ε− 2δ

2δ(1− δ)
+

(3p1 − 2)g2(0, q1)− 5p1

2δ

≤ 4 + η + ε− 2δ

2δ(1− δ)
+

(3p1 − 2)ḡ2(0, q1)− 5p1

2δ
:= ḡ1(p1, ḡ2(0, q1)),

because for η > 0 small enough, (3p1 − 2) > 0 (due to p1 ≥ 1− 3η). But then, by (18), we obtain

the desired lower bound on g2(p1, g2(0, q1)) as follows:

g2(1, g2(0, 1)) ≥ −2g1(p1, g2(0, q1))

3
+

2− 5δ − ε

3(1− δ)

≥ −2ḡ1(p1, ḡ2(0, q1))

3
+

2− 5δ − ε

3(1− δ)
:= ḡ2(p1, ḡ2(0, q1)).

Using the lower bound ḡ2(p1, ḡ2(0, q1)) for g2(p1, g2(0, q1)), we obtain

U1(f̃1, f2) ≥ 5q1(1− δ) + 2δ + δ2(1− δ)2ḡ2(p1, ḡ2(0, q1))− 2δ(1− δ)(1− p1).

Now set δ = 1/3. Then as η → 0 and ε → 0, we have p1 → 1, q1 → 1, ḡ2(0, q1) → 0,

ḡ1(p1, ḡ2(0, q1)) → 0, ḡ2(p1, ḡ2(0, q1)) → 1/6 and

U1(f̃1, f2) → 4 +
2

81
.

Since U1(f) < 4 + η, this implies that for η and ε > 0 sufficiently small U1(f̃1, f2) > U1(f) + ε. But

this is a contradiction.

B Appendix: Proofs

Proof of Remark 1. Suppose that (π(0), π(1), π(2)) is confusion proof. Consider the four possible

values that Ω({1, 1}, {2, 1}) can take. First, note that it cannot be that Ω({1, 1}, {2, 1}) = {1, 2};
otherwise, this means that π(1),1 6= π(2),1, while by part 3 of Definition 2 we have π(1) = π(2).
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Second, if Ω({1, 1}, {2, 1}) = ∅ then π(1),1 = π(2),1. Proceeding by induction, assume that

π(1),r = π(2),r for all r = 1, . . . , t− 1. Then, Ω({1, t− 1}, {2, t− 1}) = ∅ implies that π(1),t = π(2),t.

Hence, π(1) = π(2).

Suppose that Ω({1, 1}, {2, 1}) = {1}, which means that π
(1),1
1 6= π

(2),1
1 . By part 2 of Definition 2

we have π(1),1 = π(1),2 = π(2),2. Proceeding by induction as above, one can prove that π(1),t = π(1),t+1

for all t ∈ N and that π(1),t = π(2),t for all t ≥ 2. This completes the proof, since the remaining case

(Ω({1, 1}, {2, 1}) = {2}) is just analogous to this one.

Proof of Proposition 1. (Sufficiency) Let (π(0), . . . , π(n)) be a confusion-proof profile of

outcome paths. Let i ∈ N and define fi as follows: for any h ∈ H, j ∈ {0, . . . , n}, l ∈ N and t ∈ N

fi(h) =





π
(j),t+1
i if T (h) = π(j),t,

π
(l),1
i if T (h) = (sl, π

(j),t
−l ) and sl 6= π

(j),t
l ,

π
(0),1
i otherwise.

Now we show that f is a well defined function. First, suppose that π(j),t = π(k),r for some

k, j ∈ {0, 1, . . . , n} and r, t ∈ N. Then, f is well defined if π(k),r+1 = π(j),t+1. Since (π(0), . . . , π(n))

is confusion-proof, it follows from part 1 of Definition 2 that this is indeed the case.

Second, suppose that π(k),r = (sl, π
(j),t
−l ) and sl 6= π

(j),t
l for k, j ∈ {0, 1, . . . , n}, l ∈ N and

r, t ∈ N. Then, f is well defined only if π(k),r+1 = π(l),1. Since (π(0), . . . , π(n)) is confusion-proof and

Ω({k, r}, {j, t}) = {l}, it follows from part 2 of Definition 2 that this is indeed the case.

Finally, suppose that (sl, π
(j),t
−l ) = (sk, π

(m),r
−k ), sk 6= π

(m),r
k and sl 6= π(j),t for some j,m ∈

{0, 1, . . . , n}, k, l ∈ N and r, t ∈ N. Then f is well defined only if π(l),1 = π(k),1. Note that it

must be that sl = π
(m),r
l and sk = π

(j),t
k . Hence, π

(m),r
l 6= π

(j),t
l and π

(m),r
k 6= π

(j),t
k , implying that

Ω({m, r}, {j, t}) = {k, l}. Since (π(0), . . . , π(n)) is confusion-proof, it follows from part 3 of Definition

2 that π(l),1 = π(k),1.

It is clear that the strategy f = (f1 . . . , fn) has 1 – memory, since, by definition, fi depends only

on T (h) for all i ∈ N .

Note, also that f has the following property: π(f) = π(0) and if player i ∈ N deviates unilaterally

in phase t in any state j, then π(i) will be played starting from period t + 1. Therefore, f defined

by (π(0), . . . , π(n)) is a 1 – memory simple strategy.

(Necessity) Let f be a 1 – memory simple strategy represented by (π(0), . . . , π(n)). Let i, j ∈
{0, . . . , n} and t, r ∈ N.
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Suppose that Ω({i, t}, {j, r}) = ∅. Then, π(i),t = π(j),r. Let h1 = (π(i),t) and h2 = (π(j),r). Since

T (h1) = h1 = h2 = T (h2) and f has 1 – memory, we have f(h1) = f(h2). But then part 1 of

Definition 2 is satisfied because f(h1) = π(i),t+1 and f(h2) = π(j),r+1.

Suppose next that Ω({i, t}, {j, r}) = {k} for some k ∈ N . Then, π
(i),t
l = π

(j),r
l for all l 6= k,

while π
(i),t
k 6= π

(j),r
k . Consider sk = π

(i),t
k and s̄k = π

(j),r
k . Then, (sk, π

(j),r
−k ) = π(i),t and since f is a 1

– memory simple strategy, it follows that

π(k),1 = f((sk, π
(j),r
−k )) = f(π(i),t) = π(i),t+1.

Similarly, (s̄k, π
(i),t
−k ) = π(j),r and so,

π(k),1 = f((s̄k, π
(i),t
−k )) = f(π(j),r) = π(j),r+1.

Hence, π(k),1 = π(j),r+1 = π(i),t+1 and part 2 of Definition 2 is satisfied.

Finally, suppose that Ω({i, t}, {j, r}) = {k, l} for some k, l ∈ N . Then, π
(i),t
m = π

(j),r
m for all

m /∈ {k, l}, while π
(i),t
k 6= π

(j),r
k and π

(i),t
l 6= π

(j),r
l . Consider sk = π

(j),r
k and sl = π

(i),t
l . Then,

(sl, π
(j),r
−l ) = (sk, π

(i),t
−k ) and since f is a 1 – memory simple strategy, it follows that

π(l),1 = f((sl, π
(j),r
−l )) = f((sk, π

(i),t
−k )) = π(k),1.

Hence, by induction, π(l) = π(k) and part 3 of Definition 2 is satisfied.

Proof of Theorem 1. Let ε ≥ 0, η > 0 and u be an ε – strictly enforceable SPE payoff vector

decribed by (π̂(0), . . . , π̂(n)). For all j ∈ {0, 1, . . . , n} and i ∈ N , define ζ
(j)
i by

ζ
(j)
i = inf

t∈N

(
V t

i (π̂(j))−
(

(1− δ) max
si

ui(si, π̂
(j),t
−i ) + δVi(π̂

(i))

))
.

Let γ be defined by

γ = min

{
η,

1

2

(
min

j∈{0,1,...,n},i∈N
{ζ(j)

i }+ ε

)}
. (19)

It follows that γ > 0 since η > 0 and u is an ε – strictly enforceable SPE payoff vector.

Let ψ > 0 be such that d(x, y) < ψ implies |ui(x) − ui(y)| < γ and |maxzi
ui(zi, x−i) −

maxzi
ui(zi, y−i)| < γ, for all i ∈ N . Since Si is connected for all i ∈ N it follows that for every

j = 0, 1, . . . n and t ∈ N, Bψ(π̂(j),t) ∩ S is uncountable. Thus, we can construct a simple outcome

paths (π̄(0), π̄(1), . . . , π̄(n)) satisfying the conditions described in Lemma 1. Thus, (π̄(0), π̄(1), . . . , π̄(n))
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is confusion proof. Therefore, by Proposition 1, there exists a 1 – memory strategy profile f that is

represented by it. Moreover, γ ≤ η implies |Ui(f)− ui| = |Vi(π̄
(0))− Vi(π̂

(0))| < η for all i.

To complete the proof we need to show f is ε – CPE. Fix any t ∈ N, i ∈ N and j ∈ {0, 1, . . . , n}.
Since V t

i (π̂(j))− γ < V t
i (π̄(j)), Vi(π̄

(i)) < Vi(π̂
(i)) + γ and maxsi

ui(si, π̄
(j),t
−i ) < maxsi

ui(si, π̂
(j),t
−i ) + γ,

it follows from (19) that

V t
i (π̄(j))− (1− δ) max

si

ui(si, π̄
(j),t
−i )− δVi(π̄

(i)) >

V t
i (π̂(j))− (1− δ) max

si

ui(si, π̂
(j),t
−i )− δVi(π̂

(i))− 2γ ≥ ζ
(j)
i − 2γ ≥ 2γ − ε− 2γ = −ε.

Hence, it does not pay player i to deviate from the path induced by state (j) by more than ε. Thus,

f is a confusion-proof ε – CPE.

Proof of Proposition 3. We consider the two cases of n ≥ 3 (Case A) and the n = 2 (Case

B) separately.

Case A: n ≥ 3 and dim(U) = n.

For convenience, in this case we normalize payoffs so that vi = 0 for all i ∈ N .

Fix any α ∈ U0. Then, by Theorem 1 (Step 1) in Abreu, Dutta, and Smith (1994), for all i ∈ N

there exists yi ∈ U0 satisfying the following property: for all i, j ∈ N with j 6= i, yi
i < αi and

yi
i < yj

i .

Define γ′i > 0 to be such that 2γ′i = min{αi, {yj
i }j 6=i} − yi

i. Let α′i = yi
i + γ′i for each i. Clearly,

γ′i < α′i < αi. Also, by the properties of (y1, . . . , yn) we have γ′i > 0 for all i.

Next, let γ = mini min{γ′i, yi
i} and M = maxi maxs∈S |ui(s)|. Also, suppose T ∈ N is such that

T ≥ 4M

γ
=

M

γ/4
, (20)

Denote Dk to be the set of achievable payoff in the finite game that consists of repeating the

one-shot game k times, and in which payoffs consist of the average of the payoffs obtained in the

k stages. Also, let K ∈ N be such that D ⊆ ∪x∈DK
Bγ/2(x) (see Sorin (1992, Proposition 1.3.)).

Finally, denote δ̄ ∈ (0, 1) to be such that δ ≥ δ̄ implies

1− δT+1

1− δ
> T, (21)

δT

1− δT
>

8M

γ
=

2M

γ/4
and (22)

sup
x∈[−M−γ,M+γ]K

∣∣∣∣∣
1− δ

1− δK

K∑

k=1

δk−1xk − 1

K

K∑

k=1

xk

∣∣∣∣∣ <
γ

4
. (23)
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Now fix any δ ≥ δ̄ and consider any u ∈ C(α, δ). We will show that there is a 1 – memory SPE

strategy profile f with U(f) = u.

Let π ∈ Λ(α, δ) be such that it satisfies Vi(π, δ) = ui for all i ∈ N . Since π is a confusion-proof

single path, by Proposition 2, to complete the proof and show that u can be sustained by a 1

– memory SPE it is sufficient to establish that there exists a strictly enforceable simple strategy

profile given by (π(0), π(1), . . . , π(n)) such that π(0) = π.

We first start by constructing for each player i a punishment path π(i). This path consists

of playing mi for the first T periods followed by a path π̂(i) yielding a payoff to player i that is

less than α′i and bounded away from zero (the minmax payoff) by γ/4. Furthermore, we need

V t
i (π̂(i)) ≥ Vi(π̂

(i)) for all i ∈ N and t ∈ N to prevent player i to deviate at latter stages of his

punishment path.

To construct such a path, let xi ∈ DK be such that ‖xi − yi‖ < γ/2 for all i ∈ N . Then, by the

definitions of yi, α′i, γ
′
i and γ, the following hold for all i:

xi
i < yi

i +
γ

2
= α′i − γ′i +

γ

2
≤ α′i −

γ

2
; (24)

xi
i > yi

i −
γ

2
≥ γ − γ

2
=

γ

2
; (25)

xj
i > yj

i −
γ

2
≥ yi

i + 2γ′i −
γ

2
= α′i + γ′i −

γ

2
≥ α′i +

γ

2
. (26)

Now, let {si,k}K
k=1 be such that

1

K

K∑

k=1

uj(s
i,k) = xi

j,

for all i, j ∈ N . Next, consider any t∗ such that

t∗ ∈ arg min
1≤t≤K

1− δ

1− δK

[
K∑

k=t

δk−tui(s
i,k) +

t−1∑

k=1

δk+T−tui(s
i,k)

]
,

Let π̂(i) consist of repetitions of (si,t∗ , si,t∗+1, . . . , si,K , si,1, . . . , si,t∗−1). Then

V t
i (π̂(i)) ≥ Vi(π̂

(i)) for all i and t. (27)

Also, using (23), it follows, respectively, from (24), (25) and (26) that for all i

Vi(π̂
(i)) < xi

i +
γ

4
< α′i −

γ

2
+

γ

4
< α′i, (28)

Vi(π̂
(i)) > xi

i −
γ

4
>

γ

2
− γ

4
=

γ

4
and (29)

V t
i (π̂(j)) > xj

i −
γ

4
> α′i +

γ

2
− γ

4
= α′i +

γ

4
> Vi(π̂

(i)) for all t and j 6= i. (30)
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Finally, let π(0) = π and define the path π(i) by

π(i),t =





mi if t ≤ T,

π̂(i),t−T if t > T.

We now show that the simple strategy defined by (π(0), . . . , π(n)) supports u as a strictly enforceable

SPE payoff.

Let i ∈ N be given. First, consider player i deviating from the equilibrium path π(0) = π in

period t. Then we have

V t
i (π)−

(
(1− δ) max

si

ui(si, π
t
−i) + δVi(π

(i))

)
= V t

i (π)−
(

(1− δ) max
si

ui(si, π
t
−i) + δT+1Vi(π̂

(i))

)

> α′i −
(
(1− δ)M + δT+1α′i

)
.

(The equality in the above follows from Vi(π
(i)) = δT Vi(π̂

(i)) and the inequality from V t
i (π) ≥ αi > α′i

and from (28).) But then since α′i > (1− δ)M + δT+1α′i is equivalent to

1− δT+1

1− δ
>

M

α′i
,

and, by (21), (20) and the definition of γ,

1− δT+1

1− δ
> T ≥ M

γ/4
≥ M

α′i
,

it follows that

inf
t

[
V t

i (π)−
(

(1− δ) max
si

ui(si, π
(0),t
−i ) + δVi(π

(i))

)]
> 0.

Second, consider a deviation from π(i),t. If t ≤ T we have that

V t
i (π(i))−

(
(1− δ) max

si

ui(si,m
i
−i) + δVi(π

(i))

)
= δT+1−tVi(π̂

(i))− δT+1Vi(π̂
(i)) > 0.

(This follows from Vi(π
(i)) = δT Vi(π̂

(i)), maxsi
ui(si,m

i
−i) = 0 and Vi(π̂

(i)) > 0.) If t > T , then

V t
i (π(i))−

(
(1− δ) max

si

ui(si, π
(i),t
−i ) + δVi(π

(i))

)

= V t−T
i (π̂(i))−

(
(1− δ) max

si

ui(si, π
(i),t
−i ) + δT+1Vi(π̂

(i))

)

≥ Vi(π̂
(i))− (

(1− δ)M + δT+1Vi(π̂
(i))

)
.

(The inequality in the above follow from (27).) Since Vi(π̂
(i)) > (1−δ)M +δT+1Vi(π̂

(i)) is equivalent

to
1− δT+1

1− δ
>

M

Vi(π̂(i))
,
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and, by (20), (21) and (29),
1− δT+1

1− δ
> T ≥ M

γ/4
>

M

Vi(π̂(i))
,

it follows that

inf
t

[
V t

i (π(i))−
(

(1− δ) max
si

ui(si, π
(i),t
−i ) + δVi(π

(i))

)]
> 0.

Finally, consider a deviation from π(j),t, j 6= i. If t > T , then it follows from (30) that

V t
i (π(j))−

(
(1− δ) max

si

ui(si,m
j
−i) + δVi(π

(i))

)

= V t−T
i (π̂(j))−

(
(1− δ) max

si

ui(si,m
j
−i) + δT+1Vi(π̂

(i))

)

> Vi(π̂
(i))− (

(1− δ)M + δT+1Vi(π̂
(i))

)
> 0.

If t ≤ T , then again using (28) and (30) we have

V t
i (π(j))−

(
(1− δ) max

si

ui(si,m
j
−i) + δVi(π

(i))

)

= (1− δT+1−t)ui(m
j) + δT+1−tVi(π̂

(j))−
(

(1− δ) max
si

ui(si,m
j
−i) + δT+1Vi(π̂

(i))

)

> −(1− δT+1−t)M + δT+1−t(α′i +
γ

4
)− (

(1− δ)M + δT+1α′i
)

> −(1− δT )M + δT (α′i +
γ

4
)− (

(1− δ)M + δT+1α′i
)

> −(1− δT )M + δT γ

4
− (1− δ)M.

(The last inequality in the above expression follows from α′i > 0.) But by (22) we have δT γ
4

>

2(1− δT )M > (1− δ)M + (1− δT )M. Thus,

inf
t

[
V t

i (π(j))−
(

(1− δ) max
si

ui(si, π
(j),t
−i ) + δVi(π

(i))

)]
> 0.

This shows that that the simple strategy described by (π(0), π(1), . . . , π(n)) above is strictly enforce-

able. Since π(0) = π this completes the proof of the Proposition for the case of n ≥ 3.

Case B: n = 2.

Let m̄ = (m2
1,m

1
2) be the mutual minmax profile. Clearly, vi ≥ ui(m̄). For convenience, in this

case we normalize payoffs so that ui(m̄) = 0 for both i = 1, 2.

Let α ∈ U0. Since U0 is convex and αi > vi ≥ ui(m̄) = 0 for all i, there exists y ∈ U0 such that

αi > yi > vi. Fix any such y.
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Define εi = min{αi − yi, yi − vi} > 0 and γ = mini εi/4. Fix any ξ > 0 such that

ξ < min

{
γ,

γ2

2M

}
, (31)

where, as before, M = maxi=1,2 maxs |ui(s)|. Clearly, the following two conditions hold:

yi − ξ > vi + 3γ, for all i (32)

yi + ξ < αi, for all i. (33)

Let K ∈ N be such that D ⊆ ∪x∈DK
Bξ/2(x) (see Sorin (1992, Proposition 1.3.)), T ∈ N be such

that

T >
M

γ
(34)

and δ̄ ∈ (0, 1) be such that for all δ ∈ [δ̄, 1)

1− δT+1

1− δ
> T, (35)

δT >
M

M + γ
, (36)

1− δ <
γ

2M
and (37)

sup
x∈[−M,M ]K

∣∣∣∣∣
1− δ

1− δK

K∑

k=1

δk−1xk − 1

K

K∑

k=1

xk

∣∣∣∣∣ <
ξ

2
. (38)

Now fix any δ ≥ δ̄ and consider any u ∈ C(α, δ). We will show that there is a 1 – memory SPE

strategy f with U(f, δ) = u.

Let π ∈ Λ(α, δ) be such that it satisfies Vi(π, δ) = ui for all i ∈ N . Since π is a confusion-proof

single path, by Proposition 2, to complete the proof and show that u can be sustained by a 1

– memory SPE it is sufficient to establish that there exists a strictly enforceable simple strategy

profile given by (π(0), π(1), π(2)) such that π(0) = π and π(1) = π(2).

We first start by constructing a common punishment path π = π(1) = π(2). This path consists

of playing m̄ for the first T periods followed by a path π̂ yielding a payoff to each player i that is

less than αi and bounded away from the minmax payoff vi by γ. Furthermore, π̂ must be such that

V t
i (π̂) ≥ Vi(π̂) for all i and t to prevent player i to deviate at latter stages of his punishment path.

By (38), let x ∈ DK be such that ||x− y|| < ξ/2. Let {sk}K
k=1 be such that

1

K

K∑

k=1

ui(s
k) = xi
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for all i ∈ N . Then, let π̃ consist of repetitions of (s1, . . . , sK) and let

zi = Vi(π̃)

for all i ∈ N . Note that ‖x − V t(π̃)‖ < ξ/2 for all t ∈ N by (38). In particular, we have that

‖x− z‖ < ξ/2 and ‖z − V t(π̃)‖ ≤ ‖z − x‖+ ‖x− V t(π̃)‖ < ξ and so

V t
i (π̃) > zi − ξ, for all t and i. (39)

Furthermore,

αi > zi > vi + 2γ, for all i. (40)

The first inequality in (40) follows from zi = Vi(π̃) < xi + ξ
2

< yi + ξ and condition (33), and the

second follows from zi > xi − ξ > xi − γ > yi − ξ − γ and condition (32).

We now define π̂ as follows: it consists of playing m̄ for the first R periods, for some some R ∈ N
satisfying

vi + γ < δRzi < zi − ξ, for all i = 1, 2, (41)

followed by playing the sequence {s1, . . . , sK} repeatedly. Thus,

π̂t =





m̄ if t ≤ R,

π̃t−T if t > R

Before proceeding further with the construction of equilibrium strategy, we shall next establish the

existence of a number R ∈ N with the above property in the following claim.

Claim 1 There exists R ∈ N satisfying (41).

Proof of Claim 1. Let

a = max
i

vi + γ

zi

, b = 1− ξ

mini vi + γ
and l = b− a.

Then, it follows that

l = 1−max
i

vi + γ

zi

− ξ

mini vi + γ
>

γ

M
− ξ

mini vi + γ
≥ γ

M
− ξ

γ
≥ γ

M
− γ

2M
=

γ

2M
> 0.

The first and the third inequality in the above follow respectively from zi > vi + 2γ (by (40)) and

ξ < γ2

2M
(by the definition of ξ). This, together with γ

2M
> 1− δ (condition (37)), imply that

l > 1− δ ≥ δr(1− δ) = δr − δr+1 for all r ∈ N0. (42)
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Next, we show that there exists R ∈ N such that δR ∈ (a, b). First, note that δ0 = 1 > b and δL < a

for L sufficiently large. Let r be the smallest integer in N0 such that δr ≥ b. Then δr+1 < b, by

definition. Moreover, δr+1 > a; otherwise, δr − δr+1 ≥ b − a = l, but this contradicts (42). Thus,

δr+1 ∈ (a, b).

Now since δR ∈ (a, b), it then follows that for any i = 1, 2

vi + γ

zi

≤ max
j

vj + γ

zj

< δR < 1− ξ

minj vj + γ
≤ 1− ξ

vi + γ
.

Hence, vi +γ < δRzi. Also, since by (40) zi > vi +2γ, it follows that δR < 1− ξ
zi

; so δRzi < zi− ξ.

Next define the common punishment path π̄ by

π̄t =





m̄ if t ≤ T,

π̂t−T if t > T

Note that V T+1
i (π̄) = Vi(π̂) = δRzi. Thus, we have from (41) and αi > zi (by (40)) that

αi > Vi(π̂) > vi + γ, for any i = 1, 2 (43)

Also, by (39) and (41)

V t
i (π̄) = V t−T

i (π̂) ≥ Vi(π̂) for any t > T and i = 1, 2. (44)

Now using the properties described in (43) and (44) we will next show that the simple strategy

(π(0), π(1), π(2)) where π(0) = π and π(i) = π̄ for all i = 1, 2 supports u as a strictly enforceable SPE.

Fix any i = 1, 2. First, consider player i deviating from the equilibrium path π(0) = π in period

t. Then we have

V t
i (π)−

(
(1− δ) max

si

ui(si, π
t
−i) + δVi(π̄)

)

= V t
i (π)−

(
(1− δ) max

si

ui(si, π
t
−i) + δT+1Vi(π̂)

)

> αi −
(
(1− δ)M + δT+1αi

)
.

(The equality in the above follows from Vi(π̄) = δT Vi(π̂), the inequality from π ∈ Λ(α, δ) and (43).)

Since αi > (1− δ)M + δT+1αi is equivalent to 1−δT+1

1−δ
> M

αi
, and

1− δT+1

1− δ
> T >

M

γ
≥ M

αi
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(which holds by (34), (35) and since αi − vi ≥ αi − yi > γ), it follows that

inf
t

[
V t

i (π)−
(

(1− δ) max
si

ui(si, π
t
−i) + δVi(π̄)

)]
> 0.

Second, consider a deviation by i from π̄t. If t ≤ T we have that

V t
i (π̄)−

(
(1− δ) max

si

ui(si,m
i
−i) + δVi(π̄)

)

= δT+1−tVi(π̂)− (1− δ)vi + δT+1Vi(π̂)

≥ δT Vi(π̂)− (
(1− δ)vi + δT+1Vi(π̂)

)
.

Since, by (36) and (43), δT > M
M+γ

≥ vi

vi+γ
> vi

Vi(bπ)
, it follows that δT Vi(π̂)−(

(1− δ)vi + δT+1Vi(π̂)
)

>

0.

If t > T we have from (44) that

V t
i (π̄)−

(
(1− δ) max

si

ui(si, π̄
t
−i) + δVi(π̄)

)
≥ Vi(π̂)− (

(1− δ)M + δT+1Vi(π̂)
)
.

Since Vi(π̂) > (1− δ)M + δT+1Vi(π̂) is equivalent to 1−δT+1

1−δ
> M

Vi(bπ)
, and

1− δT+1

1− δ
> T >

M

γ
>

M

Vi(π̂)
,

(which holds which holds by (34), (35) and (43)), it follows that

inf
t

[
V t

i (π̄)−
(

(1− δ) max
si

ui(si, π̄
t
−i) + δVi(π̄)

)]
> 0.

This concludes the proof that the simple strategy described above by (π(0), π(1), π(2)) with π(0) = π

and π(1) = π(2) = π is strictly enforceable and induces a payoff of u. This completes the proof of

the case n = 2 and, thus, of Proposition 3.

Proof of Lemma 2. Fix any u ∈ U and any ζ > 0. Now we make two claims.

Claim 2 There exists y, α ∈ U0 such that ||y − u|| < ζ/4 and yi > αi for all i.

We shall prove this Claim 2 for the two cases of dim(U) = n and n = 2 separately.

Case A: dim(U) = n.

In this case we shall first prove that there exists ū ∈ int(U0). By Theorem 6.2 in Rockafellar

(1970), dim(U) = n implies that there exists u ∈ int(U). Let ε > 0 be such that Bε(u) ⊆ U . Define
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ū by ui = ui + ε/2 for all i. Note that Bε/2(ū) ⊆ int(U0): if ||ũ− ū|| < ε/2, then ||ũ− u|| < ε and

so ũ ∈ U ; furthermore, ũi > ūi − ε/2 = ui ≥ vi and so ũ ∈ U0. This implies that ū ∈ int(U0).

Next, we show that there exists y ∈ int(U0) such that ||y−u|| < ζ/4. Define uk = 1
k
ū+

(
1− 1

k

)
u.

Since uk
i > vi for all i, uk ∈ U0. Furthermore, by Theorem 6.1 in Rockafellar (1970) uk ∈ int(U).

So Bρ(u
k) ⊆ U0 for some ρ > 0, i.e., uk ∈ int(U0). Since uk → u, there exists k′ such that

||uk′ − u|| < ζ/4. Denote uk′by y. Then y ∈ int(U0) and ||y − u|| < ζ/4.

Finally, the existence of α ∈ U0 such that yi > αi for all i follows immediately from y ∈ int(U0).

Case B: n = 2 and U0 6= ∅.
Then there exists u ∈ U0 such that ui > vi, for all i. This, together with ui ≥ vi, imply that

there exists y ∈ U0 such that ||y − u|| < ζ/4 (take an appropriate convex combination of u and

u). Also, since yi > vi ≥ ui(m̄) for all i, there exists λ ∈ (0, 1) such that λy + (1 − λ)u(m̄) ∈ U0.

Denote λy + (1− λ)u(m̄) by α. Then, α ∈ U0 and yi > αi for all i.

Claim 3 For any y ∈ U0 and ξ > 0, there exists δ̃ ∈ (0, 1) and a confusion proof single path π̃ such

that ‖V t(π̃)− y‖ < 3ξ for all t ∈ N and for all δ ≥ δ̃.

In order to prove Claim 3, fix any y ∈ U0 and ξ > 0. Let K ∈ N be such that D ⊆ ∪x∈DK
Bξ(x)

and δ̃ ∈ (0, 1) be such that for all δ ≥ δ̃

sup
x∈[−M,M ]K

∣∣∣∣∣
1− δ

1− δK

K∑

k=1

δk−1xk − 1

K

K∑

k=1

xk

∣∣∣∣∣ < ξ. (45)

Let δ ≥ δ̃. Let {s̄k}K
k=1 be such that

∥∥∥∥∥
1

K

K∑

k=1

u(s̄k)− y

∥∥∥∥∥ < ξ.

Since Si is connected for all i, there exist a (finite) sequence {sk}K
k=1 such that |ui(s

t)− ui(s̄
t)| < ξ

for all i and t and st
i 6= sr

j for all 1 ≤ t, r ≤ K and 1 ≤ i, j ≤ n satisfying (i, t) 6= (j, r). Then,

∥∥∥∥∥
1

K

K∑

k=1

u(sk)− 1

K

K∑

k=1

u(s̄k)

∥∥∥∥∥ < ξ

and so ∥∥∥∥∥
1

K

K∑

k=1

u(sk)− y

∥∥∥∥∥ < 2ξ.
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Let π̃ be the repetition of {sk}. Then ||V t(π̃)− y|| < 3ξ for all t ∈ N. This completes the proof of

Claim 3.

Now to complete the proof of Lemma 2, note that it follows from Claim 2 above that there exists

y and α ∈ U0 such that ||y − u|| < ζ/4 and yi > αi for all i. Next, consider any ξ > 0 such that

ξ < ζ
4

and yi− 3ξ > αi for all i. Then by Claim 3 above there exist δ̃ ∈ (0, 1) and a confusion proof

single path π̃ such that ‖V t(π̃)− y‖ < 3ξ for all t ∈ N and for all δ > δ̃. Now fix any δ > δ̃ and let

ũ = V (π̃). Then ||ũ− u|| ≤ ||u− y||+ ||ũ− y|| < ζ/4 + 3ζ/4 = ζ and V t
i (π̃) > yi − 3ξ > αi for all i

and t ∈ N. But then ũ ∈ C(α, δ).

This completes the proof of Lemma 2.

Proof of Proposition 4. Let u ∈ U0 ∩ C. Then there exists ε > 0 be such that

ui > vi + ε for all i ∈ N (46)

Moreover, since u ∈ U0 ∩ C there exists a confusion proof path π(0) that consists of repeatedly

playing a finite sequence of action profiles {s̄k}K
k=1 such that u = 1

K

∑K
k=1 u(s̄k) for all i.

Let νi : S → R be defined by

νi(s) = max
s̃i∈Si

ui(s̃i, s−i).

Also, define Mi = maxs∈S |ui(s)|. Then, let R ∈ N be such that

Rε

2
> (Mi − ui)K, for all i ∈ N, (47)

Since S is connected and νi is continuous (by the continuity of ui and compactness of Si), then

νi(S) ⊆ R is also connected. Connectedness of S and νi(S), together with (46) and vi = νi(m
i),

imply that for each i ∈ N there exists a set {b(i),t}R
t=1 ⊆ S such that

b
(i),r
l 6= π

(0),t
l for all i, l ∈ N, t ∈ N and 1 ≤ r ≤ R, (48)

b
(i),r
l 6= b

(j),q
l for all i, j, l ∈ N, and 1 ≤ r, q ≤ R such that (i, r) 6= (j, q) (49)

ui ≥ νi(b
(i),r) +

ε

2
for all 1 ≤ r ≤ R, (50)

if n = 2 then b(i) = b(j). (51)

By the connectedness of S and continuity of vi, the above four conditions hold because for n > 2

there exists a continnum of actions profiles Bi ⊆ S such that ||νi(b)−vi|| < ε/2 for all i and b ∈ Bi,
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and when n = 2 there exists a continnum of actions profiles B such that ||νi(b)−πi(m
2
1,m

1
2)|| < ε/2,

for all i = 1, 2, where as before (m2
1,m

1
2) is the mutual minmax strategies.

We next show that

1

q + R

[
νi(π

(0),q) +

q−1∑
r=1

ui(π
(0),r) +

R∑
r=1

ui(b
(i),r)

]
≤ ui, (52)

for all 1 ≤ i ≤ n and q ∈ N. To show this let q = m + d where m, d ∈ N0, m is a multiple of K and

0 ≤ d < K. Then, by condition (47) and (50), we have

1

q + R

[
νi(π

(0),q) +

q−1∑
r=1

ui(π
(0),r) +

R∑
r=1

ui(b
(i),r)

]
=

1

m + d + R

[
νi(π

(0),q) + mui +
d−1∑
r=1

ui(π
(0),r) +

R∑
r=1

ui(b
(i),r)

]
≤

1

m + d + R

[
dMi + mui +

R∑
r=1

ui(b
(i),r)

]
<

1

m + d + R

[
dui +

Rε

2
+ mui + R

(
ui − ε

2

)]
≤ ui.

Furthermore, since ui(a) ≤ νi(a) for any a, it follows from (50) that

1

t

[
νi(b

(i),t) +
t−1∑
r=1

ui(b
(i),r)

]
+

ε

2
≤ ui, for all 1 ≤ i ≤ n and 1 ≤ t ≤ R. (53)

Next, for all 1 ≤ i ≤ n , define the path π(i) as follows:

π(i),t =





b(i),t if t ≤ R,

π(0),t−R if t > R.

Let f be the strategy profile defined by (π(0), . . . , π(n)). Since π(0) is confusion proof single path

it follows from Proposition 1, (48) and (49) that f has 1 – memory. Using (52) and (53), we now

show that f is a SPE.

Consider any history h = (s1, . . . , st−1). Since f |h induces the same outcome path as π(0) at

some stage it follows that U∞
i (f |h) = ui, for all i.

Next consider any deviation by player i to another strategy f ′i at h. Let π(f ′i , f−i|h) = {s̃τ}∞τ=t.

Since players use the limit of the mean criterion, it is enough to consider the case in which f ′i

deviates from fi infinitely often in the subgame defined by h. Thus, suppose that there is an infinite

sequence {µτ}τ∈N with µτ ≥ t, such that:
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1. either [s̃µτ

−i = π
(0),k
−i and s̃µτ

i 6= π
(0),k
i for some k ∈ N] or [s̃µτ

−i = b
(i),r
−i and s̃µτ

i 6= b
(i),r
i ],15

2. s̃µτ+r = b(i),r if 1 ≤ r < min{µτ+1 − µτ , R + 1}.

3. s̃µτ+r = π(0),r−R if R + 1 ≤ r < µτ+1 − µτ .

Then,

U∞
i (f ′i , f−i|h) = lim inf

n→∞
1

n + 1

n∑
µ=0

ui(s̃
t+µ)

= lim inf
n→∞

1

µn+1 − t + 1




µ1∑
µ=t

ui(s̃
µ) +

n∑
τ=1

µτ+1∑
µ=µτ+1

ui(s̃
µ)


 = lim inf

n→∞
1

µn+1 − µ1

n∑
τ=1

µτ+1∑
µ=µτ+1

ui(s̃
µ).

Now for any τ , if µτ+1 − µτ = r ≤ R, then

µτ+1∑
µ=µτ+1

ui(s̃
µ) ≤

r−1∑

k=1

(
ui(b

(i),k) + νi(b
(i),r)

) ≤ rui,

where the second inequality follows from (53). If µτ+1 − µτ > R, then

µτ+1∑
µ=µτ+1

ui(s̃
µ) ≤

R∑
r=1

ui(b
(i),r) +

µτ+1−µτ−R−1∑
r=1

ui(π
(0),r) + νi(π

(0),µτ+1−µτ−R) ≤ (µτ+1 − µτ )ui,

where the last inequality follows from (52). Therefore, U∞
i ((f ′i , f−i|h)) ≤ ui ≤ U∞

i (f |h)). This

completes the proof of Theorem 4

Proof of Theorem 3. Let u ∈ U and ζ > 0. Since U0 is nonempty, there exists y ∈ U0

and ξ > 0 such that ||u − y|| < ξ, yi − vi > ξ for all i and ξ ≤ ζ/2 (let x ∈ U0 and consider

y = λu + (1− λ)x for some λ ∈ (0, 1) sufficiently close to 1).

Let K ∈ N be such that D ⊆ ∪x∈DK
Bξ/2(x). Then there exists a sequence {s̄k}K

k=1 be such that

∥∥∥∥∥
1

K

K∑

k=1

u(s̄k)− y

∥∥∥∥∥ <
ξ

2
. (54)

Since Si is connected for all i, there exist a (finite) sequence {sk}K
k=1 such that |ui(s

k)−ui(s̄
k)| < ξ/2

for all i and k and st
i 6= sr

j for all 1 ≤ t, r ≤ K and 1 ≤ i, j ≤ n satisfying (i, t) 6= (j, r). Then,

∥∥∥∥∥
1

K

K∑

k=1

u(sk)− 1

K

K∑

k=1

u(s̄k)

∥∥∥∥∥ <
ξ

2
(55)

15If τ = 1 it can also be that s̃µ1

−i = π
(j),k
−i and s̃µ1

i 6= π
(j),k
i for some k ∈ N and j 6∈ {0, i}.
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and so ∥∥∥∥∥
1

K

K∑

k=1

u(sk)− y

∥∥∥∥∥ < ξ.

Finally, let π̃ be the repetition of {sk}K
k=1 and ũ = V ∞(π̃) =

∑K
k=1 u(sk)/K. Then, ||u− ũ|| < 2ξ

and ũi > vi; hence ũ ∈ U0∩C. Thus, by Theorem 4, there exists a 1 – memory SPE strategy profile

f with U∞(f) = ũ. Moreover, since ||ũ− u|| < 2ξ ≤ ζ, it follows that ‖U∞(f)− u‖ < ζ.

Proof of Theorem 5. Let u ∈ int(U0) and α ∈ int(U0) be such that ui > αi for all i.

Since int(U0) is non-empty it follows that dim(U) = n. Then, by Proposition 5, there exists δ̂ such

that that for all δ ≥ δ̂ the following holds: for all payoffs u′ ∈ C̃(α, δ) there exists time dependent

1 – memory SPE f with U(f) = u′. Let ε = mini(ui − vi). Also, denote the discount factor

corresponding to ε, given in Lemma 2 of Fudenberg and Maskin (1991), by δ̄.

Let δ∗ = max{δ̂, δ̄}. Fix any δ > δ∗. Then, by the definition of δ̄ there exists a sequence of

actions {st}∞t=1 whose payoff is u and whose continuation payoffs at each time are within ε of u.

This implies that the continuation payoffs of {st}∞t=1 at each date are above α. Thus, u ∈ C̃(α, δ).

Hence, since δ ≥ δ̂, by the definition of δ̂ there exists a time dependent 1 – memory SPE strategy

f such that U(f) = u.
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