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Abstract 

 

 

The last two decades were marked by a high increase in economic growth research, namely related to 

three important issues as stated in Klenow et al. [1997]: world growth, country growth and dispersion in 

income levels.  

The Charles Jones’ [2002] technique to solve endogenous growth models relies on the two-step approach, 

which is in fact a clever way to study the dynamic behaviour of the usual two production factors of this 

type of models, technology and capital. However, he does that sequentially, therefore reducing the 

general scope of the model, as it is a special case of a broader version developed by David Romer [2001]. 

Romer’s general case analyse the dynamic behaviour more closely and, more importantly, allowing for a 

simultaneous analysis of the dynamics of the endogenous factors, which provide additional insights. The 

aim of this paper is to tackle the differences between the two endogenous models as an exercise to see ex-

post exogenous shocks’ implications to the variables of interest. More specifically, in addition to the 

strictly theoretical analysis of some dynamic properties of the model, by programming difference 

equations in discrete time, one is also able to simulate and examine how the model will respond to shocks 

that one administer to it, on an ad-hoc basis – deterministic simulation. 
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1. Introduction 

 

The most well known models on endogenous growth belong the first group, i.e, “World Growth” 

as they often tend to explain the continuous rise in the growth of income per capita along time. Here the 

main references are undoubtedly, Lucas [1988], Romer [1990] and Grossman and Helpman [1991]. Over 

the last 200 years several countries have experienced sustained growth and that is why more recent 

research has been trying to account for this phenomenon. At an early stage models assumed positive rate 

of technological chance, but nowadays they have evolved to models that generate growth endogenously. 

This paper is about the endogenous growth model discussed in Jones’ [2002] section 5.1. This 

model is indeed very similar to the model presented in Romer’s [2001] section 3.3, “The general case”, 

apart from the fact that the accumulation of knowledge does not involve capital. This crucial factor allows 

Jones to perform a so called two-step analysis. His entire discussion of the dynamic properties of the 

model e the following sections of that chapter is based on this logic.  

Starting with Jones’ approach and in order to generalize the analysis, in the first section I will 

first relax his two restrictive assumptions, namely λ=1 and ϕ=0. Then I will study the implications of a 

shock in the technology steady state in terms of convergence speed and show that the new generalized 

version of the model implies that a steady-state income per head, and therefore consumption per head 

(naturally studying also the Golden Rule allocation), depends in an intricate way on the fraction of R&D 

personnel, i.e, sR. 

Jones’ two-step approach is a clever way to study the dynamic behaviour of the two endogenous 

production factors of his model (A and K) sequentially. But because the model is a special case of the 

endogenous growth model discussed in Romer section 3.3, one can examine its dynamic behaviour more 

closely using some tools. This allows for a simultaneous analysis of the dynamics of the endogenous 

factors, which will provide additional insights. Following Romer I omit depreciation and derive the 

equations for the growth rate of capital and technology, plotting them appropriately in a graphical space 

motivated by the arrows of motion. One important point in Romer’s assumption is that he does not 

motivate this omission, but the implicit understanding is that this simplification will not fundamentally 

change the behaviour of the model. In fact, I will show that the same results applies with or without 

depreciation and observe what happens if the model is subject to shocks. 

Finally, besides analyzing some dynamic properties of Jones’ endogenous growth model 

mathematically (based on the standard formulation of the model in continuous time), a more interesting 

alternative way to examine these properties is to evaluate the model numerically, using a technique called 

deterministic simulation. This will require a reformulation of the model into discrete time, turning the 

differential equations into difference equations. Then one can simply program these difference equations 

and any other relevant model equations into EXCEL and examine how the model will respond to shocks 

that one can administer to it. 
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2) Jones’ two step approach: whistles and bells 

i) Stable Steady-state gA without assumption λ=1 and ϕ=0 

 

One can start with a simple model of endogenous growth described in the following way: 
αα −= 1)( YALKY  with LsL RY )1( −=  

 

 

ϕλδ ALA A=
•

 with ,1, <= ϕLsL RA 10 ≤≤ λ  

dKYsK K −=
•

 

Contrarily to Jones’ restrictive simplification, I will first show that the steady state for gA is stable without 

the extra assumptions that λ=1 and ϕ=0. Firstly, I show the derivation of the value for g*
A, as this will 

also lead to the equation one needs in order to show the stability of the steady state without those 

assumptions. Given the underlying equations of the model, it follows: 

dt
tdA )( = δ [sRL(t)] A(t)ϕ    and then divide by A to get, 

gA(t) = δ [sRL(t)]λ A(t) ϕ -1       

Take logs and Derivatives w.r.t. t and then multiply by gA 

ġA(t) = λngA - (1-ϕ)gA²  

Given the still holding more general assumptions that ϕ<1 and 0 ≤ λ ≤ 1, the term in brackets in front gA², 

(1-ϕ), is always positive becoming negative with the – sign in front of it. Thus, the equation for ġA(t) is a 

hill-shaped parabola in a (gA, ġA)-space. At the point where this phase diagram obeys the condition that 

ġA(t) = 0, we have the steady state. Thus: 

λngA + (ϕ -1)gA² = 0 

λn = (1- ϕ)gA 

g*
A = 

ϕ
λ
−1
n  

Thus it is derived the steady-state value for gA. Now use the equation ġA(t) = λngA - (1-ϕ)gA² to draw the 

phase diagram in order to show that this steady state is stable even without the assumptions λ=1 and ϕ=0. 

As a reminder, the assumptions that ϕ<1 and 0 ≤ λ ≤ 1 remain. This gives us two different graphs, for the 

two cases where λ=0 or 0 < λ ≤ 1. The specific value of ϕ does not matter, as long as it is below 1. 

 

CASE1: For λ=0: 

In this case, the parabola is hill-shaped but because the first term, λngA, drops out as a result of λ=0, it is 

not shifted and therefore its peak hits the gA-axis at the origin. Nevertheless, we have a steady state at 

(0;0) that could have also been foreseen from the expression for g*
A, that becomes zero when λ=0. The 

phase diagram depicting this situation is reproduced below. Assuming that gA is never below 0, for any 

value above 0, thus above the steady state, gA gets pulled back along the graph due to the negative ġA to 

the point where ġA is zero. 

nLL =
•
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Phase Diagram for λ=0 

 

 

 

 

 

 

 

 

 

 

CASE2: For 0 < λ ≤ 1: 

The first term of the ġA(t) now does not drop out anymore, but is positive, which causes the parabola to 

shift to the right and up. For small, positive values for gA, ġA is positive and drags gA along the parabola 

graph to the right until gA reaches the value where it puts ġA equal to zero, thus its steady-state value. 

When gA is greater than its steady-state value, it gets pulled back along the graph back to the point where 

ġA equals zero. 

 

Phase Diagram for 0 < λ ≤ 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii) Convergence speed 

More interestingly, one can derive the convergence speed of this model by doing a first-order Taylor 

approximation of ġA(t) around gA=g*
A. This yields: 

( ) ( )*
* AAgg

A

AA
A gg

g
ggg

AA
−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂
∂

≈
=

•
•  

•

Ag

Ag

•

Ag

Ag
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Taking 
o

λ = - ( )
*

AA gg
A

AA

g
gg

=

•

∂
∂  gives: ( ) ( )[ ]*

AAA gtgtg −−≈
• o

λ † 

Integrating and thus going from ġA(t) to gA(t)  one gets the following equation, relying on the fact that the 

system is stable. This stability was shown in the previous section, as gA converges to g*
A. 

( ) ( )[ ]** 0 AA
t

AA ggegtg −+≈ −
o

λ  

Taking the expression for 
o

λ  stated above and differentiating equation ġA(t)=λngA-(1-ϕ)gA² with respect 

to gA, then plugging in g*
A = 

ϕ
λ
−1
n  for gA yields: 

( ) ( )[ ]*

.

12* Agg
A

AA gn
g

gg
AA

ϕλλ −−−=
∂

∂
=

=

•
o  

 
  ( ) nn λλ =−−=  

          

This gives a convergence speed of λn. 

Assuming an arbitrary value for λ, say λ=0.5 and a population growth rate of n=0.02 gives a convergence 

speed of 
o

λ = 0.5*0.02 = 0.01. This yields a half-life value of the model of: ln(2)/ 
o

λ ≈ 70.  So, ít takes 

approximately 70 years for the starting value of gA, gA(0), to converge halfway to its steady-state value 

g*
A. The convergence speed of 1% implied in this approach is small compared to the 4% convergence 

speed implied by the Solow model and also compared to the speed of 2% that is for instance defended by 

Sala-i-Martin [1996]. The 4% convergence speed of the Solow model has been discussed in Romer’s 

chapter 1.5, yielding a half-life value for k and y to converge to their steady-state values k* and y* of 

roughly 18 years. The very long time of 70 years it takes for gA to converge to g*
A obviously depends on 

the choice of numerical values for the parameters λ and n. Taking λ=1, which would be within the limits 

the model allows for, and leaving n=0.02 would give a convergence speed of 2% that is in accordance 

with Sala-i-Martin [1996] and empirical observance. The implied half life would be about 35 years. 

Summing things up, it seems that the convergence speed from gA to the balanced growth path at g*
A is 

simply slower than convergence that takes place from k to k* or y to y* as has been calculated for the 

Solow model. 

 

iii) Steady-state income per head, y*(t), and its growth rate 

In order to derive the generalized version of the Jones’ model, dropping the assumptions that λ=1 and 

ϕ=0, one starts with the following equation from Jones ( )
)1(

1*

R
A

K s
dgn

s
A
Y

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=⎟
⎠
⎞

⎜
⎝
⎛ −ϕ

α

 and taking LA
λ = 

(sRL)λ. Next, one solves the altered equation for A and plug it into the above equation, after it has been 

multiplied by A in order to get y*. This gives us the more interesting generalized version of the steady-

state income per head. So, 

                                                 
† I use the symbol

o

λ to prevent confusion with the LA-exponent in the defining equation of the model. 

( ) ( )⎥⎦
⎤

⎢
⎣

⎡
−

−−−=
ϕ

λϕλ
1

12 nn
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ϕ

λ

δ −

•

= 1A
L

A
A A  instead of 

ALA δ=
•  

=> ( )λλ LsL RA =  

Solving the altered formula for A 

( )
ϕ

λ

δ −

•

= 1A
Ls

A
A R    =>       ( ) ( )ϕλδ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
1

A

R

g
LsA  

and plug A into Jones’ equation described above, after it has been multiplied by A in order to get y*. 

( )
( )

( ) ( ) ϕλα
α

δ −−

⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

=
1

1
1

* 1
A

R
R

A

K

g
Lss

dgn
sty  

The growth rate can be obtained by taking logs and derivatives of the generalized version. 

( ) ( ) ( )( ) ( ) ( ) [ ]ARRAK gLssdgnsty lnlnlnln
1

11lnlnln
1

ln * −++
−

+−+++−
−

= λλδ
ϕα

α

( )
( ) ( ) Lg
td

tyd λ
ϕ−

=
1

1ln *    =>   
ϕ

λ
−

=
1

ng A
 

 

iv) ‘Golden Rule’ level of sR 

In order to maximize steady-state consumption per head, we maximized steady-state income per head. 

This is possible as consumption is defined as a constant fraction (1-s) of income. Differentiate the formula 

derived in part iii) with respect to sR. This was put equal to zero and solved for sR. The resulting 

expression represents the ‘Golden Rule’ level of sR that maximizes steady-state income per head, and 

therefore also steady-state consumption per head. 

( )

( ) ( ) ( )ϕλα
α

δ
−

∗

−

∗

∗

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

++
=

1
1

1
* 1)(

A

R
R

g

Lss
dgAn

Ksty
 

Maximization by taking the derivative with respect to sR 

( )
( )

( ) ( )

( )
( ) ( )

( )ϕ
λϕλα

α

ϕ
λϕλα

α

ϕ
λδ

ϕ
λδ

−
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−−

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

= 1
1

1
1

1
1

1
1

1*

1
11 R

AA

K
R

AA

K

R

s
g
L

dgn
ss

g
L

dgn
s

sd
tdy  

After canceling out, setting the derivative equal to zero and solving for sR the following results can be 

obtained: 

( )
( ) 0

*

=
Rsd
tdy     =>     

( )
( )ϕ
λ

ϕ
λ

ϕ
λ

ϕ
λ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=

−
1

1
1 1

11 RR ss     =>    

ϕ
λ
ϕ
ϕλ

−

−
−+

=−

1

1
1

1
Rs

=>  

⎟
⎠
⎞

⎜
⎝
⎛ −

+
=

λ
ϕ11

1
Rs

 

 

v) Comparison between ‘Golden Rule’ values  

 

I show that the ‘Golden Rule’ value for sR that was derived in the previous section is almost certainly 

higher then the ‘Golden Rule’ value produced by the free market given by Jones’ analogous equation 

A

R

g
nrs

α
−

+
=

1

1  (‘Golden Rule’ value produced by the free market – in fact it corresponds to Jones’ eq. (5.19)). 
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I replaced gA by its steady-state value  
ϕ

λ
−

=
1

* ng A
. In order to show that my value is higher than Jones’ 

one, one needs to compare the fractions within the denominator as they constitute the only difference 

between the equations. 

 

λ
ϕ

λ
ϕ

α
−

>
−− 11*
n

nr  

Cancelling  several terms, the following result can be obtained, 1>−
n
nr

α
 

Presuming values of r=0.04, n=0.02 and α=1/3, one gets 

1
02.0*3

1
02.004.0

>
−     =>    3>1 

 

This shows that the ‘Golden Rule’ value derived in section iv) is indeed most probably higher than the 

value found by Jones. 

 

3) A full-fledged dynamic analysis 

 

i) Growth rates derived 

In order to bridge Jones’ analysis to Romer’s one is required to derive the equations for gA(t), ggA(t), gK(t) 

and ggK(t) accordingly. From part A i) one already knows gA(t) and ggA(t): 

gA(t) = δ [sRL(t)]λ A(t) ϕ -1   

ggA(t) = λn - (1-ϕ)gA 

ġA(t) = λngA - (1-ϕ)gA² 

g*
A = 

ϕ
λ
−1
n  

All that is left to do is derive gK(t) and ggK(t) under the assumption that d=0, after substituting Y and LY 

we get:   

( ) ( )[ ] αααα −−
•

−== 11 1 LsAKsALKsK RKYK    Divide by K 

( ) 1
1 R

K K

A s L
g s

K

α−
−⎡ ⎤⎣ ⎦=      

Take logs and derivatives w.r.t. t ( )( )1K A Kgg g n gα= − + −  and  multiplying with gK, it yields, 

( )( )1K A K Kg g n g gα
•

= − + −  => ngg AK +=
∗

 

 

ii) Graphical analysis of the model 

In the following part we will construct a graphical representation of the equations from part i), starting 

with representing 0Kg
•

= in (gK.gA) space: 
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the 0Kg
•

=  line has a slope equal to one as can be derived from the equations above. Also we should note 

that values of gK that lie above the 0Kg
•

=  line will result in a negative 
•

Kg  and thus a movement 

towards the Balanced Growth Path (BGP) line, below the line gK will be pulled up. Another interesting 

feature of the model is the intersection with the gK axes at n. 

When one looks at 0Ag
•

=  the following picture emerges: 

 

 

 

 

 

 

 

 

 

As can be read from the 0Ag
•

=  equation it does not depend on gK and is thus a vertical line. When one 

puts 0Ag
•

=  one is able to find that the solution for gA to this equation is always 
1

nλ
ϕ−

. A gA lower then 

1
nλ
ϕ−

 (gA is to the left of the 0Ag
•

=  line) would mean it is increasing towards 
1

nλ
ϕ−

 and above decreasing 

towards it, as illustrated by the arrows. 

 

 

 

 

 

 

 

 

 

0Kg
•

=

n

Kg

Ag

0Ag
•

=Kg

Ag
φ

λ
−1
n

0Ag
•

=
0Kg

•

=

n

Kg

Ag
φ

λ
−1
n
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Now if I combine both schedules we get the full picture: Here one has the full dynamic picture of the 

model. Also noteworthy would be the meaning of the 0Ag
•

=  line. It is vertical due to the independence 

from gK, as said before, and this allows for the so called “two-step approach”, allowing to solve for gA 

first and then for gK. Once at the BGP one will have a gA and gK of 
1

nλ
ϕ−

 and 
1

nλ
ϕ−

+n respectively. 

 iii) Dropping the d=0 assumption 

In the previous 2 parts I explicitly excluded depreciation from the calculation, but now I will come back 

to this assumption and will show that it is actually an assumption that only simplifies derivations but does 

not really affect the outcome of the model in the end. First I derive the same things as in point i) with 

depreciation. 

( ) ( )[ ] dKLsAKsdKALKsK RKYK −−=−= −−
•

αααα 11 1   Dividing by K and adding d to both sides, 

it yields, ( ) 1
1 R

K K

A s L
g d s

K

α−
−⎡ ⎤⎣ ⎦+ =  

Taking logs and derivatives w.r.t. t one gets ( ) ( )1K d A Kgg g n gα+ = − + −  

Unfortunately this result gives something one can not work with, however if I transform this equation into 

a 
••

+ dgK  format by multiplying the previous formula by dgK +  one gets the following 

( )( )( )dggngdg kKAK +++−=+
••

α1    noting 0=
•

d  

( )( )( )dggngg kKAK +++−=
•

α1     solving for steady state 

ngg AK +=
∗

 

So, even if one includes d in the model in the end it does not change the value for 
∗

Kg  in the end, and so 

the growth of K is not altered nor is that of A at the Balanced Growth Path, concluding that the 

assumption of d=0 can be dropped without harming the analysis. 

 

iv) Shocking the model by changing sK, δ  or n 

 

In this section I will implement certain shocks to the model to see what the effects will be in each of the 

cases. Consider permanent increases in the following exogenous variables: sK, δ  and n. 

What do these permanent increases change about the position of our 0Ag
•

=  and 0Kg
•

=  lines? When 

one looks at the equations for •

Ag  and •

Kg  we will notice that neither depends on sK nor δ . Therefore no 

matter what happens to these variables the lines do not move in anyway, indicating that in the long run 

the growth rates can not be influenced by these level variables. However one does see both equations 

depending on n positively, so in the case of an increase in n changes in the long run behaviour of the 

model will take place, as represented below. 
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Even though not every shock changes the long run equilibrium there might be immediate changes in the 

position of the economy after a shock. Looking at the model I will notice that the value of Kg  does 

depend on sK and also that Ag  does depend on δ , however neither depends on n, meaning that directly 

after the increase in n the economy is still stuck at the old equilibrium.  

Now we show what happens when sK increases in ( )KA gg , -space.  

 

 

 

 

 

 

 

 

 

 

 

 

The economy will incur an increase in Kg  at the instant sK increases, thus moving the economy above its 

BGP value of 
∗

Kg . When one permanently increases δ  the following will happen to this economy. 

 

0Ag
•

=
0Kg

•

=

0Kg
• ′

=0Ag
• ′

=

n

n ′

Kg

Ag
1

nλ
φ− φ

λ
−
′

1
n

0Ag
•

=
0Kg

•

=

n

Kg

Ag
1

nλ
φ−
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An immediate increase in Ag  is what one gets after the permanent increase in δ , leading to point to the 

right of the Balanced Growth Path. Combining what I have seen in the previous discussion I now know 

where the economy will go to and where it is after the shocks occur. Combining the 2 phases one can now 

discuss the transition dynamics that will develop as time passes. 

Kg  will move quickly towards the equilibrium, along the 0Ag
•

=  line, in the first years. However as time 

passes its descent goes slower and slower and it will only return to its Balanced Growth Path in the limit. 

 

 

 

 

 

Unlike with the value of Kg , a change in Ag  does not only affect future values of Ag  but also future 

values of 
Kg . An increase in Ag  will trigger an increase in 

Kg  over time as it also triggers a decrease in 

Ag . As time passes and Ag  comes closer to its BGP value 
Kg  will also start to decline again, that is, after 

it passes through the 0Kg
•

=  line. 

 

 

 

 

 

 

 

 

0Ag
•

=
0Kg

•

=

n

Kg

Ag
1

nλ
φ−

0Ag
•

=
0Kg

•

=

n

Kg

Ag
1

nλ
φ−

0Ag
•

=
0Kg

•

=

n

Kg

Ag
1

nλ
φ−
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With the increase in n one starts out in the old BGP situation, since the economy’s growth rates for gA  

and gK  only change after L has started to increase. The adjustment will be linear from the old to the new 

BGP as shown below. 

 
 

Now one turns to see what the affect of the shocks are on the values of ln A over time. Since A does not 

depend on the value of sK in any way, permanently increasing it does not affect A. But that is not the case 

when one considers a permanent increase in n, in this case one does see a change in gA. I know from the 

previous discussion that the growth rate of A does not change in the long run, only in the short run will 

we see a higher gA. This indicates a level affect on ln A due to the permanent increase in sK as shown 

below assuming a shock at t(0). 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, I will discuss the affect of an increase in n on ln A. Previously I have seen that I will arrive at a 

higher BGP in the long run, also I know the way it will move towards this new BGP. So, ln A will reach a 

new and higher growth path when n permanently increases, meaning that the ln A line will become 

steeper and will eventually reach this new slope after slowly adjusting to it from the time that n has 

increased as is shown in the graph below. 
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I am now ready to discuss what happens to income per head during the 3 specific shocks, first it is 

necessary to find the expression for 
L
Y ,  using the normal production function we find the expression for 

⎟
⎠
⎞

⎜
⎝
⎛

L
Yln   

( )[ ]
α

αα

L
sAK

L
Y R

−−
=

11  => ( ) ( ) LsAK
L
Y

R ln1ln1lnln ααα −−+−+=⎟
⎠
⎞

⎜
⎝
⎛  

Now that one knows the way ⎟
⎠
⎞

⎜
⎝
⎛

L
Yln  moves, it can be seen that an increase in SK, which increases gK will 

increase the slope of ⎟
⎠
⎞

⎜
⎝
⎛

L
Yln , through K, but as soon as the transition affect wears off ⎟

⎠
⎞

⎜
⎝
⎛

L
Yln  will have the 

same slope as before and only a level effect has resulted from the increase in sK. 

 

 

 

 

 

 

 

 

 

 

In the end I will see the same thing for the increase in δ  as I saw with the increase in sR but there are 

differences. In the case of a permanent increase in δ  I do not just have a higher gA but I also get a higher 

gK. Depending on the magnitude of the parameters
⎟
⎠
⎞

⎜
⎝
⎛

L
Yln  might end up at a higher level then with the 

increase in  sR or a lower level. 

The permanent increase in n is trickier to analyze than the previous shocks. In order to see the affect of 

the increase in n I first derive the growth rate of income per head by differentiating the formula for ⎟
⎠
⎞
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At this point one needs to combine all the previous results to see what will happen to ⎟
⎠
⎞

⎜
⎝
⎛

L
Yln  when I 

increase n. First of all it can be seen from the equation above that as soon as the population growth rate 

increases the growth rate of income per head falls. One has seen previously that an increase in population 

growth will increase gA over time together with gK. Looking back at the formula for gA we find that due to 

the population increase we will have a new 
∗

Ag  at  
ϕ

λ
−

=
∗

1
ng A

    

combining this with the formula 
∗

Kg  we find nngK +
−

=
∗

ϕ
λ

1
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 From the formula for 
⎟
⎠
⎞

⎜
⎝
⎛

L
yg  I find that there will be a BGP equal to 

ϕ
λ
−1
n , which follows from plugging 

the values for 
∗

Kg  and 
∗
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After all the dynamics have been worked out in both gA and gK an increase in n will always create a faster 

growth in income per head all other things constant, however only after an initial drop in the growth rate 

of income per head. I will now illustrate this below. 
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One can now summarize the behaviour of ⎟
⎠
⎞

⎜
⎝
⎛

L
Yln . One knows that due to the falling growth rate directly 

after the increase in n, ⎟
⎠
⎞

⎜
⎝
⎛

L
Yln  will become flatter, however as gA and gK get a chance to react ⎟

⎠
⎞

⎜
⎝
⎛

L
Yln  will 

start to become steeper again even steeper then the graph was before the increase in n. 

 

I have now reached the last part of iv), and I conclude with commenting on what the “two-step approach” 

short-cut did not show us at first sight. Looking at the permanent increase in sR the “two-step approach” 

shows where the economy moves when the shock occurs and where it will end up again. Due to the 

straight fashion with which gK will return to its BGP, nothing is lost in the dynamic process while using 

our short-cut. Problems arise however when the dynamics are not straight but curved. The other case with 

a permanent increase in δ  has a curved dynamic adjustment path, and thus only looking at what the 

“two-step approach”  tells us will not show us how the adjustment takes place. The “two-step approach” 

shows us where we are and where we will go, but due to the interplay between gA and gK the adjustment 

is not taking place in a straight fashion, instead we have the increase in gK, and decrease after passing the 

0Kg
•

=  line, which one might have missed if one had not looked a bit deeper into the dynamics. 

v) Balanced Growth Path values of Ag
∗

 and Kg
∗

 

In order to show what values Ag
∗

 and Kg
∗

will have once we enter the BGP one requires to make a few 

assumptions (which are common in several literature on the subject). These assumptions will be used for 

the remainder of the paper. 

0.01n =  
1
3

α =    
2
3

λ =   
2
3

ϕ =   A(0)=1  
( )
( )
0

1
0

Y
L

=  

Since I are looking for the balanced growth path of  
Ag
∗  and 

Kg
∗  I will have to look at where 0Ag

•

=  and 

0Kg
•

=  respectively. Starting with Ag
∗

: 

ġA(t) = λngA - (1-ϕ)gA² => ggA = λn - (1-ϕ)gA   

Inserting the given values and noting 0Ag
•

=  at BGP 

2 20 *0.01 1
3 3 Ag

∗⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 => 1 2
3 300Ag

∗

=  => 0.02Ag
∗

=  

Now that I have derived the balanced growth path for Ag
∗

 I can continue to calculate it for Kg
∗

 

( )( )1K A K Kg g n g gα
•

= − + −  => ( )( )1K A Kgg g n gα= − + −     

Inserting the given values and noting 0Kg
•

= at BGP 

10 1 0.02 0.01
3 Kg

∗⎛ ⎞⎛ ⎞= − + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 => 0 0.03 Kg

∗

= −  => 0.03Kg
∗

=  
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Thus I have now proven that under the current assumptions we have a 0.02Ag
∗

= and a 0.03Kg
∗

=  along 

the Balanced Growth Path. 

 

vi) EXCEL-generated shocks 

 

For this subsection I have developed an EXCEL spreadsheet that will allow to track the consequences of 

changes in the model parameters for the paths of gA, gK, ln A, ln(Y/L) and gY/L. This spreadsheet has 

seven columns and I take a time horizon of 500 years for the simulations. The shochs occur in year 50. 

The first shock examined is a doubling of sK in Year 50. The EXCEL generated plot in (gA,gK)-space is 

represented below: 

 

 

 

 

 

 

 

 

 

 

 

The dynamics of the sK shock are described by the thick line labelled “dynamics”. At the moment of the 

shocks, gK jumps upwards. The fact that we are now above the ggK=0 line implies that ggK<0. This is why 

gK after its upward jump decreases again and is dragged back to the steady state. As can be seen from the 

graph, the dynamics-line becomes compacter as gK falls back towards its original level. The thickness 

means that the fall of gK actually becomes slower the closer gK is to its steady state position, which makes 

sense, as ggK is also closer to zero and the pull becomes weaker. 

 

The following time series diagrams show the level effect of a rise in sK on the level of output per worker, 

ln(Y/L), and on the growth rate of ouput per worker, gY/L. The doubling of sK results in a temporarily 

faster increase in Y/L, thus a jump to a higher level. Due to the dynamics that have been described in the 

previous (gA,gK) graph, the growth rate gK (and thus also gY/L) is dragged back to its original value. 

Therefore, we only have a level and not a growth effect. The stock of knowledge A is not at all affected 

by the increase in sK as can be seen from the lowest graphs. There, the lnA line before and after the shock 

are identical. 
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I now turn to the second shock to the model, i.e., a doubling in δ in Year 50. The increase in δ results in a 

jump of gA to the right. Then, the forces of the ‘arrows’ set in that have been discussed in previous 

sections. The dynamics imply that gA is being pulled back to the right to its steady-state value following a 

bow-shaped way. 
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The following time series diagrams show again that a level effect occurred. The rise in δ cased the level 

of output per worker and the stock of knowledge A to rise. 

The impact on the growth rate of gY/L that can be seen the third diagram also shows that there was no 

permanent growth effect. At the moment of the shock, t=50, gY/L jumps up and then gradually falls back 

to its old value, precisely the dynamics that are depicted in the (gA,gK) graph. 

t
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The last shock is a doubling of the population growth rate n in Year 50. This time, I have a different 

picture, as we actually have a growth effect. As can be seen in the (gA,gK) graph below, as a result of the 

increase in n gA and gK gradually move to their new, higher steady-state values. There is no jump this 

time. Talking about magnitudes, we see that in our model the doubling of n also leads to a doubling of gA 

and gK.  
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I now consider the time series diagrams. There are a couple of interesting things to observe. First, the ln A 

graph perfectly reflects the growth effect. The ln A line shoots off and there is a widening gap between 

the line that has been affected by the shock and the original path. 
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The next diagram depicts the development of the growth rate of output per worker. The increase in n 

results in an immediate drop of gY/L. This is because at the time the population growth rate increases, gA 

and gK do not immediately follow, there is no jump as has been explained by the (gA,gK) graph. Thus, gA 

and gK need some time to get to their new levels. On the way to reaching these higher levels, gY/L rises 

until it reaches its new, higher value. This temporary drop in gY/L also explains the last diagram. There we 

see that due to the drop in gY/L the level of output per worker after the shock is temporarily below the 

level that would have prevailed had there been no shock. 
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vii) A deeper look 

 

An interesting thing about the δ-shock is the crossing of the ggK line as adjustments take place, 

and that is exactly what we will now look into. After a shock to the economy in the form of a doubling of 

δ, the economy passes the steady-state line for gK between the years 109 and 110. This can be seen on the 

spreadsheet when ggK, which is equal to zero in the steady state, turns negative. 

This crossing of the steady-state line of gK by the economy occurs horizontally, which can be 

explained by the fact that gK crosses the line ggK=0. Therefore, on the line itself, gK does neither rise nor 

fall, but is only moved as gA pulls it to the left away from the ggK line, thus it crosses horizontally. 

Also the n-shock has a few points of interest that will be discussed next. In the steady state, gY/L 

has a value of 0.02. After an immediate drop of gY/L due to a doubling of n, gY/L first exceeds its baseline 

value, namely 0.02, in year 72. Y/L first exceeds its baseline value in year 94, 44 years after the shock. 

Looking back at the Solow model we know that an increase in the population growth rate will deteriorate 

the growth of income per head. However the model that we have now analyzed is extended with features 

that augment it into adding a positive factor to the rise in n. the additions relative to the Solow model 

allow n to increase gA over time, which increases gK over time, and will thus mean Icreate more growth 

due to the extension. So instead of just the Solow model result I have the drop as suggested by Solow but 

the Jones extensions create an affect that in the end will create a higher gY/L. 

I will now compare the conversion speed between the model economy and the value estimated in 

section A) ii) . In year 133, gA is halfway between the value 0.020133, its lowest value that it acquired 
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immediately after the shock in year 50, and its new steady-state value of 0.04. The value halfway is 

0.0300665, and in year 133 gA has a value of 0.0300665. When using the formula for a half-life value 

suggested by Jones 

 

ln2/ oλ  = half-life value => ln2/(133-50) = oλ = 0.00835 

 

I obtain a convergence speed of 0.00835 as opposed to the convergence speed of 0.0133 

obtained in part Aii). Taking into consideration the Taylor logic that the approximation should perform 

increasingly better the closer I get to the steady-state, I take a look at the convergence speed at a half-life 

value between the value of gA in year 133 and 0.04. This half-life value of 0.035003325 is obtained in the 

Excel model in year 196 (exact value for gA in year 196 = 0.0350027).  

 

ln2/(196-133) = 0.0110023 

 

The new convergence speed of 0.011 is clearly closer to 0.0133 of part Aii) than the previous 

value of 0.00835. Therefore, the Taylor logic holds and the predicted convergence speed and the one we 

derived converge the closer I get to the steady state. 
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