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Abstract

We study the impact of the urban location of one single public fa-
cility on spatial competition à la Hotelling. If transportation costs are
very low compared to the value of the public service then both firms
tacitly choose the facility location without moderation of price com-
petition, in contrast to mainstream results in the literature. In this
event, minimum differentiation is efficient. For intermediate values of
the relative transportation rate, inefficient partially-dispersed equilib-
ria emerge with one firm at the facility site while its competitor locates
at one end of the linear city. We also analyze the welfare impacts of
changes, successively, in the facility location and the transportation
rate, taking into account firms relocations.
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1 Introduction

It is generally admitted in the economic literature that competition à la
Hotelling leads to inefficient spatial dispersion because sellers of homoge-
neous goods differentiate their location in order to relax price competition.
In this paper, we challenge this view from both the normative and the posi-
tive viewpoints. Using the standard spatial setting, we will indeed show that
homogenous duopolists may efficiently agglomerate without moderation of
price competition if one takes into account two realistic features of urban
life.

Firstly, it is a well-documented fact that people often make multipurpose
trips, that is, they decide to visit a particular site for several reasons such as
the purchase of various private commodities or the consumption of a local
public good1:

”For example, on the same trip, a consumer buys different
goods, meet friends, visits a movie theater, goes to the post office,
or just wanders and looks around. (...) The fact that consumers
group their purchases in order to reduce travel costs creates de-
mand externalities which firms would exploit by locating with
firms selling other goods”. Fujita and Thisse (1999), p. 30.

Secondly, in many European city centres (e.g. Paris or London), a huge
proportion of land is used by public facilities such as parks, museums, li-
braries or major transportation nodes. As a result, some urban locations
characterized by a large amount of public services around, may be more
attractive for consumers, other things being equal. This may in turn give
a demand externality-like advantage to any firm that would locate at these
locations, especially when consumers desire to jointly consume both type
of goods (public and private) on one single trip–or, in the case of a trans-
portation facility, when the fixed cost of travel (waiting time, parking) is
directly reduced.

The most casual observations suggest indeed that public facility sites
often serve as agglomeration points for firms (see also Thisse and Wildasin,
1992). This is the idea developed in the next section. We will assume that
one single public facility is located somewhere within the linear city before
the standard location-then-price game à la Hotelling takes place. We will
especially establish that for a very low transportation cost, or a high value
the public service, minimum differentiation occurs at the facility site without
any moderation of price competition.

As far as we know, the effects of spatial variation in the amount of public
goods on urban location decisions made by oligopolistic firms are seldom an-
alyzed, with the exception of Thisse and Wildasin (1992). The latter paper

1For a survey of empirical studies, see Thill and Thomas (1987).
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examines the impact of the location of one single public facility on the inter-
dependent locational choices of firms and households. Thisse and Wildasin
(1992) mainly show that if the public facility is centrally-located then one
obtains symmetric equilibria ranging from the fully agglomerated outcome
(both firms at the facility central site) to the fully dispersed outcome where
both firms are situated at opposite ends. On the other hand, if the public
facility is situated close to one end of the city then any equilibrium exhibits
both firms at the center of the urban area.2

As compared with Thisse and Wildasin (1992), we want to relax the
fixed price assumption by using the standard location-then-price game à la
Hotelling. The idea behind is that price competition is a strong centrifugal
force that could destroy the possibility of agglomeration at the facility site.
Moreover, one objective of our paper is to depart from the assumption of
independent trips by exploring the effect of multipurpose shopping on spatial
competition–as suggested by Thisse and Wildasin (1995) themselves by the
way.

The remainder of the paper is organized as follows. The following section
presents the model. Section 3 solves the subgame in prices and section 4
characterizes all the equilibria of the location-then-price game. Section 5
analyzes the efficiency of the market outcomes. Section 6 looks at the effects
of a change in the facility location on welfare, taking into account relocations
of firms. Section 7 analyzes welfare implications of policies aiming at a
decrease in transportations costs. Section 8 concludes.

2 The model

Our set-up closely follows the assumptions made by d’Aspremont et al (1979)
(hereafter called AGT). Consumers are uniformly distributed along a linear
city [0, 1] and bear a quadratic transportation cost. The population of con-
sumers is normalized to one. As emphasized in the preceding section, we
assume that one single public facility is located somewhere in the linear city,
at some location denoted l ; without loss of generality, suppose that the fa-
cility is in the second half-segment: 12 ≤ l ≤ 1. We denote α > 0 the value of
the service provided by that facility to any individual. In order to focus on
locational aspects, we assume that α is determined outside the model and
constant throughout the system.3 Two oligopolists, indexed i = A,B, pro-
duce a homogenous good or service at respective prices pi with an identical
marginal cost that is normalized to 0 (standard). As suggested by Thisse
and Wildasin (1992), p. 85: ”as in Hotelling (1929)”, one can think of ”su-

2The idea is that there exists an equilibrium only if revenue is large enough, to such
an extent that the market area effect dominates the consumption effect.

3This is standard in the litterature (see ReVelle, 1987) and is in the spirit of Thisse
and Wildasin (1992).
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permarkets selling private goods on a large scale”. After having observed
the location of the public facility, the two private firms play a game in two
stages. In the first stage, they simultaneously choose their own location,
respectively a and 1− b ∈ [0, 1] with 1− b−a ≥ 0 without loss of generality.
The last stage is the standard Bertrand price competition.

As emphasized in the introduction, we now modify AGT by assuming
that households have a preference for multipurpose ”one-stop” trips. Firstly,
assume that households bear some fixed cost of transportation denoted tf for
each trip they make (e.g. waiting time, parking). The remaining part of the
total transportation cost is quadratic in distance as in AGT: tf+tz2 (tf , t >
0) is the travel cost incurred by a consumer who travels a distance z for
the purpose of buying one unit of the private (or public) service. Secondly,
the utility derived at location l depends on the value of the public service
provided at that location. To make it clear, consider that firm B is located
at the place of the public facility whereas A is not. Then, denoting u the
value of the private good, the utility of the consumer residing at x is simply
given by

U(x, a) = u− pA − tf − t(x− a)2 (1)

if she shops at A, or

U(x, l) = u− pB − tf − t(l − x)2 + α (2)

if she shops at B and consumes a quantity α of the public service.4 We now
give examples of public services we have in mind and the corresponding in-
terpretation of the parameter α (the demand externality) in the specification
above.

2.1 Example 1: major transportation node

Imagine that the ”public facility” at l is a major node of the urban trans-
portation system. We can rewrite the utility derived from shopping at B
when this firm is situated at l as

U(x, l) = u− pB − (tf − α)− t(l − x)2

Clearly, α represents the reduction in the fixed cost of travel due to bet-
ter terminal conditions (e.g. waiting time in public transit, or direct link
between the highway and the parking).5

4The reservation price u is large enough to ensure that every consumer is served in any
equilibrium. In fact, we checked that u > 3t is sufficient (standard).

5For example, in Lisbon, the hypermarket Continente lies (in the mall Colombo) right
next to the North-South highway with a direct access, from the highway, to the 20-
entrance parking of the mall with space for 6800 vehicles; it can also be reached by two
other avenues that cross there; on this site, there are also two taxi ranks, a metro station
and a bus terminal served by 24 urban and suburban bus routes. It is important to notice
that the building of the highway link and the extension of the metro at that location were
the results of prior decisions made by the City Council of Lisbon.
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2.2 Example 2: park, museum, etc. and ”one-stop” multi-
purpose trips

Assume now that α represents the quantity consumed of a public service
provided by a facility such as a museum, a park, a post office, a library or any
other government administrative buildings. Multipurpose ”one-stop” trips
to location l are due to nonconvexities in the transport cost as captured by
tf in equations (1)-(2) above. Observe that preference for one-stop trips is
indeed very strong in our specification since those consumers visiting firm A
do not decide to make a separate trip to the facility for the unique purpose
of consuming the public good. This one-stop trip pattern emerges if the
fixed component of the disutility of travel is large enough. In particular, it
should be clear that, for tf > α, no consumer will make an additional trip
to the facility.

In fact, some (or all) consumers may make independent trips to the
facility but we assume that this occurs on ”another day of the week”. Indeed,
the shopping behavior should be apprehended over one week or one month
(see Stahl, 1987). Then, following Thill (1992), assume that households
consume the private good at a constant rate and purchase it according to
a fixed schedule: every Saturday, let us say, all households necessarily buy
one unit of the private good (main shopping day) while in some intermediate
day of the week, some consumers make one independent trip to the public
facility: they consume a quantity β > tf > α of the public good, let us
say, every Wednesday.6 The last inequality simply means that the marginal
utility of the public good is decreasing: this may be due to a more binding
time constraint on Saturday (a high amount of time is already spent in the
shopping activity, including storage at home and holding inventory, time
spent in the shop)7 or the fact that the public service has a higher utility
during the week (e.g. post office).8 Then, our model is unchanged since, for
these consumers, we simply add the same net utility β − t(l − x)2 to both
U(x, a) and U(x, b) in order to derive the weekly level of utility.9 It is readily

6Thus without shopping, on that day, a second unit at B, should that firm be located
near the facility. Clearly, if β > tf + t then all the population will indeed make an
independent trip to the facility during the intermediate day.

7 see Thill (1992), footnote 3.
8Consider also the following example: on Saturday, some consumer shops at B in the

Quartier Latin (central Paris) and, since the transportation cost is sunk, s/he decides to
wander in the park ”Jardin du Luxembourg” ; or s/he might choose to visit a nearby
museum. Assume also that every Sunday afternoon, our consumer systematically visits
the same park with the family. Our specification expresses the idea that the net utility
derived from the consumption of the public good will probably be lower on Saturday as
compared to Sunday, because of different time constraints (obviously, as opposed to many
retail firms in central Paris, parks and museums are open on Sunday). Due to the fixed
cost of travel, those patronizing firm A on Saturday derive a higher weekly utility by
visiting the park only on Sunday.

9Clearly, the whole population makes its decisions to visit A or B by comparing the
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verified that, under the assumption β > tf > α, those consumers patronizing
firm A on Saturday are better-off when they split, both spatially and over
the week, their consumption of both types of good, private and public.

To sum up, our utility specification captures the main idea that people
have the opportunity to consume, on one single trip, an (additional) amount
of the public service when they patronize the firm located in the vicinity of
the facility. This is the standard ”demand externality” effect: shopping trips
characterized by economies of scope in jointly buying independent goods
on the same site induce demand complementarities which translates in an
increase of the aggregate consumption of each good or service (see Stahl,
1987).

It is convenient to let

f(xi) =

½
α if xi = l
0 if xi 6= l (3)

where xi is the location of firm i (xi = a, 1− b). The utility of a consumer
residing at x and shopping at firm i is then given by

U(x, xi) = u− pi − tf − t(x− xi)2 + f(xi) (4)

For expositional purpose let us denote the externality advantage of firm
B as follows: ∆f(a, b) = f(1−b)−f(a). It is equal to α (respectively −α) if
only firm B (respectively only firm A) is at the place of the public facility ; it
is equal to zero in any other case. From (4), the consumer who is indifferent
between the two marketplaces resides at bx such that

bx = pB − pA
2t(1− b− a) +

1− b+ a
2

− ∆f(a, b)

2t(1− b− a) (5)

When the two firms are located at the same point, we assume that consumers
choose randomly between them so that the demand facing any firm is a one-
half share of the population (standard).10 We now can write the demand
for the product sold by firm i (i = A,B) as:

DA(pA, pB;a, b) =


bx if 0 < bx < 1, a 6= 1− b
0 if bx ≤ 0, a 6= 1− b
1 if bx ≥ 1, a 6= 1− b
1
2 if a = 1− b

(6)

DB(pA, pB;a, b) = 1−DA(pA, pB; a, b) (7)

Finally, respective profits are as follows:

Πi(pA, pB;a, b) = piDi(pA, pB; a, b) i = A,B (8)

two last utility functions.
10 see, for example, Thisse and Wildasin (1992), p. 89.
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3 Price competition

Following the backward induction principle, let us tackle the solution of
the price game. For conciseness, let us drop the arguments a and b in
any price (or profit) function for the rest of this section. Suppose also for
the moment that each firm expects that it will face a positive demand at
dispersed locations. Then, for fixed locations, let Pi(pj) denote the best
response of firm i to a price pj set by its rival. The first-order conditions for
profit maximization lead to the following system of equations which must
prevail in any equilibrium with positive demands :

PA(pB) =
pB
2
+
t(1− b+ a)(1− b− a)−∆f(a, b)

2
(9)

PB(pA) =
pA
2
+
∆f(a, b) + t(1 + b− a)(1− b− a)

2
(10)

First, if both firms are ”outside the facility place” then the price subgame
is identical to AGT: equilibrium prices are given by the solution of (9)-(10)
where ∆f(a, b) = 0 [see Tirole, 1988, page 281, Eqs. (7.7)-(7.8)].

Second, assume that firm B is located at the public facility site whereas A
is located somewhere on the left side (a < l). Whence, only those consumers
patronizing firm B benefit from the provision of the public service: they get
an additional level of utility ∆f(a, b) = α. In stark opposition to AGT, for
low values of t relatively to α, the system of price functions above is simply
not valid because it implies a zero-demand for the firm situated outside the
facility location, even if the latter firm prices at marginal cost.11 On the
other hand, for a high value of the ratio t/α, the pair of equilibrium prices
is the solution of the system of first-order equations above:

Result 1. Assume a < 1 − b = l ≤ 1. Then, the unique pure strategy
equilibrium in prices is

p∗A = 0, p∗B = p
◦
B(0, a) = α− t(l + a)(l − a) (11)

if α/t ≥ (l − a) (2 + l + a), and,

p∗A = t(l − a)(1−
1− l − a

3
)− α

3
(12)

p∗B = t(l − a)(1 +
1− l − a

3
) +

α

3
(13)

if α/t < (l − a) (2 + l + a).
11For example, imagine α so large that bx < 0 even if firm A is close to B and prices at

marginal cost.
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Proof. in appendix 9.1.

In equilibrium (11), firm A prices at marginal cost but still, firm B
monopolizes the market by setting the limit price p

◦
B which is the highest

price such that the entry of firm A is deterred.12 Interestingly enough, this
asymmetry in price competition is very similar to the one obtained in the
outside location game developed by Gabszewics and Thisse (1992), p. 290:

”(...) one of the player is endowed with a strict externality advantage
over the other one, as in the outside location game. The fact that,
in this game, seller A’s [in our model, seller B’s] location is viewed
as strictly better by all consumers than seller B’s [seller A’s] location,
prevents the latter from using price strategies that would attract the
whole market to him. This privilege is reserved for firm A [firm B]”.

One obvious difference is of course that, in our model, the two firms are
located within the consumers’ area.

4 Equilibria

Before solving the location subgame, let us adopt the following definitions
that will prove useful:

Definition 1. Should the duopolists locate together at the facility location,
we shall say that the market outcome–denoted (a, b) = FA = (l, 1−
l)–is fully agglomerated.

Definition 2. If one firm locates at the facility place and its rival at a
distinct location then we shall speak of partial dispersion.

Definition 3. If both firms locate at opposite ends of the city then the
equilibrium will be said fully dispersed and will be denoted FD =
(0, 0).

We also define et = t/α as the relative transportation cost and refer toeα = α/t as the relative value of the public service.

4.1 Restoring the principle of minimum differentiation

Note that the RHS of the last inequality in result 1 achieves a maximum
value of l (2 + l) at a = 0. Thus:

12 In fact, we obtain in (11) a structure of equilibrium prices very similar to Grilo and
Thisse (1999), p. 598, who use the Hotelling model of product differentiation to show that
collective passions for some differentiated goods (i.e. a 6= 1− b by assumption) may lead
to the emergence of a dominant product which monopolizes the whole market.
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Lemma 1. Let l = 1− b. If the relative transportation cost is weak, i.e., ifeα ≥ l (2 + l), then there is no location a < l such that firm A would
capture some positive demand.

A similar condition is derived whenever firm A is alone at the place of
the public facility:

Lemma 2. Let a = l < 1 − b. If eα ≥ (3 − l) (1− l), then B is necessarily
inactive.

Note that for l = 1
2 , lemmas 1 and 2 are equivalent, and more impor-

tantly, l (2 + l) > (3− l) (1− l) for any l > 1
2 . Consequently, we assume in

what follows that the condition in lemma 1 holds (thus implying lemma 2).
The remaining case (3− l) (1− l) < eα < l (2 + l) will be more conveniently
solved in the next section.

In the context of lemma 1 above, any pattern of locations involving both
firms outside the facility location cannot be a Nash equilibrium because each
firm is incited to relocate at the site of the facility location:

Lemma 3. For eα ≥ l (2 + l), any subgame-perfect equilibrium (SPE) ex-
hibits at least one firm at the facility site.

Proof. In appendix 9.2.

Next, notice that the facility location is a (weakly) dominant strategy
for firm B since its payoff at that location is either equal to zero (if firm A
locates itself at the facility location) or equal to p

◦
B(0) > 0 if firm A locates

at some a 6= l. The same argument holds for firm A. Hence,

Proposition 1 (Full agglomeration) If the benefit from the public facility
is high compared to transportation costs, i.e., eα ≥ l (2 + l), then the unique
SPE outcome which satisfies the dominance criterion exhibits both firms at
the facility site:

FA = (l, 1− l) and p∗A = p
∗
B = 0

Proof. In appendix 9.3.

The intuition behind this full agglomeration outcome is that the facility
site is the unique location where each firm can guarantee itself a positive
market share–exactly half of the market–even though both firms expect a
fierce (Bertrand) price competition. In particular:

Corollary 1. (Hotelling and Bertrand). Assume that the facility is centrally-
located. If the relative value of the public good is sufficiently high, i.e.,
if α/t > 5/4, then both firms locate at the central site to secure half
of the market (Hotelling) without any moderation of price competition
(Bertrand).
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Proof. l (2 + l) = 5/4.

In a sense, this result reconciles the Hotelling’s principle of minimum dif-
ferentiation and the Bertrand result in the context of demand externalities
that are created by a (centrally-located) public facility. Price competition is
indeed a strong dispersion force ; it has been posited in the spatial economics
literature that the observed agglomeration of retailers selling similar goods
should be explained by some softening of price competition–through prod-
uct differentiation or any other mechanism that relaxes price competition.
Our model shows that this is not necessarily true. Indeed, despite the two
oligopolistic firms expect a fierce price competition in the last stage, they
may agglomerate in the preliminary stage if the value of the public service
provided by the (centrally-located) facility is high compared to transporta-
tion costs. The key of minimum differentiation is the desire of consumers
to visit the facility (central) site in order to jointly consume both types of
goods, public and private, to such an extent that a duopolist outside the
main urban site would face a zero demand.

For example, in most European citiesMcDonald’s is sharing the fast food
restaurants market with another competitor (e.g. Quick in Belgium and
France) situated in general next door. Products are almost homogeneous13

and price competition is tough. This is the case in many areas of central
Paris (e.g in front of the Gare du Nord). Near the park Jardins de Luxem-
bourg, close to the museum Pantheon, McDonald’s is the next-door neighbor
of Quick. Again, we argue that the reason for this pattern of locations is not
a moderation of price competition through product differentiation–which is
very low in that industry. It is instead the attractive force exercised by some
valuable public facility(ies) combined to the desire of consumers to engage
in multipurpose trip. In the last example above, one can, on the same trip,
visit a museum, eat at one of the two fast food restaurants above-mentioned
and then wander in the park. In the periphery of Brussels, two competing
similar supermarkets are on the same site, near a major highway link.

More importantly, the existence of such spatial demand externalities
stresses the role of the city government in shaping the urban spatial struc-
ture. In particular, the centralization of public goods or any decision aiming
to decrease transportation costs may foster competition to such a degree
that the public facility serves as an agglomeration point (as in Thisse and
Wildasin, 1992) without any moderation of price competition (this is new
compared with the aforementioned authors). In particular, for a fixed trans-
portation cost parameter, observe in proposition 1 that the more centralized
the public facility, the more likely the full agglomeration outcome. We will
check in section 5 below that this competitive outcome is indeed desirable
from the welfare viewpoint.
13 In a Quick restaurant, everything looks like McDonald’s : the way the employees are

dressed, the range of dishes/menus, the background color of the logo, and so on.

10



Note finally that placing one facility within the linear city amounts
to incorporate a spatially-variant element of vertical differentiation in the
Hotelling model. Yet, our model should not be viewed as a vertical model of
differentiation–in contrast to the outside location game in Gabszewics and
Thisse (1992)–since we will show below that for a low α, at equal prices,
not all the consumers view the facility site as the best shopping location. In
the context of proposition 1 above however, it is true that all the consumers
want to shop at B. In this sense, following Lambertini (1997), we can say
that the agglomeration equilibrium is ”vertical”.

4.2 From partial to full dispersion

Let us now look at the remaining case: 0 < eα < l(2+ l). In what follows, we
establish that there exists a unique subgame-perfect equilibrium exhibiting
some differentiation of locations. We first look at the case in which firm A is
on the left side of the public facility: a < l. It is more convenient to analyze
the case l ≤ a ≤ 1− b ≤ 1 afterwards.

Suppose first that firm B is at the facility location while A is not: a <
l = 1 − b. We formally prove in the appendix that firm A is in position to
find a location close to the west end where it attracts a positive demand in
any equilibrium of the last stage. We then show the following result:

Lemma 4. Let 0 < eα < l(2+ l). If firm B is located at the facility location
then firm A optimally locates itself at the west end of the line: a∗ = 0.

Proof. In appendix 9.4.

The idea behind this result is very simple. First, the strategic price
competition effect is identical to the one calculated in AGT.14 Second, the
market effect area, defined as the increase in market share (at fixed prices)
resulting from a move towards one’s rival’s location, is even lower as com-
pared with the no-facility model. As a result, the total negative effect in
AGT is reinforced: for a fixed b, the more distant firm A, the higher respec-
tive payoffs.15 Using result 1, we get respective prices as follows:

pA(0, 1− l) = t

3
l (2 + l)− 1

3
α (14)

pB(0, 1− l) = t

3
l (4− l) + 1

3
α (15)

14 see Tirole (1988).
15We have checked that the market area effect in percentage is in fact similar to the one

calculated in the reference model because the firm located at the facility site lets a much
lower market share to its rival (as compared with AGT).
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Substituting these equations into piDi =
(pi)2

2t(1−b−a) (i = A,B), one easily
obtains the corresponding payoffs as

ΠA(0, 1− l) = [tl (2 + l)− α]2

18tl
(16)

ΠB(0, 1− l) = [tl (4− l) + α]2

18tl
(17)

Clearly, in such an asymmetric situation, the more valuable the public ser-
vice the higher the payoff to B and the lower the payoff to A.

Now, for l 6= 1, as the relative transportation cost rises, the price com-
petition centrifugal force becomes stronger and stronger. There exists a
threshold value of the relative transportation cost denoted et0 above which
this effect dominates the externality advantage; it is then profit-maximizing
for firm B to depart from the facility location, necessarily eastwards from
AGT.16 We also formally establish in the appendix that, for et > et0, A is not
incited to occupy the facility site whenever B is located at the opposite end
of the city.

Finally, we prove that the remaining case we have to look at, i.e., 12 <
l ≤ a ≤ 1 − b ≤ 1, is an impossible market outcome (see appendix 9.5).
Indeed, any candidate for an equilibrium exhibits firm A at the facility site
(a = l) and the optimal location of firm B in such a configuration–i.e., the
east end–is simply dominated by the west endpoint.17

From all this, it follows:

Proposition 2 (i) If the value of the public service is relatively low com-
pared to transportation costs, the unique market outcome is a maximum
differentiation of locations. (ii) For intermediate values of eα, the unique
pure-strategy SPE (up to a permutation of firms) exhibits asymmetric loca-
tions with one firm at the facility location and its competitor at the edge of
the city:

(a∗, b∗) =

 FD = (0, 0)

P = (0, 1− l)
if 0 < eα ≤ v(l)

if v(l) < eα < l (2 + l)
Proof. In appendix 9.6.

We can also summarize all the equilibria (propositions 1 and 2) as follows:
whenever the relative transportation rate is very high, price competition is

16 see lemma 4.1 in appendix 9.6 for more details.
17For eα < (3− l) (1− l), the explanation is the one given for lemma 4 above. Further-

more, whenever (3− l) (1− l) < eα < l (2 + l), firm A locates at a = l whereas firm B faces
a zero-demand at any location 1− b ∈ ]l, 1] (by lemma 2). A relocation of the latter firm
at the west end guarantees a positive profit. (Interchange the roles of A and B in lemma
3).
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the stronger force and FD = (0, 0) occurs; for intermediate values of t/α,
firm B balances the benefit from spatial isolation and those from being in a
better environment, and chooses to locate at the facility place; finally, for a
very low t/α, A cannot do any better than departing from the west end to
join B at the facility location, where s/he makes no supranormal profits but
captures half of the market (proposition 1).

For example, if the public facility is centrally-located then P = (0, 12)
emerges for 0.371 < eα < 5

4 . This result may appear surprising at first glance
since even though the set-up is perfectly symmetric, the existence of a public
facility at the center of the distribution of households leads to asymmetric
locations. It is less surprising if one recalls results in Tabuchi and Thisse
(1986) or in Combes and Linnemer (2000), for example. The demand to A
exhibits a discontinuity at eα = 5

4 : it tends to zero as eα increases near 54 (stilleα < 5
4) whereas it is equal to

1
2 for any eα ≥ 5

4 (FA).
18

Assume now the public facility at the edge of the city (l = 1). Clearly,
b = 0 is then a dominant strategy and the fully agglomerated outcome
occurs if eα ≥ 3 while P = (0, 0) prevails otherwise. In configuration P ,
the differentiation is maximum but the equilibrium is said to be partially-
dispersed since one firm is situated at the facility site.

In addition to the importance of the relative value of the public good
through the ratio α/t, the location of the facility itself and the absolute
value of the transportation rate can have a significant impact on the spatial
structure of the business sector.

Firstly, observe that for some values of eα the type of equilibrium that
arises does not depend on the facility location at all: this is the case foreα > 3 (full agglomeration) and 0.371 < eα < 1.25 (partial dispersion).

Secondly, for any other value of eα, the location of the facility is crucial
for the type of outcome that will emerge. For example, assume eα = 0.35
and l = 1/2. Then, both firms tacitly play the fully-dispersed equilibrium
and consumers don’t benefit from the provision of the public good. Now,
move the facility a bit to the right, at l = 0.53. One calculates v(0.53) =
. 345 < eα which means that firm B relocates at the facility site while firm
A stays on the left border (configuration P ). Note that firm B is better-off
since ΠB(0, 1− 0.53) = . 502 t > t

2 = ΠB(0, 0).
Observe in figure 1 that, for eα < 3, the range of eα in which P occurs,

widens up and down as l rises. In other words, the more eastward the
facility, the higher the probability that partial dispersion will emerge. The
idea behind this is quite intuitive: whenever the public facility is sufficiently
distant from the midpoint, it is also from firm A and price competition is

180 < DA(0,
1
2
) = 5

12
− 1

3
eα < 0.29 if 0.371 < eα < 5/4. In any other case (FD or FA),

DA(0,
1
2
) = 1/2. Note that the equilibrium price p∗A is continuous in the ratio α/t: the

lower the relative value of the public good, the lower the price charged by this firm (in
order to secure a positive demand) as shown by (12). For eα ≥ 5

4
, A prices at marginal

cost but is not able to attract a positive demand.

13
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Figure 1: Equilibria

somewhat relaxed at the facility site. It follows, that firm B finds it profitable
to locate at l in order to exploit the demand externality advantage.

Clearly, given α and t, firm B always prefers to observe a facility location
decision which fosters the emergence of the partially-dispersed equilibrium
since its profit in such a configuration is greater than the payoff under max-
imum differentiation 19; for the opposite reason, firm A strictly prefers a
symmetric maximum differentiation that yields the standard common pay-
off t/2 (provided of course that the facility is not situated exactly at the east
end):

ΠA(0, 1− l) < t/2 < ΠB(0, 1− l) (18)

Nevertheless, it is also easy to establish that

δ

δt
Πi(0, 1− l) > 0 i = A,B (19)

for any 0 < α/t < l (2 + l) (partial dispersion). In other words, any policy re-
ducing the transportation rate t will decrease respective profits under partial
(full) dispersion. It follows that, even though firm B prefers configuration P
for a given t, the two firms would, in fact, be better off in a city where trans-
portations costs are very large, to such an extent that full dispersion would

19Note that the payoff to firm B under partial dispersion is not necessarily maximized
at l = 1 as shown in result 3 in appendix 9.7. Indeed, for 1 < α/t < 3, firm B prefers
an interior facility location because the sum of the externality effect and the market area
effect dominates the negative effect of price competition.
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occur. Clearly, whichever the type of dispersion, the monopoly power gener-
ated by geographical isolation increases with transportation costs incurred
by consumers, as often illustrated in the literature.20

Looking at the values of t and l which simultaneously maximize firm B’s
profit, we have proved the following:

Result 2. Given α, the equilibrium profit of firm B is maximized whenever
t approaches ∞ and l = 1 (partial dispersion). The corresponding
equilibrium profit is ΠB(0, 0) ≈ 1

2t +
1
3α ; this firm captures approxi-

mately half of the market.21

In other words, whenever the facility is located at the east end of the city
(l = 1) and t is very large, firm B’s profit exceeds the profit under FD (with
l < 1) by roughly 1

3α. A’s profit is lower than t/2 by the same amount.
On the contrary, A is better off when the public facility is centralized

and α/t is very weak so as to make more likely the emergence of the fully-
dispersed outcome.

Needless to say, the objective of the well-intentioned urban planner might
be in discordance with the interests of firms. The former should also take
into account the impact of changes in l (or t) on the surplus of consumers.
This will be analyzed in sections 6 and 7. Yet, it is interesting to notice
here that firms have strong incentives to lobby the city government, each
duopolist trying to impose an opposite view on where should be situated the
new facility–eastwards versus westwards–whereas they would agree on a
weak transportation policy.

5 Optimality of equilibria

The objective of this section is to compare market outcomes derived earlier
with the locations that a central planner would choose. In contrast to the
standard welfare analysis of the Hotelling model, we cannot a priori assume
that the socially-optimal locations will be symmetric. Indeed, the city plan-
ner might consider the possibility of locating one firm at the facility site
and the other one near the left border. This would induce a large share of
the population to visit firm B (and thus the facility) while it would reduce
transportation costs of those residing at the outskirts of the city. For a fixed

20Hotelling himself gave the intuition, p. 50:

”These particular merchants would do well, instead of organising improve-
ment clubs and booster association to better the roads, to make transporta-
tion as difficult as possible. (...) The objective of each is merely to attain
something approaching a monopoly”

21Respective demands are easily obtained from (34) in appendix 9.4: DA(0, 1) =
1
2
− α
6t
≈

DB(0, 1) =
1
2 +

α
6t
≈ 1/2 as t→∞.
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facility location, the central city planner must select a pattern of locations
among three possible configurations:

(1) either the two firms outside the facility location (dispersion)

(2) or, both at the place of the facility (full agglomeration or configuration
FA)

(3) or, one firm at the facility location (say firm B) and its rival outside
the facility location (partial dispersion).

We assume that firms are forced to price at marginal cost (standard,
see Tirole, 1988) and we denote bDA(a, b) ≡ DA(0, 0; a, b) the corresponding
quantity sold by firm A. One checks that the total welfare is equal to the
aggregate surplus derived from the consumption of the public good (if any
firm is at the facility site) minus the social transportation cost, which is
given by:

T (a, b) =

Z bDA(a,b)
0

t(x− a)2 dx+
Z 1

bDA(a,b) t(1− b− x)
2 dx (20)

5.1 Dispersion

In the first configuration, the social transportation cost is identical to the
one calculated in AGT since no one visits the facility. We know that the
socially-optimal pattern of locations is S = (14 ,

1
4) (standard). This choice

of locations simply minimizes the total transportation cost which is equal
to T (14 ,

1
4) =

1
48t. It is convenient for the remainder of the paper to define

WSY (a) as the total welfare in any symmetric configuration (a, a) (not only
S). The expression of WSY is given in the appendix (subsection 9.8.1) from
which we immediately derive the value of welfare in configuration S as:

WSY (
1

4
) = u− 1

48
t (21)

5.2 Full agglomeration

In the second configuration, the whole population of consumers (normalized
to 1) visits the facility site where it derives a constant utility α from the
provision of the public good. Using Di(l, 1 − l) = 1

2 , one easily derives the
social transportation cost as in (45) (in appendix 9.8) and then calculates
the total welfare under full agglomeration from (43) as:

WFA(l) = u+ t

·eα− 1
3
+ l(1− l)

¸
(22)
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5.3 Partial dispersion

Note that the assumption a < 1 − b = l might entail a loss of generality
(with the exception l = 1

2 which obviously restores symmetry). Indeed,
the city planner could consider to locate one firm at the facility place and
its competitor on the right side in order to induce a larger share of the
population to consume the public good or service. The welfare loss due to
a larger amount of travel could, a priori, be counterbalanced by a higher
surplus from the consumption of the public good. The two possibilities are
analyzed in the two following subsections.

5.3.1 Firm A on the left of the facility site

Assume that the city planner first looks at the case a < l = 1 − b. Only
1− bDA(a, l) proportion of the population visit the centrally-located firm B
and receive the benefit from the provision of the public good. Therefore, the
total welfare is given by:

WP (a, 1− l) = u+
h
1− bDA(a, 1− l)iα − T (a, 1− l) (23)

where bDA(a, 1− l) = 1

2
(a+ l)− eα

2 (l − a) =
l2 − a2 − eα
2(l − a) (24)

after substituting pA = pB into (5).22 We next assume:

Condition 1 In any partially-dispersed configuration the city planner might
choose, the demand to A is positive: bDA(a, 1 − l) > 0 ⇔ eα <
l2 − a2 ⇔ a <

p
(l2 − eα)

In other words, the value of the public good must not be too high and/or
the location chosen by the city planner should not be too close to the facil-
ity.23 In particular, we assume eα < l2 otherwise the whole population would
visit firm B at the facility location (whatever a may be); from the strict total
welfare viewpoint, would be indifferent between the full agglomeration situ-
ation and the partially-dispersed equilibrium (a, 12): the welfare is identical
in both cases and is equal to WP (12 ,

1
2). Indeed, in both configurations, the

whole population visits the facility site and derives the same net utility from
the consumption of both goods, public and private, whatever the number of

22Note that bDA is concave and reaches a global maximum at ea = l − √eα where ea =bDA(ea, 1− l). Indeed, if firm A moves to the right then it looses some consumers in its close
hinterland because the travel cost to this firm rises while the net benefit from visiting B
is unchanged. In other words, the facility location becomes relatively more attractive and
the demand to A is strictly decreasing on the right of ea.
23Clearly, since prices are equal, there always exist some consumers situated between A

and B, possibly very close to the facility location, who patronize firm B. So necessarily,
DB(a, 1− l) > 0.
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firms (one or two) at that location. The only difference is that under partial
dispersion, A does not produce any output. Put differently, for eα > l2, the
problem of choosing a location for firm A outside the facility location is sim-
ply meaningless because this firm would not capture any positive demand.
We thus suppose that, in such circumstances, the city planner prefers the
fully-centralized outcome where firm A produces a positive output.

Before determining the welfare-maximizing firm A’s location, let us ana-
lyze one important component of the total welfare. After some manipulation,
one obtains the expression of the social transportation cost as in (46) (see
appendix 9.8.3). For α = 0, the social transportation cost is minimized at
a = 1

3 l. If the location of the facility (and thus firm B’s location) is fixed
at 3

4 , we get the standard result of AGT: a =
1
4 . If B is being imposed

the central location then we get a = 1
6 as transportation-cost-minimizing

location. This is not surprising since in the (no-facility) model of Hotelling
(with fixed prices), the socially-optimal locations of 3 firms is 16 ,

1
2 ,

5
6 .

Of course, one can increase the second component of the welfare function
by inducing a higher aggregate consumption of the public good–i.e., by
inducing more people to visit firm B. One shows that for eα < 4

9 l
2 the demand

to A is increasing on [0, 13 l]. For eα too high, more precisely for 8
9 l
2 < eα

(< l2), one checks that bDA(a, 1 − l) = 0 at any a ≥ 1
3 l. Hence, in these

two cases, the welfare-maximizing location will necessarily lie within the
segment

£
0, 13 l

£
. For 49 l

2 < eα < 8
9 l
2, it is a little bit more complex to predict,

at this stage, what will be the socially-optimal location of A because the
demand function has a positive value at 13 l and exhibits a maximum on the
left of that location (see figure 2).24 We can however reasonably expect that,
again, the city planner will choose a location in the interior of [0, 13 l] because
a move eastwards translates into higher transportation costs.

We prove in the appendix that the unique value of a which maximizes
the welfare function under partial dispersion, both locally and globally, is
given by ba = 2

3
l − 1

3

p
l2 + 3eα (25)

with 0 < ba ≤ 1
3 l as expected. One checks that condition 1 is satisfied nearba, i.e., the demand facing A is positive (see appendix 9.9).25

24 Indeed, departing from 1
3 l, there exists two possible types of relocation that potentially

increases welfare (through a rise in the aggregate consumption of the public good, see
figure 2): either near the left border, or within some segment [a1, a2] with a1 > l

3
and a2

satisfying bDA(a2, 1− l) = 0.
25As eα → 0, we have ba → 1

3 l which re-establish consistently the transportation cost-
minimizing location (as indicated earlier). Notice also that the demand to A is at most 2

3

whenever the public facility is located at the east end of the line and eα→ 0 (firm A being
optimally-located at 1

3
).
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Figure 2: Demand to A ( l = 1− b = 0.75)

5.3.2 Firm A at the facility site

We show in the appendix that any configuration involving a = l < 1 − b
is suboptimal from the welfare viewpoint. We first determine the socially-
optimal location b = bb subject to a = l < 1− b ≤ 1 and then we show that
the corresponding value of the welfare is lower than WP (ba, 1− l) calculated
in the preceding section. We conclude that in any asymmetric pattern of
locations involving B at l > 1

2 , the omniscient central planner would locate
A at ba < l as defined in (25) above. We shall speak of optimal partial
dispersion or configuration OP = (ba, 1− l).
5.4 Optimal pattern of locations

Proposition 3 Assume that the public facility is located somewhere in the
second half-segment.

• For a very low eα, the optimal locations are given by the (standard)
transportation-cost-minimizing solution:

eα < y(l) ⇒ (ba,bb) = S = (1/4, 1/4)
• On the other hand, if the relative value of the public good is very high
then the socially-optimal pattern of locations exhibits both firms at the
facility site:

eα ≥ l2 ⇒ (ba,bb) = FA = (l, 1− l)
• For intermediate values of the relative transportation cost parameter,
the city planner finds a compromise between saving on transportation
costs and inducing a high proportion of the population to consume the
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public good ; s/he locates one firm at the facility place and its rival at
a more suburban interior site:

(ba,bb) = OP = (2
3
l − 1

3

p
l2 + 3eα, 1− l)

• When it emerges as a market outcome, full agglomeration is socially-
optimal.

• Under laissez-faire, any dispersion, partial or full, is excessive: when
the market outcome is P = (0, 1− l) it should be FA or OP (or even
S whenever l is close to the east end and α near 0). When dispersion
is maximal, the city planner would prefer it partial with one firm at
the facility site, or S = (1/4, 1/4) for a very weak eα (or even FA
whenever l is close to the midpoint and 0.25 ≤ l2 < eα < 0.371).26

Proof. In the appendix.

In some circumstances, firm B optimally locates at the facility–a move
which certainly fosters the consumption of the public service–but its rival
is still suboptimally located at the outskirts. For a low eα < y(l) and l
approaching 0.75, it becomes more and more interesting to induce OP 6= S
with firm B at the facility site, in order to exploit the externality. Indeed,
when l is close to 0.75, OP retains a high proportion of the social benefits of
the configuration S = (1/4, 1/4) while adding the aggregate surplus derived
from the consumption of the public good.27
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26 In one particular situation, the partially-dispersed market outcome is ”nearly”
socially-optimal: if eα ≈ l2 and P emerges, then ba ≈ 0 = a∗ (i.e., OP ≈ P ).
27Observe in the figure above that for a given l = 0.75 = 1 − b and α = 0 (OP ), the

area S consistently vanishes.
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6 Optimal location of the facility

We have already discussed the effects of a change in l on the spatial structure
of the business sector. Here, we tackle the problem of the optimal location
of the public facility from the welfare viewpoint. We suppose that the choice
of l is made in a stage prior to the non cooperative location-then-price game.
This allows us to look at business relocation effects which are not calculated
in the standard cost-benefit analysis of the building of a new facility.28 Since
α is constant, we can neglect the cost of providing of the public service,
mainly the fixed cost of building the facility. Indeed, this cost only shifts
the welfare functions without changing the results below. The total welfare is
thus again equal to the total surplus derived from the aggregate consumption
of the private good (plus the consumption of the public good, should some
firm(s) be located at l) minus the social transportation cost. The latter
component is given by (20) where bDA is replaced by the demand to A under
laissez-faire:

DA(a
∗, b∗) =


DA(0, 0) =

1
2 if eα < v(l)

DA(0, 1− l) = l(2+l)−eα
6l if v(l) < eα < l (2 + l)

1
2 if eα > l (2 + l) (26)

from propositions 1 and equation (34) in the appendix. When the market
outcome is fully-agglomerated, firms price at marginal cost and the expres-
sions of respective demands and welfare are the same as in the preceding
section (where firms were forced to set prices to zero). One easily checks
that the transportation cost function (45) is minimized when the city plan-
ner centralizes the public facility. Hence, the value of the social surplus is
immediately obtained from (22):

WFA(
1

2
) = u+ α− t

12
(27)

Now, in the fully-dispersed subgame perfect outcome, the social transporta-
tion cost function and the total welfare function have been established again
in the preceding section. Indeed, by symmetry, DA(a, b) = bDA(a, b) = 1

2
whenever a = b 6= 1 − l. Moreover, the value of the social transportation
cost is equal to t

12 , i.e., the value calculated under full agglomeration above.
Indeed, in both configurations FA and FD, the first half of the population
patronizes firm A which is situated at one end of the half-segment (at 12 or
at 0). The only difference is that, under FD, no one consumes the public
good. Thus, we deduce the welfare under full dispersion from (27) as

WSY (0) = u− t

12
(28)

28 see also, in different contexts, Combes and Linnemer (2000), p. 16 and Thisse and
Wildasin (1992).
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If the city planner aims to induce such a pattern of firms’ locations, s/he
must simply locate the facility at any l satisfying eα < v(l).

Now, in the eyes of the city planner, each one of the configurations FA
and FD ”solely” competes with partial dispersion (see figure 1). Indeed,
the latter configuration leads to a more balanced pattern of shopping trips
while retaining a high social benefit for those who both shop at B and
consume the public good (recall proposition 3). As opposed to the two pre-
ceding configurations, in the partially-dispersed (laissez faire) equilibrium,
the transportation cost functions and the total welfare–denoted WP∗ , are
different from the ones established in the optimality analysis.29 Indeed,
the overall urban system is now affected by non cooperative price decisions
through changes in respective equilibrium demands. We now state the main
proposition of this section:

Proposition 4 Given α and t, the unique socially-optimal location of the
facility is

bl =

0.5916 ≤ v−1(α/t) < 1
1
2 < m

−1(α/t) < 0.5916
1
2

if 0 < α/t < 0.291

if 0.291 < α/t < 0.42

α/t > 0.42

The market outcome is partially-dispersed, except for eα > 1.25 where
firms are induced to agglomerate at the facility central site.

Proof. In the appendix.

In the following figure, the optimal location of the facility is depicted by
the bold line and the arrows indicate increases in the total welfare under
partial dispersion or full agglomeration.30 Observe that the city planner
necessarily decides to induce some positive consumption of the public service
(FD is dismissed). The curve m(l) plots the first order condition for an
interior maximum (the second-order condition being met). In fact, for 0 <eα < 0.291, in order to avoid the emergence of FD, the city planner should
place the facility (obviously in the P area) almost on v(l), that is, at some
location v−1(eα) + ², where ² > 0 is arbitrarily small.31 In the competitive
fully-agglomerated outcome, firms do not earn any (supranormal) profits at
the central site. This pattern of locations maximizes the consumer’s surplus
which is equal to: WFA(12) = u + α − t

12 . Clearly, the higher α (and the
lower t), the higher consumer welfare in the fully agglomerated outcome.

29 see equations (53) and (54) in the appendix.
30Recall here that P stands for partial dispersion under laissez-faire and should not be

confused with the optimal dispersion OP analyzed before.
31Example: for α = . 160 576 211 t, let ² = 0.0001 and locate the facility at v−1(α/t)+² =

0.750001 so that the profit under P is equal to 0.500 000 029t > t/2, that is just enough
to dismiss FD.
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Figure 3: Optimal facility location

7 Policies aiming at a decrease in t

Once the public facility has been built at some location l, the city planner can
still affect significantly the urban structure by modifying the quality of the
transportation system (which determines the rate t). Many improvements
of the urban transportation networks can be achieved in short run: comfort,
safety, frequency of service (for public mass transit). The city planner might
also add new lines or increase the number of buses, for example. As also
suggested by Thisse and Wildasin (1992), p. 102:

”Some tax policies, such as gasoline taxes, can also affect travel costs.
(...) as do highway and bridge tolls and the pricing of public trans-
portation”.

For fixed firms’ locations, a reduction in t clearly improves the total wel-
fare. Nevertheless, this is misleading since firms may relocate. In particular,
as argued before, the city planner could prefer to foster some dispersion in
order to get a more balanced system of households trips. Yet, we proved the
following intuitive non-trivial result:

Proposition 5 Whatever the value of the public good and the location of the
facility, the total welfare is globally-maximized at t = 0 (full agglomeration).

Finally, as argued before, it is easier to change the transportation cost
parameter once the public facility has been built than to do the reverse.
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Figure 4: Impact of t on welfare

Therefore, it is natural to suppose that the choice of l is prior to any trans-
portation policy decision and, from propositions 4 and 5, we conclude:

Proposition 6 Assume that t ∈]0,∞[. From the welfare viewpoint, it is
optimal to centralize the provision of the public service (l = 1/2) and then
to reduce the transportation cost near zero.32

8 Conclusion

The clustering of firms selling a similar product or service is often observed
in real urban life. Our paper has explored one possible explanation to this
phenomenon, namely the fact that a public facility may serve as agglomer-
ation point, as already suggested by Thisse and Wildasin (1992). We have
added this centripetal force to the standard spatial setting, assuming that
people have a preference for ”one-stop” multipurpose trips to the facility
site. Minimum differentiation at the facility place–what we have called full
agglomeration–may indeed emerge as an efficient market outcome, without
relaxation of price competition. The second part of this result may surprise
at first glance since it is opposed to the argument generally put forward in
the literature–which precisely stresses on the need of relaxing price compe-
tition somehow or other. Yet, the idea is very simple: for low transportation
costs compared to the value of the public service, the facility location is a

32Proof. Indeed, WA reaches a maximum values of u+α at t = 0, wherever the facility
may be. Thus, the choice of l is relevant only if t > 0. For t ' 0, the backwards-induction
(optimal) facility location is l = 1/2.
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dominant strategy, and de facto the only place that guarantees a positive
market share.

Another striking result is the fact that for a wide range of the ratio
transportation cost/value of the public service, asymmetric equilibria emerge
even if the public facility, when built at the midpoint, balances perfectly
the demand between the two half-segments. In these equilibria, only one
oligopolistic firm locates at the facility place in order to exploit the ex-
ternality advantage. Yet, any dispersion, partial or full, is excessive from
the city planner viewpoint–even though, in some circumstances, one firm
optimally locates at the facility.

Finally, we have stressed the role of the city planner in shaping the
business spatial structure. In particular, we have established the non-trivial
result that the lower the transportation cost, the higher the total welfare.
If the city planner is able to lower transportation costs ”near zero”, then
it is optimal to locate the facility at the midpoint. On the other hand,
if there exists some impediments to the reduction of urban transportation
costs, then the city planner would be well-advised to locate the facility at a
more eastern site. Indeed, such a configuration results in a more balanced
pattern of households trips while retaining some welfare benefits from the
provision of the public service to a large share of the population.

Of course, the results of our paper must not be viewed as a guide to real
policy. However, our analysis has confirmed that any cost-benefit analysis
of the building of a new public facility, or any evaluation of transportation
policy (which is sensitive to the facility location), should take into account
the impact on strategic locational choices made by oligopolists (see also
Thisse and Wildasin, 1992, 1995).

One limitation of our model is the fact that multipurpose shopping is
not reasonable for some public facilities such as hospitals or schools; as
emphasized by Thisse and Wildasin (1995), p. 408: ”you do not buy shoes
on the way to the hospital”. We hope to modify the present framework in
order to incorporate independent trips for this type of facility. We expect
the establishment of the existence of equilibrium in prices to be non-trivial.

Future research is also needed in order to determine the socially-optimal
level of provision of public service (i.e., optimal facility size or quality). One
should distinguish between pure and congested local public goods. Con-
gestion at the site level could make the emergence of a partially-dispersed
outcome more desirable than agglomeration. Also, it would be interesting
to incorporate two or three major transportation nodes, as well as two or
three competing juridictions for some types of facility such libraries.
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9 Appendix

9.1 Proof of result 1

One readily checks from equation (5) that if

t

α
>

1

(l − a) (2 + l + a) (29)

then A is in position to attract some consumers by setting a price pA =
PA(pB) (possibly very small) as expressed in (9). On the other hand, if the
last inequality is not satisfied then firm B optimally monopolizes the whole
market by setting a price

p
◦
B(pA) = pA + α− t(l + a)(l − a) (30)

such that DA = 0.33 In such an event, one verifies that the mirror game in
prices converges to pA = 0, p

◦
B(0). If (29) does not hold that the equilibrium

prices is simply the solution of (9)-(10) as expressed in (12)-(13). Q.E.D.

9.2 Proof of lemma 3

By contradiction, assume that ea and 1−eb 6= l is an equilibrium of the first
stage. From AGT, ea = eb = 0 necessarily and respective maximum profits
are equal to t

2 =
pi
2 (i = A,B, see AGT). On the other hand, by virtue of

lemma 1, the payoff to B after relocation at l is:

p
◦
B(0) = α− tl2 (31)

We have:

p
◦
B(0) >

t
2 ⇔ α− tl2 = t(eα− l2) > t

2 ⇔ eα > 1
2 + l

2

which is clearly satisfied for any eα > l (2 + l) and establishes a contra-
diction. Q.E.D.

9.3 Proof of proposition 1

Assume first a < l. Let us show that ΠB(a, 1− l) > t/2 ≥ ΠB(a, b). Since
ΠB(a, 1− l) = p◦B(0) = α− t(l + a)(l − a) is increasing with a it suffices to
establish that α/t− l2 > 1/2. This has been done in the proof of lemma 3
(Q.E.D).

33Assume that (29) does not hold. Then, for fixed locations and a fixed price pA, the one-

variable profit function ΠB(pA,.) is continuous on [0,∞[ : it is the 45oline on
h
0, p
◦
B(pA)

i
and it is strictly concave, decreasing on

h
p
◦
B(pA),Π

−1
B (0)

h
. We have: ΠB(pA,.) = p

◦
B(pA) >

PB(pA), that is, p
◦
B(pA) is a global maximum of ΠB(pA,.).
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Second, assume a > l = 1−b and eα ≥ (3−l) (1− l). Firm B monopolizes
the market (exchange A with B, and a with 1−b in lemma 2) and optimally
sets the following price: epB(0, a) ≡

def
α−t(a−l)(2−l−a). Let us prove again

that it is greater than the maximum profit under full dispersion: epB(0, a) >
t/2 ? One checks that (i) epB is decreasing with a and (ii) epB(0, l) = α >
t/2 so that, necessarily, epB(0, a) > t/2 ≥ ΠB(a, b) for all a > l.

Finally, if a = l then clearly ΠB(l, 1−l) = 0 = ΠB(l, b) where b 6= 1−l.
To sum up: ΠB(a, 1− l) ≥ ΠB(a, b) for all b ∈ [0, 1], that is, b = 1− l

is a weakly dominant strategy for firm B. By symmetry, a = l is a weakly
dominating strategy for firm A. Q.E.D.

9.4 Proof of lemma 4

Let us show that firm A can always find a location close to the west end–
i.e., in some interval [0, s(eα, l)[, such that it attracts a positive demand in
any equilibrium of the last stage. Such a segment of potential locations for
A must satisfy (29), that is: (l− a)(2 + l+ a) > eα. The relevant root of the
second-degree equation in the last inequality is:

a = −1 +
p
(1 + l)2 − eα ≡

def
s(eα, l) (32)

One easily checks that: (i) (1 + l)2 − eα > 0, (ii) s(eα, l) is decreasing with eα
and (iii) 0 ≤ s(eα, l) < l.34 Thus, A is always in position to find a location
near the left border where it captures a positive demand after solving for
price competition. (Q.E.D).

Now let us find the optimal location a∗ ∈ [0, s(eα)[. Firstly, for fixed
locations, the equilibrium price set by firm A is as follows:

pA(a, 1− l) = α

3

£et (l − a) (2 + a+ l)− 1¤ (33)

after using result 1; the demand to A is given by:

DA(a, 1− l) = pA(a, l)

2t(1− l − a) =
£et (l − a) (2 + a+ l)− 1¤

6et(l − a) (34)

after substitution of b = 1 − l. From the two last expressions, one easily
computes the reduced-form profit function of firm A. However, it is easier
to analyze the sign of the partial derivative with respect to a as follows:

δ

δa
(pADA) =

pA
2t(l − a)

·
2
δpA
δa

+
pA

(l − a)
¸

(35)

Indeed, the demand to A, and consequently pA, is necessarily positive in
any outcome of the last stage and it suffices to analyze the sign of the
34s (l(2 + l), l) = 0, and s(eα, l)→ l as eα→ 0.
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bracketed term, that we denote G(a). One calculates δpA
δa = −23t (1 + a) <

0, and substituting this and Eq.(33) into Eq.(35), one obtains after some
manipulations:

G(a) = 1
3

h
t (l − 2− 3a)− α

l−a
i
< 0

(since a < l < 1). This achieves the proof of lemma 4. Q.E.D.

9.5 Exclusion of the case l ≤ a ≤ 1− b ≤ 1
Assume l ≤ a < 1 − b ≤ 1. From AGT, the optimal location of firm A is
a∗ = l.

• Case #1: (3− l) (1− l) < eα < l (2 + l)
From lemma 2, the demand to firm B is equal to zero for all b ∈ ]0, 1− l] .

However, firm B can increase its profit by relocating at the left end of the
city, playing the role of firm A in proposition 2. (Q.E.D).

• Case #2: eα < (3− l) (1− l)
In any outcome, the demand to firm B must be positive since otherwise

it would be incited to relocate at the left end of the city. We know that
firm B can indeed always find a location close to the right end such that
DB(l, b) > 0 is satisfied.35 Firm A benefits from the best environment:
∆f(a, b) = −α. Substituting this into equations, we derive the unique Nash
equilibrium in prices as:

p∗A(l, b) = t(1− b− l)(1 + l−b
3 ) +

α
3

p∗B(l, b) = t(1− b− l)(1 + b−l
3 ) +

−α
3

After substitution into (5), we get the demand facing firm B as a unique
function of locations:

DB(l, b) =
1

6

t (1− b− l) (b+ 3− l)− α

t (1− b− l) (36)

The value of the profit to firm B is as follows:

ΠB(l, b) =
1
18
(t(1−b−l)(b+3−l)−α)2

t(1−b−l)

and we also get

dΠB
db (l, b) =

1
18 (t (1− b− l) (b+ 3− l)− α) −t(1−b−l)(3b+l+1)−α

t(−1+b+l)2

35 In particular, DB(l, 0) =
1
6
(1−l)(3−l)−eα

(1−l) > 0 since eα < (1− l) (3− l).
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Since DB(l, b) > 0 by assumption, observe that

t (1− b− l) (b+ 3− l)− α > 0

necessarily. Hence, dΠBdb (l, b) < 0 ⇒ b∗ = 0. The value of the profit is
immediately obtained as being:

ΠB(l, 0) =
[t (1− l) (3− l)− α]2

18t (1− l) (37)

The payoff to firm A is higher than ΠB(l, 0) and is given by:

ΠA(l, 0) =
[t (1− l) (3 + l) + α]2

18t(1− l) (38)

Next, consider a relocation of B at the west end of the city (b = 1) and solve
for price competition. The reduced-form payoff function of a firm situated
at the left end while its competitor is at the facility location is given by (16):

ΠB(l, 1) =
[tl (2 + l)− α]2

18tl
(39)

Hence, we derive the following ratio of payoffs to B:

ΠB(l,1)
ΠB(l,0)

= (l(2+l)−eα)2
((1−l)(3−l)−eα)2 (1−l)l

Let us prove that it is greater than unity. Observe that (1−l)
l < 1 for

l > 1
2 . We can however rewrite the above ratio as follows:h

l(2+l)−eα
(1−l)(3−l)−eα (1−l)l

i2
l
1−l

Clearly, it would suffice to show that the bracketed term is greater than
1:

l(2+l)−eα
(1−l)(3−l)−eα (1−l)l > 1 ⇔ (2 + l)− eα

l > (3− l)− eα
1−l

⇔ (2 + l) + eα
1−l > (3− l) + eα

l ⇔ (2 + l) > (3− l) + eα(1l − 1
1−l )

⇔ (2 + l) > (3− l) + eα 1−2l
l(1−l)

which is necessarily checked for l > 1
2 . Thus ΠB(l, 1) > ΠB(l, 0): B

is incited to relocate at the west end (Q.E.D). For l = 1
2 , B is indifferent

between either ends of the line. This achieves the proof that 1
2 < l ≤ a ≤

1− b ≤ 1 is an impossible market outcome. Q.E.D.
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9.6 Proof of proposition 2

9.6.1 Lemma 4.1.

Assume a = 0 and l 6= 1. There exists a threshold value et0 such that et >et0 ⇒ ΠB(0, 1− l) < t
2 : B locates at the east end (b = 0).

Proof. Assume l 6= 1. Since, the endpoint dominates any location
outside the midpoint, it suffices to compare equation (17) with the profit
under maximum differentiation (AGT), that is, ΠB(0, 0) = t

2 :

( t3 l(4−l)+ 1
3
α)

2

2tl < t
2 ⇔

³et
3 l (4− l) + 1

3

´2 − et2l < 0
The relevant root of the polynomial in the last inequality is

et0 = l2 − 4l − 3√l
l (l − 1) (l2 − 7l + 9) (40)

(the second root is negative). Define also v(l) = 1/et0 the corresponding
threshold value of eα. Since the above polynomial is concave in et, we deduce
that for any et > et0 (⇔ eα < v(l)), ΠB(0, 1− l) < t

2 . If l = 1, then b = 0 is
clearly a dominant strategy for firm B.

9.6.2 proof of (ii)

Assume v(l) < eα < l (2 + l) and l 6= 1. First, we have proved that ΠB(0, 1−
l) > t

2 ≥ ΠB(0, b), ∀b 6= 1− l. Thus b∗ = 1− l maximizes ΠB(0, .) on [0, 1].
Second, assume that b∗ = 1 − l is fixed. By lemma 4, a∗ = 0 maximizes
ΠA(., 1− l) on [0, l[. Moreover, A is worse off on the right side of (or at) the
facility location, as established in subsection 9.5 (reverse the role of A and
B). Thus, (0, 1 − l) is a pure strategy Nash equilibrium in locations. It is
unique since a = l < 1− b cannot be an equilibrium. (Q.E.D).

9.6.3 proof of (i)

Let 0 < eα < v(l) and assume b∗ = 0. From AGT, δ
δaΠA(a, 0) < 0: the

optimal location of A on [0, l[ is a = 0. For the same reason, the optimal
location of A on [l, 1] is a = l. One easily checks that v(l) < (3 − l)(1 −
l),36 which implies that the demand to B is positive after solving for price
competition (see subsection 9.5, case #2 above). The payoff to A is ΠA(l, 0)
as given by Eq. (38). Let us show that eα < v(l)⇒ ΠA(l, 0) < t

2 . One first
obtains the following implication:

t
2 −ΠA(l, 0) > 0 ⇔ eα < 2l + l2 − 3 + 3p(−l + 1) =

def
z(l)

36 Indeed, (3− l)(1− l)− v(l) = 3 (1− l) l+
√
l(3−l)

l(4−l)+3√l > 0.
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Let us show that v(l) < z(l). The following picture plots the difference
v(l)− z(l):

0

0.1

0.2

0.3

0.4

0.5

v-z 

0.5 0.6 0.7 0.8 0.9 1l

v(l)− z(l)

Hence, we infer that eα < v(l) ≤ z(l) which implies t
2 − ΠA(l, 0) > 0

(Q.E.D). Thus, a∗ = 0maximizes ΠA(a, 0) on [0, 1]. It is worth noticing that
for eα = v(1/2) = z(1/2), we get t

2 = ΠA(l, 0) that consistently establishes
the equilibrium (1/2, 0). We already knew that this equilibrium exists as the
symmetric of (0, 1/2) (interchange A and B in proposition 2 where l = 1/2).
The other limit result, i.e., v(1) = z(1) = 0 is also consistent since then,
necessarily, eα > v(1): this limit case simply coincides with case (ii).

Finally, assume a∗ = 0. It has already been established that t/2 =
ΠB(0, 0) > ΠB(0, 1− l) ≥ ΠB(0, b), for all b 6= b∗ = 0 and any eα < v(l).

We conclude that the unique pure strategy Nash equilibrium in loca-
tions is (a∗, b∗) = (0, 0). (recall again that (l, 0) cannot be an equilibrium).
Q.E.D.

9.7 Equilibrium profits (fixed t)

First of all, observe that the payoff to A under partial dispersion is affected
negatively by α. For this firm, the maximum profit is reached whenever
α → 0 since then we tend to AGT: ΠA(0, 1 − l) → t/2. Secondly, for firm
B, we have established the following:

Result 3. (i) For a fixed value t = t, the location l that maximizes the
payoff to B under partial dispersion is given by:

lB =


1

2/3 < 2
3 +

1
3

p
4− 3α/t < 1

0.527 < −1 +
p
1 + α/t ≤ 1

if α/t ∈ ]0, 1]
if α/t ∈ [1, 1.31]
if α/t ∈ [1.31, 3[

(ii) For a fixed value of l, the payoff to B in equilibrium is strictly
increasing with α.

(iii) Firm B’s profit reaches a maximum value of ΠB(0, 1 − l) = 2t
whenever l = 1 and α→ 3t.
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Note that −1 +√1 + eα is simply the reverse function of the separating
curve l(2 + l).

9.8 Welfare functions

9.8.1 Dispersion

In the first configuration, the social transportation cost is identical to the
one calculated in AGT since no one visits the facility:

T (a, b) =
1

3
t

·
a3 +

1

4
(1− b− a)3 + b3

¸
(41)

after using pA = pB ⇒ bDA = 1
2 . The total welfare is given by:

WSY (a) = u− T (a, a) = 1

12
t [1− 6a (1− 2a)] (42)

9.8.2 Full agglomeration

In the second configuration, the total welfare is given by:

WFA(l) = u+

Z bDA
0

α dx+

Z 1

bDA α dx − T (l, 1− l) (43)

= u+ α− T (l, 1− l) (44)

Using Di(l, 1− l) = 1
2 , one easily calculates the social transportation cost as

T (l, 1− l) = t
·
1

3
− l(1− l)

¸
(45)

9.8.3 Partial dispersion

Assume a < l = 1− b. The social transportation cost is given by:

T (a, 1− l) = t
µ
1

3
− 1
4
(l − a) (l + a)2 − l (1− l)

¶
+
1

4

α2

t(l − a) (46)

One obtains the expression of the total welfare as

WP (a, 1− l) = u+
·
1− l − a

2
+

α/t

2(l − a)
¸
α − T (a, 1− l) (47)

where T (a, 1− l) is given by (46).
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9.9 Socially-optimal ba under partial dispersion
Step 1 Assume eα < l2. The unique candidate for a maximum of the func-

tion (47) above is easily obtained from the FOC: ba = 2
3 l− 1

3

√
l2 + 3eαas

in (25)

Step 2 (condition 1) Let us prove first that condition 1 is satisfied nearba. We must prove that
ba2 < l2 − eα ⇔

³
2
3 l − 1

3

p
(l2 + 3eα)´2 < l2 − eα

⇔ 5
9 l
2 − 4

9

p
(l2 + 3eα)l + 1

3eα < l2 − eα ⇔ 4
3eα < 4

9 l
2 + 4

9

p
(l2 + 3eα)l

⇔ p
(l2 + 3eα)l > 3eα− l2 ?

Since eα− l2 < 0, it suffices to show thatp
(l2 + 3eα)l > 2eα ⇔

³p
(l2 + 3eα)l´2 > 4eα2 ⇔ l4+3l2eα− 4eα2 > 0

The LHS of the last expression is equal to
¡
4eα+ l2¢ ¡l2 − eα¢ which is

positive for any eα < l2 (Q.E.D).
Step 3. (second-order condition) Let us show that ba satisfies the second-

order condition for a maximum.

Denote H =
h
0,
p
(l2 − eα)h the region where bDA(a, 1 − l) is positive.

One first calculates the value of the demand to A at ba ∈ S:
bDA(ba, 1− l) = 2

3
l − 2eα

l +
p
(l2 + 3eα) (48)

Then, one derives the second derivative of WP as follows:

δ2WP

δa2
(a, l) = −t g(a, l)

2 (l − a)3

where g(a) ≡ −6l2a2 + 8a3l − 3a4 + l4 − eα2. One calculates:
g(ba) = 8

27 l
4 + 8

27 l
3
p
(l2 + 3eα) + 4

9 l
2eα− 4

3eα2
= 4

9

h
2
3 l
3
³
l +

p
(l2 + 3eα)´+ eα ¡l2 − 3eα¢i.

Divide the bracketed term successively by l2 and h = l+
p
(l2 + 3eα) > 0

to get:
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h
2
3 l +

eα
h

³
1− 3 eα

l2

´i
= 2

3 l +
eα
h − 3

h
eα2
l2

= 2
3 l − 2eα

h +
3eα
h − 3

h
eα2
l2

= bDA(ba, 1− l) + 3eα
h

³
1− eα

l2

´
By assumption, the last factor in parentheses is necessarily positive.

Thus g(ba) > 0⇒ δ2WP

δa2
(ba, l) < 0. Since, ba is the unique candidate satisfying

the FOC on H, it is a global maximum of WP .

9.10 Firm A at the facility site: welfare analysis

Assume a = l < 1− b ≤ 1. Firm A benefits from the best environment and
substituting ∆f(a, b) = −α into (5) yields the demand to firm A:

bDA(l, 1− b) = 1− b+ l
2

+
eα

2(1− b− l) (49)

A proportion bDA(l, 1−b) receives the benefit from the public facility whereas
the rest of the population gets the standard utility as in AGT. Consequently,
the total welfare is simply given by:

fWP (a, b) = u+ α bDA(l, 1− b)− T (1− l, b) (50)

The following condition parallels condition 1:

Condition 2 In any asymmetric configuration (a, 1 − l) we must have:bDB(a, 1− l) > 0 ⇔ b2 < (1− l)2 − eα
The unique candidate for a maximum is interior and given by:

bb = −2
3
l +

2

3
− 1
3

p
(l2 − 2l + 1 + 3eα) (51)

This expression describes the unique value of bb which maximizes (50), both
globally and locally, subject to condition 2 and 1 − b > l. The proof is
straightforward: let L = 1 − l. One first observes that the expression bb is
equivalent to the one of ba in (25) provided that we replace l by L:

bb = 2
3L− 1

3

p
(L2 + 3eα)

Secondly, we also easily establish that bDB(l, 1−bb) ≡ bDA(ba, 1−L) where,
again, the function bDA has been defined above. It follows that the proof
given for ba applies identically when l is replaced by L. For example, estab-
lishingbb2 < (1−l)2−eα amounts to establish that 23L− 13p(L2 + 3eα) < L2−eα
which is exactly step 2 in subsection 9.9 above where l is replaced by L. The
same argument is valid for the second-order condition (see step 3 above).
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Substitutingbb into (50), one obtains the value of the total welfarefWP (l,bb)
and the value of the difference WP (ba, 1 − l) − fWP (l,bb) is plotted below.
Clearly, for any 1

2 ≤ l ≤ 1 and 0 < eα < (1 − l)2 ≤ 1
4 , welfare is greater in

the configuration (ba, 1− l).

0.50.60.70.80.9 l
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WP (ba, 1− l)−fWP (l,bb)
9.11 Proof of proposition 3

We have argued that partial dispersion is impossible for eα > l2. From (21)
and (22), we immediately derive another intermediate result:

WFA(l) > WSY (
1

4
) ⇔ eα > 5

16
− l + l2 (52)

For instance, if the public facility is centrally-located thenWFA(12) > W
SY (14) if

and only if eα > 1
16 . Moreover, from (52) and 5

16 − l < 0, we have immedi-
ately:

Lemma 5. If eα > l2 then the city planner chooses the fully-agglomerated
pattern of locations.

Now, there remains to determine the socially-optimal pattern(s) of loca-
tions whenever eα < l2.
Lemma 6. Assume 0 < eα < l2. Then,

(i) WP (ba, 1− l) > WFA(l)

(ii) WP (ba, 1− l) < WSY (14) ⇔ eα < y(l) < l2
where y(l) is defined in footnote.37

37y(l) = 1
3

³
1
8
h(l) + 1

2
(4l−3)2
q(l)

+ l − 3
4

´2 − 1
3
l2

with h(l) = 3
p
(v + 12

√
w)

v = 324− 512l3 + 1152l2 − 864l
w = −768l3 + 1728l2 − 1296l + 405
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Proof. (i) After some calculation and manipulation, we obtain:

WP (ba, 1− l)−WFA(l) =
4

27

2q
¡
l2 − 3eα¢+ 9eα(l2 − eα)
l +

p
(l2 + 3eα)

where

q = l2 + 3eα− 2p(l2 + 3eα)l = 3

2
bDA(ba, 1− l)³l +p(l2 + 3eα)´ > 0

and bDA(ba, 1− l) is given by (49) above. Let us show that the numerator of
the above fraction is positive. We get first:

eα− l2 < 0 ⇔ 3eα− l2 < 2eα ⇒ 2q
¡
l2 − 3eα¢ > −4qeα (q > 0)

Hence, the numerator above verifies the following inequality:

2q
¡
l2 − 3eα¢+ 9eα(l2 − eα) > −4qeα+ 9eα(l2 − eα) = eα(9eα− 4q + 9l2)

Let us finally show that the last term in parentheses is necessarily positive:

9eα− 4q + 9l2 = 5l2 − 4p(l2 + 3eα)l + 3eα
after substitution for q. For a fixed l, one easily checks that the last expres-
sion, subject to eα ≤ l2, achieves a minimum value of 0 at eα = l2. Thus,
WP (ba, 1− l)−WFA(l) > 0 for any eα < l2 (Q.E.D).

For eα < l2, OP dominates the full agglomeration equilibrium in the
eyes of the planner. However, for a very weak value eα < y(l), the standard
symmetric pattern of locations is better from the welfare viewpoint.

9.12 Proof of proposition 4

We first replace bDA by DA in (20) to get the expression of the social trans-
portation cost:

T ∗(0, 1− l) = t
·
1

3
− lDB(0, 1− l) [1− l +DA(0, 1− l)]

¸
(53)

Second, since a proportion DB(0, 1 − l) = 1 − DA(0, 1 − l) of consumers
patronizes seller B, the social surplus is given by:

WP
∗ (0, 1− l) = u+ [αDB(0, 1− l) − T (0, 1− l)] (54)

For given α and t, it suffices to maximize the bracketed term with respect
to l. In figure 4, m(l) plots the first order condition (One checks that the
second-order condition is met). We have checked that:

• d
dlW

P∗ (0, 1− l) < 0 for any eα > m(l), and
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• WP∗ (0, 1− l)−WD(0) > 0 for any given eα and any l.
The last result indicates that partial dispersion dominates the fully dis-

persed equilibrium from the welfare viewpoint while the sign of the first
derivative shows that the facility should be as centralized as possible. In the
axis system (l, eα), m(l) intersects v(l) at l ' 0.5916 (where v(l) = 0.291).
The intersection of m(l) with the α-axis is m(0.5) = 0.42.

For eα > 1.25, we have proceeded as follows. First, we have established
that

WFA(12) > W
P∗ (0, 1− l) ⇔ eα < 4

5 l+ l
2+ 3

5

p
(−16l2 + 20l3 + 5l) ≡ k(l)

Second, we have checked that the curve k(l) is above the ”separating
curve” eα = l(2 + l) (except at 1

2 where k(
1
2) = l(2 + l) = 1.25). Thus,

WFA(12) > WP∗ (0, 1 − l) when both types of equilibrium competes in the
eyes of the planner. (Q.E.D).

9.13 Proof of proposition 5

Let us analyze the welfare impact of changes in t, when l and α are ex-
ogenously fixed. For each value of t/α, the market outcome is given by
propositions 1 and 2. The value of the total welfare in each one of the con-
figurations FA, P or FD, is given by (22), (28) and (54) respectively. Ifet ' 1

l(2+l) (partial dispersion) then almost all the residents visit the central
site and derives a total utility u+α from the consumption of both types of
goods. It follows that WP∗ (0, l) → WFA(l) as et → 1

l(2+l) . One also shows

that WP∗ (0, l) > WSY (0) for et ' et0 and any α > 0 (see also figure 4).38

Since WFA(l) and WP∗ are shown to be decreasing in t:39

38For example, for l = 1
2
, WP

∗ (0,
1
2 )−WS(0) = α 184et+80+5et2

288et > 0.
39 d

dt
WP
∗ = − 1

36t2

³
5α2

l
− t2 ¡32l + 5l3 − 28l2 − 12¢´ < 0.
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