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Abstract

There is a family of models with Physical, Human capital and
R&D for which convergence properties have been discussed (Arnold,
2000a; Gómez, 2005). However, spillovers in R&D have been ignored
in this context. We introduce spillovers in this model and derive its
steady-state and stability properties. This new feature implies that
the model is characterized by a system of four differential equations.
A unique Balanced Growth Path along with a two dimensional sta-
ble manifold are obtained under simple and reasonable conditions.
Transition is oscillatory toward the steady-state for plausible values
of parameters.
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1 Introduction

Arnold (1998, 2000a) introduced a model with Physical Capital, Human
Capital and R&D and studied its convergence properties, without consider-
ing spillovers in the R&D technology. Funke and Strulik (2000) integrated
three models as different stages of economic development and presented a
model with Physical Capital, Human Capital and R&D similar to that in
Arnold (1998) as a developed country stage. Gómez (2005) showed that
the convergence features of this model change dramatically when account-
ing for the predetermination of r, and has fully characterized the model
convergence properties and derived stability conditions. In particular, the
model converges through a two-dimensional stable manifold with oscillatory
dynamics. Before these contributions, human capital-based growth mod-
els and R&D-based growth models were studied separately. Benhabib and
Perli (1994) showed that an endogenous growth model with externalities in
human capital accumulation yields indeterminacy of equilibria. Ladrón-de-
Guevara et al. (1997) studied the equilibrium dynamics of two extensions of
the Uzawa-Lucas framework, in which they discovered multiple equilibrium
in a model with leisure, but without externalities. Arnold (2000b,c) demon-
strated that the steady-state of the Romer (1990) model of R&D is globally
saddle-point stable. Eicher and Turnovsky (2001) showed that a two-sector
R&D-based non-scale growth model is represented by a two-dimensional
stable saddle-path with oscillatory transitional dynamics. Arnold (2006)
studied the stability properties of the Jones (1995) model and concluded for
a unique Balanced Growth Path on a two-dimensional stable manifold which
show monotonic transition for a broad range of parameters. These last two
articles showed that the system of differential equations to be analyzed in
non-scale R&D growth models is of order four.

We add spillovers in R&D to the Arnold (2000a) model and derive the
model equilibrium and stability properties. It is worth noting that the ex-
istence and high magnitude of spillovers have been empirically proved by
recent literature (e.g. Grilliches, 1992; Porter and Stern, 2000). Engelbrecht
(1997) and Barrio-Castro (2002) concluded for the existence of statistically
significant R&D spillovers in empirical specifications that included human
capital but models that jointly consider human capital accumulation and
R&D have not taken them into account until now. Additionally to derive
the steady-state and its stability properties, we numerically solve our model
for the transition path.

The consideration of spillovers in the model provides a unique Balanced
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Growth Path. In comparison with the Arnold (1998, 2000a) model, whose
stability properties were studied in Gómez (2005), the consideration of
spillovers increases the order of the differential equations system to four
(as in the non-scale R&D growth models). Because of that this article also
constitutes an example of the analysis of high-dimensional systems of ODEs
in economics and of the possible technical tools to use. In terms of results,
it maintains the oscillatory convergence for typical calibrations. It is also
shown that this model allows for a lower and more reasonable value for the
markup to fulfill the stability conditions in comparison to what happened
in Gómez (2005).

In comparison with Jones’ model, whose stability properties have been
studied in Arnold (2006), the introduction of accumulation of human capital
maintains the unique trajectory to the steady-state. In contrast to what
happened in the Jones model, we show that this model presents oscillatory
convergence for typical and broad parameters values.

In Section 2, we present the model. In Section 3, we present the Bal-
anced Growth Equilibrium and the stability analysis of the steady-state. In
Section 4, we calibrate the model, give some examples and solve the model
numerically. At the end of this section, we discuss the results. In section 5,
we conclude.

2 The Model

This section recapitulates the Arnold (1998, 2000a) model, assuming a differ-
ent function for the production of new ideas, which accounts for the existence
of spillovers in R&D.

2.1 Setup of the Model

Consider a closed economy inhabited by a constant population, normalized
to one, of identical infinitely-lived households that maximize the intertem-
poral utility function:

∫ ∞

0

C1−θ

1− θ
e−ρtdt, ρ > 0, θ > 0, (1)

(where C denotes consumption, ρ is the time-discount rate and θ is the
relative risk aversion coefficient), subject to the budget constraint and the
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knowledge accumulation technology. Human Capital, H, can be devoted to
production (HY ), education (HH) and R&D (Hn), respectively:

H = HY + HH + Hn, (2)

and is calculated according to:

·
H = ξHH . (3)

The accumulation of human capital is a non-market activity. R&D technol-
ogy is equal to that in Jones (1995), with no duplication effects in human
capital, given by

·
n = εHnn

φ, (4)

where 0 < φ < 1 is the parameter that governs spillovers and n is the number
of available varieties. φ > 0 implies that to some extent the development
of new varieties depends on the stock of previous available varieties: the
“stand on the shoulders” effect. With φ = 0, this would be the Arnold
model described in Gómez (2005). The R&D process is possible because of
monopolistic competition in differentiated goods, as we will describe later.
The budget constraint faced by the household is

·
W = rW + w(H −HH)− C. (5)

where r is the return per unit of aggregate wealth, W , and w the wage per

unit of employed human capital, H − HH . Let gz =
·
z
z

denote the growth
rate of any variable z. The first-order conditions for maximization of (1),
using (3) and (5) as constraints give:

gC = (r − ρ)/θ, (6)

gw = r − ξ. (7)

A single homogeneous final good Y is produced with Cobb-Douglas tech-
nology

Y = KβDηH1−β−η
Y , β > 0, η > 0, β + η < 1, (8)

where K is physical capital, HY is human capital allocated to final good
production and D is an index of differentiated goods,
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D =

[∫ n

0

xα
i di

]1/α

, 0 < α < 1, (9)

where xi is the amount used for each one of the n intermediate goods and α
governs the substitutivity between varieties. The market for the final good is
perfectly competitive and its price is normalized to one. Profit maximization
gives the following inverse factor demands:

r =
βY

K
, (10)

PD =
ηY

D
, (11)

and

w =
(1− β − η)Y

HY

, (12)

where PD represents the price index for intermediates.
Each firm in the differentiated-goods sector owns a patent for selling its

variety xi. Let vt denote the expected value of innovation, defined by

vt =

∫ ∞

t

e−[R(τ)−R(t)]π(τ)dτ , where R(t) =

∫ t

0

r(τ)dτ . (13)

Taking into account the cost of innovation as implied by (4), free entry
conditions in R&D are defined as follows:

w/ε > vnφ if
.
n = 0 (Hn = 0) or (14)

w/ε = vnφ if
.
n > 0 (Hn > 0). (15)

where w is the wage paid to human capital.
Finally, no-arbitrage requires that the valorization of the patent plus

profits is equal to investing resources in the riskless asset:

·
v + π = rv ⇔

·
v

v
= r − π/v. (16)

Producers act under monopolistic competition and maximize operating
profits
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πi = (Pxi
− 1)xi. (17)

The variable Pxi
denotes the price of an intermediate and 1 is the unit cost

of Y . From profit maximization in the intermediate-goods sector, each firm
charges a price

Pxi
= 1/α. (18)

With identical technologies and symmetric demand, the quantity supplied
is the same for all goods, xi = x. Hence, equation (9) simplifies to

D = n1/αx. (19)

From PDD = Pxi
xn together with equations (18) and (19) we obtain the

total quantity of intermediates employed as

X = xn = αηY. (20)

After insertion of equations (18) and (20) into (17), profits can be rewrit-
ten as a function of aggregate output and the number of existing varieties:

π = (1− α)ηY/n. (21)

Before we proceed with the analysis we compute some equations that will
be useful. The number of varieties in the denominator of (21) indicates the
business-stealing effect. Insertion of equation (20) in the resource constraint
·

K = Y − ∫ n

0
xidi− C simplifies it to

·
K = (1− αη)Y − C (22)

and insertion of (19) and (20) in the production function (8) gives:

Y 1−η = (αη)ηKβnη 1−α
α (u1H)1−β−η, (23)

where u1 = HY

H
is the proportion of human capital employed in the final

good production. Similarly, we also denote u2 = Hn

H
as the share of human

capital allocated to research and u3 = HH

H
as the share of human capital

allocated to human capital accumulation. After time-differentiation of the
previous function we obtain the output growth rate

(1− η)gY = βgK + [
1− α

α
]ηgn + (1− β − η)(gu1 + gH). (24)
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Log-differentiation of equations (10) and (12) provides

gr = gY − gK , (25)

gw = gY − (gu1 + gH). (26)

To avoid excessive length we will concentrate in the innovative economy

description (
·
n > 0).1

2.2 The Dynamics of the Economy

The economy is characterized by the presence of physical capital accumula-

tion (
·

K > 0), human capital accumulation (
·

H > 0) and R&D (
·
n > 0). We

now derive the system that describes the dynamics of the economy. From
(6) and (22) and then using (10), we obtain gχ:

gχ =

(
1

θ
− 1− αη

β

)
r + χ− ρ

θ
, (27)

where χ = C/K. Departing from (24) and using (25), (26) and then substi-
tuting gw by (7), we obtain gr:

gr = −1− β − η

β
(r − ξ) +

η

β

1− α

α
gn, (28)

Inserting (7), (12), (15) and (21) into (16), we obtain

u1 =
(1− β − η)(ξ + φgn)

ε(1− α)ηψ
. (29)

Using this last equation, eq. (3) and the definition ψ = H/n1−φ (noting
that u1 + u2 + u3 = 1), we obtain the growth rate of ψ:

gψ = ξ

(
1−

[
(1− β − η)(ξ + φgn)

(1− α)η
+ gn

]
1

εψ

)
− (1− φ)gn. (30)

1In fact, as the change we introduce is in the R&D production process, the eventual
existence of a previous stage (

·
n = 0) would not change anything in the developing economy

stage in Gómez (2005) or in Funke and Strulik (2000).
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We note that gn is no longer given as a function of χ and r, which would
be directly substituted in previous equations, as in previous contributions

(e.g. Gómez, 2005:5). From (29), gu1 = (1− φ)gn − gH + φ
·

gn

(ξ+φgn)
. Then, we

note from (26) that gu1 = gY − gw − gH . If φ = 0 then gu1 = gn − gH , as in
Arnold (2000) and one could write gn = gr + 1−αη

β
r−χ−(r−ξ) which would

be substituted in (28) and (30). This would mean that the locus
·

gn = 0 is
independent of other variables in the model and Arnold (2000) could study
convergence using two separate phase diagrams. However, with φ > 0, this
separability is lost. In this case, using (25), gK from (22) and (7), we obtain
the equation that describes the evolution of gn:

·
gn =

ξ + φgn

φ

[
gr +

1− αη

β
r − χ− (r − ξ)− (1− φ)gn

]
. (31)

The system composed by equations (27), (28), (30) and (31) describes
the evolution of the economy. We can further simplify eq. (31), substituting
gr from (28):

·
gn =

ξ + φgn

φ

[
(1− α)η

β
r − χ +

1− η

β
ξ +

(
η

β

1− α

α
− (1− φ)

)
gn

]
. (32)

This is the differential equation that enters the system, when the model
is compared to that in Arnold (2000).

3 Balanced Growth Equilibrium

In this section, we first derive equations that describe the steady-state and
then we study the convergence properties around the steady-state.

3.1 The Steady-State: existence

In this sub-section, we present the equations that describe the steady-state
of the model and demonstrate its existence.

Theorem 1 Let ξ > ρ and θ > 1. There is one unique positive steady-state
of the model given by (r∗, χ∗, ψ∗, g∗n), as follows:
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r∗ =
θ
(

(1−β−η)
η

α
1−α

(1− φ) + 1
)

ξ − ρ

θ
(

(1−β−η)
η

α
1−α

(1− φ)
)

+ (θ − 1)
, (33)

χ∗ =

(
1− αη

β
− 1

θ

)
r∗ +

ρ

θ
, (34)

ψ∗ =
ξ [g∗n(1− α)η + (1− β − η)(ξ + φg∗n)]

(1− α)ηε(ξ − (1− φ)g∗n)
, (35)

g∗n =
r∗(1− θ) + θξ − ρ

θ(1− φ)
. (36)

Proof. The shares of human capital to different sectors must be constant
for an interior steady-state solution. In particular, the fact that the share
in human capital accumulation u∗3 is constant implies by (3) that g∗H is
constant. With u∗1 and u∗3 constant, g∗n and ψ∗ must be constant, by (4)
and (29). Thus g∗H = (1 − φ)g∗n. From constancy of ψ∗ and u∗1 we can
say that g∗Y = g∗K . This equality, equation (24) and the constancy of g∗n,
g∗H and u∗1 imply that r∗, g∗Y and g∗K are constant. Thus χ∗ = (C/K)∗

is constant (to see this divide (22) by K). We now derive necessary and
sufficient conditions for positivity. For r∗ > 0 we reach (A1 + 1)θξ > ρ
and θA1 + (θ − 1) > 0, where A1 = 1−β−η

η
α

1−α
(1 − φ). For χ∗ > 0, we have

(A1 + 1)θξ > A2ρ, where A2 =
θ( 1−αη

β
−1)−A2

(θ 1−αη
β

−1)
, which (if θ ≥ 1) is always

verified for r∗ > 0.2 For ψ∗ > 0 we reach (θ−1)(A1 +1)θξ +A1θρ > 0, using
that r∗ > 0. Finally g∗n > 0 implies ξ > ρ if r∗ > 0. This condition together
with θ ≥ 1 simultaneously imply r∗ > 0, ψ∗ > 0 and χ∗ > 0. These two
simple conditions are sufficient for a feasible steady-state.

Positivity of ψ∗ is directly implied by the transversality condition on H.
Transversality condition on human capital may be written as

lim
t→∞

e−ρtλ2(t)H(t) = 0 (37)

(λ2 is the co-state of H), which converts on

(
−ρ +

·
λ2

λ2
+ gH

)
< 0. As

·
λ2

λ2
=

ρ − ξ and g∗H = (1 − φ)g∗n, the transversality condition is equivalent to
ξ− (1−φ)g∗n > 0, which is equivalent to (θ−1)(A1 +1)θξ+A1θρ > 0, stated
above.

2By initial assumptions on parameters 1− αη > β (see eq. 8 ). For θ ≥ 1, A2 < 1.
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3.2 Stability

We will now analyze the dynamics of the model in the neighborhood of the
steady-state.

The analysis of the linearized system around the steady-state will estab-
lish that for most reasonable values, the system has two eigenvalues with
negative real parts. We also show that initial state conditions K(0), H(0)
and n(0) are sufficient to determine the initial point in the two-dimensional
stable manifold, thus the Balanced Growth Path is uniquely determined.
However, as in Eicher and Turnovsky (2001:95), due to the complexity of
the model, we cannot rule out the case of instability.

Linearizing the system (27), (28), (30) and (31) around its steady-state
(r∗, χ∗, ψ∗, g∗n) gives the following fourth-order system:




·
r
·
χ
·
ψ
·

gn




=




−1−β−η
β

r∗ 0 0 η
β

1−α
α

r∗(
1
θ
− 1−αη

β

)
χ∗ χ∗ 0 0

0 0 ξ − (1− φ)g∗n −B1 − (1− φ)ψ∗
ξ+φg∗n

φ
(1−α)η

β
− ξ+φg∗n

φ
0 B2g

∗
n −B3

ξ
φg∗n







r − r∗

χ− χ∗

ψ − ψ∗

gn − g∗n


 ,

where B1 = ξφ
(1− β − η)

(1− α)η

1

ε
+

ξ

ε
; B2 =

(
η

β

1− α

α
− (1− φ)

)
;

B3 =

(
(1− α)η

β
r − χ +

1− η

β
ξ

)
, (38)

or
·
X = J(X−X∗), where J is the Jacobian in (38). To demonstrate the

conditions under which the system is completely stable and unstable we
state the following theorem.

Theorem 2 If a feasible steady-state exists, there are two possible trajec-
tory solutions: there exists a unique steady-state to which a unique path
converges, or the steady-state is unstable.

The proof makes use of four lemmas. The first two demonstrate that
there are zero or two stable roots, i.e., the stable manifold is two dimensional
or it is unstable. The third presents a sufficient condition under which the
solution is the first: two stable roots. The fourth demonstrates that, when
there are two stable roots, the balanced growth path is uniquely determined
by the state variables in the model.
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Lemma 1 There is an even number of stable roots, zero (instability), two
(stability) or four (indeterminacy).

Proof. This is implied by the fact that, for a feasible steady-state, the
determinant of (38) is positive. This is,

−
[
B2g

∗
n −B3

ξ

φg∗n

]
1− β − η

β
− η

β

1− α

α

[
1

θ
− 1− η

β

]
ξ + φg∗n

φ
> 0. (39)

We provide a proof. Using the fact that, by (32), in steady-state B3 =
−B2g

∗
n, and by simplifying terms, the expression (39) turns out to be equal

to the denominator of r∗, for a positive steady-state (r∗ > 0, χ∗ > 0, ψ∗ > 0,
g∗n > 0):

θ

(
(1− β − η)

η

α

1− α
(1− φ)

)
+ (θ − 1) > 0, (40)

which implies θ > 1 as a sufficient condition. Thus, the system has an even
number of stable roots, zero, two or four under the same conditions for a
positive steady-state.

Lemma 2 There are not four stable roots.

Proof. We can rule out indeterminacy, as there is always a positive root
eliminating the possibility of having four roots with negative real parts. The
case with four negative roots is excluded, as there is a root e3:

e3 = ξ − (1− φ)g∗n (41)

It was already shown that ξ−(1−φ)g∗n > 0 by the transversality condition
on human capital accumulation (see the Proof of Theorem 1).

Lemma 3 A sufficient condition to rule out the instability outcome is 1
α

<

1 + (1−β−η)
η

.

Proof. As by Lemmas 1 and 2 we remain with the possibility of zero
or two stable roots, we only need to discover a sufficient condition for the
existence of one stable root. By Lemmas 1 and 2, this is also a sufficient
condition to obtain two stable roots, which guarantees stability. We use the
Gershgorin Disc Theorem (e.g. Horn and Johnson, 1985) to determine this
sufficient condition. Applying Corollary 1 of the Disc Theorem to matrix
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J in (38), we can see that for any positive real numbers d1, d2, d3, d4 the
eigenvalues of J e1, ..., e4 are contained in the discs:

∣∣∣∣z −
(
−1− β − η

β
r∗

)∣∣∣∣ ≤
d4

d1

∣∣∣∣
η

β

1− α

α
r∗

∣∣∣∣ (42)

|z − χ∗| ≤ d1

d2

∣∣∣∣
(

1

θ
− 1− αη

β

)
χ∗

∣∣∣∣ (43)

|z − (ξ − (1− φ)g∗n)| ≤ d4

d3

|−B1 − (1− φ)ψ∗| (44)
∣∣∣∣z −

(
B2g

∗
n −B3

ξ

φg∗n

)∣∣∣∣ ≤
d1

d4

∣∣∣∣
ξ + φg∗n

φ

(1− α)η

β

∣∣∣∣ +
d2

d4

∣∣∣∣−
ξ + φg∗n

φ

∣∣∣∣ (45)

where |·| denotes the absolute value. Let d1 = d2 = d4 = 1.3 In order
to obtain a sufficient condition to stability, we only need to look at the
first disc with center in −1−β−η

β
r∗ and radius η

β
1−α

α
r∗ and prove that it is

all contained in the left half of the complex plane, so that there exists a
negative eigenvalue within that circle. Signing the terms in (42) we obtain
the sufficient condition:

−1− β − η

β
+

η

β

1− α

α
< 0 (46)

which is easily converted into the meaningful expression in the Lemma’s
text.4

The conditions stated in Theorem 2 and in its lemmas are verified for a
broad range of parameters and particularly for sufficiently low markups, as
indicated by (46).

Lemma 4 If the system of four differential equations has two stable roots,
the state variables K(0), H(0) and n(0) uniquely determine the starting point
in the stable manifold.

3The eigenvalue e3 stated in Lemma 2 can be recovered using the second disc (44) and
setting d3 →∞.

4Other possible sufficient conditions can be achieved. Another intuitive condition is
retrieved from disc (44) setting d1 = d4 = 1, d4 = 0 and d3 →∞:

η
1− α

β

(
1 +

1
α

)
− (1− φ) < 0. (47)

As (47) is a more restrictive condition than (46), we have selected this one for presen-
tation in the main text.
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Proof. The initial values X(0) satisfy:

X(0)−X∗ =
2∑

i=1

Ωibi, (48)

where bi are the eigenvectors corresponding to the two stable eigenvalues,
and Ωi are constants that can be determined. The system (48) comprises
4 equations into 5 unknowns (C/K(0), r(0), gn(0), Ω1(0), Ω2(0)). Equations
(10), (23) and (29) may be re-written as:

r(0) =
(αη)

η
1−η ( (1−β−η)(ξ+φgn(0))

ε(1−α)η
)

1−β−η
1−η n(0)

(1−φ)(1−β−η)+η( 1−α
α )

1−η

K(0)
1−β−η

1−η

(49)

With this additional equation, we reach a system with 5 equations into 5
unknowns. This means that the stable variables select a specific starting
point in the transition path.

This theorem establishes that there is a unique transition path to the
steady-state, under some reasonable conditions. This is a result similar to
that in Arnold (2006) and Eicher and Turnovsky (2001), but in a model
with human capital accumulation.

4 Calibration and Adjustment Paths

In this section, we present calibration exercises and compute an adjustment
path for a set of typical values of parameters. As in Eicher and Turnovsky
(2001) and in Arnold (2006), we use calibration exercises to show that with
usual calibration parameters, we reach two complex conjugate stable eigen-
values and two unstable roots, pointing out that with high probability the
model transition path would be uniquely determined. For the baseline cal-
ibration in Gómez (2005:12), the sufficient condition for stability (46) is
obtained for markups lower than 1.75 (α > 0.57), thus for much reasonable
values.

Remark 1 Experimentation with numerical values shows that there are two
complex conjugate stable eigenvalues for a broad range of parameters (see
Example 1 below), thus predicting oscillatory convergence to the steady-state.
However, it is possible to construct counterexamples (see Examples 2 and 3
below).
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Example 1 For oscillatory transition through a stable path: with the bench-
mark calibration in Gómez (2005) - β = 0.36; η = 0.36; α = 0.4; ξ =
0.05; ρ = 0.023; θ = 2; δ = 0.1 - and φ = 0.4, eigenvalues are 0.0448;
0.2487;−0.0218+0.0740i and −0.0218−0.0740i. For the benchmark calibra-
tion in Funke and Strulik (2000) - β = 0.36; η = 0.36; α = 0.54; ξ = 0.05;
ρ = 0.023; θ = 2; δ = 0.1 - and φ = 0.4, eigenvalues are 0.049; 0.1753;
−0.0345 + 0.0640i and −0.0345− 0.0640i. For the benchmark calibration in
Gómez (2005) and φ = 0.8, eigenvalues are 0.0477; 0.2216; −0.0171+0.0542i
and −0.0171− 0.0542i.

Example 2 For monotonous transition through a stable path: with the first
calibration in Example 1 but with α = 0.94, eigenvalues are 0.0374; 0.0833;
−0.0651 and −0.0560.

Example 3 For an unstable steady-state: with the first calibration in Ex-
ample 1 but with α = 0.20, eigenvalues are 0.0474; 0.5433; 0.0006 + 0.0824i
and 0.0006− 0.0824i.

As a sensitivity analysis exercise we have considered different values for
the substitutability between varieties (which also governs the markup) and
for the spillovers, maintaining other parameters as in the examples. While
variations in the value of spillovers maintain the stability and the oscillatory
pattern (holding other parameters constant), extreme markup values make
the difference regarding determinacy and monoticity. For very high substi-
tutability (low markup) - α ≥ 0.94, the balanced-growth path comes out
to be determinate, but without the transition oscillatory pattern (two neg-
ative real roots). For very low substitutability - α ≤ 0.2 (high markup), the
steady-state turns out to be unstable (the four roots come out to be positive).
No drastic rise in the substitutability parameter α from the ones consider
in the Examples implies that there is a positive threshold for spillovers be-
low which monotonous transitional dynamics arise (i.e. the stable roots are
real). For instance for α = 0.54 the threshold is 0.02 and for α = 0.8 the
threshold is 0.22.

In the next few lines we describe the adjustment path of an economy
calibrated with the first set of values presented in Example 1.5 To integrate
the fourth-order system of differential equations we use the method of back-
ward integration described by Brunner and Strulik (2002). Figure 1 shows

5Results for adjustment paths that result from the different sets of parameter values
presented above are available from the author upon request.
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adjustment paths of the growth rate of physical capital, the interest rate, the
shares of human capital allocated to each of the sectors, the human capital
and varieties growth rates and the human capital-varieties ratio.6
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15



0 100 200 300
0

0.05

0.1

0.15

0.2

0.25

0.3

Years

u
3

0 100 200 300
0.8

0.85

0.9

0.95

1

1.05

Years

H
/n

0 100 200 300

0

5

10

15

x 10
-3

Years

g
H

0 100 200 300
0

0.005

0.01

0.015

0.02

Years

g
n

Figure 1: Transition Paths for Representative Variables

Figures show oscillatory adjustment until the steady-state. Intuitively,
the presence of spillovers increases the investment in R&D and the growth
rates of per capita output, when compared to Gómez’s (2005) results. Over-
all, there is an overshooting effect at the beginning of the transition path,
compared with several oscillations showed in Gómez (2005). Moreover, the
presence of or increase in the spillovers parameter increases the number of
years the economy takes to reach the steady-state.

4.1 Discussion

The model presented and studied here introduces spillovers in the R&D pro-
cess in a model which already included the most studied sources of growth:
physical and human capital and the increasing number of varieties (without
spillovers). Thus, the importance of this model and its features depends cru-
cially on the evidence of the existence of spillovers in the R&D process. In
Romer’s seminal model of endogenous technological change (Romer, 1990)
the more resources the economy allocates to R&D, the more it would grow
(the so-called scale-effect). The evidence on the simultaneity between in-
creasing resources in R&D and stable TFP growth led Jones (1995) to model
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R&D with decreasing returns to the stock of knowledge. This assumption
of 0 < φ < 1 is now assumed in a stream of literature called non-scale
R&D growth models. Some studies have supported the existence of high
spillovers calculating a rate of social return to R&D higher than the private
one. Jones and Williams (1998), for instance, conclude that optimal R&D
expenditure is at least four times higher than decentralized spending. A
fruitful literature has regressed TFP growth on R&D stock and concluded
for significant effects (Coe and Helpman, 1995). With particular interest for
evaluating the empirical plausibility of our model with human capital accu-
mulation are the extensions to the Coe and Helpman regressions provided
by Engelbretch (1997) and Barrio-Castro (2002). Apart from a superior role
for human capital reported in this last article, both conclude for a significant
relationship between TFP and the stock of knowledge, even in the presence
of human capital. Thus, the presence of spillovers in R&D is not only at the
center of recent endogenous growth theory, but has also been empirically
supported.

This model also predicts features that were not addressed by the earlier
ones. The Arnold/Gómez model predicts oscillatory convergence, but the
condition for stability implies implausible high values for the markups. Nor-
rbin (1993) presented markups for sectors in the USA, all below 1.7, while
the condition for stability in Gómez (2005) implies a markup higher than
2. It is worth noting that in our model, for reasonable values of markups
(between 1.2 and 1.4 in Norrbin, 1993), the uniquely determined oscilla-
tory pattern through a two-dimensional stable manifold arises. For lower
markup, the model continues to be stable but presents a monotonous tra-
jectory to the steady-state. Whether the evidence calls for monotonous or
oscillatory convergence is an issue under discussion. Historical evidence of
the stages of development of the most developed countries seems to suggest
monotonous convergence (Maddison, 2001:74). Nevertheless, if one thinks
on the experience of different less developed economies in the post-war pe-
riod, one can argue that modern economies grow through cycles (Fiaschi
and Lavezzi, 2003, 2007). Our Figure 1 (and all paths resulting from cali-
bration values in Example 1) resembles an initial fast-growing take-off and
then a slowdown until the steady-state, similar to what was suggested by Fi-
aschi and Lavezzi. The Eicher and Turnovsky (2001) model also predict an
overshooting of final values during the transition. The Jones/Arnold model
also predicts monotonic or oscillatory convergence (but with a prevalence of
monotonic convergence for most sets of parameters) and can rule out the
case of unstable steady-state. This is not the case in Eicher and Turnovsky
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(2001), where instability cannot be ruled out. That article also presents a
sufficient condition for stability. For high markups in our model, the steady-
state is unstable. The dependence of our model properties on the markup is
interesting, given Gali’s (1994) contribution on the crucial effects of markups
in growth models. There are interesting policy implications from the suffi-
cient conditions stated in Lemma 3: economies with relatively high share of
physical capital relative to the differentiated-goods sector share (high β/η),
with relatively high markup (high 1/α) and high spillovers (high φ) tend to
be unstable, thus showing diverging paths from the initial endowments.

5 Conclusion

The consideration of spillovers in a model with both R&D processes and
human capital accumulation has not been done previously. Nevertheless,
two relevant empirical contributions (Engelbrecht, 1997 and Barrio-Castro,
2002) have proved that in empirical specifications that included human cap-
ital, R&D spillovers were still high in value and presented high statistical
significance.

We introduce R&D spillovers into the endogenous growth model with
physical capital, human capital and varieties due to Arnold (1998, 2000a).
We study the steady-state and the convergence properties of the model.
Furthermore, we solve it numerically to obtain a transition path to the
steady-state.

The dynamics of the model are characterized by the behavior of a system
of four differential equations. This article provides one more example of the
analysis of a system of four ODEs in economics, and of the possible tools to
implement.

The system can be either stable or unstable. Under mild conditions it
proves to be characterized by a two-dimensional stable manifold and con-
verges through a uniquely determined balanced growth path to the steady-
state. Thus, when compared to the model without spillovers, their presence
increases the order of differential equations system to four, also providing
a two-dimensional stable manifold. This model maintains the oscillatory
convergence and allows for more reasonable markup values to fulfil stability
conditions. When compared with a model without human capital accumu-
lation (Jones, 1995), the stability properties also indicate a two-dimensional
stable manifold. Two differences arise. First, we cannot rule out instability
as can be done in Jones’ model. Second, for most reasonable parameter sets,
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the transition to the steady-state in the model presented here is oscillatory
and not monotonous, as it is in the Jones model.

We found a crucial effect of the markup distortion in the convergence
properties of the model. For high markups the steady-state is unstable. For
intermediate values, the steady-state is stable and the transition oscillatory.
For low markups, the steady-state is stable and the transition monotonous.
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