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Abstract 

 
The distribution of the aggregate claim size is the considerable importance in insurance 
theory since, for example, it is needed as an input in premium calculation principles and 
reserve calculation which plays an important paper in ruin theory. In this paper a 
Bayesian study for the collective risk model by incorporating a prior distribution for 
both, the parameter of the claim number distribution and the parameter of the claim size 
distribution is made and applied to the variance premium principle. Later a sensitivity 
study is to carry out on both parameters using Bayesian global robustness. Despite the 
complicated form of the collective risk model it is shown how the robustness study can 
be treated in an easy way. We illustrate the results obtained with numerical examples. 
 
JEL: C11; G22 
 
Key Words: Bayesian Robustness, Contamination Class, Variance Principle. 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                
 
1 Departamento de Métodos Cuantitativos para la Economía y la Empresa. Universidad de Granada 
(Spain). E-mail: bastida@ugr.es. 
 
2 Departamento de Métodos Cuantitativos para la Economía y la Empresa. Universidad de Granada. 
(Spain). E-mail: pilarfs@ugr.es. 
 
3 Departamento de Métodos Cuantitativos para la Economía y la Empresa. Universidad de Las Palmas de 
Gran Canaria. (Spain). E-mail: egomez@dmc.ulpgc.es. 
 



 3 

1 INTRODUCTION  

 
In Actuarial Science, the collective risk model is described by a frequency distribution 
for the number of claims K  and a sequence of independent and identically distributed 
non-negative random variables representing the size of the single claims, iX . In order to 

make the model mathematically tractable the individual claim sizes are assumed to be 
independent from the claim counts. Then the aggregate loss X  is the sum of the 

individual claim sizes, i.e. 
1

, 0,
n

i

i

X X N
=

= >∑  and 0,X = for 0.N =  It is easy to show 

(see Gerber (1979)) that the expectation and variance of X are given by 
 

2

( ) ( ) ( ),

Var( ) Var( ) ( ) ( ) Var( ).

i

i i

E X E X E N

X X E N E X N

=

= +
 

 
First Expression corresponds to the net risk premium. The second one can be used to 
compute the variance risk premium by using the formula 

2( ) / ( ) ( ) Var( ), 0.P E X E X E X Xδ δ= = + >  For a revision of the premium calculation 
principles the lector is remitted to the papers of Gerber (1979), Goovaerts and De 
Vylder (1979), Heilmann (1989), Hϋrlimann (1994), Rolski et al. (1999) and Young 
(2004); among others. In practice, the distribution of the aggregate loss X depends on a 
parameter or a vector of parameters which are assumed to be unknown and random; 
therefore the risk premium is also unknown. When Bayesian models are implemented 
for premium calculations principles in Actuarial Statistics a structure function (prior 
distribution), following a Bayesian paradigm, is assumed in a natural way for the 
unknown parameter in the insurer’s portfolio. This portfolio is assumed to include a 
finite number of policies or contracts. This let us to consider that the portfolio is not 
homogeneous and therefore that across the policies exist a random variable whose 
realizations are the values of the risk parameter for policies belonging to the portfolio, 
and its distribution is the prior distribution. Then, assuming a prior distribution on the 
vector of parameters the collective premium is computed as ( )' ( ) ( )P E E X E P= =  and 

' 2( ) / ( ),P E P E P=  for the net and variance premium principles, respectively. Here, the 
first expectation is taken over the parametric space of the unknown vector of 
parameters. If experience is available the Bayes premium can be computed in the same 
form as the collective premium by interchanging the prior by the posterior distribution 
which represents the best estimator of the unknown risk premium.  Due to its simple 
form, the net premium is the most popular premium calculation principle used in the 
literature. The variance premium has the advantage with respect to the net premium that 
this takes account only the expected claims while the first incorporates a safety loading 
proportional to the variance. 

In this paper a full Bayesian methodology is carried out on the collective risk 
model assuming a prior distribution for both, the parameter of the claim count 
distribution and the parameter of the claim size distribution. A study of this nature has 
been considered by Frangos and Vrontos (2001) for the net premium and Pai (1997) in a 
reinsurance context but in our knowledge never under other premium calculation 
principle. A similar study by considering only a prior distribution on the parameter of 
the claim count distribution has been treated extensively in the literature. See for 
example Freifelder (1974), Rolski (1999) and Gómez et al. (2002). On the other hand, 
Bayesian methods have been widely criticized due to their use depends strongly on the 
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prior distribution which has a strong subjective character (see Klugman, 1987, p.318 
and Rios et al., 1999). Therefore, we also focus on prior influence, measuring changes 
of the Bayes premium with respect to changes in the prior distribution. Most of the 
previous works done to deal with this problem have focused on interchanging the prior 
distribution by a new prior which is moved into a plausible class of distributions and the 
range of variation of the quantity of interest is computed. This topic is called global 
robustness analysis (Ríos and Ruggeri (2000) and Sivanganesan and Berger (1989); 
among others). In fact, robustness has been treated extensively in the actuarial literature 
(Eichenauer et al. (1988); Makov (1995); Ríos et al. (1999) and Gómez et al. (2002)) 
but never under the model proposed here, a sensitivity study on the parameters of the 
distribution of total claims payable by an insurer when the frequency of claims is a 
Poisson random variable and the claim size follows an exponential distribution. This 
model has been studied in deep by many authors in the literature including for example 
to Freifelder, (1974), Seal (1979), Gerber (1979) and Gómez et al. (2002); among 
others. Bayesian sensitivity of this model only has been dealt in the work of Gómez et 
al. (2002) but including only the robustness with respect to the parameter of the claim 
number distribution. Despite the complicated form of the collective risk model it is 
shown how the robustness study can be treated in an easy way by assuming only a 
single period of observation. 

The rest of the paper is organized as follows: Section 2 addresses the analysis of 
the model to be considered. Section 3 describes the True Individual Premium, the a 

priori Premium and the a posteriori Premium for the Variance Premium Principle. 
Section 4 analyses the robustness of the a posteriori Premium with respect to the 
specification of the a priori distribution of λ  and θ  respectively. In both cases, the 
hypothesis of independence between the parameters is maintained. Conclusions and 
comment upon questions that remain open to further studies are drawn in Section 5.  
 
2.-THE MODEL 
 
A simple and useful model to describe the model above is to assume that the number of 
claims follows a Poisson distribution with parameter 0,θ >  i.e. 

Pr( ) ( ) / !, 0,1,...,n
N n p n e n n

θθ θ−= = = =  and that the size of the single claims 

follows an exponential distribution with parameter 0,λ >  i.e. ( ) , 0.ix

i if x e x
λλ λ −= >  

 It is well known (see Freifelder (1974), Seal (1979) and Gómez et al. (2002)) 
that the likelihood of the model proposed is given by 
 

( )
( )

( )
( )

1
( ) ( )

1
1 1

1
2 , 0,

( , ) 1 ! ! 1 ! !

, 0,

nn n x n
x x

n n

xx e e
e e I x x

L x n n x n n x

e x

λ θ
θ λ θ λ

θ

λθλ θ λθ
λθ

θ λ

− − −∞ ∞
− + − +

= =

−


= = >

= − −


=

∑ ∑

                (1)     
where ( )I xυ is the modified Bessel function of the first kind given by 

( )
( )

2

0

2
( ) , , ,

! 1

k

k

x
I x x

k k

υ

υ υ
υ

+
∞

=

= ∈ ∈
Γ + +

∑ � �  

and therefore, the convergence of the series is guaranteed. 
Assume that the parameters θ  and λ  are independent, and let us specify an a 

priori Gamma distribution for each of them (which in both cases is the conjugate a 
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priori distribution), ( )10π θ  = 
( )

1
a

a bb
e

a

θθ − −

Γ
, ( )01π λ  = 

( )
1

c
c dd

e
c

λλ − −

Γ
. Therefore, the 

joint a priori distribution is ( )0 ,π θ λ  = ( )10π θ . ( )01π λ  for positive θ ,λ ; a, b, c and d 

are positive, known constants. 

Referring the notation to ( )10π θ , the value of mathematical expectation is 
a

b
, 

and that of the variance is 
2

a

b
; the distribution is unimodal when a > 1 and in this case, 

the value of the mode is 0θ  = 
1a

b

−
; Pearson’s coefficient of asymmetry is never 

annulled and the central moment of order 3 is only annulled when a = 0. 
 

By direct integration, it is straightforward to find that the marginal distribution 
of ‘x’ is expressed as follows:  
 

( )0/m x π  =  
θ λ
∫ ∫  L(x / θ , λ )  ( )0 ,π θ λ  dθ  dλ  = 

 

=   
( ) ( ) ( ) ( )

1 1

1

a c

a c

b d

a c b x dΓ Γ + +
 

( ) ( )

( ) ( ) ( )

1

1 1 ! ! 1

n

n n
n

x a n c n

n n b x d

−∞

=

Γ + Γ +

− + +
∑  =  

 

= 
( ) ( ) ( ) ( )

1 1

1

a c

a c

b d

a c b x dΓ Γ + +
 

1
n

n

T
∞

=

∑ ;                                   (2) 

denoting,  

Tn ≡  T(n; x, a, b, c, d) = 
( ) ( )

( ) ( ) ( )

1

1 ! ! 1

n

n n

x a n c n

n n b x d

− Γ + Γ +

− + +
. 

therefore, 
 

( )0/m x π  = 
( ) ( ) ( ) ( ) 1

1 1
; 0

1

; 0
1

a c

na c
n

a

b d
T x

a c b x d

b
x

b

∞

=


>

Γ Γ + +

  

=  + 

∑
                                (3) 

 
It is straightforward to show that the series in the first row of expression (2) is a 

convergent series of positive terms for any positive value of a, b, c, d, x. 

We now provide an example in which the marginal distribution ( )0m x π  is 

determined.4 
 

Example 1.- Numerical illustration and graphical representation of the Marginal 
Distribution. 

                                                
4 Programs created within the Matemática software package, used to calculate this marginal distribution 
and other future examples, are available to any person who requests them. 
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Assume the following a priori distributions are specified, 

( ) ( )2,7 5,3 .Gamma y Gammaθ λ→ →  Then, 

 
 

1 2

5
10

7.7519 ( 4)( 3)( 2)( 1)
     x > 0

m( x / ) ( 3) 8 ( 3)

0.7656                                                              x = 0

n

n n
n

x n n n n n

x xπ

−∞

=

 + + + +


= + +



∑  

 
the values of which are incorporated into the following table: 
 
(Table 1) 
 
(Figure 1) 

 
 

The a posteriori distribution of (θ , λ ) given the sampling observation ‘x’, is 

obtained as follows: 
 

( )0 , / xπ θ λ  = 
( ) ( )

( )
0

0

/ , ,

/

L x

m x

θ λ π θ λ

π
 = 

 

= 

( )
( )

( ) ( )

( )
( ) ( )

( )

1 1 ( 1) ( )

11 1

1
1 ! !

; 0
1 1

1

1
; 0

n

a c b x d

n

na c

n

a c

ba c d

x
e e

x n n
x

T
b x d

b d
e e x

a c

θ λ

θ λ

λ θ
θ λ

θ λ

− − − + − +

− +− − −




− >
 + +

 +
 =

Γ Γ

∑

∑ .                                     (4) 

 
The series of the numerator in the first row in Expression (4) is the same as that in 
Expression (1) and the series of the denominator is the same as that in Expression (2). 
 
3.- THE VARIANCE PREMIUM PRINCIPLE 
 
The following Lemmas 1 and 2 are well known (see, for example, Gómez (1996)). We 
reproduce them here for the sake of completeness, and merely sketch out the proof. 
 
Lemma 1 
The True Individual Premium, P, is equal to  
 

P = 
2θ

λ

+
.                                        (5) 

 
Proof 
The True Individual Premium is defined as: 
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P = 
[ ]

2
E X

E X

    = [ ]E X  + 
[ ]

[ ]
Var X

E X
. 

 
By mathematical operations, numerator is 
 

2
E X    = ( )2 / ,x L x dxθ λ∫  = 

( )

1
2

1 1 ! !

n n n
x

n

x
x e e dx

n n

θ λ λ θ−∞
− −

= −
∑∫  =  

 

=
( )

1

1 1 ! !

n n
n x

n

e
x e dx

n n

θ
λλ θ−∞

+ −

= −
∑ ∫  = 

2

e θ

λ

−

 
( )

( )1

1

1 !

n

n

n

n

θ∞

=

+

−
∑  =  

 

= 
2

e
θ

λ

−

 ( )2 2e
θ θ θ+  = 

2

2

2θ θ

λ

+
;  

 
In an analogous way, denominator is,  
 

[ ]E X  = ( )/ ,xL x dxθ λ∫  = 
( )

1

1 1 ! !

n n n
x

n

x
xe e dx

n n

θ λ λ θ−∞
− −

= −
∑∫  =  

 

= 
( )1 1 ! !

n n
n x

n

e
x e dx

n n

θ
λλ θ−∞

−

= −
∑ ∫  = 

θ

λ
;  

 
By substitution in the definition of P we obtain the expression we were looking for. 

� 
Lemma 2 
The a priori premium, P’, is obtained with the following expression: 
 

P’ = 
( )

( )( )

21 4 4

2 2

d a a ab b

b c a b

 + + + 
− +

.           (6) 

Proof 

The a priori Premium is defined as P’ = 
( )

( )

2
0

0

,

,

P d d

P d d

π θ λ θ λ

π θ λ θ λ

∫
∫

 with P = 
2θ

λ

+
. 

 
The numerator of P’ is obtained by integration: 
 

( )2
0 ,P d dπ θ λ θ λ∫  = 

( )
( )

2

02

2
, d d

θ λ

θ
π θ λ θ λ

λ

+
∫ ∫  =  

 

= 
( ) ( )

( )
2 1 1

2

1
2

a c
a b c db d

e d e d
a c

θ λ

θ λ

θ θ θ λ λ
λ

− − − −
   

+   
Γ Γ    

∫ ∫  =  
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= 
( )

( )( )

2 2

2

1 4 4

1 2

d a a ab b

b c c

 + + + 
− −

. 

 
The denominator of P’ is obtained in a similar form, 
 

( )0 ,P d dπ θ λ θ λ∫  = ( )0

2
, d d

θ λ

θ
π θ λ θ λ

λ

+
∫ ∫  = 

( )
( )

2

1

a b d

b c

+

−
. 

 
Just by substitution we obtain the expression in the definition of P’. 

� 
 

Lemma 3 
The a posteriori premium, P*, is expressed by 

 

( )0* , /P xπ θ λ    =  

 

= 

( )
( )( ) ( )( ) ( )

( )( )

( )

( )
( )( )( )

2

1

1

2 2

1 4 1 4 1

2 1
; 0

2 2
1

1

4 4 5 8 4
; 0

2 2 1 2

n

n

n

n

a n a n a n b b
x d T

c n c n
x

a b n
b T

c n

a b ab a b d
x

a b b c

∞

=

∞

=

 + + + + + + + +
+

+ − + − > + + + + + −

 + + + + +
 =

+ + + −

∑

∑ .       (7) 

 
Proof 

The a posteriori premium is defined as P* = 
( )

( )

2
0

0

, /

, /

P x d d

P x d d

π θ λ θ λ

π θ λ θ λ

∫
∫

 with  

P = 
2θ

λ

+
. 

 
For x>0, by integration we obtain the numerator of P* 
 

( )2
0 , /P x d dπ θ λ θ λ∫  = 

( )
( )

2

02

2
, / x d d

θ λ

θ
π θ λ θ λ

λ

+
∫ ∫  =  

 

= 
( ) ( ) ( )0/

a c
b d

a c m x πΓ Γ
 

( )

1

1 1 ! !

n

n

x

n n

−∞

= −
∑  ( ) ( )2 112 ba n

e d
θ

θ

θ θ θ
− ++ −

 
+ 

 
∫  ( )3 x dc n

e d
λ

λ

λ λ
− ++ −

 
 
 
∫ = 

 

= 
( )

( )

2

2
1

x d

b

+

+
 

( )( ) ( )( ) ( )
( )( )

2

1

1

1 4 1 4 1

2 1 n

n

n

n

a n a n a n b b
T

c n c n

T

∞

=

∞

=

+ + + + + + + +

+ − + −
∑

∑
 , 

and the denominator of P*: 
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( )0 , /P x d dπ θ λ θ λ∫  = ( )0

2
, / x d d

θ λ

θ
π θ λ θ λ

λ

+
∫ ∫  = 

 

= 
( ) ( ) ( )0/

a c
b d

a c m x πΓ Γ
 

( )

1

1 1 ! !

n

n

x

n n

−∞

= −
∑  ( ) ( )112 ba n

e d
θ

θ

θ θ θ
− ++ −

 
+ 

 
∫  ( )2 x dc n

e d
λ

λ

λ λ
− ++ −

 
 
 
∫ = 

 

= 
1

x d

b

+

+
 1

1

2 2
1 n

n

n

n

a b n
T

c n

T

∞

=

∞

=

+ + +

+ −
∑

∑
. 

 
In an analogous form, for x=0, we obtain the numerator  
 

( )
( )

2

02

2
, / 0 d d

θ λ

θ
π θ λ θ λ

λ

+
∫ ∫  =  

 

= ( ) ( ) ( )
2

10 012

1 1
2

a
b

e d d
b

θ

θ λ

θ π θ θ π λ λ
λ

−+ 
+ 

 
∫ ∫  = 

 

= 
( ) ( )( )

2 2 2

2

4 4 5 8 4

1 21

a b ab a b d

c cb

+ + + + +

− −+
, 

 
and the denominator of P*: 

 

( )0

2
, / 0 d d

θ λ

θ
π θ λ θ λ

λ

+
∫ ∫  =  

 

= ( ) ( ) ( )10 01

1 1
2

a
b

e d d
b

θ

θ λ

θ π θ θ π λ λ
λ

−+ 
+ 

 
∫ ∫ = 

 

= 
( )
( )( )

2 2

1 1

a b d

b c

+ +

+ −
. 

 
So the expression in the definition of P* is attached by substitution. 

� 
Example 2..- Numerical illustration and graphical representation of the a Posteriori 
Premium. 

We continue to consider the a priori procedure used in Example 1, such that 
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[ ]

n-1 2 2

2 n n
n=1

2
0

n n
n=1

x (n +37n+326)(n+4)(n+3)(n+2)(n+1) n
(x+5)

(n +3n+2)8 (x+3)
         x > 0

P* π (θ, λ / x)  = (n+3)(n+2)(n+1) n
8

8 (x+3)

                                        2,2638                            

∞

∞

∑

∑

                x = 0









 

 
The following table extracts the values of the a posteriori premium for different values 
of x, the value of the a priori premium in the mentioned example and its corresponding 
graph. 
 
(Table 2) 
(Figure 2) 
 

4.- ANALYSIS OF ROBUSTNESS 

 
In this section, we examine, independently, the analysis of Bayesian robustness for each 
of the two parameters θ  and λ , and of the likelihood, with respect to the specified a 

priori distribution. 
The analysis carried out is based on contamination classes (see Berger (1994); 

Sivaganesan (1988), (1989), (1991); and Sivaganesan and Berger (1987), (1989)), in 
which it is assumed that the a priori distribution of the parameter, denominated φ , 
belongs to a class of possible distributions of probability defined by the contamination 
of a singular a priori distribution, considering various contaminant classes. Specifically, 
this approach consists in assuming that a singular a priori distribution ( )π φ  is specified 

for the parameter φ , but that there exists a degree of uncertainty concerning this 
specification, this uncertainty being quantified by the amount ε ; in other words, it can 
only be specified that the a priori distribution of φ  belongs to a class of probability 
distributions taking the following form: 
 

                    ( ),Gφ π ε  = ( ) ( ) ( ) ( ){ }1 ;c
q q Qπ φ ε π φ ε φ= − + ∈                                     (8) 

 
where 

( )π φ  is the singular a priori distribution specified for φ ; 

[ ]0,1ε ∈  is the degree of contamination; and 

Q is the class of contaminant distributions of probability, the definition of which 
incorporates non-renounceable aspects of the a priori distribution of φ . 

An extreme case would be: Q1 ={all the distributions}. Another case we will 
examine is that of Q2 = {all the unimodal distributions with the same mode as ( )π φ }. 

We write ( )( ) ,i
Gφ π ε , with i = 1 and 2, to indicate that the contaminant class is 

Qi. 
The aim of the present study is to analyze the range of variation of the 

magnitude of interest, which in this case is the a posteriori premium ( )0* , /P xπ θ λ   : 

- on the one hand, when the a priori distribution  of λ varies within a class of 
contamination distributions, for different degrees of contamination, i.e. for 
different values of ε . The corresponding a priori distributions are expressed as 



 11 

( ) ( ) ( )2
0 10,c cπ θ λ π θ π λ= , with ( ) ( ) ( )01,

ic
Gλπ λ π ε∈  

- on the other hand, when the a priori distribution of θ  varies within a class of 
contamination distributions, for different degrees of contamination, i.e. for 
different values of ε . The corresponding a priori distributions are expressed as 

( ) ( ) ( )1
0 01,c cπ θ λ π θ π λ= , with ( ) ( ) ( )10 ,ic

Gθπ θ π ε∈  

Throughout the analysis, we maintain the hypothesis that λ  and θ  are 
independent. For the purposes of the present study, the following results are useful: 
 
Lemma 4 
If A > 0 and f(x) and g(x) are continuous functions with g(x) ≥  0, then, 
 

( )( )

sup inf
dF xdF x

 
 
 

 
( ) ( )

( ) ( )

B f x dF x

A g x dF x

+

+

∫
∫

 = sup inf
xx

 
 
 

 
( )
( )

B f x

A g x

+

+
                       (9) 

 
where the upper (lower) is taken for all the probability distributions dF(x), and where A, 

B, f(x), g(x) are such that the upper (lower) of 
( )
( )

B f x

A g x

+

+
 is obtained for any value of x. 

 
Proof 
This result is well known; see, for example, Sivaganesan and Berger (1987). 

� 
 
Lemma 5 

Let ( )q φ  be a unimodal distribution with mode in 0φ  and let ( )h φ  be a function of φ ; 

then 
 

( ) ( )h q d
φ

φ φ φ∫  = ( ) ( )*
z

h z dF z∫ , 

 

where F(z) is a distribution function and ( )
( )

( )

0

0

0

1
; 0

*

; 0

z

h d z
zh z

h z

φ

φ

φ φ

φ

+
≠

= 


=

∫ . 

Proof 
This result, for unimodal distributions, based on the characterization by Khintchine (see 
Feller, 1978), is well known, see for example Sivaganesan and Berger (1989). 

� 
 
Lemma 6 

For any pair of real numbers a and b such that a<b and n Z
+∀ ∈ , the following equality 

is found: 
 

b

x n

a

e d
λ λ λ−

∫  = 
( ) 1

0

! 1

!

n
n k ax n k bx

k
k

n
a e b e

n k x

− − − −

+
=

 − −
∑ .                

 
Proof 
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The proof is obtained by induction, utilizing integration by parts.  
� 

 
Lemma 7 

For ( ) ( ) ( )2
0 10,c cπ θ λ π θ π λ= , with ( ) ( ) ( )01,

ic Gλπ λ π ε∈  we have that 

 

( )2
0* , /c

P xπ θ λ    = 
( ) ( ) ( )

( ) ( ) ( )

1 1

2 2

1

1

C g q d

C g q d

λ

λ

ε ε λ λ λ

ε ε λ λ λ

− +

− +

∫

∫
.                            (10) 

where, 

( )1g λ  = ( ) ( ) ( )
2

102

1
2 / ,L x d

θ

θ θ λ π θ θ
λ

+∫  =  

 

= 

2
11 13 142

1 1 1

15 2

1
; 0

1
; 0

x n n n

n n n

n n n

C e R n C R n C R x

C x

λ λ λ λ
λ

λ

∞ ∞ ∞
−

= = =

  
+ + >    


 =

∑ ∑ ∑
;             (11) 

 

( )2g λ  = ( ) ( ) ( )10

1
2 / ,L x d

θ

θ θ λ π θ θ
λ

+∫  = 

 

= 
21 23

1 1

24

1
; 0

1
; 0

x n n

n n

n n

C e R n C R x

C x

λ λ λ
λ

λ

∞ ∞
−

= =

  
+ >    


 =

∑ ∑
;                                           (12) 

 

1C  ( )1 , , , ,C a b c d x≡ = ( ) ( )1 01g d
λ

λ π λ λ∫  =  

 

=  ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

2
13 14

12
1 1 1

2 2 2

2 2

; 0
1 2 1 2 1 2

4 4 8 4
; 0

1 3 2

n n n

n n n

a

a

T n C T n C T
C x

n c n c n c n c n c n c

b a b ab a b d
x

b c c

∞ ∞ ∞

= = =

+

  
+ + >  

+ − + − + − + − + − + −  


+ + + + +
=

+ − +

∑ ∑ ∑ ;       (13) 

 

2C  ( )2 , , , ,C a b c d x≡ = ( ) ( )2 01g d
λ

λ π λ λ∫  =  

 

= 
( )

( ) ( )

22 23
1 1

1

; 0
1 1

2 2
; 0

1 1

n n

n n

a

a

T n T
C C x

n c n c

b a b d
x

b c

∞ ∞

= =

+

  
+ >  + − + − 


+ + =

 + −

∑ ∑
;                                  (14) 

 
denoting, 
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( )
( )

( ) ( )

1

, ,
1 ! ! 1

n

n n n

x n a
R R a b x

n n b

− Γ +
≡ =

− +
; 

 

11C  ( )11 ,C a b≡ = 
( ) ( )

2
1

a

a

b

b a
+

+ Γ
; 

 

12C  ( )12 , , , ,C a b c d x≡ = 
( ) ( )( ) ( )

2 2
1

a c

a c

b d

a c b x d
+ −

Γ Γ + +
; 

 

13C  ( )13 ,C a b≡ = 2 4 5a b+ + ; 

 

14C  ( )14 ,C a b≡ = 2 24 4 5 8 4a b ab a b+ + + + + ; 

 

15C ( )15 ,C a b≡ =
( )

( )

2 2

2

4 4 5 8 4

1

a

a

a b ab a b b

b
+

+ + + + +

+
 

 

21C  ( )21 ,C a b≡ = 
( ) ( )

1
1

a

a

b

b a
+

+ Γ
; 

 

22C  ( )22 , , , ,C a b c d x≡ = 
( ) ( )( ) ( )

1 1
1

a c

a c

b d

a c b x d
+ −

Γ Γ + +
; 

 

23C  ( )23 ,C a b≡ = 2 2a b+ + . 

 

24C  ( )24 ,C a b≡ =
( )

( )
1

2 2

1

a

a

b a b

b
+

+ +

+
 

 
Proof 

( )2
0* , /c

P xπ θ λ    = 
( )

( )

2 2
0

2
0

, /

, /

c

c

P x d d

P x d d

π θ λ θ λ

π θ λ θ λ

∫
∫

 = 

( )
( )

( )

2

2
02

2
0

2
, /

2
, /

c

c

x d d

x d d

θ λ

θ λ

θ
π θ λ θ λ

λ

θ
π θ λ θ λ

λ

+

+

∫ ∫

∫ ∫
 =  

 

= 

( ) ( ) ( )
( )

( ) ( )
( )

2 2
0

2 2
0

2
0

2
0

2 / , ,

/

/ , ,2

/

c

c

c

c

L x
d d

m x

L x
d d

m x

θ λ

θ λ

θ θ λ π θ λ
θ λ

λ π

θ λ π θ λθ
θ λ

λ π

+

+

∫ ∫

∫ ∫
 =  
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= 

( )
( ) ( )

( ) ( )

2

2
02

2
0

2
/ , ,

2
/ , ,

c

c

L x d d

L x d d

θ λ

θ λ

θ
θ λ π θ λ θ λ

λ

θ
θ λ π θ λ θ λ

λ

+

+

∫ ∫

∫ ∫
 = 

 

= 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

102

10

1
2 / ,

1
2 / ,

c

c

L x d d

L x d d

λ θ

λ θ

π λ θ θ λ π θ θ λ
λ

π λ θ θ λ π θ θ λ
λ

 
+ 

 
 

+ 
 

∫ ∫

∫ ∫
 =  

 
 

= 
( ) ( )

( ) ( )

1

2

c

c

g d

g d

λ

λ

λ π λ λ

λ π λ λ

∫

∫
 = 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 01

2 01

1

1

g q d

g q d

λ

λ

λ ε π λ ε λ λ

λ ε π λ ε λ λ

− +  

− +  

∫

∫
 = 

 

= 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 01 1

2 01 2

1

1

g d g q d

g d g q d

λ λ

λ λ

ε λ π λ λ ε λ λ λ

ε λ π λ λ ε λ λ λ

− +

− +

∫ ∫

∫ ∫
 =  

 

= 
( ) ( ) ( )

( ) ( ) ( )

1 1

2 2

1

1

C g q d

C g q d

λ

λ

ε ε λ λ λ

ε ε λ λ λ

− +

− +

∫

∫
 .                                                                      

 

Operating for ( )1g λ , we get Expression (11). 

 

( )1g λ  = ( ) ( ) ( )
2

102

1
2 / ,L x d

θ

θ θ λ π θ θ
λ

+∫  =  

= 
( )

a
xb

e
a

λ−

Γ 2

1

λ
 

( )
( ) ( )

1
2 11

1

2
1 ! !

n n
bn a

n

x
e d

n n

θ

θ

λ
θ θ θ

−∞
− ++ −

=

+
−

∑ ∫  = 

 

= 
( )

a
xb

e
a

λ−

Γ 2

1

λ
 

( )
( )

( )

( )

( )

( )

( )

1

2 1
1

2 1
4 4

1 ! ! 1 1 1

n n

n a n a n a
n

n a n a n ax

n n b b b

λ −∞

+ + + + +
=

 Γ + + Γ + + Γ +
+ + 

− + + +  
∑ ; 

 
For ( )2g λ , 1C  and 2C  expressions (12), (13) y (14) are obtained in a similar form 

to ( )1g λ . 

 
� 

 
It is straightforward to show that the series in the expressions (11), (12), (13) and (14) 
are convergent series of positive terms for any positive value of a, b, c, d, x. 
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Lemma 8 

For ( ) ( ) ( )1
0 01,c cπ θ λ π θ π λ= , with ( ) ( ) ( )10 ,ic

Gθπ θ π ε∈  we find that, 

 

( )1
0* , /c

P xπ θ λ    = 
( ) ( ) ( )

( ) ( ) ( )

1 1

2 2

1

1

D h q d

D h q d

θ

θ

ε ε θ θ θ

ε ε θ θ θ

− +

− +

∫

∫
,                          (15) 

 
where 

( )1h θ  = ( )
2

2θ + ( ) ( )012

1
/ ,L x d

λ

θ λ π λ λ
λ∫

 =   

 

= 
( )

( )

2

11
1

2
2

2

2 ; 0

2 ; 0
3 2

n

n

n

D e S x

d
e x

c c

θ

θ

θ θ

θ

∞
−

=

−

  
+ >    




+ = − +

∑
                                        (16) 

 
 

( )2h θ  = ( )2θ + ( ) ( )01

1
/ ,L x d

λ

θ λ π λ λ
λ∫

 =  

= 
( ) ( )

( )

21
1

2 2 ; 0

2 ; 0
1

n

n

n

D e n c S x

d
e x

c

θ

θ

θ θ

θ

∞
−

=

−

  
+ + − >    


 + = −

∑
;                            (17) 

 
 

1D  = ( ) ( )1 10h d
θ

θ π θ θ∫  =  

 

= 
( )( )
( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( )

13 14
12

1 1 1

2 2 2

2 2

1
; 0

1 2 1 2 1 2

4 4 5 8 4
; 0

1 3 2

n n n

n n n

a

a

n a n a T D n a T D T
D x

n c n c n c n c n c n c

b d a b ab a b
x

b c c

∞ ∞ ∞

= = =

+

  + + + +
+ + >  

+ − + − + − + − + − + −  


+ + + + +
=

+ − +

∑ ∑ ∑ ;    (18) 

 
 

2D  = ( ) ( )2 10h d
θ

θ π θ θ∫  =  

 

= 

( )

( )

( ) ( )

22 23
1 1

1

; 0
1 1

2 2
; 0

1 1

n n

n n

a

a

n a T T
D D x

n c n c

b d a b
x

b c

∞ ∞

= =

+

 + 
+ >  

+ − + − 


+ + =
 + −

∑ ∑
;                      (19) 
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denoting, 
 

( )
( )

( ) ( )

1 2
, ,

1 ! !

n

n n n

x n c
S S c d x

n n x d

− Γ + −
≡ =

− +
.   

 

11D  ( )11 , ,D c d x≡ = 
( ) ( )

2

c

c

d

x d c
−

+ Γ
; 

 

12D  ( )12 , , , ,D a b c d x≡ = 
( ) ( )( ) ( )

2 2
1

a c

a c

b d

a c b x d
+ −

Γ Γ + +
; 

 

13D  ( )13D b≡ = ( )4 1b + ; 

 

14D  ( )14D b≡ = ( )
2

4 1b + ; 

 

21D  ( )21 , ,D c d x≡ = 
( ) ( )

1

c

c

d

x d c
−

+ Γ
; 

 

22D  ( )22 , , , ,D a b c d x≡ = 
( ) ( )( ) ( )

1 1
1

a c

a c

b d

a c b x d
+ −

Γ Γ + +
; 

 

23D  ( )23D b≡ = ( )2 1b + . 

 
Proof 
The Proof is analogous to Lemma 7, so it is omitted. 
 

� 
 

It is straightforward to show that the series that appear in Expressions (16), (17) and 
(18) and (19) are convergent series of positive terms for any positive value of a, b, c, d, 
x. 
 
4.1.- Analysis of robustness for the a priori distribution of the parameter 

‘individual cost of each claim’ 

 
The following results show that the range of variation of the a posteriori premium P*, 
when the a priori distribution of λ varies within a contamination class as ( )(1)

01,Gλ π ε , 

can be obtained by calculating the upper and the lower of a real function of a real 
variable. 
 
Theorem 1 
The range of variation of the a posteriori premium when the a priori distribution of 
λ belongs to the class ( )(1)

01,Gλ π ε  can be calculated by determining the range of 
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variation of a function of λ . Specifically, the following equality is confirmed, and the 
equality is also valid when the upper is replaced by the lower. 
 

( ) ( ) ( ) ( ) ( ) ( )11
0101

,,

sup inf
cc GG λλ

π λ π επ λ π ε ∈∈

 
 
  

 ( )2
0* , /c

P xπ θ λ    = sup inf
λλ

 
 
 

 
( ) ( )
( ) ( )

1 1

2 2

1

1

C g

C g

ε ε λ

ε ε λ

− +

− +
,  (20)       

 
where, ( )1g λ , ( )2g λ , 1C  and 2C  are as in Lemma 7. 

 
Proof 
The proof is obtained by using, successively, Lemma 7 and Lemma 4. 

� 
 
Example 3..- Numerical illustration of Theorem 1 

Here it is the calculation of the range of variation of the a posteriori premium when the 
a priori distribution of the parameter ‘distribution of the severity of the accident’ 
belongs to a class of contamination in which the contaminant class is that of all the 
probability distributions. In this example, we use the a priori data derived in Examples 
1 and 2 to illustrate the result of Theorem 1. 
 
(Table 3) 
 

We now address the analysis of the robustness for the contamination class 
(2)

01( , )Gλ π ε , and obviously in this case it must be assumed that ‘c’ is greater than 1 and 

that the mode is 0λ = 
1c

d

−
.  The following result shows that the problem of searching 

for the upper and lower of the a posteriori premium when the a priori distribution of λ  
belongs to the class (2)

01( , )Gλ π ε can be transformed into the search for the upper and 

lower, respectively, of a real function of a real variable. 
 
Theorem 2 
The range of variation of the a posteriori premium when the a priori distribution of 
λ belongs to the class (2)

01( , )Gλ π ε  can be calculated by determining the range of 

variation of a function of a real variable. Specifically, the following equality is 
confirmed, and the equality is also valid when the upper is replaced by the lower. 
 

( ) ( 2)
01( , )

sup
c Gλπ λ π ε∈

 ( )2* , /c
P xπ θ λ     = sup

z

( )

( )

( )

*
1 1

*
2 2

*
3

1

; 0;
1

; 0;

C g z

x

C g z

g z x

ε

ε
ε

ε

−
+

> − +

 =

,           (21)     

 
where 1C , 2C , and 11C , 13C , 14C , 15C , 21C , 23C , 24C , ( )1g λ , ( )2g λ  y nR  are as in 

Lemma 7, and ( )*
1g z , ( )*

2g z  and ( )*
3g z  are given by, 

 

( )*
1g z  = 
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= 

( )

( )

( ) ( ) ( ) ( )

( )

0

0

11 13 14 1

13 14 2

2

11 13 14 2 0 0
1

1 0

1

4 2
0;

2 2 ! , , ,
;

; 0;

z x

n n n

n

e
C C C R d

C C R
z z

C n C n C n R U x V x z

z

g z

λ λ

λ

λ
λ

λ λ

λ

+ −

∞

+
=


+ +


+ + + +

≠


 + + + + −    
+

 =

∫

∑
 (22) 

 
 
 
 

( )*
2g z  =  

 

( ) ( )

( ) ( ) ( )

( )

00
21 23 1

21 23 1 0 0
1

2 0

1 1
1 ! , , , ; 0;

; 0;

z xx

n n n

n

C C R e e
C n C n R U x V x z z

x z z

g z

λλ

λ λ

λ

− +− ∞

+

=

 + −
+ + + − ≠   


 =

∑

 (23) 
 

( )*
3g z  = 

( )1 15
0 0

0
2 24

0

15
1 2

0

24
2

0

1 1

; 0;
1 1

ln

1

; 0;
1

C C
z

z
z

C C
z

C
C

z
C

C

ε

ε λ λ

λε

ε λ

ε

ε λ

ε

ε λ

−
+ +

 ≠
  +−

+    


− +


=
− +



;                                        (24) 

  
using the notation, 
 

( )0,nU x λ  =  
( )

0
0

0

1

!

x n kn

k
k

e

x n k x

λ λ− −

= −
∑  ;                                                             

 

( )0, ,nV x zλ  =   
( )

( )

0( )
0

0

1

!

n kz x n

k
k

ze

x n k x

λ λ
−− +

=

+

−
∑ . 

 
Proof 
From Lemma 7 we obtain 
 

( ) (2)
01( , )

sup
c Gλπ λ π ε∈

( )2
0* , /c

P xπ θ λ    =  
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= 
( ) 2

sup
q Qλ ∈

 

( ) ( )

( ) ( )

( )

( )

1 1

2 2

1 15 2

2 24

1

; 0;
1

1 1

; 0;
1 1

C g q d

x

C g q d

C C q d

x

C C q d

λ

λ

λ

λ

ε
λ λ λ

ε

ε
λ λ λ

ε

ε
λ λ

ε λ

ε
λ λ

ε λ

−
+

 >
− +




− +


= −
 +


∫

∫

∫

∫

 

 
Let us first consider the case in which x=0: 
We shall use Lemma 5 in the numerator and in the denominator from the second row of 
the above expression. Therefore, for ( ) 2q Qλ ∈ ,  

 

( )2

1
q d

λ

λ λ
λ∫

 = 

( )

( )

0

0

2

2

22
0

1 1
; 0;

1
; 0;

1

z

z

d dF z z
z

d
z

c

λ

λ

λ
λ

λ

+  
 ≠ 
   



≡ =
−

∫ ∫
 

 

( )
1

q d
λ

λ λ
λ∫

 = 

( )

( )

0

0

0

1 1
; 0;

1
; 0;

1

z

z

d dF z z
z

d
z

c

λ

λ

λ
λ

λ

+  
 ≠ 
   


≡ = −

∫ ∫
; 

 
By applying Lemma 4, the result is obtained. 
 
Let us now consider the case in which x ≠ 0 
Again using Lemma 5 in the numerator and in the denominator from the first row of the 
above expression. Therefore, we obtain for ( ) 2q Qλ ∈  and 0z ≠  

 

( ) ( )1g q d
λ

λ λ λ∫  = ( ) ( )*
1

z

g z dF z∫ ;  ( ) ( )2g q d
λ

λ λ λ∫  = ( ) ( )*
1

z

g z dF z∫ ; 

 
where, 
 

( )*
1g z  = ( )

0

0

1

1
z

g d
z

λ

λ

λ λ
+

∫  =  

 

= ( )
0

0

2
11 13 142

1

1 1
z

x n

n n n

n

C e R n C R n C R d
z

λ

λ

λ

λ λ
λ

+ ∞
−

=

+ +∑∫  =  
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= 

( ) ( )

( ) ( )

0

0

11 1 13 14 2 13 14

2

2 13 14
1

1 1
1 4 2

2 2

z

x

n

n

n

C e R C C R C C
z

R n C n C d

λ

λ

λ
λ

λ λ

+

−

∞

+

=

 
+ + + + + + 

 
 

  + + + + +     

∫

∑
 = 

 

= ( )
0

0

11 1 13 14

1
1

z x
e

C R C C d
z

λ λ

λ

λ
λ

+ −

+ + ∫  + ( )
( )00

11 2 13 144 2
z xx

e e
C R C C

zx

λλ − +− −
+ +  +       

 

   + ( ) ( )
0

0

2

11 2 13 14
1

1
2 2

z

x n

n

n

C R n C n C e d
z

λ

λ

λ

λ λ
+∞

−

+
=

 + + + +
 ∑ ∫   = 

 

  = ( )
0

0

11 1 13 14

1
1

z x
e

C R C C d
z

λ λ

λ

λ
λ

+ −

+ + ∫  + ( )
( )00

11 2 13 144 2
z xx

e e
C R C C

zx

λλ − +− −
+ +  +       

 

   + ( ) ( ) ( ) ( )
2

11 2 13 14 0 0
1

1
2 2 ! , , ,n n n

n

C R n C n C n U x V x z
z

λ λ
∞

+
=

 + + + + −   ∑  

 
using Lemma 6 for the last equality. 
 

( )*
2g z  = ( )

0

0

2

1
z

g d
z

λ

λ

λ λ
+

∫  = ( )
0

0

21 23
1

1
z x

n

n

n

e
C R n C d

z

λ λ

λ

λ λ
λ

+ − ∞

=

+∑∫  =  

 

= ( ) ( )
0

0

21 1 23 1 23
1

1
1 1

z

x n

n

n

C e R C R n C d
z

λ

λ

λ

λ λ
+ ∞

−

+
=

 
+ + + + 

 
∑∫  =  

 

= 
( )

( )00

21 1 231
z xx

e eC R C

x z

λλ − +− −+    +  

 

+ ( )
0

0

21 1 23
1

1
1

z

x n

n

n

C R n C e d
z

λ

λ

λ

λ λ
+∞

−

+
=

+ +∑ ∫  =  

 

= 
( )

( )00

21 1 231
z xx

e eC R C

x z

λλ − +− −+    +  

 

+ ( ) ( ) ( )21 1 23 0 0
1

1
! 1 , , ,n n n

n

C n R n C U x V x z
z

λ λ
∞

+
=

+ + −  ∑  

� 
 

It is straightforward to show, using Theorem of Mertens that the series that appear in 
Expressions (16), (17) and (18) and (19) are convergent series of positive terms for any 
positive value of a, b, c, d, x, 0λ  and z 
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Example 4.- Numerical illustration of Theorem 2. 
Calculation of the range of variation of the a posteriori premium when the a priori 
distribution of the parameter ‘distribution of the severity of the accident’ belongs to a 
contamination class in which the contaminant class is that of all the unimodal 
probability distributions with the same mode. The data elicited are the same as in the 
previous examples. 
 
In order to measure the Bayesian sensitivity, or the robustness of the intervals 
calculated, we use a normalized measure of relative sensitivity, defined in Sivaganesan 
(1991), the R.S. sensitivity factor, which is expressed as: 
 
 

( ) ( )( )
.100

2 *

**

×
−

=
P

PInfPSup
RS  

 
 
(Table 4) 

 
 
4.2.- Robustness analysis for the a priori distribution of the parameter ‘number of 

claims’ 

 

In this section, we analyze the Bayesian robustness for the parameter θ of likelihood, 
with respect to the specified a priori distribution. As in the previous section, the 
analysis carried out is based on contamination classes. 

In the following result, parallel to Theorem 1, it is apparent that the problem of 
searching for the upper and the lower of the a posteriori premium when the a priori 

distribution of θ  belongs to the class ( ) ( )1
10 ,Gθ π ε  can be transformed into the search for 

the upper and the lower, respectively, of a real function of the real variable θ .  
 

Theorem 3 
The range of variation of the a posteriori premium when the a priori  distribution of 

θ belongs to the class ( ) ( )1
10 ,Gθ π ε can be calculated by determining the range of 

variation of a function of θ . Specifically, the following equality is found, which is also 
valid when the upper is replaced by the lower. 
 

( ) ( ) ( ) ( ) ( ) ( )11

sup inf
GG θθ

π θ επ θ ε ∈∈

 
 
  

 ( )1
0* , /c

P xπ θ λ    = sup inf
θθ

 
 
 

 
( ) ( )
( ) ( )

1 1

2 2

1

1

D h

D h

ε ε θ

ε ε θ

− +

− +
,          (25) 

 
where, ( )1h θ , ( )2h θ , 1D  and 2D  are as in Lemma 8. 

 
Proof 
The proof is obtained by applying, successively, Lemma 8 and Lemma 4. 

� 
Example 5.- Numerical illustration of Theorem 3. 
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Here we present the calculation of the range of variation of the a posteriori premium 
when the a priori distribution of the parameter ‘number of accidents’ belongs to a class 
of contamination in which the contaminant class is that of all the probability 
distributions. Calculation of minima, maxima and R.S. sensitivity factors, taking the 
same a priori assumptions as in the previous examples, i.e. that the a priori parameters 
are a=2, b=7, c=5, d=3 , and applying Theorem 3. 
 
(Table 5) 
 
Theorem 4 

The range of variation of the a posteriori premium when the a priori distribution of θ  
belongs to the class (2)

10( , )Gθ π ε can be calculated by determining the range of variation 

of a real function of a real variable. Specifically, the following equality is confirmed, 
and this is equally valid when the upper is replaced by the lower. 
 

( ) (2)
10( , )

sup
c Gθπ θ π ε∈

 ( )1* , /c
P xπ θ λ     = sup

z

( )

( )

( )

*
1 1

*
2 2

*
3

1

; 0;
1

; 0;

D h z

x

D h z

h z x

ε

ε
ε

ε

−
+

> − +

 =

,            (26)    

 
where 1D , 2D , 11D , 21D , ( )1h θ , ( )2h θ  and nS  are as in Lemma 8. nU  and nV  are as in   

Theorem 2 and ( )*
1h z , ( )*

2h z  and ( )*
3h z  are given by, 

 

( )*
1h z  = 

=

( ) ( ) ( ){

( ) ( ) ( ) ( ) ( ) }
( )

11
2 0 2 0

1

1 0 1 0 0 0

1 0

2 ! 1, 1, ,
0;

4 1 ! 1, 1, , 4 ! 1, 1, , ;

; 0;

n n n

n

n n n n

D
S n U V z

z z

n U V z n U V z

h z

θ θ

θ θ θ θ

θ

∞

+ +

=

+ +


+ − +  

≠


+ − + −      
 =

∑
      (27) 

 
 
 

 ( )*
2h z  =  

( ) ( ) ( ) ( ){

( ) ( ) }
( )

21
1 0 1 0

1

0 0

2 0

2 1 ! 1, 1, ,
0;

2 ! 1, 1, , ;

; 0;

n n n

n

n n

D
n c S n U V z

z z

n U V z

h z

θ θ

θ θ

θ

∞

+ +

=


+ − + − +  

≠


+ −  
 =

∑
       (28) 
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( )*
3h z   =

( )

( )

( )

( )

0

0

1 4

2 5

22
0

1 2

0
2

1

; 0;
1

21
3 2 ; 0;

21
1

D h z

z

D h z

d e
D

c c z
d e

D
c

θ

θ

ε

ε
ε

ε

θε

ε
θε

ε

−

−

−
+

≠ −
 +



+− +
 − + = +−
 +
 −

;  

 
using the notation, 
 

( )4h z  = 
( ) ( ) ( )( )

( )

00
22 2

0 0 0 0

2

6 10 6 6 10

3 2

z
d e e z z

c c z

θθ θ θ θ θ
− +− + + − + + + +

 

− +
; 

 

( )5h z  = 
( ) ( ) ( )

( )

00
0 03 3

1

z
d e z e

c z

θθθ θ
− +− + − + + 

−
. 

 
 
Proof 
 
Let us first consider the case in which x = 0.  
We shall use Lemma 5 in the numerator, and the denominator from the second row of 
the previous expression. Thus, for ( ) 2q Qλ ∈ ,  

 

( ) ( )
2

2

2
2

3 2

d
e q d

c c

θ

θ

θ θ θ−+
− +∫  =  

 

= 
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0

0

0

2
2

2

2
2

1 0 02

1
2 ; 0;

3 2

2 ; 0;
3 2

z

z

d
e d dF z z

z c c

d
h e z

c c

θ

θ

θ

θ

θ θ

θ θ

+

−

−

  
 + ≠ 

− +   


= + =
− +

∫ ∫
 

 

( ) ( )2
1

d
e q d

c

θ

θ

θ θ θ−+
−∫  = 

( ) ( )

( )

0

0

0
0

1
2 ; 0;

1

2 ; 0;
1

z

z

d
e d dF z z

z c

d
e z

c

θ

θ

θ

θ

θ θ

θ

+

−

−

  
 + ≠ 
 −  


+ =
−

∫ ∫
; 

 
 
By using Lemma 4, it is straightforward to obtain the result. 
 
Let us now consider the case in which x ≠ 0: 
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By once again using Lemma 5, and taking into account that, for 0z ≠  and ( ) 2q Qθ ∈  

we have 
 

( ) ( )1h q d
θ

θ θ θ∫  = ( ) ( )*
1

z

h z dF z∫ ;  ( ) ( )2h q d
θ

θ θ θ∫  = ( ) ( )*
2

z

h z dF z∫ ; 

 
where, 
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1
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h d
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θ

θ

θ θ
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−

=
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=
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using Lemma 6 for the last equality. 
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using Lemma 6 for the last equality. 

� 
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It is straightforward to show, using Theorem of Mertens that the series that appear in 
Expressions (16), (17) and (18) and (19) are convergent series of positive terms for any 
positive value of a, b, c, d, x, 0θ  and z. 

 
Example 6.- Numerical illustration of Theorem 4. 
Calculation of the range of variation of the a posteriori premium when the a priori 

distribution of the parameter ‘number of accidents’ belongs to a class of contamination 
in which the contaminant class is that of all the unimodal distributions with the same 
mode. Calculation of the minima, maxima and R.S. sensitivity factors, taking into 
account the same a priori assumptions as in the above examples, i.e. that the a priori 

parameters are a=2, b=7, c=5, d=3 , and then applying Theorem 4. 
 
(Table 6) 
 
Now we represent the ranges of variation of the premium and R.S sensitivity factor in 
the case when x gets the value 0.5. 
 
(Figure 3) 
(Figure 4) 

 

 

 

 

5.- FINALS REMARKS AND FURTHER LINES OF RESEARCH 

 
Computing the complete Bayes premium in the collective risk model requires two prior 
distributions for both, the parameter of the distribution of the number of claims and the 
parameter of the distribution of the single claim size. Since the incorporation of these 
prior distributions can be criticized by the fact that the practitioner perhaps does not 
know them totally, a robustness study has been carried out in this paper. Due to this 
procedure, new results were obtained that let us to study in deep the influence on the 
Bayes premium by assuming single prior distributions for those parameters.  

This paper leaves some other aspects open to question, which could be the 
subject of future study. First, since actual experience shows that the distribution of 
claim counts tend to have greater variance than the mean, i.e. tends to be overdispersed, 
the negative binomial distribution, ( , ),NB r θ  has been proposed as a model preferable to 
the Poisson in Actuarial Science. Then it would be convenient to model it from a 
Bayesian point of view assuming a Beta prior distribution for the parameter ,θ  which 
results conjugate with respect to the negative binomial. In this case (see Rolski et al., 
1999) the aggregate claim amount X is expressed in terms of the generalized Laguerre 
polynomial. 

Second, an extension of the study proposed here would be made by considering 
more than one period of observation. This, perhaps, would let us to obtain Bayes 
credibility premiums which plays an important role known in Actuarial Science as 
credibility theory. This study, of course, seems to be very complicated, involving in the 
likelihood the product of a sequence of Bessel functions although some ideas to 
undertake the problem can be view in Linz (1972) and Linz and Kropp (1973). 

Finally, the hypothesis of independence between θ and λ  can be very 
restrictive. Therefore, it would be convenient to choose a bivariate distribution for both 
parameters, by assuming some dependence between them. A bivariate distribution with 
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given marginals would be incorporated by taking the Sarmanov family of bivariate 
distribution (see Lee, 1996) or the Farlie-Gumbel Morgenstern family (see Johnson and 
Kotz, 1975). 
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TABLES  
 

Table 1: Marginal distribution for different values of x 
x 0.1 0,5 1 2 3 4 

0m(x / π )  0,27173 0,1486 0,07532 0,0234 0,00878 0,00377 

 
 
 

Table 2: the a priori premium and the a posteriori premium for different values of x. 
x 0.1 0,5 1 2 3 4 
P’ 2,3 2,3 2,3 2,3 2,3 2,3 

[ ]0P* π (θ, λ / x)   1,8467 2,0499 2,3047 2,8161 3,3288 3,8424 

 
Table 3: Minima, maxima and sensitivity factors. Theorema 1 

 x 0 0.5 1 1.5 2 
ε  P* 2.2638 2.0499 2.3047 2.5602 2.8161 
 

0.05 

Min. 

Max. 

2.1718 
∞  

2.012 
∞  

2.2677 
∞  

2.5189 
∞  

2.7698 
∞  

 

0.1 

Min. 

Max. 

2.1338 
∞  

1.9734 
∞  

2.2299 
∞  

2.4771 
∞  

2.719 
∞  

 
0.15 

Min. 
Max. 

2.0944 
∞  

1.9334 
∞  

2.1901 
∞  

2.4347 
∞  

2.6705 
∞  

 

0.2 

 

Min. 

Max. 

2.5316 
∞  

1.8919 
∞  

2.1509 
∞  

2.3915 
∞  

2.6218 
∞  

 

0.25 

Min. 

Max. 

2.010 
∞  

1.8489 
∞  

2.196 
∞  

2.3473 
∞  

2.5729 
∞  

 

 
 

Table 4. Minima, maxima and sensitivity factors. Theorem 2. 
 x 0 0.5 1 1.5 2 

ε  P* 2.2638 2.0499 2.3047 2.5602 2.8161 
 

0.05 

 

Min. 

Max. 

RS. 

2.1737 
2.2638 
1.99% 

0.2659 
10.276 
244% 

0.1553 
16.7137 
359.23% 

0.0905 
26.436 

475.46% 

0.0527 
40.6108 
720.11% 

 
0.1 

 

Min. 
Max. 

RS. 

2.1737 
2.2638 
1.99% 

0.2659 
19.4159 
467.09% 

0.1553 
32.7233 
706.56% 

0.0905 
47.4108 
924.15% 

0.0527 
82.6045 

1465.71% 
 

0.15 
 

Min. 

Max. 
RS. 

2.1737 
2.2638 
1.99% 

0.2659 
29.6307 
716.29% 

0.1553 
50.6162 

1094.74% 

0.0905 
82.6134 

1611.65% 

0.0527 
129.538 

2299.02% 
 

0.2 

 

Min. 

Max. 

RS. 

2.1737 
2.2638 
1.99% 

0.2659 
41.1219 
996.54% 

0.1553 
70.7452 

1531.43% 

0.0905 
115.968 

2236.06% 

0.0527 
182.338 

3236.48% 
 

0.25 

 

Min. 

Max. 

RS. 

2.1737 
2.2638 
1.99% 

0.2659 
54.1447 

1314.18% 

0.1553 
93.5577 

2026.35% 

0.0905 
153.77 

3000.32% 

0.0527 
242.178 

4298.95% 

 
Table 5. Minima, maxima and sensitivity factors. Theorem 3. 

 x 0 0.5 1 1.5 2 
ε  P* 2.2638 2.0499 2.3047 2.5602 2.8161 
 

0.05 

 

Min. 

Max. 

RS. 

2.2487 
2.2929 

0.9762% 

2.0490 
2.3456 

7.2345% 

2.2491 
2.8258 

12.5139% 

2.5546 
3.3996 

16.5026% 

2.8106 
4.0561 

22.1139% 
 

0.1 

 

Min. 

Max. 

RS. 

2.2337 
2.3239 

1.9922% 

2.0389 
2.5921 

13.4933% 

2.2933 
3.1971 

12.6077% 

2.5489 
3.8914 

26.2185% 

2.8047 
4.6375 

32.4725% 
 

0.15 

 

Min. 

Max. 

RS. 

2.219 
2.3569 

3.0457% 

2.0323 
2.8051 

18.8497% 

2.2874 
3.4798 

25.8687% 

2.5429 
4.2331 

33.0091% 

2.7987 
5.0042 

39.1588% 
 

0.2 

Min. 

Max. 

2.2045 
2.3923 

2.0261 
2.9944 

2.2813 
3.7214 

2.5368 
4.4949 

2.7935 
5.2747 
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 RS. 4.1479% 23.6182% 31.2427% 38.2411% 44.0538% 
 

0.25 

 

Min. 

Max. 

RS. 

2.1903 
2.4304 

5.3030% 

2.0196 
3.1665 

27.9745% 

2.2749 
3.9239 

35.7747% 

2.5304 
4.7085 

42.5377% 

2.7861 
5.4806 

47.841% 

 
Table 6. Minima, maxima and sensitivity factors. Theorem 4. 

 x 0 0.5 1 1.5 2 
ε  P* 2.2638 2.0499 2.3047 2.5602 2.8161 
 

0.05 
 

Min. 

Max. 
RS. 

2.2574 
2.2858 
1.28% 

0.2397 
2.2536 
49.12% 

0.1449 
2.6649 
54.67% 

0.0926 
3.1466 
59.64% 

0.0619 
3.6985 
64.57% 

 

0.1 

 

Min. 

Max. 

RS. 

2.2509 
2.3088 
1.89% 

0.2397 
2.4261 
53.33% 

0.1449 
2.9312 
60.45% 

0.0926 
3.5114 
66.77% 

0.0619 
4.1455 
72.5% 

 

0.15 

 

Min. 

Max. 

RS. 

2.2445 
2.3303 

2.3586% 

0.2397 
2.5751 
56.96% 

0.1449 
3.3064 
68.59% 

0.0926 
3.9535 
75.4% 

0.0619 
4.4229 
77.43% 

 
0.2 

 

Min. 
Max. 

RS. 

2.2382 
2.3586 
2.66% 

0.2397 
2.7060 
60.16% 

0.1449 
3.7214 
77.59% 

0.0926 
4.4949 
85.97% 

0.0619 
4.6150 
80.84% 

 

0.25 
 

Min. 

Max. 
RS. 

2.2319 
2.3858 
3.399% 

0.2397 
2.8227 
63% 

0.1449 
3.4462 
71.62% 

0.0926 
4.1012 
78.29% 

0.0619 
4.7576 
83.37% 
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FIGURES 

 
Figure 1. Marginal Distribution 
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Figure 2.The a Posteriori and a Priori Premium. 
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Figure 3. Ranges of variation of the premium. Theorems 3 and 4. 

0 0.05 0.1 0.15 0.2 0.25
Degree of contamination

0

0.5

1

1.5

2

2.5

3

f
n
I

d
n
a

p
u
S

 
 Stars and Triangles: all distributions. Rhombus and squares: unimodals distributions 
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Figure 4. Ranges of variation of R.S. sensitivity factor. Theorems 3 and 4. 
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Stars: unimodals distributions. Rhombus: all distributions. 

 

 

 


