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ABSTRACT

This article develops a Bayesian analysis of the Compound Collective Model utilizing the Net

Premium Principle, considering single-period models. With respect to likelihoods, we used a

Poisson distribution for the number of claims and an Exponential distribution for the severity of

the accident/event. Gamma distributions were used for the prior distributions. The robustness of

the posterior premium was analyzed with respect to the prior distribution specification of the

severity of the accident/event, utilizing contamination classes, these being the class of all the

distributions and that of all the unimodal distributions with the same mode. Numerical

applications of the results obtained were performed.

JEL Classification: C11.
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1. Introduction
In this article, we develop a Bayesian statistical analysis of the compound collective risk

model, using the Net Premium Principle, which includes an analysis of robustness with respect to

prior distributions.

The collective model of the Risk Theory is a sequence K, X1, X2,... of random variables, with

the following meaning:

● K is the random variable “number of accidents or claims".

● X i, for i = 1,2, . . . is the random variable “cost or severity of the i–th accident".

The random variable of interest in the problem is “total cost" defined by X = ∑
i=1

K

X i, the

probability density function of which is ∑
k=0

∞
pk/θfk∗x/λ, where pk/θ denotes the probability of

k claims and fk∗x/λ is the k–th convolution of fx/λ, the probability density function of the

claim amount.

In some specific cases, these random variables degenerate into deterministic variables, for

example, in many of the different types of life insurance, the costs of accidents are fixed

amounts; such cases are not considered in the present study, in which we operate with the

distribution of total cost, by means of the model for the number of accidents and the model for

their severity.

The use of Bayesian analysis in the collective risk model has been studied by various authors,

including Freifelder (1974), Millar and Hickman (1974) and Klugman et al. (1998). Schmidt

(1998) presented a unifying survey of Bayesian models in different areas of actuarial

mathematics. Nevertheless, relatively little has been published on the analysis of Bayesian

robustness in this model; some examples in this field are Heilman and Schröter (1987),

Eichenauer et al. (1988), Young (1998), Insua et al. (1999) and Gómez et al. (1999 a; b; 2000;

2002 a; b).

For the random variable “number of claims", we consider a Poisson distribution with a

parameter θ, denominated Pθ, thus obtaining the Compound Poisson distribution. The excellent

study by Panjer and Willmot (1983) showed that the Compound Poisson distribution arises in

many situations in the Risk Theory, and an sample bibliography on the question was provided.

This model has been well known since at least 1920 (Keffer, 1929). It has also been long known

that it is difficult to obtain explicit expressions for the distribution of the total cost. Among the

large volume of work on this question, let us highlight the studies by Panjer (1980; 1981), Sundt

and Jewell (1981) and Willmot (1986), who presented recursive formulas by which an

approximate calculation can be made of the distribution of total claims. Kozubowski and

Panorska (2005) presented a set of interesting results on the sum of random variables with an

Exponential distribution and a random number of summands. Nadarajah and Kotz (2006 a, b)

presented a comprehensive collection of approximate forms for the Compound mixed Poisson

Distribution.

For the parameter θ of the distribution Pθ, we consider a prior Gammaa,b distribution.

There is significant empirical support for the use of the Gamma distribution in this model (see

Dropkin, 1959; Nye and Hofflander, 1988; Ellis, Gallup and McGuire, 1990). Alternative models

to the Poisson distribution have been proposed in many papers, see for example Willmot (1986;

1988), Ruohonen (1988) and Hürlimann (1990). Variations of the hypothesis of the Gamma

distribution can be found in Venter (1991), who also provided a comprehensive bibliography on

the matter. Tremblay (1992) presented the use of a Poisson distribution with an Inverse Gaussian

distribution in bonus-malus systems.

For the amount or severity of each claim, we consider an Exponential distribution of the



parameter λ, denominated Expλ; our study is analogous to the method used by Frangos and

Vrontos (2001), who incorporated a comprehensive bibliography on the subject and designed a

bonus-malus system. For the parameter λ of the distribution Expλ, we consider a Gammac,d
distribution.

In the present paper, we do not seek to obtain explicit, simple expressions, in the knowledge

that these cannot be derived in the compound collective model except in very special cases. We

have also chosen not to use special functions that are obviously involved in the calculations

performed (for example, the Bessel functions), unlike the practice of, for example, Nadarajah and

Kotz (2006 a; b), because in our opinion such a practice does not contribute to facilitating the

calculation of the results that are obtained. The emphasis in our study is placed on real, practical

calculability, at a low computing cost.

The paper is organized as follows:

● Section 2 addresses the analysis of the model to be considered.

● Section 3 describes the True Individual Premium, the prior premium and the posterior

premium for the Net Premium Principle.

● Section 4 analyzes the robustness of the posterior premium, on the one hand with respect to

the specification of the prior distribution of λ and, on the other, with respect to the

specification of the prior distribution of θ. In both cases, the hypothesis of independence

between θ and λ is maintained.

● In Section 5 we draw some conclusions and comment upon questions that remain open to

further study.

As was to be expected, and as commented upon above, in this study we do not obtain explicit

expressions with formats similar to those commonly described, but nevertheless all the

expressions used can be calculated straightforwardly, with simple computer programs, available

on request from the authors.

2. Setting out the Model
Let K be the random variable “number of claims", and assume it has a Poisson distribution of

parameter θ > 0, denominated Pθ; therefore

ProbK = k = pk/θ = 1
k!

e−θθk; k = 0,1,2, . . .

Let X i be the random variable “individual cost of the i-th claim", and assume it has an

Exponential distribution of parameter λ ≥ 0, denominated Expλ; therefore

fx i/λ = λe−λxi , x i.

In the compound collective model, we are interested in the random variable “total cost",

denominated X, and which is defined by

X =

0; K = 0

∑
i=1

k

Xi; K ≥ 1

Suppose that X represents the total claim size of a portfolio at the end of a fixed time period.

The distribution of the random variable X and therefore the likelihood of the problem in the

compound collective model is obtained as follows:

ProbX ≤ x = ∑
k=0

∞

pk|θPr ∑
i=1

k

X i ≤ x .

For the case in question, it is well known (see Gómez, 1996) that the likelihood in the



compound collective model for the Poisson–Exponential pair is expressed as

Lx/θ,λ =
∑
n=1

∞
λnxn−1e−λx

n−1!
e−θθn

n!
, x > 0,

e−θ, x = 0.

Assume that the parameters θ and λ are independent, and let us specify a prior Gamma

distribution for each of them (which in both cases is the conjugate prior distribution),

π10θ = ba

Γa
θa−1e−bθ; π01λ = dc

Γc
λc−1e−dλ.

Therefore, the joint prior distribution is

π0θ,λ = π10θ ⋅ π01λ;

for positive θ and λ; a, b, c and d are positive, known constants.

Referring the notation to π10θ, the value of mathematical expectation is a/b, and that of the

variance is a/b2; the distribution is unimodal when a > 1 and in this case, the value of the mode

is θ0 = a − 1/b; Pearson’s coefficient of asymmetry is never annulled and the central moment

of order 3 is only annulled when a = 0.

By direct integration, it is straightforward to find that the marginal distribution of x is

expressed as follows:

mx/π0 = ∫
θ

∫
λ

Lx/,λπ0θ,λdθdλ

= ba

Γa
dc

Γc
1

b + 1a
1

x + dc ∑
n=1

∞
xn−1Γa + nΓc + n

n − 1!n!b + 1nx + dn , x > 0,

m0/π0 = ∫
θ

∫
λ

e−θπ0θ,λdθdλ = b

b+1

a
;

and therefore,

mx/π0 =

badc

ΓaΓcb+1ax+dc ∑
n=1

∞
Tn, x > 0

b
b+1

a
, x = 0

denoting,

Tn ≡ Tn; x,a,b,d =
xn−1Γa + nΓc + n

n − 1!n!b + 1nx + dn .

It is straightforward to show that the series in the first row of expression ref: 3 is a convergent

series of positive terms for any positive value of a, b, c, d and x.

We now provide an example in which the marginal distribution mx|π0  is determined.

Calculation and graphical representation of the Marginal Distribution.

Assume the following prior distributions are specified:

θ ≺ Gamma2,7 and λ ≺ Gamma5,3. Then,

mx|π0  =

49⋅243

1!⋅4!⋅64x+35
∑
n=1

∞
Tn, x > 0

49
64

, x = 0

,

the values of which are incorporated into the Figure ref: Fig1.

The posterior distribution of θ,λ given the sampling observation x, is obtained as follows:



π0θ,λ/x =

θa−1λc−1e−b+1θe−x+dλ 1
x ∑

n

λxθn

n−1!n!

1

b+1a
1

x+dc ∑
n

Tn

, x > 0

b+1adc

ΓaΓc
θa−1λc−1e−b+1θe−dλ, x = 0

It is straightforward to show that the series of the numerator in the first row in expression

ref: 5 is a convergent series of positive terms for any positive value of θ, a, b, c, d and x. The

series of the denominator are the same as that in expression ref: 3.

3. The Net Premium Principle
The following Lemmas 1 and 2 are well known (see, for example, Gómez, 1996). We

reproduce them here for the sake of completeness, and merely sketch out the proof.

Lemma The True Individual Premium, P, is equal to the product of the expected number of

claims and the expected cost; in symbolic form, this is expressed as:

P = θ ⋅ 1
λ

.

Lemma The prior premium, P ′, is obtained with the following expression:

P ′π0θ,λ = ad
bc − 1

.

Lemma The posterior premium, P∗, is expressed by

P∗ =

x+d

b+1

∑
n=1

∞
a+n

c+n−1
Tn

∑
n=1

∞
Tn

, x > 0

ad

b+1c−1
, x = 0

where x is the total claim amount generated by n claims produced in a single–period of time.

Calculation and graphical representation of the posterior premium. We continue to consider the

prior procedure used in Example 1, such that

P∗π0θ,λ|x =
x+3

8

∑
n=1

∞
2+n
4+n

Tn

∑
n=1

∞
Tn

, x > 0

6
32

, x = 0

Figure ref: Fig2 extracts the values of the posterior premium.



4. Analysis of Robustness

In this section, we examine, independently, the analysis of Bayesian robustness for each of

the two parameters θ and λ, and of the likelihood, with respect to the specified prior distribution.

The analysis carried out is based on contamination classes (see Sivaganesan and Berger,

1987, 1989; Sivaganesan, 1988, 1989, 1991; and Berger, 1994), in which it is assumed that the

prior distribution of the parameter, denominated φ, belongs to a class of possible distributions of

probability defined by the contamination of a singular prior distribution, considering various

contaminant classes. Specifically, this approach consists in assuming that a singular prior

distribution πφ is specified for the parameter φ, but that there exists a degree of uncertainty

concerning this specification, this uncertainty being quantified by the amount ; in other words, it

can only be specified that the prior distribution of φ belongs to a class of probability distributions

taking the following form:

Gφπ, = πcφ = 1 − πφ + qφ; q ∈ Q,

where

πφ is the singular prior distribution specified for φ;

 ∈ 0,1 is the degree of contamination; and

Q is the class of contaminant distributions of probability, the definition of which incorporates

non-renounceable aspects of the prior distribution of φ.

An extreme case would be: Q1 = . Another case we will examine is that of Q2 = . We write

Gφ
iπ,, with i = 1,2, to indicate that the contaminant class is Qi.

The aim of the present study is to analyze the range of variation of the magnitude of interest,

which in this case is the posterior premium:

● on the one hand, when the prior distribution of λ varies within a class of contamination

distributions, for different degrees of contamination, i.e. for different values of . The

corresponding prior distributions are expressed as

π0
2cθ,λ = π10θπcλ, with πcλ ∈ Gλ

iπ01,.
● on the other hand, when the prior distribution of θ varies within a class of contamination

distributions, for different degrees of contamination, i.e. for different values of . The

corresponding prior distributions are expressed as

π0
1cθ,λ = πcθπ01λ, with πcθ ∈ Gθ

iπ10,.
Throughout the analysis, we maintain the hypothesis that λ and θ are independent. For the

purposes of the present study, the following results are useful:

Lemma If A > 0, fx and gx are continuous functions with gx ≥ 0, then,

dFxdFx 
B + ∫ fxdFx

A + ∫gxdFx
= xx

B + fx
A + gx

,

where the upper (lower) is taken for all the probability distributions dFx, and where A, B,

fx, gx are such that the upper (lower) of
B+fx
A+gx

is obtained for any value of x.

Lemma Let qφ be a unimodal distribution with mode in φ0 and let hφ be a function of φ;

then

∫
φ

hφqφdφ = ∫
z

h∗zdFz,



where F(z) is a distribution function and h∗z =
1
z ∫

φ0

φ0+z

hφdφ; z ≠ 0

hφ0; z = 0

Lemma For any pair of real numbers a and b such that a<b and ∀n ∈ Z+, the following

equality is found:

∫
a

b

e−λxλndλ =∑
k=0

n
n!

n−k!
1

xk+1
an−ke−ax − bn−ke−bx.

Lemma For π0
2cθ,λ = π10θπcλ, we have πcλ ∈ Gλ

iπ01, and it is found that

P∗π0
2cθ,λ/x =

A0+ ∫
λ

A1λqλdλ

A2+ ∫
λ

A3λqλdλ
; x ≠ 0

1−


ad

c−1b+1
+ a

b+1 ∫
λ

1
λ qλdλ

1−
 +1

; x = 0

where,

A0 ≡ A0a,b,c,d,x, = 1 − 


dc

Γcb + 1x + dc−1 ∑
n=1

∞
a + n

n + c − 1
Tn;

A1λ ≡ A1a,b,c,d,x,λ = 1
b + 1

e−λx

λ ∑
n=1

∞
xn−1Γa + n + 1λn

n − 1!n!b + 1n ;

A2 ≡ A2a,b,c,d,x, = 1 − 


dc

Γcx + dc ∑
n=1

∞

Tn;

A3λ ≡ A3a,b,c,d,x,λ = e−λx ∑
n=1

∞
xn−1Γa + nλn

n − 1!n!b + 1n .

Lemma For π0
1cθ,λ = πcθπ01λ, with πcθ ∈ Gθ

iπ10, we find that,

P∗π0
1cθ,λ/x =

B0+ ∫
θ

B1θqθdθ

B2+ ∫
θ

B3θqθdθ
; x ≠ 0

1−


adba

c−1b+1a+1
+ d

c−1 ∫θ θe−θqθdθ

1−


b
b+1

a
+ ∫

θ
e−θqθdθ

; x = 0

where,

B0 ≡ B0a,b,c,d,x, = 1 − 


ba

Γab + 1a+1 ∑
n=1

∞
a + n

c + n − 1
Tn;



B1θ ≡ B1c,d,x,θ = θe−θ∑
n=1

∞
xn−1Γc + n − 1θn

n − 1!n!x + dn ;

B2 ≡ B2a,b,c,d,x, = 1 − 


ba

Γab + 1ax + d
∑
n=1

∞

Tn;

B3θ ≡ B3c,d,x,θ = e−θ

x + d
∑
n=1

∞
Γn + cxn−1θn

n − 1!n!x + dn
.

Note that the serie that appears in expression ref: 18 is the same as the one in expression

ref: 8 and that the serie in expression ref: 20 is the same as the one in expression ref: 3. It can be

shown that the series in expressions ref: 19 and ref: 21 are convergent series of positive terms for

any value of c, d, x and θ.

5. Analysis of robustness for the prior distribution of
the parameter “individual cost of each claim"

The following results show that the range of variation of the posterior premium P∗, when the

prior distribution of λ varies within a contamination class as Gλ
1π01,, can be obtained by

calculating the upper and the lower of a real function of a real variable.

Theorem The range of variation of the posterior premium when the prior distribution of λ
belongs to the class Gλ

1π01, can be calculated by determining the range of variation of a

function of λ. Specifically, the following equality is confirmed, and the equality is also valid

when the upper is replaced by the lower.

πcλ∈Gλ
1π01, P∗π2cθ,λ/x = λ

A0+A1λ
A2+A3λ

; x ≠ 0

1−


ad

c−1b+1
+ a

b+1
1
λ

1−
 +1

; x = 0

where A0, A1λ, A2 and A3λ are as in Lemma 7.

Calculation of the range of variation of the posterior premium when the prior distribution of the

parameter “distribution of the severity of the accident" belongs to a class of contamination in

which the contaminant class is that of all the probability distributions. In this example, we use the

prior data derived in Examples 1 and 2 to illustrate the result of Theorem 1.

In order to measure the Bayesian sensitivity, or the robustness of the intervals calculated, we

use a normalized measure of relative sensitivity, defined in Sivaganesan (1991), the R.S.

sensitivity factor, which is expressed as:

RS =
SupP∗ − InfP∗

2P∗ × 100.

Table ref: tab1 shows the minima, maxima and the R.S. sensitivity factor for the application

considered.

We now address the analysis of the robustness for the contamination class Gλ
2π01,, and

obviously in this case it must be assumed that c is greater than 1 and that the mode is

λ0 = c − 1/d. The following result shows that the problem of searching for the upper and lower

of the posterior premium when the prior distribution of λ belongs to the class Gλ
2π01, can be



transformed into the search for the upper and lower, respectively, of a real function of a real

variable.

Theorem The range of variation of the posterior premium when the prior distribution of λ
belongs to the class Gλ

2π01, can be calculated by determining the range of variation of a

function of a real variable. Specifically, the following equality is confirmed, and the equality is

also valid when the upper is replaced by the lower.

πcλ∈Gλ
2π01, P∗π2cθ,λ/x = z

A0+A1
∗z

A2+A3
∗z

; x ≠ 0

A4
∗z; x = 0

where A0 and A2 are as in Lemma 7 and A1
∗z, A3

∗z and A4
∗z are given by

A1
∗z =

k1
1−e−xz

z + 1
z

1

b+12
∑
n=1

∞
xnΓa+n+2
n+1!b+1n Unx,λ0 − Vnx,λ0, z; z ≠ 0

1

b+1

e−λ0x

λ0
∑
n=1

∞
xn−1Γa+n+1λ0

n

n−1!n!b+1n ; z = 0

A3
∗z =

1
z ∑

n=1

∞
xn−1Γa+n
n−1!b+1n Unx,λ0 − Vnx,λ0, z; z ≠ 0

e−λ0x ∑
n=1

∞
xn−1Γa+nλ0

n

n−1!n!b+1n ; z = 0

A4
∗z =

1−


ad

c−1b+1
+ a

b+1

1
z ln

λ0+z

λ0
; z ≠ 0

1−


ad

c−1b+1
+ a

b+1
1
λ0

1−
 +1

; z = 0

using the notation

k1 ≡ k1a,b,x,λ0 =
Γa + 2e−xλ0

b + 12x
.

Unx,λ0 = e−λ0x

x ∑
k=0

n
λ0

n−k

n − k!
1
xk

.

Vnx,λ0, z = e−λ0+zx

x ∑
k=0

n
λ0 + zn−k

n − k!
1
xk

.

It can be shown that the series in the first rows in expressions ref: 25 and ref: 26 are

convergent series of positive terms for any value of a, b, x, λ0 and z. The series in the second

rows of these expressions are analogous to those in the series for expression ref: 11.

Calculation of the range of variation of the posterior premium when the prior distribution of the

parameter “distribution of the severity of the accident´´ belongs to a contamination class in which

the contaminant is that of all the unimodal probability distributions with the same mode. The

data elicited are the same as in the previous examples. Table ref: tab2 shows ranges of variation



and sesitivity factor for Theorem 2. To illustrate Theorem 1 and 2 results, Figure ref: Fig3

analyzes the range of variation of the premium for x = 1.

6. Robustness analysis for the prior distribution of
the parameter “number of claims"

In this section, we analyze the Bayesian robustness for the parameter θ of likelihood, with respect

to the specified prior distribution. As in the previous section, the analysis carried out is based on

contamination classes.

In the following result, parallel to Theorem 1, it is apparent that the problem of searching for

the upper and the lower of the posterior premium when the prior distribution of θ belongs to the

class Gθ
1π10, can be transformed into the search for the upper and the lower, respectively, of

a real function of the real variable θ.

Theorem The range of variation of the posterior premium when the prior distribution of θ
belongs to the class Gθ

1π10, can be calculated by determining the range of variation of a

function of θ. Specifically, the following equality is found, which is also valid when the upper is

replaced by the lower.

πcθ∈Gθ
1π10,

P∗π1cθ,λ/x = θ

B0+B1θ
B2+B3θ

; x ≠ 0

1−


adba

c−1b+1a+1
+ d

c−1
θe−θ

1−


b
b+1

a
+e−θ

; x = 0

where B0, B1θ,

B2 and B3θ are as in Lemma 8.

Calculation of the range of variation of the posterior premium when the prior distribution of the

parameter “number of accidents" belongs to a class of contamination in which the contaminant

class is that of all the probability distributions. Calculation of minima, maxima and R.S.

sensitivity factors, taking the same prior assumptions as in the previous examples, i.e. that the

prior parameters are a=2, b=7, c=5, d=3 , and applying Theorem 3. Table ref: tab3 describes the

minimas, maximas and R.S. factors considering this Theorem.

Let us now consider the robustness analysis for Gθ
2π10,, assuming that a > 1 and that

θ0 = a − 1/b is the value of the mode. In the following result, parallel to that of Theorem 2, it is

clear that the problem of seeking the upper and the lower of the posterior premium when the

prior distribution of θ belongs to the class Gθ
2π10, can be transformed into the search for the

upper and the lower, respectively, of a real function of a real variable.

Theorem The range of variation of the posteriori premium when the prior distribution of θ
belongs to the class Gθ

2π10, can be calculated by determining the range of variation of a

real function of a real variable. Specifically, the following equality is confirmed, and this is

equally valid when the upper is replaced by the lower.

πcθ∈Gθ
2π10, P∗ = z

B0+B1
∗z

B2+B3
∗z

; x ≠ 0

B4
∗z; x = 0

where B0 and B2 are as in Lemma 8 and B1
∗z, B3

∗z and B4
∗z are given by



B1
∗z =

1
z ∑

n=1

∞
xn−1Γc+n−1n+1!

n−1!n!x+dn Un+11,θ0 − Vn+11,θ0, z; z ≠ 0

θ0e−θ0 ∑
n=1

∞
xn−1Γc+n−1λn

n−1!n!x+dn ; z = 0

B3
∗z =

1
z ∑

n=1

∞
xn−1Γn+c

n−1!x+dn+1
Un1,θ0 − Vn1,θ0, z; z ≠ 0

e−θ0

x+d
∑
n=1

∞
xn−1Γn+cθ0

n

n−1!n!x+dn ; z = 0

B4
∗z =

k2+
d

c−1
θ0+1e−θ0−θ0+z+1e−θ0+z

k3+ e−θ0−e−θ0+z
; z ≠ 0

k2+
d

c−1
θ0e−θ0

k3+e−θ0
; z = 0

using the notation,

k2 ≡ k2a,b,c,d, = 1 − 


adba

c − 1b + 1a+1
;

k3 ≡ k3a,b, = 1 − 


b
b + 1

a

.

The proof of the convergence of the series that appear in expressions ref: 31 and ref: 32 is

analogous to that performed for the convergence of the series in expressions ref: 25 and ref: 26.

Calculation of the range of variation of the posterior premium when the prior distribution of the

parameter “number of accidents" belongs to a class of contamination in which the contaminant

class is that of all the unimodal distributions with the same mode. Calculation of the minima,

maxima and R.S. sensitivity factors, taking into account the same prior assumptions as in the

above examples, i.e. that the prior parameters are a=2, b=7, c=5, d=3 and then applying

Theorem 4. Finally, Table ref: tab4 shows the results for Theorem 4 and Figure ref: Fig4 analyzes

the ranges of variation comparing Theorem 3 and 4 for x = 1.

7. Conclusions and further Lines of
Research

In this study we have carried out a Bayesian analysis of the Compound Collective Model, taking

into consideration a Poisson distribution for the number of claims, and an Exponential

distribution for the severity of each accident. The analysis was performed under the assumption

that the non-negative random variable X represents the total claim size of a portfolio at the end of

a fixed time period.

We analyzed the robustness of the posterior premium, or Bayes premium, using the Net

Premium Principle, with respect to the prior distribution of the parameter “number of claims" and



with respect to the prior distribution of the parameter “distribution of the severity of accidents";

this was done in an independent way for each, maintaining the hypothesis of independence

between the parameters. For each of the two robustness analyses, we used classes of

contamination, considering two contaminant classes, that of all the distributions, and that of all

the unimodal distributions with the same mode. In every case considered, the optimization

problem was transformed into one of the maxima and minima of a real function of a real

variable. The results are illustrated numerically.

We consider the following problems to be of interest, and these are proposed as lines for

future research:

● To study the same problem for other principles of premium calculation, such as the Principle

of Variance, the Exponential Principle or the Esscher Principle.

● To study the same problem, with the Net Premium Principle, but analyzing the robustness of

the posterior premium with respect to modifications of the joint two-dimensional prior

distribution of the two parameters underlying the problem.

● A similar study but assuming t periods of observations for the number of claims and the

claims size.
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