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In this paper it is shown that an extended evolutionary system proposed by Hofbauer 
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1. Introduction 

The study of existence of limit cycles in economic dynamic models is a research 

field that has a tradition that dates back to Goodwin (1951). Since then this kind of 

study was performed by a number of researchers in different contexts. Chang and Smith 

(1971) for instance have studied the existence and persistence of cycles in a nonlinear 

version of Kaldor’s 1940 model. Feichtinger et. al (2002) have shown that their 

existence is related to a wide range of applications such as renewable resources, optimal 

saving, politico-economic cycles etc. In evolutionary games, the existence of limit 

cycles is also ubiquitous. [See Hofbauer and So (1990, 1994) and Cheng (1981)].  

Although the aim of finding periodic orbits is mainly related to the detection of 

Hopf bifurcations, there are other methods such as analytical solutions of differential 

systems and numerical investigations [See Feichtinger (1987, 1992)]. This paper aims to 

study the existence of limit cycles in evolutionary games by using a method that for the 

best of our knowledge was not adopted yet. We show that the study of the number of 

limit cycles and its existence may be reduced to the study of a differential system of 

Kukles type combined with the method of Dulac-Cherkas function. 

Some authors such as Sáez and Szántó (2002) have studied the existence of limit 

cycles in the Kukles system by using the traditional Hopf bifurcation method. The 

method of Dulac-Cherkas was developed by Cherkas (1978) and recently extended by 

Cherkas et. al (2011) to study the number of limit cycles in a generalized Liénard 

system through the construction of Kukles system. Following this approach it is 

possible to derive an upper bound for the number of limit cycles of a Kukles system 

including criteria for the non-existence of limit cycles.  
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Here we intend to apply this approach to study a generalized version of a 

Hofbauer and Sigmund model (1998, p.224):  

,                                                                             (1) 

, 

on the unit square   By studying a new method of detecting 

limit cycles in this model allows us to tackle a number of evolutionary games  in which 

the system (1) is a general case.  Particular versions of this system may arise as the 

outcome of dynamic replicator of evolutionary game of well known static games such 

as the ‘batle of sexes’, the ‘entry deterrence game’ and the ‘matching penning games’. 

[see Weibull (1996, p. 176)].  

This paper is organized as follows: in the next section the Kukles system from 

system (1) is built and in section 3 we develop an algorithm to find the correspondent 

Dulac-Sherkas function. Section 4 concludes.  

 

1. Construction of the Kukles system from system (1) 

In order to built the Kukles system from (1) it is assumed that:  

(P1) System (1) has exactly one critical point  in int Q. It is given by the 

solutions of the pair of equations:  

 

Replacing  by  in the first of these equations, 

we obtain a quadratic equation for :  
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Where:  and  The 

roots of this equation may be found using the quadratic formula: 

. In particular, if and  or and , 

we have one positive root and one negative root, and we take  to be the positive root; 

(P2) For  

(P3) The straight lines and are invariant by the flow of (1). 

Lemma 1. A planar differential system of the form (1) can be transformed into the 

following equation of the Kukles system 

                              (2) 

: , , are continuous and that .                                            (3) 

Proof. We translate the interior equilibrium  to the origin by the translation 

. Thus, (1) is transformed into 

                            (4) 

 

where from (P2) follows that . Hence we take the new changes of 

coordinates: 

 

which transforms (4) into Kukles system (2), where: 
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, 

                                                                                                    (5) 

 

 

 

 

 

Remark 1: The origin is a critical point of (2) for which the characteristic equation has 

purely imaginary roots, i.e. (a)  It follows 

from (5) that: 

 

where the community matrix of the system (1.1) at equilibrium is:  

, 

whose determinant is  and whose trace is . 
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Example 1: Let:  

 

The equilibrium point is  

 

Remark 2: The case in which b=b1=0 and d=d1=0 was analyzed by Hofbauer and 

Sigmund (1998, p. 119) in the bi-dimensional case of ‘Battle of sex’, yielding a center. 

The case in which d=d1=0 is proposed as an exercise to show the existence of a 

heteroclinic cycle on the unit square. [Hofbauer and Sigmund (1998, p. 224)] 

 

3. Dulac-Cherkas function for the Kukles system (2) 

The method of Dulac-Cherkas function may be used to derive an upper bound for the 

number of limit cycles of (2) including criteria for the non-existence of limit cycles. 

First we recall the definition of a Dulac-Cherkas function: 
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Definition 1. Consider a differential system  

                                                                                        (6) 

in some open region Σ  and set  A function Σ,  is called a 

Dulac-Cherkas function of system (6) in Σ if there exists a real number κ  such that 

            in Σ ,                                     (7) 

where .                                                    (8) 

Instead of dealing with a general , we present the details of the proof for the 

cases n=2 and 3,  respectively. Let  in the Kukles system (2). 

Case I: Construction of a class of Dulac-Cherkas function  for the case . 

We take:  

,                                                                        (9) 

With: . The form of the function   is:            

,                                 (10)  

Where: 

 

, 

   (11) 
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follows directly from (7) after arranging in powers of the variable . Our goal is to 

determine the functions  and the real number  in such a way that we 

have: 

for                                                                                             (12) 

Then it holds 

                                                        (13) 

If we additionally require: 

 for                                                                   (14) 

and if  vanishes only at finitely many points of , then  is Dulac-

Cherkas function of (2) in Σ. From (11)-(12), we obtain a system of three linear 

differential equations to determine the three functions  This system 

reads: 

 

, 

            (15) 

 

The first equation is an algebraic equation which determines according to (2) 

and (9) the constant  uniquely as  Substituting in (15), we obtain the 

following system of linear differential equations: 
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,                                                              (16) 

                             (17) 

                            (18) 

Taking into account (16) and (17) we obtain: 

],                                                                 (19) 

.                                (20) 

Substituting (19) into (20) we get: 

                                                 (21) 

Where:  

 

,                                            (22) 

 

. 

Thus, by using (19) and (21), we get from (18) the linear ordinary differential 

equation: 

                                         (23) 

Where: 
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              (24) 

 

From (23)-(24), we obtain: 

Proposition 1. Consider system (2) under conditions (3) and (5). Additionally 

we assume:  

 

for , where  is defined by (19) and  is defined by (21). Then the function 

 with the form (9) is a Dulac-Cherkas function of system (2). Hence, from 

Cherkas et al. (2011) we conclude that system (2) has at most one limit cycle, and if it 

exists it is hyperbolic. 

Case II: Construction of a class of Dulac-Cherkas function in case 

. We take:  

,                                                   (25) 

With:  . The form of the function   is:            

             (26) 

Where: 
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, 

 

                                                                                             (27) 

 

 

 

. 

In the same way of (12)-(15), we obtain a system of three linear differential 

equations to determine the three functions  This system reads: 

 

, 

 

                                                                                        (28) 
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The first equation is an algebraic equation which determines according to (2) 

and (9) the constant  uniquely as  Substituting in (28), we obtain the following 

system of linear differential equations: 

,                                                                  (29) 

                                                                (30) 

             (31) 

                                                              (32) 

Taking into account (29) and (30) we obtain: 

],                                                                (33) 

.                                                          (34) 

By substituting  obtained from (33) into (34), we have: 

                                              (35) 

Where: 

 

,                                      (36) 

 

. 

From (31), we get: 
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,                                                                                                           (37) 

By substitutingthe equations (33) and (36) into (37), we have: 

 

,                       (38) 

with . Thus, from (38): 

.                                               (39) 

Substituting (33), (39) and  in equation (32), we get the linear ordinary 

differential equation: 

,    (40) 

Where: 

, 

 

,                                                                     (41) 

, 

 

From (40)-(41), we have: 
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Proposition 2. Consider system (2) under condition (3). Additionally we assume 

 for , where  is 

defined by (35) and  is defined by (39). Then function  with the form (25) is a 

Dulac-Cherkas function of system (2). Hence, from Cherkas et al. (2011) we conclude 

that system (2) has at most one limit cycle, and if it exists it is hyperbolic.  

 

4. Concluding Remarks 

In this paper, we have approached an extended version of an ordinary 

differential system that arises from evolving game theory proposed by Hofbauer and 

Sigmund (1998) by using a new method. We have shown that the study of the existence 

and number of limit cycles in this system may be carried out through transforming the 

original system into a Kukles system and then derive the Dulac-Cherkas function for 

this new system. This approach allows us to study the existence of limit cycles in varied 

cases of evolutionary games such as the ‘battle of sexes’.  
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