NBER WORKING PAPER SERIES

EVIDENCE ON THE EFFICACY OF SCHOOL-BASED INCENTIVES FOR HEALTHY LIVING

Harold E. Cuffe
William T. Harbaugh
Jason M. Lindo
Giancarlo Musto
Glen R. Waddell
Working Paper 17478
http://www.nber.org/papers/w17478

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138

October 2011

The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peerreviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.
© 2011 by Harold E. Cuffe, William T. Harbaugh, Jason M. Lindo, Giancarlo Musto, and Glen R. Waddell. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Evidence on the Efficacy of School-Based Incentives for Healthy Living
Harold E. Cuffe, William T. Harbaugh, Jason M. Lindo, Giancarlo Musto, and Glen R. Waddell NBER Working Paper No. 17478
October 2011
JEL No. I12

Abstract

We analyze the effects of a school-based incentive program on children's exercise habits. The program offers children an opportunity to win prizes if they walk or bike to school during prize periods. We use daily child-level data and individual fixed effects models to measure the impact of the prizes by comparing behavior during prize periods with behavior during non-prize periods. Variation in the timing of prize periods across different schools allows us to estimate models with calendar-date fixed effects to control for day-specific attributes, such as weather and proximity to holidays. On average, we find that being in a prize period increases riding behavior by sixteen percent, a large impact given that the prize value is just six cents per participating student. We also find that winning a prize lottery has a positive impact on ridership over subsequent weeks; consider heterogeneity across prize type, gender, age, and calendar month; and explore differential effects on the intensive versus extensive margins.

Harold E. Cuffe
Department of Economics
University of Oregon
Eugene, OR 97403-1285
cuffe@uoregon.edu
William T. Harbaugh
Department of Economics
University of Oregon
Eugene, OR 97403-1285
harbaugh@uoregon.edu

Jason M. Lindo
Department of Economics
University of Oregon
1285 University of Oregon
Eugene, OR 97403-1285
and NBER
jlindo@uoregon.edu

Giancarlo Musto
Université de Lyon
93 Chemin des mouilles
69130 Ecully
musto@gate.cnrs.fr
Glen R. Waddell
Department of Economics
University of Oregon
Eugene, OR 97403-1285
waddell@uoregon.edu

1 Introduction

The World Health Organization reports that increasingly sedentary lifestyles are "one of the more serious yet insufficiently addressed public health problems of our time," as they lead to elevated risks of obesity, cardiovascular diseases, diabetes, colon cancer, high blood pressure, osteoporosis, lipid disorders, depression, and anxiety. ${ }^{1}$ As these health concerns have gained prominence in policy discussions, researchers have recently begun to study how health-related behaviors might be improved by altering incentives. In particular, researchers have explored the role of incentives in the formation of exercise habits (Charness and Gneezy 2009), weight loss (Volpp et al. 2008; Cawley and Price 2011), and smoking cessation (Volpp et al. 2009). However, very little research in this area has focused on children's health-related behaviors despite the fact that obesity rates have tripled among American youth over the last thirty years. This paper aims to fill this important gap in the literature by considering how an opportunity to win prizes affects children's exercise habits.

Specifically, we analyze the effects of a school-based incentive program that was implemented with the intention of promoting physical activity through healthy modes of transportation. ${ }^{2}$ At participating schools, principals specified "prize periods" which usually lasted one week. Children who rode their bicycle to school each day of a prize period were entered into a lottery to win a ten-dollar cash prize or a ten-dollar voucher to a local bicycle store. We estimate the effects of the program with daily child-level data on which kids rode or walked to school from seven schools in and around Boulder, Colorado, spanning the 2006-07

[^0]though 2009-2010 school years. Because we have longitudinal data and variation in the timing of prize periods across different schools, we are able to address two types of selection that might otherwise bias the estimates. In particular, our preferred models exploit within-child variation over time by including individual fixed effects in order to address the possibility that the program affects the composition of children at the schools under consideration. Further, our preferred models exploit variation in the timing of prize weeks across schools by including exact-date fixed effects in order to address the possibility that school principals chose prize weeks on the basis of weather forecasts or other day-specific attributes common to the schools.

Our study is motivated by two particularly salient statistics that suggest that the elementaryschool years are especially deserving of research. First, the obesity rate has risen more dramatically for elementary-school-aged children than it has risen for either older or younger children. ${ }^{3}$ Second, the obesity-age profile is sharply positive during the elementary school years and flat at older ages. In 2007-2008, for example, the obesity rate was 10.4 percent for children aged two to five, 19.6 percent for children aged six to eleven, and 18.1 percent for those aged twelve to nineteen. The pattern of slightly falling obesity rates from elementary-school-ages to middle- and high-school ages has been quite stable since the late-1970s. In contrast, the gap in obesity rates between pre-school-aged children and elementary-schoolaged children has changed dramatically over time. While the gap was virtually non-existent in the 1960s, it has grown steadily over the past several decades. Today the obesity rate for

[^1]elementary-school-aged children is nearly twice the rate for pre-school-aged children.
Only one other study considers the effects of incentives on children's health-related behaviors. In particular, Just and Price (2011) analyze the impact of incentives for healthy eating. Their experiment, which provided rewards to children for eating fruits or vegetables during five treatment days over a span of two to three weeks at fifteen schools, finds dramatic results - a reward valued at approximately 25 cents per child increases the fraction of children eating fruits or vegetables by 27 percentage points (80 percent). Our study complements Just and Price (2011) in several ways. Most obviously, they explore one of the two recommended behavioral changes that have the potential to reduce obesity (diet), while we explore the other (exercise). Further, both studies consider the efficacy of non-cash prizes relative to cash prizes. ${ }^{4}$ In addition, while they consider a school-based incentives over a relatively short time horizon, we consider an incentive program that spans several school years. A challenge that both studies face is a lack of data on health outcomes, such as body mass index, which would be useful in order to measure the extent to which the observed behavioral improvements lead to improved health.

We find that the incentive provided during prize periods increases the probability that a child rides her bicycle to school by 3.9 percentage points, or 16.4 percent. Given that prize value was small (ten dollars) and that the lottery aspect of the reward mechanism meant that only one child was given such a prize (implying a prize value of six cents per participating student), these results highlight a low-cost approach to promoting exercise

[^2]among children. We also find suggestive evidence that cash prizes have greater effects than vouchers of equal value. Further, conditional on eligibility, we find that winning a prize lottery has a persistent effect, motivating children to ride more often in subsequent weeks. We also explore heterogeneity across age, gender, and the time of year and consider the extent to which there are differential effects on the intensive margin versus the extensive margin.

The remainder of the paper is organized as follows. Section 2 describes the program and data in greater detail. Section 3 reports the results of our empirical analysis. Lastly, Section 4 provides concluding remarks.

2 Program Design and Data Description

The intervention we consider was aimed at increasing physical activity among children by promoting non-motorized transport to and from school. The incentive structure provided by the program was as follows: in order to encourage children to exercise, those who rode or walked to school every day during a pre-announced "prize period" had their names entered into a drawing to win a prize. The prize, given to a single child at the end of each prize period, was ten dollars in cash during the first two years of the program, but was replaced by a ten-dollar voucher to neighborhood bicycle stores in subsequent years. In order to encourage a broader base of winners, after a child won a drawing, she was ineligible for future drawings if any children who fulfilled the requirements had not yet won a drawing.

Prize periods were chosen throughout the year at the discretion of each school's principal. ${ }^{5}$ More than 81 percent of prize periods spanned exactly five days, although shortened school weeks, severe weather, and principal discretion led to some prize periods which lasted six days (0.9 percent), four days (14.0 percent), three days (1.8 percent), and two days (1.2 percent).

The data used in this study were collected as a part of the program's implementation. Information on gender and age was collected from the online registration form for the program. Our data on active commuting behavior was collected by radio-frequency identification (RFID) tags. These were affixed to each child's bicycle helmet, so that her arrival to school could be recorded by RFID readers installed close to the school's bicycle racks. Once such a tag was is in place, participating students needed only pass under a RFID reader in order to register as having actively commuted in a given morning. ${ }^{6}$ While the program was conceived around the idea of promoting activity through increased bicycle use, other forms of active commuting (e.g., foot-powered scooters, pogo sticks, skateboards) were also allowed, including walking. "Walkers" were also given RFID tags and were not distinguished from "riders" in the data. In the text, we generally use "bikers" and "riding" since biking was the dominant active commuting method. ${ }^{7}$

Our data shows which days each student did and did not actively commute to school for the duration of the program. Since it crucial to our ability to obtain a valid counterfactual for

[^3]the riding behavior observed during prize periods, it is important to note that children had an incentive to report whether they actively commuted to school during non-prize periods as well. In particular, the program also included end-of-year rewards based on cumulative activity throughout the year-as students accumulated more non-motorized trips to school, they became eligible for increasingly valuable prizes at an end-of-year drawing, with top prizes including iPods ${ }^{\circledR}$ and digital cameras. ${ }^{8}$ As such, our estimates should be interpreted as the effect of the ten-dollar incentive over and above the effects of the end-of-year incentives.

We also note that administrators reminded students that cheating in the active-commuting initiative was equivalent to cheating on a test and, at some schools, students were required to sign an honor code claiming that they would not cheat. ${ }^{9}$

Our sample includes all children with at least one recorded active commute at seven participating schools within a 15 -mile radius of Boulder, Colorado. ${ }^{10}$ All of the schools include the children in Kindergarten through sixth grade, although two schools also include children in grades seven and eight. Overall, the data spans the four school years running from the fall of 2006 to the spring of 2010 but, because the program was not implemented at every school in every year, the duration of the time series varies from school to school. In particular, the sample includes four years of data for three schools; three years of data for one school; two years of data for one school; and one year of data for two schools. These eight schools provide 1,589 child observations, 3,113 child-by-school-year observations, and

[^4]536,613 child-by-exact-day observations.
Summary statistics for the sample are shown in Table 1. 57 percent of the children in the sample are male and the average age is approximately nine. Because the program was introduced to different schools at different times, some schools contribute more observations than others and a relatively large share of the data comes from later years. Approximately half of the observations correspond to prize periods, suggesting that principals were quite active in implementing the program. However, just 20 percent of observations correspond to prize periods with cash rewards, because a majority of the data comes from later years when vouchers were used instead of cash. On average, across prize periods and non-prize periods, children in the sample chose to ride to school a quarter of the time. The next section explores the extent to which prize periods had an effect on the decision to ride.

3 Empirical Analysis

3.1 Overall Effects of the Program

To begin, we focus only on within-child variation over time to estimate the effects of being in a prize period on the probability of riding on a particular day. In particular, we estimate the linear-probability model,

$$
\begin{equation*}
\text { Ride }_{i d}=\beta \text { Prize }_{i d}+\alpha_{i y}+u_{i d} \tag{1}
\end{equation*}
$$

where Ride $_{i d}$ is an indicator variable equal to one if child i actively commutes to school on calendar day d; Prize $_{i d}$ is an indicator variable equal to one if there is a prize period ongoing on date d at child i 's school; $\alpha_{i y}$ are child-by-academic-year fixed effects; and $u_{i d}$ is a random error term. The set of child-by-academic-year fixed effects control for all of a child's characteristics in a given year, including the characteristics of her school, that might be related to both their probability of riding and the specification of prize periods. This accounts for several sources of potential sources bias. For example, with these fixed effects in the model, the estimates would continue to be unbiased even if schools where riding to school was very popular had more prize periods. Implicitly, this model uses each child's probability of riding during non-prize periods as the counterfactual for her probability of riding during prize periods. The identifying assumption, which will be relaxed in subsequent specifications, is that principals do not systematically choose to have prize periods at times of the year when children are systematically more/less likely to ride to school. We have estimated the standard errors separately clustering on the individual, school-by-year, and school-we report the most conservative estimates which cluster at the school level.

The estimated effect of prize periods based on Equation (1) is reported in Column 1 of Table 2. This estimate suggests that students are 2.0 percentage points more likely to ride on during prize periods than non-prize periods, although the estimate is not statistically significant at conventional levels. In Column 2, we include day-of-the-week fixed effects. This controls for any direct effects of particular days on ridership, but also accounts for potentially non-random prize-period lengths (i.e., those not falling on the usual Monday-Friday pattern)
that would otherwise influence the estimated treatment effect. These controls do not change the estimated effect of prize periods. ${ }^{11}$

It is important to note that any systematic relationship between weather patterns and the specification of prize periods may bias the estimated effects presented in columns 1 and 2. The direction of this potential bias is unclear, however. Although students are likely to ride less when weather is bad, principals may respond by increasing or decrease the incentive to ride during these times. We address this potential issue in Column 3 by including year-bymonth fixed effects and in Column 4 by including year-by-week fixed effects. These estimates suggest that the prize periods significantly increase the probability a child actively commutes by $4.2-4.8$ percentage points, or $17.6-20.4$ percent. That these estimated effects are larger than the estimated effects in columns 1 and 2 suggests that prize periods tend to be more frequent during months (weeks) of the year when riding behavior tends to be low.

Our preferred model takes the controls for time of year as far as the data allows by including exact-date fixed effects in the empirical model:

$$
\begin{equation*}
\text { Ride }_{i d}=\beta \text { Prize }_{i d}+\alpha_{i y}+\gamma_{d}+u_{i d} \tag{2}
\end{equation*}
$$

In this model, the estimates exploit variation in the timing of prize periods across different schools. As such, the estimates use the change in riding behavior from day g to day h at a schools where days g and h were treated similarly (i.e., both occurred during prize periods or neither occurred during prize periods) as a counterfactual for the change observed at schools

[^5]in which one occurs during a prize period and the other does not. The estimate based on this model is are shown in Column 5. This estimate implies that prize periods increase ridership by 3.9 percentage points, or 16.4 percent. ${ }^{12}$

3.2 Effects of Cash Prizes Versus Voucher Prizes

As described above, prize winners were given cash during the first two years of the program while they were given certificates worth ten dollars at nearby bicycle stores in subsequent years. Thus, the estimated effects discussed in the previous section represent a weighted average of the effects of the different reward schemes. In order to explore the extent to which the cash prizes used in the first two years of the program had different effects from the vouchers used in subsequent years, we add to the empirical models discussed above an interaction between an indicator for being in a prize week and an indicator for years in which cash prizes were awarded. As such, our preferred model is

$$
\begin{equation*}
\text { Ride }_{i d}=\beta \text { Prize }_{i d}+\delta \text { Prize }_{i d} \times \text { Cash }_{y}+\alpha_{i y}+\gamma_{d}+e_{i d}, \tag{3}
\end{equation*}
$$

where β is the effect of prize periods in which the prize is a voucher and δ is the additional effect of prize periods in which there is a cash prize the effect of over and above the effect of prize periods in which the prize is a voucher.

Panel A of Table 3 presents the results of this exercise. Although it is not statistically

[^6]significant, our preferred estimate in Column 5, which includes child-by-year and exact-date fixed effects, suggests that cash prizes induce levels of active commuting approximately four-and-a-half-times higher than voucher prizes. The point estimates imply that the opportunity to win a voucher increases the probability a child rides by 3.2 percentage points (13.6 percent) while the opportunity to win cash induces a 14.4 percentage-point increase (61 percent). This finding is consistent with Just and Price (2011) who also find children to be most responsive to cash, in addition the general expectation that individuals should prefer unrestricted rewards to those that impose restrictions on use (Waldfogel 1993). Further, to impose restrictions that relate closely to the activity being incentivized-recall, the vouchers were only redeemable at area bicycle stores - may be even more costly. For example, whether vouchers that could be used to purchase toys or candy would yield the same drop off in incentive power remains an open question.

Because cash prizes were awarded in the first two years of the program and vouchers in the second two, the reduced incentive of vouchers found in Panel A might actually reflect a more-general dampening effect of the program over time. In order to explore rule out this explanation, we estimate

$$
\begin{equation*}
\text { Ride }_{i d}=\beta \text { Prize }_{i d}+\delta \text { Prize }_{i d} \times \text { Cash }_{y}+\eta \text { Prize }_{i d} \times \text { YearsOfProgram }_{i d}+\alpha_{i y}+\gamma_{d}+e_{i d}, \tag{4}
\end{equation*}
$$

where the variable YearsOfProgram is the number years since the program was implemented at an individual's school. This equation separately estimates the additional effectiveness of cash (δ) and the extent to which the program becomes more or less effective over
time (η). The results of this analysis, shown in Panel B, indicate that additional effect of cash is not due to changes in the effect of the program over time. Further, they suggest that the efficacy of the program does not diminish in subsequent years after introduction.

3.3 Heterogeneity Across Gender and Age

Obesity rates vary with gender and age, and in Table 4 we look at whether the program had heterogeneous effects on riding by gender and age. First, columns 1 and 2 estimate the effects separately for males and females using our preferred model. These estimates are nearly identical. Both male and female children ride 24 percent of the time on non-prizeperiod days, the opportunity to win a prize increases male ridership 4.0 percentage points and increases female ridership 3.7 percentage points. These estimates correspond to effects of 16.9 percent and 15.6 percent, respectively.

In columns 3 through 7 we report the estimated effects for subsamples stratified by age in two-year increments. Across these columns, prizes appear to have similar effects across ages five through ten, increasing ridership 4.1 to 4.5 percentage points. However, the program appears to lose power at older ages, as the estimated treatment effect is 3.5 percentage points for eleven- and twelve-year-olds and only 1.2 percentage-points (and no longer statistically significant) for thirteen- and fourteen-year olds.

3.4 Heterogeneity By Time of Year

Incentives might have different effects at different times of the year, perhaps because of whether or spillovers from school holidays. Figure 1 plots the estimated effect of prize periods by the month of the year. The estimation strategy continues to control for child-byyear and exact day fixed effects, but breaks the estimated effect of prize weeks out by month with a series of month indicator variables interacted with prize week status:

$$
\begin{equation*}
\text { Ride }_{i d}=\beta_{m} \text { Month }_{m} \times \text { Prize }_{i d}+\alpha_{i y}+\gamma_{d}+e_{i d} \tag{5}
\end{equation*}
$$

In Figure 1, we present estimated-treatment effects (and associated 95-percent confidence intervals) for each month of the year. These estimates reveal a systematic pattern, with the strongest effects occurring towards the beginning and end of the school year. Although we cannot rule out other mechanisms, this may be due to increased costs of active commuting during the winter. In support of this hypothesis, the estimated-prize-week effect is much larger in November than October while November had far less precipitation than October during the years we consider. ${ }^{13}$

[^7]
3.5 Effects on the Extensive Versus Intensive Margins

In order to consider the intensive and extensive margins of commuting behavior, we collapse the data to the child-by-week level. As such, we regress measures of activity on whether or not the week corresponded to a prize period. This analysis is restricted to five-school-day weeks in which there was no prize period or in which a prize period spanned the entirety of the week. We continue to use a linear probability model and to control for student-level characteristics in a flexible manner by including student-year and week fixed effects in the empirical model. As outcome variables, we use the probability that a child rode to school more than D times in a given week for $D=\{0,1,2,3,4\}$.

Column 1 of Table 4 focuses on the extensive margin, estimating the impact of a prize period on the probability that a child rides to school at least once in a given week. The estimates imply that prize weeks raise the probability a child rides one or more times by approximately 10 percentage points, which corresponds a 24 percent increase over non-prize weeks where 41 percent of the children ride at least once. Given the outcome variable under consideration, this estimate can be interpreted as evidence that the incentive induces children to ride who typically would not.

Columns 2 though 5 of Table 4 focus on the intensive margin, sequentially estimating the effect on the probability that a child rides to school more than one, two, three, and four times in a given week. Although the estimated percentage point impacts tend to fall moving from left to right, which suggests that the incentive has relatively weak impacts at higher margins, the story is different when one considers the baseline probabilities with which chil-
dren tend to ride more than D days in a given weak for each D. In particular, the percent impacts increase monotonically in D. These estimates suggest that prize periods increase the probability that a child rides to school five days in a week by 65.9 percent. The growing percentage impact across columns 2 though 5 indicates that there are disproportionate effects of prize periods on children's commuting behavior-the number of children riding five days is increased proportionally more than the number riding four or more days, the number of children riding four or more days is increased proportionally more than the number of three or more days, and so on.

3.6 Effects of Winning A Prize Lottery

In this subsection, we analyze the effect of winning a prize lottery on a child's subsequent activity. Because there are multiple mechanisms through which winning may affect a child's riding behavior, it is not clear ex ante what effects one should anticipate. As described in Section 2, once a child has won a prize she cannot be selected in future drawings, unless there are no other eligible children who have not yet won a prize. As such, winning may reduce a child's subsequent riding behavior by reducing the impact of prize periods. On the other hand, being rewarded for their activity may lead children to associate more positive feelings with riding to school, inducing them to ride more often.

In order to measure the effect of winning a prize drawing, we estimate a model with a series of indicator variables that reflect whether a child won a prize in the past fifteen days in
addition to a series of indicator variables that reflect whether a child was was eligible to win a prize (by riding every day of a prize period) in the past fifteen days. That is, we estimate

$$
\begin{equation*}
\text { Ride }_{i d}=\sum_{k=1}^{15} \delta_{k} \text { Win }_{i, d-k}+\sum_{k=1}^{15} \beta_{k} \text { Eligibl }_{i, d-k}+\gamma_{i y}+\gamma_{d}+e_{i d} \tag{6}
\end{equation*}
$$

where $\operatorname{Ride}_{i d}$ is an indicator variable that equals one if child i rides on exact date d, Win $_{i, d-k}$ is an indicator variable that equals one if child i won a prize drawing k days ago, and Eligible $_{i, d-k}$ is an indicator variable equal to one if child i was eligible to win a prize drawing held k days ago, while $\gamma_{i y}$ and γ_{d} are child-by-year and exact-day fixed effects, respectively. Essentially, this model compares the activity of prize-drawing winners to the activity of children who were eligible but not selected in a prize drawing.

We present these estimates in Figure 2. They show that being selected in a prize drawing has a positive impact on children's activity. Further, the effect appears to persist for at least two weeks. Beyond two weeks, the effect appears to fade to zero.

4 Conclusion

In this paper, we have assessed the efficacy of a school-based program for promoting physical activity among children. Using data generated as part of the Freiker/Boltage pilot program, our findings indicate that children are highly responsive to small weekly prize lotteries that reward active commuting to school. Although there is suggestive evidence that ten-dollarcash prizes have the greatest effect, ten-dollar vouchers to a local bicycle store increase
increase ridership by 13.6 percent. Prize periods encourage ridership along the extensive margin and all intensive margins, increasing the number of children who ride once per week, twice per week, and so on. In addition, winning a prize lottery also motivates children to increase their activity even though, under the program rules, it substantially reduces their probability of winning future lotteries.

To our knowledge, we provide the first systematic study of the effects of economic incentives on children's exercise behavior. The results suggest that school-based initiatives can be successfully employed as a tool to increase physical activity, even with very inexpensive rewards. Future work will be necessary to explore whether children respond similarly in alternative settings and whether alternative reward mechanisms might be more effective.

References

Cawley, J., and J. A. Price (2011): "Outcomes in a Program that Offers Financial Rewards for Weight Loss," in Economic Aspects of Obesity. University of Chicago Press.

Charness, G., and U. Gneezy (2009): "Incentives to Exercise," Econometrica, 77(3), 909-931.

Davison, K. K., J. L. Werder, and C. T. Lawson (2008): "Children's Active Commuting to School: Current Knowledge and Future Directions," Preventing Chronic Disease, $5(3), 1-11$.

Department of Health and Human Services (2008): "Physical Activity Guidelines Advisory Committee Report," Washington, DC.

Just, D., and J. Price (2011): "Using Incentives to Encourage Healthy Eating in Children," Mimeo.

Liese, Angela D., e. A. (2006): "The Burden of Diabetes Mellitus Among US Youth: Prevalence Estimates From the SEARCH for Diabetes in Youth Study," Pediatrics, 118(4), 1510-1518.

Ogden, C. L., M. D. Carroll, L. R. Curtin, M. M. Lamb, and K. M. Flegal (2010): "Pervalence of High Body Mass Index in US Children and Adolescents, 2007-2008," Journal of the American Medical Association, 303(3), 242-249.

Sirard, J. R., and M. E. Slater (2008): "Walking and Bicycling to School: A Review," American Journal of Lifestyle Medicine, 2(5), 372-396.

Volpp, K. G., L. K. John, A. B. Troxel, L. Norton, J. Fassbender, and G. Loewenstein (2008): "Financial Incentive-Based Approaches for Weight Loss: A Randomized Trial," Journal of the American Medical Association, 300(22), 2631-2637.

Volpp, K. G., A. B. Troxel, M. V. Pauly, H. A. Glick, A. Puig, D. A. Asch, R. Galvin, J. Zhu, F. Wan, J. DeGuzman, E. Corbett, J. Weiner, and N. Audrain-McGovern (2009): "A Randomized, Controlled Trial of Financial Incentives for Smoking Cessation," The New England Journal of Medicine, 360, 699-709.

Waldfogel, J. (1993): "The Deadweight Loss of Chirstmas," American Economic Review, 83(5), 1328-1336.

Table 1
Summary Statistics

Ride (1 if yes)	0.23
Prize (1 if yes)	0.50
Cash Prize (1 if yes)	0.20
Male (1 if yes)	0.57
Age	9.32
School 1 (1 if yes)	0.27
School 2	0.23
School 3	0.08
School 4	0.16
School 5	0.05
School 6	0.13
School 7	0.08
$2006 / 07$ (1 if yes)	0.06
$2007 / 08$	0.15
$2008 / 09$	0.37
$2009 / 10$	0.42
Child observations	1,589
Child by school year observations	3,113
Child by exact day observations	536,613

Notes: Sample means for the listed indicator variables are constructed using child-by-exact day observations. "Ride" is equal to one on days when a child uses any method of active commuting to get to school.

Table 2
Estimated Effect of Being in a Prize Period on the Probability of Riding to School

	(1)	(2)	(3)	(4)	(5)
Prize	0.020	0.020	$0.048^{* * *}$	$0.042^{* *}$	$0.039^{* *}$
	(0.013)	(0.013)	(0.012)	(0.016)	(0.015)
Observations	536,613	536,613	536,613	536,613	536,613
Child-by-year Observations	3,113	3,113	3,113	3,113	3,113
Child Observations	1,589	1,589	1,589	1,589	1,589
Pr(Ride) during non-prize weeks	.24	.24	.24	.24	.24
Impact (\%)	8.3	8.3	20.4	17.6	16.4
Child-by-year FE	yes	yes	yes	yes	yes
Day-of-week FE	no	yes	yes	yes	n/a
Year-by-month FE	no	no	yes	n/a	n/a
Year-by-week FE	no	no	no	yes	n/a
Exact-date FE	no	no	no	no	yes

Notes: All estimates are based on linear probability models. Standard error estimates, clustered on the school, are shown in parentheses. Percent impacts are calculated as the one hundred times the estimated treatment effect divided by the probability that students ride during non-prize periods.
*** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level

Table 3
Do Cash Prizes Have Bigger Impacts Than Vouchers?

	(1)	(2)	(3)	(4)	(5)
Panel A: Estimating The Additional Effect	of	Cash Prizes			
Prize	0.019	0.019	$0.041^{* *}$	0.036^{*}	0.032^{*}
	(0.014)	(0.014)	(0.012)	(0.015)	(0.014)
Prize \times Cash	0.003	0.003	0.044	0.051	0.112
	(0.023)	(0.023)	(0.044)	(0.073)	(0.092)
Observations	536,613	536,613	536,613	536,613	536,613
Child-by-year Observations	3,113	3,113	3,113	3,113	3,113
Child Observations	1,589	1,589	1,589	1,589	1,589
Pr(Ride) during non-prize weeks	.24	.24	.24	.24	.24
Coupon Impact (\%)	8	7.9	17.3	15.3	13.6
Cash Impact (\%)	9.1	9.1	35.7	37	61
Child-by-year FE	yes	yes	yes	yes	yes
Day-of-week FE	no	yes	yes	yes	n/a
Year-by-month FE	no	no	yes	n/a	n/a
Year-by-week FE	no	no	no	yes	n/a
Exact-date FE	no	no	no	no	yes
Panel B. Disentangling The Effect	of Cash	from Differential Effects	Over	Time	
Prize	0.065	0.065	0.058	0.035	0.042
	(0.050)	(0.050)	(0.041)	(0.045)	(0.051)
Prize \times Cash	-0.017	-0.017	0.035	0.052	0.107
	(0.032)	(0.032)	(0.049)	(0.079)	(0.091)
Prize \times Program Year	-0.015	-0.015	-0.006	0.000	-0.003
	(0.014)	(0.014)	(0.012)	(0.012)	(0.014)
Observations	536,613	536,613	536,613	536,613	536,613
Child-by-year Observations	3,113	3,113	3,113	3,113	3,113
Child Observations	1,589	1,589	1,589	1,589	1,589
Pr(Ride) during non-prize weeks	.24	.24	.24	.24	.24
Coupon Impact (\%)	27.6	27.6	24.5	14.7	17.9
Cash Impact (\%)	20.3	20.5	39.4	36.7	63
Child-by-year FE	yes	yes	yes	yes	yes
Day-of-week FE	no	yes	yes	yes	n/a
Year-by-month FE	no	no	yes	n/a	n/a
Year-by-week FE	no	no	no	yes	n/a
Exact-date FE	no	no	no	no	yes

Notes: All estimates are based on linear probability models. Standard error estimates, clustered on the school, are shown in parentheses. Percent impacts are calculated as the one hundred times the estimated treatment effect divided by the probability that students ride during non-prize periods.
*** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level
Table 4

Heterogeneity Across Gender and Age							
	(1)	(2)	(3)	(4)	(5)		
	Male	Female	Age 5-6	Age 7-8	Age 9-10	Age 11-12	Age 13-14
Prize	$0.040^{* *}$	0.037^{*}	0.045^{*}	0.041	0.043^{*}	$0.035^{* *}$	0.012
	(0.014)	(0.018)	(0.019)	(0.022)	(0.018)	(0.014)	(0.011)
Observations	308,369	228,244	53,624	153,565	163,156	122,835	38,003
Child-by-year Observations	1,789	1,324	314	894	947	708	219
Child Observations	884	705	186	662	720	501	158
Pr(Ride) during non-prize weeks	.24	.24	.21	.28	.26	.23	.05
Coupon Impact (\%)	16.9	15.6	21.4	15	16.6	15.2	22.3
Child-by-year FE	yes						
Exact-date FE	yes						

[^8] Percent impacts are calculated as the one hundred times the estimated treatment effect divided by the probability that students ride during non-prize periods.
*** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level

Table 5
Estimated Effects on Intensive and Extensive Margins (Analysis at Weekly-Level)

Outcome	(1) rides >0	(2) rides >1	(3) rides >2	(4) rides >3	(5) rides >4
Prize	$0.104^{* *}$	$0.111^{* *}$	$0.097^{* * *}$	$0.080^{* *}$	$0.062^{* *}$
	(0.036)	(0.032)	(0.024)	(0.022)	(0.019)
Observations	68,725	68,725	68,725	68,725	68,725
Child-by-year Observations	3,113	3,113	3,113	3,113	3,113
Child Observations	1,589	1,589	1,589	1,589	1,589
Pr(Ride) during non-prize weeks	.36	.27	.2	.14	.07
Coupon Impact (\%)	14.7	23.2	31	35.4	65.9
Child-by-year FE	yes	yes	yes	yes	yes
Year-by-week FE	yes	yes	yes	yes	yes

Notes: All estimates are based on linear probability models. Standard error estimates, clustered on the school, are shown in parentheses. Percent impacts are calculated as the one hundred times the estimated treatment effect divided by the probability that students ride at least D times during non-prize periods.
${ }^{* * *}$ Significant at the 1% level; ${ }^{* *}$ Significant at the 5% level; * Significant at the 10% level

Figure 1
Estimated Effects on Riding Behavior Across the Year

Notes: All estimates are based on linear probability models in which an indicator variable for being in a prize period is interacted with each month of the year, in addition to child-by-school-year fixed effects and exact-date fixed effects. 95-percent confidence intervals are shown around point estimates.

Figure 2
Estimated Effects of Winning a Prize Drawing Conditional on Eligibility by Time Since Winning

Notes: All estimates are based on linear probability models that include a set of indicator variables for having won a prize drawing k school days ago for $k=\{1,2, \ldots, 15\}$, in addition to a similar set of indicator variables for having been eligible to win a prize drawing in prior days, child-by-school-year fixed effects and exact-date fixed effects. 95-percent confidence intervals are shown around point estimates.

[^0]: ${ }^{1}$ http://www.who.int/mediacentre/news/releases/release23/en/index.html
 ${ }^{2}$ The program under consideration is currently known as Boltage but was founded founded under the name Freiker-FRE-quent b-IKER.

[^1]: ${ }^{3}$ From 1963-1965 to 2007-2008, obesity rates rose from 5.0 percent to 10.4 percent for children aged two to five, from 4.2 to 19.6 percent for children aged six to eleven, and from 6.6 to 18.1 percent for those aged twelve to nineteen. These and other statistics mentioned in this paragraph are discussed from Ogden et al. (2010) whose analysis uses data from the National Health and Nutrition Examination Survey (NHANES).

[^2]: ${ }^{4}$ Just and Price (2011) also explore how the timing of the reward (immediately versus one month later) affects behavior.

[^3]: ${ }^{5}$ We discuss the potential for this discretion to introduce bias - and the steps we take to address this concern-below.
 ${ }^{6}$ A video of RFID in action is available at http://www.streetfilms.org/boulder-goes-bike-platinum/. In addition, parents could log into a password-protected website and manually enter their child as having actively commuted to school if her child forgot to pass under the reader.
 ${ }^{7}$ RFID tags cost $\$ 1.15$ each, the reader costs $\$ 6,890$, and annual annual maintenance costs $\$ 950$.

[^4]: ${ }^{8}$ One school which we include in the analysis focused solely on end-of-year awards. As such, it serves solely to help identify day-of-year fixed effects.
 ${ }^{9}$ In the end, administrators report that they have not found cheating to be a problem.
 ${ }^{10}$ More data was made available but inconsistencies in the application of treatment made the value of their inclusion questionable. For example, in one school, prizes were promised by the principal but not awarded to eligible children.

[^5]: ${ }^{11}$ The estimates on each day of the week (not shown) reveal that there tends to be relatively-high ridership on Wednesdays and low ridership on Mondays and Fridays.

[^6]: ${ }^{12}$ Although the estimate only changes slightly across the specification that controls for year-by-week fixed effects and the specification that controls for exact-date fixed effects, we note that such a change is not unreasonable given that prize-periods did not always span the five days of a week.

[^7]: ${ }^{13}$ In particular, Boulder, Colorado had 3.71 inches of precipitation in October of 2006 versus 0.74 inches in November of 2006, 1.38 inches of precipitation in October of 2007 versus 0.47 inches in November of 2007, 1.18 inches of precipitation in October of 2008 versus 0.13 inches in November of 2008, and 3.26 inches of precipitation in October of 2009 versus 0.93 inches in November of 2009. These and similar statistics are available from the Earth System Research Laboratory, Physical Sciences Division: http://www.esrl.noaa.gov/psd/boulder/Boulder.mm.precip.html.

[^8]: Notes: All estimates are based on linear probability models. Standard error estimates, clustered on the school, are shown in parentheses.

