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1 Introduction

The theory of monopolistic screening1 (second-degree price discrimination) studies a monop-

olist�s optimal pricing scheme when she has incomplete information about buyers� individual

preferences.2 According to the theory, the monopolist can maximize her proÞt by using a menu

of packages which induces each type of buyer to select the package designed for the type. While

the theory tackles the self-selection issue at the individual level, it assumes away the possi-

bility that price discrimination might induce buyers to form coalitions to do arbitrage, that

is, to coordinate their purchases and to reallocate the goods they bought among themselves.

Since this might reduce the seller�s proÞt, in this paper we study the optimal sale mechanism

which takes into account not only individual incentive compatibility but also coalition incen-

tive compatibility (i.e., buyers� incentive to collectively engage in arbitrage). In particular,

in addressing this fundamental and fascinating problem, we focus on the role of asymmetric

information among buyers about each other�s preferences.

In reality, there exists much evidence of (legal or illegal) coalitions among buyers. On the

one hand, bidders� collusive behavior in auctions is well documented and auction literature

has been devoting an increasing attention to the topic.3 On the other hand, buyers often form

cooperatives to jointly purchase goods.4 One central question regarding buyer coalitions is

how asymmetric information among the buyers affects coalition formation. Our major goal is

to identify the transaction costs in coalition formation generated by asymmetric information

and to Þnd the sale mechanism which best exploits these transaction costs.

Consider for example the situation in which an upstream monopolist sells her goods to

two downstream Þrms operating in separate markets. Given a menu of quantity-transfer pairs

offered by the monopolist, the two downstream Þrms can employ two instruments to increase

their joint payoffs. First, they can jointly decide which pair each buyer should choose. In

our paper, this is modeled by manipulation of the reports which the buyers send into the sale

mechanism. Second, they can reallocate among themselves the goods bought from the seller.

We Þrst show that under the standard optimal mechanism which neglects coalition incentive

compatibility, buyers can increase their payoffs by engaging in arbitrage and this reduces the

1See, for instance, Maskin and Riley (1984) and Mussa and Rosen (1978) for an introduction and Rochet

and Stole (2002) for a recent contribution dealing with random participation.
2We use �she� to represent the monopolist and �he� to represent a buyer or the third-party.
3For examples, see Caillaud and Jehiel (1998), Graham and Marshall (1987), McAfee and McMillan (1992)

and Brusco and Lopomo (2002).
4There exist various forms of supply cooperatives to purchase some products together. For instance, Heße-

bower (1980) describes three types of supply cooperatives: farmers�s cooperatives, consumer cooperatives and

those run by urban businesses.
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seller�s proÞt. However, as the main result, we Þnd an optimal mechanism which allows the

monopolist to realize the same proÞt regardless of whether or not buyers can form a coalition

to do arbitrage.

Consider for simplicity a two-buyer setting and suppose that the seller can produce any

amount of a homogeneous product at a constant marginal cost and a buyer has either high

valuation (H-type) or low valuation (L-type) for the product. Assume that types are indepen-

dently and identically distributed and a buyer�s type is his private information. It is well-known

that in the optimal mechanism(s) without buyer coalition, the quantity allocated to H-type

is equal to the Þrst-best level while the quantity allocated to L-type is distorted downward

compared to the Þrst-best level since the payment the seller receives from H-type decreases in

the quantity sold to L-type. This implies that L-type has a higher marginal surplus for the

product than H-type and, if there are no transaction costs in coalition formation, buyers can

increase their payoffs by reallocating some quantity from H-type to L-type (with a suitable

money transfer from the latter to the former) in the state of nature in which one buyer has

H-type and the other has L-type. This may alter ex ante buyers� incentives to report truthfully

and reduce the seller�s expected proÞt.

Drawing on Laffont and Martimort (1997, 2000), we model coalition formation under asym-

metric information by a side-contract offered to the buyers by a third-party who maximizes the

sum of buyers� payoffs. The side-contract speciÞes both the manipulation of the reports made

into the sale mechanism and the reallocation of the goods obtained from the seller. The side-

contract must satisfy budget balance, participation and incentive constraints. The incentive

constraints need to hold since the third-party does not know the buyers� types; the acceptance

constraints are deÞned with respect to the utilities the buyers obtain when playing the sale

mechanism non-cooperatively.

We Þrst consider simple mechanisms in which both the quantity that a buyer receives and

his payment do not depend on the other buyer�s report. We show that if the seller uses the

simple mechanism which is optimal without buyer coalition, buyers can realize strict gains

at the seller�s loss by suitably arbitraging. For instance, when the both buyers have H-type

(HH-coalition) they have an incentive to report HL instead of truthtelling and to reallocate

quantities and transfers. To see this, note that under the optimal simple mechanism, H-type

is indifferent between the quantity-transfer pair designed for H-type and the pair for L-type.

This implies that if reallocation is impossible,HH-coalition is indifferent between reportingHL

and truth-telling. However, if reallocation is feasible, under standard convexity assumptions

on buyers� preferences, each buyer�s payoff conditional on reporting HL strictly increases since

they can share equally the total quantity and transfers. In contrast, conditional on reporting
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HH, reallocation does not affect the payoffs since both buyers receive the same quantity from

the seller. Therefore, HH-coalition prefers to report HL rather than HH.

After studying simple mechanisms, we consider the mechanisms in which the seller makes

the payment of a buyer depend on the report of the other buyer. In particular, we focus on those

transfers which keep the buyers� expected payments equal to the ones in the simple optimal

mechanism, while the quantity proÞle is unchanged. It turns out that there exists a transfer

scheme which allows the seller to deter manipulation of reports and reallocation of goods at no

cost, thus letting her realize the same proÞt as when there is no buyer coalition. In particular,

even if the marginal rates of substitution are not equalized across buyers with different types,

the third party is not able to implement any efficient reallocation between H-type and L-type

in HL-coalition because of the tension between incentive and participation constraints in the

side-contract. The intuition for this result is as follows. Since the rent that H-type obtains by

pretending to be L-type in the side mechanism increases in the quantity received by L-type, if

the third-party reallocates some quantity from H-type to L-type then he is forced to concede

H-type a higher rent in order to elicit a truthful report: the alternative of reducing L-type�s

payoff is impossible since it would induce L-type to reject the side-contract. This increase in

the rent is deÞned as the transaction costs generated by asymmetric information. We quantify

the transaction costs and show that they are larger than the gains from reallocating quantity

from H-type to L-type; therefore the reallocation cannot be realized. We also show that

this optimal outcome can be implemented by a menu of two-part tariffs. Finally, our main

result that buyer coalition does not hurt the seller extends to more general settings: when the

marginal cost is increasing, or there are n buyers, or there are three possible buyer types.

The literature about consumer coalitions mostly addresses issues different from the one we

consider in this paper.5 Alger (1999) is one exception: She studies the optimal menu of price-

quantity pairs when (a continuum of) consumers are able to purchase multiple times or/and

jointly in a two-type setting. She Þnds that with multiple purchases only, the monopolist offers

strict quantity discounts while, with joint purchases only, discounts are infeasible. Her results

are based on two following assumptions. First, consumer coalitions are formed under complete

information among the consumers about each other�s type and only consumers with the same

type can form coalitions. Second, the set of mechanisms available to the seller is restricted by

assuming that the quantity allocated to a consumer and his payment do not depend on the

other consumers� choices. In contrast, in our model a coalition is formed under asymmetric

5For instance, Innes and Sexton (1993, 1994) analyze the case in which the monopolist is facing identical

consumers who may form coalitions. They show that even though consumers� characteristics are homogeneous,

the monopolist may price discriminate in order to deter the formation of coalitions, whereas price discrimination

is unproÞtable in the absence of the coalitions.
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information among buyers and the seller can use complete contracts such that the quantity

sold to a buyer and his payment can depend on the others� choices.

Using a third-party to model collusion under asymmetric information was Þrst introduced

in auction literature � see the Þrst three papers mentioned in footnote 3. While that literature

studies the optimal auction in a restricted set of mechanisms, usually Þnding the optimal

reserve price for a Þrst or second price auction, Laffont and Martimort (1997, 2000) use a more

general approach in that they characterize the set of collusion-proof mechanisms and optimize

in this set. In their settings reallocation is infeasible6 and they show that if the agents� types

are independently distributed, then a dominant-strategy mechanism implements the second-

best outcome and eliminates any gain from joint manipulation of reports. Furthermore, this

mechanism does not exploit the transaction costs created by asymmetric information. In

our setting, the dominant-strategy mechanism is not collusion-proof since the coalition owns

the additional instrument of quantity reallocation, but the seller can still achieve the second-

best proÞt by fully exploiting the transaction costs in coalition formation. We also note that

Laffont and Martimort limit the analysis to the two-agent-two-type setting and do not consider

implementation through non-direct mechanisms.

Our paper is to some extent related to the papers studying auctions with resale. For

instance, Ausubel and Cramton (1999) analyze the optimal auction when buyers can engage

in resale after receiving goods from the seller and the resale is (assumed to be) always efficient.

They prove that the seller maximizes his proÞt by allocating goods efficiently. In contrast, in

our setting, buyers sign a binding side-contract before each buyer chooses how much to buy

and they fail to achieve efficient reallocation because of the transaction costs.7

The rest of the paper is organized as follows. In Section 2, we introduce the model and in

Section 3 we review as a benchmark the optimal sale mechanisms without buyer coalition. In

Section 4 we prove that the simple optimal mechanism in which each buyer�s allocation depends

only on his own report leaves room for arbitrage such that buyer coalition reduces the seller�s

proÞt. In order to deÞne the seller�s optimization problem under collusion, still in Section 4

we introduce the (weakly) collusion-proofness principle and characterize the constraints that a

collusion-proof mechanism must satisfy. In Section 5, we deÞne and solve the seller�s problem

6In the Þrst paper, they consider two regulated Þrms producing complementary inputs. The Þrms have

independently distributed types and collusion has bite since an exogenous restriction on the set of the principal�s

mechanisms is imposed. In the second paper, they consider collusion between consumers of a public good with

correlated types. Consumers have incentives to collude since the principal will fully extract their rents if they

behave non-cooperatively.
7Zheng (2002) allows resale in a one-good auction with asymmetrically distributed buyers� values and proves

that an equilibrium exists which induces the same payoffs as if resale can be costlessly banned.
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and prove our main result that these constraints can be satisÞed without reducing the seller�s

proÞt. In Section 6, we extend the main result to more general settings. In Sections 4-6, we

make some speciÞc assumptions about buyers� off-the-equilibrium-path beliefs and behavior. In

Section 7, we show that our main result is robust to relaxing these assumptions. Concluding

remarks are given in Section 8. All of the proofs are left to Appendix except the proof of

Proposition 5.

2 The model

2.1 Preferences, information and mechanisms

A seller (for instance, an upstream monopolist) can produce any amount q ≥ 0 of homogeneous
goods at cost C(q) and sells the goods to n ≥ 2 buyers (for instance, downstream Þrms

operating in separate markets). Throughout the paper, we will interpret q as quantity except

in Section 4, where we consider also the case in which q represents quality. Buyer i (i = 1, ..., n)

obtains payoff U(qi, θi) − ti from consuming quantity qi ≥ 0 of the goods and paying ti ∈ R
units of money to the seller. He privately observes his own type θi ∈ Θ ≡ {θL, θH}, where
∆θ ≡ θH − θL > 0. The types θi and θj are identically and independently distributed for any
i 6= j, with pL ≡ Pr

©
θi = θL

ª ∈ (0, 1) for i = 1, ..., n; the distribution of (θ1, ..., θn) is common
knowledge. We suppose that C(·) and U(·) are such that C(0) = 0, C0(q) > 0 and C 00(q) ≥ 0
for any q ≥ 0; U(0, θ) = 0, U1(q, θ) > 0 > U11(q, θ), U2(q, θ) > 0 and U12(q, θ) > 0 for any (q, θ),
where subscripts denote partial derivatives and U12(q, θ) > 0 is the standard Spence-Mirrlees
single-crossing condition. Furthermore, we assume that U1(0,θL)pL

− (1−pL)U1(0,θH)
pL

> C 0(q̄), where
q̄ is the Þrst best quantity for an H-type when he is the only buyer (q̄ is deÞned as the unique

solution to U1(q, θH) = C 0(q)). This condition guarantees that each type of buyer receives a
positive quantity in the optimum without buyer coalition.8 The reservation utility of each type

of buyer i is given by U(0, θi)− 0 = 0, his payoff if he does not transact with the monopolist.
In what follows, for expositional simplicity, we focus on the case with n = 2 buyers, constant

marginal cost c(> 0) and U(q, θ) = θu(q). However, our main result holds for any n > 2, any
convex cost function and any U(q, θ) with the properties described above and it also holds in
the three-type setting with Θ ≡ {θL, θM , θH}. See Section 6 for all the extensions.

The seller designs a sale mechanism to maximize her expected proÞt. A generic sale mech-

anism is denoted byM and, according to the revelation principle, we can restrict our attention

8Our results below holds even when the seller Þnds it optimal to refuse to serve L-type.
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to direct revelation mechanisms:

M =
n
qi(bθ1,bθ2), ti(bθ1,bθ2); i = 1, 2o ,

where bθi ∈ {θL, θH} is buyer i�s report, qi(·) is the quantity he receives and ti(·) is his payment
to the seller. Since buyers are ex ante identical, without loss of generality we focus on symmetric

mechanisms in which the quantity sold to a buyer and his payment depend only on the reports

(bθ1,bθ2) and not on his identity. Then, we can introduce the following notation to simplify the
exposition: For quantities,

qHH = q1(θH , θH) = q
2(θH , θH), qHL = q

1(θH , θL) = q
2(θL, θH),

qLH = q1(θL, θH) = q
2(θH , θL), qLL = q

1(θL, θL) = q
2(θL, θL).

(tHH , tHL, tLH , tLL) ∈ R4 are similarly deÞned. Let q ≡ (qHH , qHL, qLH , qLL) denote the vector
of quantities and t ≡ (tHH , tHL, tLH , tLL) denote the vector of transfers.

The sale mechanisms we consider involve (second-degree) price discrimination. Although

price discrimination can be illegal if it threatens to injure competition9, in our context there

is no such concern since the buyers operate in separate markets.

2.2 Buyer coalition

Drawing on Laffont and Martimort (1997, 2000), we model buyers� coalition formation by a

side-contract, denoted by S, offered by a benevolent third-party. The third party designs S

in order to maximize the sum of buyers� expected payoffs subject to incentive compatibility

(since he does not observe the types) and participation constraints written with respect to the

utility a buyer obtains when M is played non-cooperatively.

We assume that the seller is the Þrst mover and can commit not to serve a buyer if the

other buyer refusesM . This limits the strategies available to the buyer coalition: in particular,

the third-party cannot employ the strategy of making only one buyer buy from the seller and

share the goods bought with the other buyer.10 Precisely, the game of seller�s mechanism offer

cum buyer coalition formation has the following timing.

Stage 1. Nature draws buyers� types (θ1, θ2); buyer i privately observes θi, i = 1, 2.

9This is the purpose of the Robinson-Patman Act.
10Alternatively, we may assume that if buyer 1 (say) does not accept M , then the seller can serve buyer 2

with a single-buyer mechanism. In this case, our results would still hold if the seller can observe whether or

not a buyer uses her goods as in Rey and Tirole (1986). Since then the seller can induce buyer 2 not to resell

to buyer 1 (part of) the goods he bought from the seller by specifying ex ante a high penalty for buyer 2, both

buyers will buy from the seller in equilibrium.
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Stage 2. The seller proposes a sale mechanism M .

Stage 3. Each buyer simultaneously accepts or rejects M . If at least one buyer refuses M ,

then each buyer realizes the reservation utility and the following stages do not occur.

Stage 4. If both buyers accept to play M , then the third party proposes them a direct

side-contract S in order to jointly manipulate their reports into M and to reallocate between

themselves the goods bought from the seller.11

Stage 5. Each buyer simultaneously accepts or rejects S.

Stage 6. If at least one buyer refuses S, then M is played non-cooperatively. In this case,

reports are directly made in M and stages 7 and 9 below do not occur. If instead S has been

accepted by both buyers, then reports are made into S.

Stage 7. As a function of the reports in S, the third party enforces the manipulation of

reports into M .

Stage 8. Quantities and transfers speciÞed in M are enforced.

Stage 9. Quantity reallocation and side-transfers speciÞed in S (if any) take place in the

buyer coalition.

Formally, a side-contract S takes the following form:

S = {φ(eθ1,eθ2), xi(eθ1,eθ2, eφ), yi(eθ1,eθ2); i = 1, 2},
where eθi ∈ {θL, θH} is buyer i�s report to the third-party. φ(·) is the report manipulation
function which maps any pair of reports (eθ1,eθ2) made by the buyers to the third-party into a
pair of reports to the seller. We assume that φ(·) can specify stochastic manipulations, as this
convexiÞes the third-party�s feasible set. More precisely, let eφ ∈ Θ2 denote an outcome of φ(·).
Then, φ(·) speciÞes the probability pφ(eθ1,eθ2, eφ) that the third party, after receiving reports
(eθ1,eθ2), requires the buyers to report eφ to the seller. When the manipulation is deterministic,
i.e., pφ(eθ1,eθ2, eφ) = 1 for a eφ ∈ Θ2, we write φ(eθ1,eθ2) = eφ with some abuse of notation.

After the buyers bought goods from the seller, the third-party can reallocate them within

the coalition. Let xi(eθ1,eθ2, eφ) represent the quantity of goods that buyer i receives from the

third-party when eφ is reported to the seller. Finally, yi(eθ1,eθ2) denotes the monetary transfer
from buyer i to the third-party; yi does not need to depend on eφ because of quasi linearity of
a buyer�s payoff in money. Since we assume that the third party is not a source of goods or

money, a side-contract should satisfy the ex post budget balance constraints for the reallocation

11Actually, the Revelation Principle applies to the third-party�s design of S but not to the seller�s design

of M . Thus, the seller may wish to propose non-direct sale mechanisms. Nevertheless, as Proposition 3 in

Laffont and Martimort (2000) establishes, any perfect Bayesian equilibrium outcome arising from a non-direct

sale mechanism can be obtained as a perfect Bayesian equilibrium outcome induced by a direct sale mechanism.
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of goods and for the side transfers:

2X
i=1

xi(θ1, θ2, eφ) = 0 and
2X
i=1

yi(θ1, θ2) = 0, for any (θ1, θ2) ∈ Θ2 and any eφ ∈ Θ2.
After a side-contract S is proposed, a two-stage game is played by buyers: in its Þrst stage

(stage 5) each buyer accepts or rejects S; in the second stage (stage 6) the buyers report types

either into M or into S depending on their decisions at the Þrst stage. We are interested in

(collusive continuation) equilibria in which both buyers accept S; thus, no learning about types

occurs along the equilibrium path.12 In Sections 4-6, we make the following assumption:13
Assumption WCP: Given an incentive compatible mechanism M , if buyer i

vetoes S (which is an off-the-equilibrium-path event), then buyer j 6= i still
has prior beliefs about θi and the truthful equilibrium is played in M.

By deÞnition, truthtelling is an equilibrium in M under prior beliefs if and only if M is

incentive compatible. Let UM(θj) (j = L,H) denote the expected payoff of j-type in the

truthful equilibrium in M . Then, UM(θj) is the reservation utility for j-type when deciding

whether to accept S or not. In Section 7, we relax this assumption WCP.

3 The optimal mechanisms without buyer coalition

In this section, we characterize the proÞt maximizing mechanisms when there is no buyer

coalition. The seller�s expected proÞt with mechanism M = {q, t} is

Π ≡ 2p2L(tLL − cqLL) + 2pL(1− pL)(tHL + tLH − cqHL − cqLH) + 2(1− pL)2(tHH − cqHH)

M should satisfy the following Bayesian incentive compatibility constraints: for H-type,

(BICH) pL[θHu(qHL)− tHL] + (1− pL)[θHu(qHH)− tHH ]
≥ pL[θHu(qLL)− tLL] + (1− pL)[θHu(qLH)− tLH ];

(1)

for L-type,

(BICL) pL[θLu(qLL)− tLL] + (1− pL)[θLu(qLH)− tLH ]
≥ pL[θLu(qHL)− tHL] + (1− pL)[θLu(qHH)− tHH ].

(2)

12Notice, however, that there also exists an equilibrium in which both buyers refuse any side mechanism: If

buyer i is vetoing any side mechanism, then rejecting is a best reply for buyer j.
13WCP means weakly collusion-proof. The assumption makes us add the qualiÞer �weakly� in our deÞnition

of collusion-proof mechanisms: see DeÞnition 2.
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M should also satisfy the following individual rationality constraints: for H-type and L-type,

respectively

(BIRH) pL[θHu(qHL)− tHL] + (1− pL)[θHu(qHH)− tHH ] ≥ 0; (3)

(BIRL) pL[θLu(qLL)− tLL] + (1− pL)[θLu(qLH)− tLH ] ≥ 0. (4)

The seller designs M to maximize Π subject to (1) to (4). We characterize the optimal mech-

anisms in the next proposition:

Proposition 1 The optimal mechanisms in the absence of buyer coalition are characterized
as follows.

(a) The optimal quantity schedule q∗ = (q∗HH , q
∗
HL, q

∗
LH , q

∗
LL) is given by:

(i) q∗HH = q
∗
HL = q

∗
H , where θHu

0(q∗H) = c;
(ii) q∗LH = q

∗
LL = q

∗
L, where (θL − 1−pL

pL
∆θ)u0(q∗L) = c.

(b) Transfers are such that the constraints (BICH) and (BIRL) are binding.

In Proposition 1, q∗H (q∗L) is the optimal quantity allocated to H-type (L-type), when the
seller faces a single buyer. Thus, Proposition 1 states that, in the optimal mechanisms for the

two-buyer case, the quantity obtained by a buyer is equal to the quantity he would receive in

the one-buyer setting, independently of the report of the other buyer. In the one-buyer case,

it is well known that the payment the seller obtains from H-type is decreasing in the quantity

received by L-type because of (BICH). This induces the seller to evaluate L-type�s surplus

with the so-called virtual valuation θvL ≡ θL − 1−pL
pL
∆θ < θL instead of θL, and therefore to

distort the quantity allocated to L-type below the Þrst-best level since she equalizes L-type�s

marginal virtual surplus to marginal cost.

The facts that q∗HH = q∗HL = q∗H , q
∗
LH = q∗LL = q∗L and (BICH), (BIRL) bind imply

that the expected payments of L-type and H-type, t̄L ≡ pLtLL + (1 − pL)tLH and t̄H ≡
pLtHL+(1−pL)tHH respectively, are equal to the payments of the two types in the one-buyer
setting: t̄L = t∗L ≡ θLu(q∗L) and t̄H = t∗H ≡ θHu(q∗H)− (∆θ)u(q∗L). The seller has two degrees
of freedom in the choice of transfers to satisfy t̄L = t∗L and t̄H = t∗H . For instance, she can
set tLL = tLH = t∗L and tHL = tHH = t

∗
H , so that each buyer�s payment does not depend on

the other buyer�s report. In what follows, we let Md ≡ ©q∗, tdª where tdLL = tdLH = t∗L and
tdHL = t

d
HH = t

∗
H . InM

d, truthtelling is a dominant strategy since each buyer�s payoff depends

only on his own report. Basically, with Md the seller maximizes her proÞt by dealing with

each buyer separately.

A simple intuition sheds light on the close relation between the optimal mechanism in

one-buyer case and the ones in two-buyer case.14 If there exists a mechanism {q0, t0} which is
14We thank Raymond Deneckere for pointing this out to us.
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strictly better than the mechanisms characterized by Proposition 1, then we can Þnd a menu

of two (possibly stochastic) contracts15 which is strictly better than (q∗H , t
∗
H) and (q

∗
L, t

∗
L) for

the single-buyer model. However, this is impossible by deÞnition.

Last, we make an obvious (but important) observation about the optimal mechanisms in

the absence of buyer coalition.

Observation: In any optimal sale mechanism without buyer coalition, HL-coalition can

increase its payoff by reallocating some quantity from H-type to L-type in the absence of

transaction costs.

Since θHu0(q∗H) = (θL− 1−pL
pL
∆θ)u0(q∗L) = c implies that L-type�s marginal utility for goods

is strictly larger than H-type�s, HL-coalition has an incentive to reallocate some quantity from

H-type to L-type if there exists no transaction costs in coalition formation. We emphasize that

this incentive exists because the seller reduces the quantity consumed by L-type below the

socially efficient level in order to extract more rent from H-type. In contrast, if she observed

(θ1, θ2), there would be no room for arbitrage since the Þrst-best quantity schedule (qFBH , qFBL )

is such that θHu0(qFBH ) = θLu
0(qFBL ) = c.

4 Coalition under asymmetric information

In this section we introduce formally the third party�s design problem of S and then show

that Md characterized above leaves room for arbitrage, in the sense that buyers can increase

their payoffs by manipulating reports and reallocating goods, at the expenses of the seller.

Therefore, this section provides a motivation to look for a mechanism which performs better

than Md in the presence of buyer coalition, the issue we deal with in the next section. In

particular, in this section we also show that the seller can restrict his attention to a particular

set of (collusion-proof) mechanisms which we characterize..

Let p(θ1, θ2) (respectively, p(θi) with i = 1, 2) denote the probability of having (θ1, θ2) ∈ Θ2
(respectively, the probability of having θi ∈ Θ). We recall that pφ(eθ1,eθ2, eφ) denotes the
probability that, after receiving reports (eθ1,eθ2), the third party requires the buyers to reporteφ ∈ Θ2 to the seller. When eφ is reported to the seller, buyer i receives quantity qi(eφ) from the

seller and pays ti(eφ) to her.
DeÞnition 1 A side-contract S∗ = {φ∗(·), xi∗(·), yi∗(·)} is coalition-interim-efficient with re-
15The menu is such that conditional on the report of θH (θL), the buyer receives quantity q0HL (q

0
LL) with

probability pL and q0HH (q0LH) with probability 1− pL and pays pLt0HL + (1− pL)t0HH (pLt0LL + (1− pL)t0LH).
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spect to an incentive compatible mechanismM providing the reservation utilities
©
UM(θL), U

M(θH)
ª

if and only if it solves the following program:

max
φ(·),xi(·),yi(·)

X
(θ1,θ2)∈Θ2

p(θ1, θ2)[U1(θ1) + U2(θ2)]

subject to

U i(θi) =
X
θj∈Θ

p(θj)

X
eφ∈Θ2

pφ(θi, θj , eφ)[θiu(qi(eφ) + xi(θi, θj , eφ))− ti(eφ)]− yi(θi, θj)
 ,

for any θi ∈ Θ and i, j = 1, 2 with i 6= j;

(BICS) U i(θi) ≥
X
θj∈Θ

p(θj)

X
eφ∈Θ2

pφ(eθi, θj , eφ)[θiu(qi(eφ) + xi(eθi, θj, eφ))− ti(eφ)]− yi(eθi, θj)
 ,

for any (θi,eθi) ∈ Θ2 and i, j = 1, 2 with i 6= j;
(BIRS) U i(θi) ≥ UM(θi), for any θi ∈ Θ and i = 1, 2;

(BB : x) x1(θ1, θ2, eφ) + x2(θ1, θ2, eφ) = 0, for any (θ1, θ2) ∈ Θ2 and any eφ ∈ Θ2;
(BB : y) y1(θ1, θ2) + y2(θ1, θ2) = 0, for any (θ1, θ2) ∈ Θ2.

In words, a side-contract is coalition-interim-efficient with respect to M if it maximizes

the sum of the buyers� expected utilities subject to incentive, acceptance and budget balance

constraints. Let S0 ≡ {φ(·) = Id(·), x1(·) = x2(·) = 0, y1(·) = y2(·) = 0} denote the contract
which implements no manipulation of reports, no reallocation of quantity and no side-transfer;

S0 is called the null-side contract and M is not affected by buyer coalition if the third-party

proposes S0. The next deÞnition refers to this class of mechanisms.

DeÞnition 2 An incentive compatible mechanismM is weakly16 collusion-proof if S0 is coalition-

interim-efficient with respect to M .

In the rest of this section, we consider two interpretations of q, quality or quantity,17 and

examine whether or notMd is weakly collusion-proof in each case. The next proposition states

our result:
16The qualiÞer �weakly� comes from our assumption WCP in section 2.2.
17For instance, in Mussa and Rosen (1978), q represents quality. Alger (1999) considers both interpretations

although she focus on quantity interpretation.

11



Proposition 2 Suppose the seller offers Md. Then

(a) when q represents quality, Md is weakly collusion-proof;

(b) when q represents quantity, there exists a side-contract Sd which increases the payoff of

each type of buyer (and reduces the seller�s proÞt) compared to when Md is played truthfully;

in Sd, HH-coalition reports HL to the seller, HL-coalition reports LL and then quantities are

reallocated within the coalitions.

Consider Þrst the case in which q represents quality and hence reallocation of q is impossible

or the case in which q represents quantity but buyers cannot reallocate it (for instance, electric-

ity, gas, water). In these cases, the only instrument of the coalition is manipulation of reports.

Then, Proposition 2(a) establishes thatMd is weakly collusion-proof. This result easily follows

from the property that in Md a buyer�s payoff is independent of the other buyer�s report and

no agent has an individual incentive to report untruthfully since (BICH) and (BICL) are

satisÞed. Therefore, the sum of the buyers� payoffs is maximized by truthtelling in every state

of nature and the null side-contract satisÞes (BICS), (BIRS) and budget balance constraints;

thus, S0 is coalition-interim-efficient. Notice that collusion has no bite even though it oc-

curs under symmetric information among buyers. We note that Laffont and Martimort (1997,

2000) obtain similar Þndings (Proposition 11 and Proposition 6, respectively) when they show

that there exists a dominant-strategy optimal mechanism which eliminates any gain from joint

manipulation of reports if the agents� types are independently distributed.

We now turn to the case in which q represents quantity and buyers can manipulate their

reports and reallocate quantity. In what follows, for simplicity of discussion, we suppose that

buyers have symmetric information at the time of collusion, which is equivalent to saying that

the third party does not need to satisfy (BICS) or that there are no transaction costs in

coalition formation. This simpliÞcation is innocuous since the underlying logic holds true even

when buyers form the coalition under asymmetric information. One simple way to see why

the possibility of reallocation overturns the result of Proposition 2(a) is to notice that actually

� when reallocation is infeasible � coalition HH (HL) is indifferent between truthtelling and

reporting HL (LL) underMd. Since reallocation makes the coalition more powerful, it is quite

intuitive that now incentives to manipulate reports exist.

To be more clear, we here graphically illustrate the result of Proposition 2(b). In Figure

1, points A and B represent the two quantity-transfer pairs (q∗L, t
∗
L) and (q

∗
H , t

∗
H) respectively

in mechanism Md. If HH-coalition reports truthfully, each buyer will achieve B. If it reports

HL and reallocates evenly the total quantity and the total payment, each buyer will obtain C,

with qC = q∗L+q
∗
H

2 and tC = t∗L+t
∗
H

2 . One can easily see from Figure 1 that each H-type strictly

prefers C to B since C lies on a better indifference curve than B. Formally, C is preferred to

12
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Figure 1: Gains from reallocation under the mechanism Md

A or B since C is a convex combination of A and B, H-type is indifferent between A and B

and his preferences are strictly quasi-convex.

For HL-coalition, if it reports LL and does not reallocate quantity, each buyer achieves A

and obtains the same payoff as with truthtelling. However, since H-type�s marginal surplus

for goods is higher than L-type�s one when both receive the same quantity, each buyer can

achieve higher payoffs by reallocating some goods from L-type to H-type (with an appropriate

money transfer from H-type to L-type): for instance, they can achieve D for L-type and E

for H-type.

Since, according to Proposition 2(b), the seller earns a lower proÞt than under no coalition

formation when she offers Md, it is natural to inquire whether there exist better mechanisms

than Md. The following proposition simpliÞes our analysis, since it shows that in order to Þnd

the best mechanism for the seller we can restrict our attention to the set of weakly collusion-

proof mechanisms.

Proposition 3 (weakly collusion-proofness principle) There is no loss of generality in
restricting the seller to offer weakly collusion-proof mechanisms in order to characterize the

outcome of any perfect Bayesian equilibrium of the game of seller�s mechanism offer cum

coalition formation such that a collusive equilibrium occurs on the equilibrium path.
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The idea behind Proposition 3 is the following: since the third-party has no informational

or instrumental advantage over the seller and is subject to the incentive, acceptance and

budget balance constraints, any outcome that can be implemented by allowing coalitions to

manipulate reports and/or to reallocate goods can be mimicked by the seller in a collusion-proof

way without loss.

The next proposition characterizes the set of weakly collusion-proof mechanisms.18 Before

stating the proposition, it is useful to deÞne the following variables θ²L, q
²
H(x) and q

²
L(x), in

which ² ∈ [0, 1) and x > 0:

θ²L ≡ θL −
1− pL
pL

(∆θ)²,

q²H(x) ≡ arg max
z∈[0,x]

θHu(z) + θ
²
Lu(x− z) and q²L(x) ≡ x− q²H(x) (5)

We note that q²H(x) is uniquely deÞned since θHu(z)+θ
²
Lu(x−z) is a strictly concave function

of z. In particular, (q²H(x), q
²
L(x)) is the efficient allocation of a total quantity x > 0 between

a buyer with valuation θH and a buyer with valuation θ²L.

Proposition 4 An incentive compatible sale mechanism M = {q, t} is weakly collusion-proof
if and only if there exists ² ∈ [0, 1) such that
(a) the following coalition incentive constraints are satisÞed: for HH coalition,

(CICHH,HL) 2θHu(qHH)− 2tHH ≥ 2θHu(qHL + qLH
2

)− tHL − tLH , (6)

(CICHH,LL) 2θHu(qHH)− 2tHH ≥ 2θHu(qLL)− 2tLL; (7)

for HL coalition,

(CICHL,HH) θHu(qHL) + θ
²
Lu(qLH)− tHL − tLH ≥ θHu(q²H(2qHH)) + θ²Lu(q²L(2qHH))− 2tHH ,

(8)

(CICHL,LL) θHu(qHL) + θ
²
Lu(qLH)− tHL − tLH ≥ θHu(q²H(2qLL)) + θ²Lu(q²L(2qLL))− 2tLL;

(9)

for LL coalition,

(CICLL,HH) 2θ²Lu(qLL)− 2tLL ≥ 2θ²Lu(qHH)− 2tHH , (10)

(CICLL,HL) 2θ²Lu(qLL)− 2tLL ≥ 2θ²Lu(
qHL + qLH

2
)− tHL − tLH ; (11)

18We here focus on weakly collusion-proof mechanisms where L-type�s Bayesian individual incentive constraint

is not binding. We prove in Section 5 that the seller is not going to offer a mechanism M such that L-type�s

incentive constraint binds in the side-contract which is optimal with respect to M .
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(b) the following no arbitrage constraint (which relies on (5)) is satisÞed

qHL = q
²
H(qHL + qLH), (12)

(c) if ² > 0, then H-type�s incentive constraint in the side mechanism is binding.

Notice that each coalition incentive constraint takes into account the reallocation of the

goods: If both agents report the same types to the third party, each buyer receives half of the

total quantity available (see (6)-(7) and (10)-(11)) while if the reports are different, the total

quantity is allocated according to (5) (see (8)-(9)). When all the coalition incentive constraints

are satisÞed, the third-party does not manipulate the buyers� reports into M . Then, no room

for reallocation exists if θ1 = θ2 since the seller allocates the same quantity to each buyer. If

θ1 6= θ2, then the third party will not reallocate the goods bought from the seller after making

truthful reports if and only if the no-arbitrage constraint (12) is satisÞed.

In (8)-(12), ² ∈ [0, 1) appears. Roughly speaking, ² is the Lagrange multiplier of (BICSH),
H-type�s incentive constraint in the third-party�s design problem of S, and it can be positive

when (BICSH) is binding.
19 The seller has some ßexibility in choosing ² since S0 is optimal for

the third party if and only if it satisÞes the necessary and sufficient conditions for optimality

in the third party�s problem for at least one ² in [0, 1).

In the presence of complete information within the coalition, the side mechanism does not

need to satisfy any individual incentive constraint. Therefore, the coalition incentive and the

no-arbitrage constraints under complete information are obtained from (6)-(12) by taking ²

equal to 0 and the third party realizes whatever gains from cooperative actions if there is any.

When the coalition forms under asymmetric information, it may be costly to satisfy (BICSH)

because of a well-known tension between (BICSH) and (BIR
S
L); ² measures how costly it is.

The coalition incentive constraints under asymmetric information differ from the constraints

under complete information since L-type�s valuation θL is replaced by the virtual value θ²L. The

latter is smaller than θL for ² > 0 since, as the quantity allocated to L-type (by the third party)

increases, it is more difficult to satisfy (BICSH). The value of θ
²
L affects the coalition incentive

constrains through two channels. First, given a quantity consumed by L-type, the third-party

evaluates his surplus with θ²L instead of θL. Second, this in turn affects the third-party�s

decision to reallocate the goods given a total quantity available to a coalition.

One might argue that the seller could ask the buyers for the information that they may

have learned during the course of coalition formation. However, there is no loss in restricting

the seller to use mechanisms such as those deÞned in subsection 2.1 since we show that she

can nevertheless deter buyer coalition at no cost.
19Precisely, ² = δ

a+δ
where δ is the Lagrange multiplier of (BICSH) and a > 0.

15



5 The optimal weakly collusion-proof mechanisms

In this section, we analyze the optimal weakly collusion-proof mechanism. Observe that when

the third party proposes S0, (i) the Bayesian incentive constraints (BICS) in the side mech-

anism reduce to (BICH) and (BICL) introduced in section 3; (ii) the acceptance constraints

(BIRS) in the side mechanism are automatically satisÞed with equality. Hence, the seller�s

maximization program under collusion - denoted by (P ) - is deÞned as follows:

max
{q,t,²}

Π subject to (1)-(4) and (6)-(12).

Since (P ) has more constraints than the seller�s program without collusion, the seller cannot

earn more proÞt in the presence of collusion than in its absence. However, the next proposition

states that the proÞt level is the same in the two cases. More precisely, it provides a transfer

schedule which, paired with the quantity proÞle q∗ of Proposition 1, yields the seller the proÞt
she obtains in the absence of collusion.

Proposition 5 Let t∗∗ be such that (BIRL), (BICH), (CICHH,HL) and (CICHL,LL) bind
when q = q∗ and ε = 1.20 Then M∗∗ ≡ {q∗, t∗∗} is both an optimal mechanism in the absence

of buyer coalition and weakly collusion-proof.

Proof. We basically prove that the seller can satisfy all the constraints imposed by weak

collusion-proofness without any loss.

We Þrst notice that q∗ satisÞes the no-arbitrage constraint (12) with ε = 1. In fact, when ε = 1
both the seller and the third-party have the same virtual valuation of L-type, θL − 1−pL

pL
∆θ;

hence the third-party has no incentive to modify the quantity allocation q∗ decided by the seller.
Then, we can Þnd a (unique) transfer proÞle t∗∗ such that (BIRL), (BICH), (CICHH,HL) and
(CICHL,LL) bind when q = q∗ and ε = 1 (see the appendix). We remark that this is possible
because satisfying (BIRL) and (BICH) with equality absorbs only two degrees of freedom

from the transfer schedule t. By Proposition 1, M∗∗ ≡ {q∗, t∗∗} is optimal in the absence of
coalition since (BIRL) and (BICH) bind.

In order to prove that M∗∗ satisÞes all the coalition incentive constraints, let V ²m(x) denote
the total virtual surplus21 that a coalition having m number of buyers with H-type derives

from consuming a total quantity x > 0; m ∈ {0, 1, 2} is viewed as the �type� of the coalition.
20Although ² belongs to [0, 1), we allow ² to take the value equal to one since we are interested in the Sup of

the seller�s proÞt.
21For instance, V ²

1 (x) ≡ maxz∈[0,x] θHu(z) + θ²Lu(x− z). In V ²
0 (x) and V

²
1 (x), a L-type�s surplus is evaluated

with θ²L. V
²
2 (x) is independent of ² since there is no L-type in HH-coalition.
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We regard each coalition as a consolidated agent and V ²m as the surplus function of type m.

Then notice that (i) 2q∗HH > q∗HL + q
∗
LH > 2q∗LL; (ii) the following single crossing condition

holds: ∂V2(x)∂x >
∂V ²1 (x)
∂x >

∂V ²0 (x)
∂x for any x > 0 and any ² ≥ 0 (see Lemma 1 in the appendix).

These two properties, together with the fact that inM∗∗ the local downward coalition incentive
constraints bind, allow us to use a standard result from the theory of monopolistic screening [see

Section 3 in Maskin and Riley (1984)] to conclude that all the coalition incentive constraints

are satisÞed.

Proposition 5 says that the seller can implement the quantity proÞle q∗ as when there
is no buyer coalition and can deter collusion at no cost, thus realizing the same proÞt as

without collusion. Hence, under asymmetric information, the ability to form a coalition does

not help the buyers to increase their payoffs. In particular, even though the third party aims

at maximizing the buyers� payoffs and marginal rates of substitution are not equalized across

buyers in HL-coalition, no side mechanism can implement a desirable reallocation when the

seller uses M∗∗. We provide an intuition in two steps for this result.

No reallocation occurs if there is no manipulation of reports To give an intuition

of why the third-party fails to efficiently reallocate the goods, suppose that the buyers do not

manipulate their reports. Then, we can show that no reallocation of quantity occurs under

M∗∗. Obviously, no room for reallocation exists within the coalitions HH and LL since the

seller allocates the same quantity to each buyer in these homogenous coalitions. However, in

the case of HL-coalition, potential room for arbitrage exists since L-type�s marginal utility for

the goods is larger than H-type�s. To understand why no reallocation occurs in this coalition,

it is important to recall that under asymmetric information, a side mechanism needs to satisfy

both (BICS) and (BIRS). Since (BICSH) binds in the side mechanism which is optimal with

respect to M∗∗ and the information rent H-type obtains by pretending to be L-type to the
third-party increases in the quantity received by L-type, the third party evaluates L-type�s

surplus not with θL but with a virtual valuation smaller than θL. Furthermore, since the third

party has the same prior beliefs about the buyers� types as the seller and also (BIRSL) binds,

H-type�s rent as a function of the quantity received by L-type increases with the same slope

both in the third-party�s problem and in the seller�s problem with no coalition. Therefore,

the third party evaluates L-type�s surplus with the same virtual valuation θvL as the seller
22

and consequently he has no incentive to modify the allocation q∗ at which H-type�s marginal
surplus is equal to L-type�s virtual marginal surplus.

22See the proof of Proposition 4 in Appendix for the formal derivation of L-type�s virtual value from the

third-party�s point of view.
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Alternatively, we can explain the no-reallocation result by directly computing the transac-

tion costs created by asymmetric information and showing that they are larger than the gains

from reallocation.23 Consider reallocating a quantity ∆q ∈ (0, q∗H ] from H-type to L-type

withinHL-coalition. First, the gains from reallocation are given byG ≡ θL [u(q∗L +∆q)− u(q∗L)]−
θH [u(q

∗
H)− u(q∗H −∆q)], which is positive, at least for a small∆q, from the inequality θLu0(q∗L) >

θHu
0(q∗H). Second, the reallocation also increases H-type�s rent since it increases the quan-

tity consumed by L-type; we deÞne this increase in rent as the transaction costs TC cre-

ated by asymmetric information. In order to compute TC, suppose that an H-type pre-

tends to be L-type to the third-party while the other buyer reports truthfully. Then, the

expected surplus of the former is equal to (1 − pL)θHu(q∗L + ∆q) + pLθHu(q∗L) while his
expected payment is equal to (1 − pL)θLu(q∗L + ∆q) + pLθLu(q∗L), determined by the bind-
ing L-type�s participation constraint in the side-mechanism. Therefore, H-type�s expected

rent is ∆θ [(1− pL)u(q∗L +∆q) + pLu(q∗L)], higher than his rent ∆θu(q∗L) when ∆q = 0, and

TC = ∆θ(1− pL) [u(q∗L +∆q)− u(q∗L)]. Last, the third-party can implement the reallocation
only if the expected gain from reallocation 2pL(1 − pL)G are larger than the expected trans-

action costs 2(1− pL)TC. Since 2pL(1− pL)G < 2(1− pL)TC holds for any ∆q ∈ (0, q∗H ], we
conclude that reallocation is infeasible.

No manipulation of reports is proÞtable In order to understand why no manipulation

is implemented given M∗∗, it is useful to deÞne V 1m(x) (as in the proof of proposition 5)
as the total surplus a coalition with m buyers with H-type derives from a total quantity

x > 0 after optimally allocating x within the coalition with ε = 1. As we mentioned above,

the third party evaluates the surplus of L-type with θvL instead of θL. Therefore, we have

V 11 (x) ≡ maxz∈[0,x] θHu(z) + θvLu(x − z) and V 10 (x) ≡ 2θvLu(
x
2 ), while V2(x) ≡ 2θHu(

x
2 ) as

under symmetric information.

As a Þrst step, we below focus on the two downward manipulations which are mentioned

in Proposition 2(b). When q = q∗, HH-coalition prefers truthful report to reporting HL if
and only if the following inequality holds:

V2(2q
∗
H)− 2tHH ≥ V2(q∗H + q∗L)− tHL − tLH (13)

HL-coalition reports truthfully rather than LL if and only if

V 11 (q
∗
H + q

∗
L)− tHL − tLH ≥ V 11 (2q∗L)− 2tLL (14)

23Makowski and Mezzetti (1994) and Williams (1999) use an argument similar to ours to prove (non-) existence

of efficient mechanisms in environments which include Myerson-Satterthwaite (1983)�s one seller-one buyer

setting as a special case.
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We notice that the transfers in Md violate both (13) and (14), but the seller can Þnd transfers

which satisfy (13) and (14) and make (BICH) and (BIRL) bind. On the one hand, a suitable

decrease in tHH and an increase in tHL, both with respect to t∗H , allow to satisfy (13) while
keeping (BICH) binding, as it is necessary to achieve the same proÞt as without collusion. On

the other hand, an increase in tLL and a decrease in tLH , both with respect to t∗L, allow to satisfy
(14) while keeping (BIRL) still binding. Formally, the seller can use two degrees of freedom in

transfers to satisfy (13) and (14) at no cost while using the remaining two degrees freedom to

leave (BIRL) and (BICH) binding. Indeed, the transfers t∗∗ in Proposition 5 are deÞned as the
(unique) proÞle of transfers which satisÞes all (BIRL), (BICH), (CICHH,HL) and (CICHL,LL)

with equality: Consistently with the intuition suggested above, we Þnd t∗∗LH < t∗L < t
∗∗
LL and

t∗∗HH < t
∗
H < t

∗∗
HL.

We graphically explain how t∗∗ deters HH-coalition from reporting HL.24 In Þgure 2,

A and B are deÞned as in Þgure 1 and represent the two quantity-transfer pairs under Md.

UnderM∗∗, after reporting truthfully, each buyer in HH-coalition obtains the pair B0, which is
better than B since t∗∗HH < t

∗
H holds while, after reporting HL and sharing equally the quantity

and the transfer, each buyer obtains the pair C 0 i.e., ( q
∗
L+q

∗
H

2 ,
t∗∗LH+t

∗∗
HL

2 ). Since by construction

H-type is indifferent between B0 and C 0, the HH-coalition will report truthfully under M∗∗.
We now argue that also the coalition incentive constraints we neglected are satisÞed by

M∗∗. For this purpose, we note that (i) (13) and (14) (the local downward coalition incentive
constraints) bind inM∗∗ (ii) a single crossing condition for coalitions holds25: ∂V2(x)∂x >

∂V 11 (x)
∂x >

∂V 10 (x)
∂x for any x > 0 and ² ≥ 0 (iii) the quantity proÞle for coalitions is monotone: 2q∗HH >

q∗HL + q
∗
LH > 2q

∗
LL. Therefore, we can use a standard result from the theory of monopolistic

screening [see Section 3 in Maskin and Riley (1984)] to conclude that (6)-(11) are satisÞed.

It is interesting to notice that there exist inÞnitely many transfer schemes bt such thatn
q∗,bto is optimal under no coalition and weakly collusion-proof (for instance, it is possible to
strictly satisfy (6)-(11) without reducing the proÞt).26 However, the following inequalities

btLH < t∗L < btLL and btHH < t∗H < btHL (15)

must be satisÞed by any such bt. The inequalities mean that upon reporting a type, each buyer
faces a lottery which determines his payment as a function of the report of the other buyer.

In particular, facing an L-type is bad news because then the payment is higher than when

24We only examine (CICHH,HL) because representing (CICHL,LL) in Figure 2 is much more difficult since,

in HL-coalition, goods are not reallocated evenly as in HH-coalition.
25See the proof of lemma 1 in the appendix for the details.
26 In Section 7, we exploit this multiplicity to Þnd an optimal weakly collusion-proof mechanism which is

strategically more robust than M∗∗.
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Figure 2: Transfers inducing an HH-coalition to report truthfully

facing an H-type. This feature results from the seller�s desire to deter coalitions� downward

manipulation of reports, as we below argue in proving (15).

To show (15), let btHL = t∗H+a, btLL = t∗L+b, btHH = t∗H− pLa
1−pL and

btLH = t∗L− pLb
1−pL : thereforebt satisÞes (BICH) and (BIRL) with equality. DeÞne α ≡ V2(2q∗H)− V2(q∗H + q∗L)− (t∗H − t∗L)

and β ≡ V 11 (q∗H + q∗L)− V 11 (2q∗L)− (t∗H − t∗L). Then, (CICHH,HL) and (CICHL,LL) at q = q∗
reduce respectively to

(1− pL)α ≥ −a− pL(a− b) and (1− pL)β ≥ −b+ (1− pL)(a− b)

Therefore, the set of (a, b) which satisfy (CICHH,HL) and (CICHL,LL) is given by Z ≡n
(a, b) ∈ R2 | (1−pL)α+(1+pL)apL

≥ b ≥ (1−pL)a−(1−pL)β
2−pL

o
and the point at which (1−pL)α+(1+pL)a

pL
=

b = (1−pL)a−(1−pL)β
2−pL holds corresponds to the transfers t∗∗ ofM∗∗. Figure 3 represents Z graph-

ically and, since α < 0, β < 027 and 1+pL
pL

> 1−pL
2−pL , any (a, b) ∈ Z should be such that a > 0 and

b > 0. Therefore, for any mechanism which is optimal under no coalition and satisÞes (13)-(14)

(necessary conditions for weakly collusion-proofness), its transfers bt must satisfy (15). This
implies in particular that (i) Md is not weakly collusion-proof since a = b = 0 in Md (ii) ex

27 It is straightforward to verify that α < 0. For the proof of β < 0 see the Appendix, immediately before the

proof of Proposition 6.
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Figure 3: Transfers in the optimal collusion-proof mechanisms: a necessary condition

post individual rationality is violated for L-type in any mechanism which is optimal under no

coalition and weakly collusion-proof since t∗L = θLu(q
∗
L) < btLL holds.

Remark 1 (symmetric information in the coalition): Even though we focus on the
role of asymmetric information among buyers, it is interesting to inquire the consequences

of collusion taking place under symmetric information. For instance, suppose that the third

party owns a technology that allows him to elicit credible reports from the buyers as in Baron

and Besanko (1999).28 In this case the side mechanism does not need to satisfy (BICS),

implying that the third party evaluates L-type�s surplus with the real valuation θL rather than

with the virtual value θvL. The coalition incentive constraints under symmetric information

are similar to those under asymmetric information except that now, in deÞning V ε1 (x) and

V ε0 (x), θL is used instead of θ
ε
L. Still, the seller can deter manipulation of reports at no cost as

under asymmetric information. However, reallocation within HL-coalition takes place unless

θHu
0(qHL) = θLu(qLH), a condition which reduces the seller�s proÞt with respect to the case

without buyer coalition.

28They assume that the third-party who organizes an informational alliance can verify the private information

of each agent forming the alliance.
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Remark 2 (correlation): Proposition 5 does not hold if θ1 are θ2 are correlated. In-
deed, in a correlated environment the seller earns the Þrst best proÞt in the absence of buyer

coalition (see Crémer and McLean (1985)), but that is not possible under coalition forma-

tion. We examined a speciÞc case in which the payoff of type θ from consuming quantity

q ∈ [0, θ] is θq − 1
2q
2 and Pr

©
θ1 = θ2 = θH

ª
= Pr

©
θ1 = θ2 = θL

ª
, Pr

©
θ1 = θH , θ2 = θL

ª
=

Pr
©
θ1 = θL, θ2 = θH

ª
. Now, a trade-off about the value of ε arises. On the one hand, as in

the case of independent types, a large ε helps to discriminate H-type from L-type. On the

other hand, the constraint (CICHL,LL) binds and it is tightened as ε increases. For the case of

small and positive correlation, it turns out that the trade-off is optimally resolved by setting

ε strictly below 1. We also obtain, as in Laffont and Martimort (2000), that the solution is

continuous in the degree of correlation; furthermore, the optimal values of qHL and qLH are

decreasing with respect to the degree of correlation, while qLL is increasing.

Two-part tariffs Two-part tariffs are sometimes proposed as a simple way to implement

non-linear tariffs, or as a �real-life� mechanism as opposed to abstract direct mechanisms.

In the model with no buyer coalition, it is easy to see that the optimal outcome can be

implemented by a menu of two-part tariffs such that each type of buyer chooses the tariff

designed for his type and buys the quantity q∗H or q
∗
L according to his type. We note that the

two-part tariff designed for L-type needs a kink in order to prevent H-type from choosing the

tariff designed for L-type and buying more than q∗L.
29

The next proposition states that a more complicated menu of two-part tariffs can be

used to implement the optimal outcome when coalition formation is possible. We continue

to assume that the seller can commit not to serve a buyer if the other buyer does not buy

anything from the seller.30 Let the seller offer tariffs TH = {(AHH , pHH), (AHL, pHL)} and
TL = {(ALH , pLH), (ALL, pLL)} where, for instance, AHL and pHL represent the Þxed fee and
the marginal price that a buyer choosing TH pays if the other buyer chooses TL. In particular,

we consider the tariffs {T ∗∗H , T ∗∗L } such that(
A∗∗jk = t

∗∗
jk − cq∗j , for j, k ∈ {H,L} ,

p∗∗jk = c for q ≤ q∗j and p∗∗jk = θHu0(q∗L) for q > q∗j for j, k ∈ {H,L} .
(16)

29The two-part tariff for H-type takes the form AH + pq with AH = t∗H − cq∗H and p = c. Since the tariff

for L-type needs a kink at the point q = q∗L, the seller has some discretion in choosing the marginal price. For

instance, she can use AL + pq with AL = t∗L − cq∗L and p = c for q ≤ q∗L, p = θHu0(q∗L) for q > q∗L.
30As we said in footnote 10, our results hold even if this assumption does not hold but the seller can observe

whether or not a buyer uses her goods. This makes it impossible for a buyer to obtain a positive amount of the

goods without paying any Þxed fee to the seller as in Rey and Tirole (1986).
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Proposition 6 Suppose that the seller offers {T ∗∗H , T ∗∗L } instead of M∗∗. Then, regardless of
whether or not the buyers can form a coalition,

(a) each buyer accepts the offer,

(b) j-type of buyer, with j ∈ {H,L}, chooses the tariff T ∗∗j and buys quantity q∗j .

The menu (16) is such that (i) the Þxed fee a buyer pays depends on the tariff chosen by

the other buyer (which is necessary since t∗∗ requires this sort of dependence) (ii) the tariff
each buyer faces has a kink.31 The kink is necessary in order to deter downward manipulation

of reports. For instance, suppose there is no kink in T ∗∗H . Then, since A
∗∗
HH > A∗∗HL + A

∗∗
LH

holds, a HH-coalition has an incentive to coordinate the buyers� purchases such that only one

buyer chooses T ∗∗H , he buys more than q
∗
H and shares it with the other buyer who chooses

T ∗∗L .
32 This deviation is prevented by the increase in the marginal price at q = q∗H - the kink -

from c to θHu0(q∗L).

6 Extensions

In the previous sections, for simplicity we considered the two-buyer-two-type setting with

C(q) = cq and U(q, θ) = θu(q). However, Proposition 5 can be extended to an environment

with n buyers and two types, or with twobuyers and three types, or with general cost and

utility functions which satisfy the conditions introduced in subsection 2.1.

6.1 The case of n > 2 buyers

When the seller faces n > 2 buyers, we assume that the only feasible coalition is the grand

coalition, the one including all the buyers. More precisely, we suppose that if at least one

buyer rejects the side mechanism, then the sale mechanism is played non-cooperatively with

prior beliefs (i.e., we keep assumption WCP). This assumption is justiÞed when any attempt to

organize a coalition - after the grand coalition was rejected - is sufficiently time consuming such

that it is impossible for the third party to design a new side mechanism which is tailored for

the buyers who accepted the original side mechanism. Clearly, this assumption is not needed

if n = 2 but it makes the model quite tractable when n > 2.

31Actually, no kink is needed when both buyers choose T ∗∗H : we can have pHH = c for all q ≥ 0. However, in
this case both the Þxed fee and the marginal price paid by a buyer choosing T ∗∗H depends on the tariff chosen

by the other buyer, while in (16) the marginal price depends only on his choice.
32Likewise, if there were no kink in T ∗∗L , the buyer who pretended to be L-type may buy more than q

∗
L and

then share with the other buyer.
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Without loss of generality, we restrict our attention to symmetric sale mechanisms, which

are now introduced. Let qLm (m = 0, 1, ..., n − 1) denote the quantity allocated to each
L-type by the seller when the proÞle of reports �θ ≡ (�θ

1
, ..., �θ

n
) ∈ Θn includes exactly m

number of H-types. The variables qHm, tHm and tLm are deÞned similarly. Let qn ≡
(qL0, ..., qLn−1, qH1, ..., qHn) and tn ≡ (tL0, ..., tLn−1, tH1, ..., tHn), so that a sale mechanism
is given by Mn = {qn, tn}. Any optimal mechanism {q∗n, tn} without buyer coalition is such
that q∗Lm = q

∗
L and q

∗
Hm = q

∗
H for any m and the expected payment of L-type and H-type is

equal to θLu(q∗L) and θHu(q
∗
H)− (∆θ)u(q∗L), respectively.

Proposition 3, the weakly collusion-proofness principle, applies to this setting. Here we

generalize Proposition 4 by describing the conditions under which an incentive compatible

mechanism Mn is weakly collusion-proof. In order to do that, we need to investigate how

goods are reallocated by the third party in an m-coalition � a coalition with m number of

H-types and n −m number of L-types � when x(> 0) is the total quantity available to the

coalition. Since u00 < 0, in any m−coalition the third-party allocates the same quantity to
each buyer of the same type. Precisely, if quantity z is allocated to each H-type, then each

L-type receives x−mzn−m ; clearly, if m = n (or m = 0) then each H-type (L-type) receives xn . The

quantity allocated to H-type is q²Hm(x) deÞned as

q²Hm(x) ≡ arg max
z∈[0, x

m
]
mθHu(z) + (n−m)θ²Lu(

x−mz
n−m ), m = 1, ..., n− 1

Hence, the no-reallocation condition for an m-coalition (if qLm > 0) is:

θHu
0(qHm) = θ²Lu

0(qLm) (17)

If (17) is satisÞed by Mn, then an m-coalition which reports truthfully in Mn has no incentive

to alter the allocation determined by the seller. Notice that

V ²m(x) ≡ max
z∈[0, x

m
]
mθHu(z) + (n−m)θ²Lu(

x−mz
n−m ), m = 1, ..., n− 1

is the gross payoff for anm-coalition when it owns the total quantity x, given ε. For n-coalition

and 0-coalition we have Vn(x) = θHu(xn) and V
²
0 (x) = θ

²
Lu(

x
n), respectively. As in the proof of

Proposition 5, we regard each coalition as a consolidated agent and V ²m is the surplus function

of type m. For an m-coalition, manipulating its reports is equivalent to reporting a number

m0(6= m) of buyers with H-type. The next proposition summarizes the coalition incentive and
the no-arbitrage constraints.

Proposition 7 An incentive compatible sale mechanism Mn is weakly collusion-proof if and

only if there exists ² ∈ [0, 1) such that
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(a) the following coalition incentive constraints are satisÞed:

V ²m[mqHm + (n−m)qLm]−mtHm − (n−m)tLm
≥ V ²m[m

0qHm0 + (n−m0)qLm0 ]−m0tHm0 − (n−m0)tLm0 for any (m,m0) ∈ {0, 1, ..., n}2

(b) the no-arbitrage condition (17) holds for m = 1, ..., n− 1.
(c) if ² > 0, then H-type�s incentive constraint in the side mechanism is binding.

The next proposition establishes that the buyer coalition does not create any loss to the

seller, as in the case of n = 2.

Proposition 8 Given the quantity schedule q∗n, there exists transfers t∗∗n such that M∗∗
n ≡

{q∗n, t∗∗n } is optimal under no buyer coalition and is also weakly collusion-proof.

Remark 3 (transaction costs): We can compare the expected gains from arbitrage with
the transaction costs generated by asymmetric information for the n-buyer case. Suppose for

instance that the third-party reallocates quantity such that when there are m number of H-

types, each L-type receives ∆q ∈
³
0, m
n−mq

∗
H

i
. Then, the expected gains from arbitrage is

given by:

G(n,m) =

µ
n

m

¶
(pL)

n−m(1− pL)m {(n−m)θL [u(q∗L +∆q)− u(q∗L)]

−mθH
·
u(q∗H)− u(q∗H −∆q

n−m
m

)

¸¾
.

The transaction costs are given by:

TC(n,m) ≡ n
µ
n− 1
m

¶
(pL)

n−m−1(1− pL)m+1(∆θ) [u(q∗L +∆q)− u(q∗L)] .

We have TC(n,m) − G(n,m) > 0 for any ∆q ∈
³
0, m
n−mq

∗
H

i
. In particular, given ∆q > 0,

TC(2m,m) = kG(2m,m) holds where k (> 1) does not depend on m.

6.2 The case of three types

Mechanism design problems under collusion often turn out to be qualitatively more complicated

when there are more than two types than when there are only two types. For instance, Laffont

and Martimort (1997, 2000) limit their analysis to the two-type setting since it is difficult

to determine the binding coalition incentive constraints when there are more than two types.

Here we brießy explain how � in our model � Proposition 5 extends to the three-type setting.
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The main difficulty is related to the fact that the single-crossing condition for coalitions holds

only partially.

Now the valuation θi of buyer i lies in Θ ≡ {θL, θM , θH}, with ∆H ≡ θH − θM > 0,

∆M ≡ θM − θL > 0 and θL > 0. The types θ1 and θ2 are identically and independently

distributed with pL ≡ Pr
©
θi = θL

ª
> 0, pM ≡ Pr©θi = θMª > 0 and pH ≡ Pr©θi = θHª > 0.

In the absence of buyer coalition, the virtual values of M-type and L-type are given by:

θvM ≡ θM − pH
pM
(θH − θM) θvL ≡ θL −

pH + pM
pL

(θM − θL)

Clearly, θH > max {θvM , θvL} but the order between θvM and θvL depends on the parameters; if

θvM ≥ θvL, then virtual values are said to be monotonic; if θvM < θvL, then let θ̄
v
ML ≡ pLθ

v
L+pM θ

v
M

pL+pM
.

In any case, we assume that min {θvMu0(0), θvLu0(0)} > c, so that each type receives a positive
quantity in case of no coalition.

As in the previous sections, we can restrict attention to symmetric direct revelation mech-

anisms, hence a sale mechanism is M = {q, t}, with q ≡ {qjk}j,k=L,M,H , t ≡ {tjk}j,k=L,M,H
and qjk (tjk) is the quantity received by a buyer (his payment) if he reports j and the other

buyer reports k. Let t̄j ≡ pLtjL+ pM tjM + pHtjH and ūj ≡ pLu(qjL)+ pMu(qjM)+ pHu(qjH),
j = L,M,H. Then, the expected proÞt is written as

Π = 2(pLt̄L + pM t̄M + pH t̄H)− 2c[p2LqLL + pLpM(qLM + qML) + pLpH(qHL + qLH)]

−2c[p2MqMM + pMpH(qMH + qHM) + p
2
HqHH ]

The Bayesian incentive compatibility and participation constraints are

(BIC) θj ūj − t̄j ≥ θjūj0 − t̄j0 , j, j0 = L,M,H

(BIR) θj ūj − t̄j ≥ 0, j = L,M,H

The seller maximizes Π subject to (BIC) and (BIR). The next proposition characterizes the

optimal mechanisms in the absence of buyer coalition.

Proposition 9 The optimal mechanisms in the absence of buyer coalition are characterized
as follows

(a) The optimal quantity schedule q∗ is such that:
i) q∗Hj = q

∗
H for j = L,M,H, where θHu0(q∗H) = c;

ii) q∗Mj = q∗M , q
∗
Lj = q∗L for j = L,M,H with θvMu

0(q∗M) = θvLu
0(q∗L) = c if θvM ≥ θvL but

q∗M = q∗L with θ̄
v
MLu

0(q∗L) = c if instead θ
v
M < θvL.

(b) Transfers are such that constraints (BICHM), (BICML) and (BIRL) bind.
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As in the two-type case, the weakly collusion-proofness principle holds. In order to char-

acterize weakly collusion-proof mechanisms, it is useful to deÞne i) the variables θ²H , θ
²
M and

θ²L; ii) the functions q
²
j(x; jk) and q

²
k(x; jk), jk = HM,HL,ML; iii) the functions V ²jk(x),

j, k = L,M,H as follows:

θ²H ≡ θH , θ²M ≡ θM − pH
pM
∆H²HM , θ²L ≡ θL −

pH
pL
∆M²ML,

q²j(x; jk) ≡ arg max
z∈[0,x]

θ²ju(z) + θ
²
ku(x− z) and q²k(x; jk) ≡ x− q²j(x; jk)

V ²jk(x) ≡ max
z∈[0,x]

θ²ju(z) + θ
²
ku(x− z), j, k = L,M,H

where ² ≡ (²HM , ²ML) ∈ [0, 1)× [0,+∞) and x > 0.
The next proposition characterizes weakly collusion-proof mechanisms.

Proposition 10 An incentive compatible sale mechanism M is weakly collusion-proof if and

only if there exists ² ∈ [0, 1)× [0,+∞) such that
(a) the coalition incentive constraints are satisÞed

V ²jk(qjk + qkj)− tjk − tkj ≥ V ²jk(qj0k0 + qk0j0)− tj0k0 − tk0j0, for any j, k, j0, k0 = L,M,H.
(18)

(b) the no arbitrage constraints hold

qjk = q
²
j(qjk + qkj ; jk), for jk = HM,HL,ML. (19)

(c) if ²HM > 0 (resp. ²ML > 0), then (BICSHM) [resp. (BIC
S
ML)] binds.

By exploiting Proposition 10 we can prove that the buyer coalition does not create any loss

to the seller.

Proposition 11 There exists a transfer scheme t∗∗ such that M∗∗ ≡ {q∗, t∗∗} is both an
optimal mechanism in the absence of collusion and weakly collusion-proof.

We below provide an intuition of the result: the intuition is similar to the one for the

two-type case although some technical details of the proof are more complicated. Given M∗∗,
the virtual values of M -type and L-type from the third party�s viewpoint are equal to θvM and

θvL, the virtual valuations from the seller�s viewpoint; hence the third-party will not reallocate

goods conditional on that there is no manipulation of reports. Furthermore, the seller can

use the six degrees of freedom in transfers in the optimal mechanisms under no coalition to

satisfy (18), although the single crossing condition for coalitions holds only partially (it does

not provide an order between coalitions HL and MM) and this makes more difficult to Þnd

the right transfers than in the two-type setting. We conjecture that our result will hold even

when there are more than three types.
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6.3 General cost function C and utility function U
Here we show that Proposition 5 holds in the two-buyer-two-type setting if (i) the cost function

satisÞes C(0) = 0, C0(q) > 0 and C00(q) ≥ 0 for any q ≥ 0; (ii) the utility function satisÞes

U1(q, θ) > 0 > U11(q, θ), U(0, θ) = 0, U2(q, θ) > 0, U12(q, θ) > 0 for any (q, θ).

Proposition 12 In the setting of this subsection
(i) the optimal mechanisms in the absence of buyer coalition are such that (BIRL) and (BICH)

bind and the optimal quantity proÞle q∗ satisÞes U1(q∗HH , θH) = C 0(2q∗HH), U1(q∗HL, θH) =U1(q∗LH ,θL)
pL

− (1−pL)U1(q∗LH ,θH)
pL

= C0(q∗HL + q
∗
LH),

U1(q∗LL,θL)
pL

− (1−pL)U1(q∗LL,θH)
pL

= C 0(2q∗LL).
(ii) if q∗HL + q

∗
LH ≥ 2q∗LL, then the optimal mechanism M∗∗ in which (CICHH,HL) and

(CICHL,LL) bind is weakly collusion-proof; if q∗HL + q
∗
LH < 2q∗LL, then the optimal mecha-

nism M∗∗∗ in which (CICHH,LL) and (CICLL,HL) bind is weakly collusion-proof

Notice that, in particular, Proposition 5 holds in an auction setting in which a single object

is up for sale: q ∈ [0, 1] is the probability to win the object and U(q, θ) = θq.33

7 Robustness to cheap-talk and multiplicity

In this section we eliminate the assumption WCP and examine two issues which arise after the

third-party�s proposal of S0 in response to M∗∗: the Þrst is about whether or not both buyers
will accept S0 and the second is about whether they will play the truthtelling equilibrium after

accepting S0. It turns out that under a mild condition on the function u (see Proposition 13

below), both buyers accept S0 but in M∗∗ truthtelling is iteratively weakly dominated for H-
type although it is strictly dominant for L-type. This motivates us to Þnd a robust mechanism

MR in the set of optimal weakly collusion-proof mechanisms such that if MR is proposed by

the seller, then both buyers accept S0 and truthtelling is strictly dominant for L-type and

iteratively weakly dominant for H-type. In what follows, we Þrst explain the two issues in

more detail, present the results for M∗∗ and then characterize MR.

Let fM be an optimal weakly collusion-proof mechanism offered by the seller. The Þrst issue

arises because, as we explained in Subsection 2.2, a two-stage game starts after the third party�s

proposal of S0. First each buyer simultaneously announces whether he accepts or refuses S0

and then buyers report either in S0 if it was unanimously accepted, or in fM otherwise. In any

33 In this environment the seller does not need to exploit the information asymmetry between the buyers.

Indeed, under no buyer coalition, there exists no potential room for arbitrage in HL-coalition because the

marginal surplus of each type is constant and a corner solution achieves the Þrst-best allocation and is optimal

for the seller.
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case, however, in the second stage fM is actually played since S0 is null. Therefore, buyer i�s

choice (veto or accept) in the Þrst stage can be viewed as a preplay announcement which may

signal some information about θi. In other words, the Þrst stage is just a sort of cheap-talk

stage in which a buyer may signal his type. We focussed above on the case in which each type of

buyer accepts S0, hence no learning occurs along the equilibrium path. Assume for a moment

that it is common knowledge that buyers are going to play truthfully if S0 is accepted (we deal

with this issue below). Then, no type wishes to reject S0 under the assumption WCP: in fact,

buyers are indifferent between accepting and rejecting S0. However, without the assumption,

many off-the-equilibrium-path behavior and beliefs are possible. For instance, buyer 1 might

expect that a non-truthful equilibrium of fM (if any exists) will be played (possibly under non-

prior beliefs of 2 about θ1) in case he vetoes S0. In other words, some type of buyer 1 might

have the incentive to veto S0 � which is a sort of out-of-equilibrium �message� � in order to

manipulate buyer 2�s beliefs about θ1 and/or behavior such that he can reach a higher payoff

for himself when playing fM at the next stage.

The second issue arises when buyers have to report in S0 after both of them accepted

S0. Reporting in S0 is equivalent to playing non-cooperatively fM with prior beliefs, since

each buyer i has prior beliefs about θj (j 6= i) after S0 has been unanimously accepted.

Although truthtelling is an equilibrium in fM , there may exist other equilibria which buyers
may coordinate on.

The next proposition describes our results about the two issues when the seller offers M∗∗.

Proposition 13 If u
00(x)
u0(x) is strictly increasing in x,

34 then in M∗∗

(a) reporting L is strictly dominant for each L-type, while each H-type strictly prefers reporting

H (L) if his opponent plays H (L);

(b) there is no belief of buyer i (after a rejection of S0 by buyer j(6= i)) which supports an

equilibrium of M∗∗ in which at least one type of buyer j is better off than in the truthtelling
equilibrium;

(c) in the only non-truthful equilibrium, each type of buyer reports L. For buyers (and seller),

the non-truthful equilibrium is strictly Pareto-dominated by the truthful one.

Although Proposition 13(b)-(c) deals with the two issues we introduced above for M∗∗,
Proposition 13(a) reveals that truthtelling is iteratively weakly dominated for H-type.

We avoid this problem by designing a mechanism MR in which truthtelling is iteratively

weakly dominant for H-type. For this purpose, it is useful to examine the payoff bimatrix of

34When u is a Bernoulli utility function over money, this assumption on u is called �decreasing absolute

risk-aversion�.
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the symmetric 2× 2 game played by two buyers with H-type � let 1H and 2H denote them -

when the seller offers an optimal weakly collusion-proof mechanism and each L-type plays L:35

1H\2H L H

L θHu(q
∗
L)− tLL θHu(q

∗
L)− tLL (∆θ)u(q∗L) θHu(q

∗
H)− tHL

H θHu(q
∗
H)− tHL (∆θ)u(q∗L) (∆θ)u(q∗L) (∆θ)u(q∗L)

We see that when his opponent H-type reports L, any H-type prefers reporting H rather than

L if θHu(q∗H)− tHL > θHu(q∗L)− tLL. Therefore, we look for a robust mechanism MR in the

set of optimal weakly collusion-proof mechanisms which satisÞes the following condition:

θHu(q
∗
H)− tHL = θHu(q∗L)− tLL + α, (20)

where α is strictly positive and small. Recall that there exists a continuum of optimal weakly

collusion-proof mechanisms; hence, it might be the case that at least one of them satisÞes (20)

for some α > 0. The next proposition characterizes MR and describes some of its properties.

Proposition 14 Consider the mechanism MR ≡ ©qR, tRª where qR = q∗ and tR solves the
following linear system, in which α > 0 and β > 0 are small numbers36

(BIRL), (BICH), (CICHH,HL)

and (20), all written with equality
if V2(2q∗H)− V2(q∗H + q∗L) < V 11 (q∗H + q∗L)− V 11 (2q∗L)

(BIRL), (BICH), (CIC
β
HL,LL)

and (20), all written with equality
if V2(2q∗H)− V2(q∗H + q∗L) ≥ V 11 (q∗H + q∗L)− V 11 (2q∗L)

Then

(a) MR is optimal under no coalition formation and weakly collusion-proof.

(b) there is no belief of buyer i (after a rejection of S0 by buyer j 6= i) which supports an

equilibrium of MR in which at least one type of buyer j is better off than in the truthtelling

equilibrium;

(c) in MR, reporting L is strictly dominant for each L-type, while each H-type strictly prefers

reporting H (L) if his opponent plays L (H).

According to Proposition 14,37 when the seller offers MR, both buyers accept S0 and
35That is the case when MR is offered, as Proposition 14 below states.
36 (CIC β

HL,LL) below is obtained by adding β to the right hand side of constraint (CICHL,LL).
37We note that the result (b) in Proposition 14 [and (b) in Proposition 13] is stronger than Proposition 9 in

Laffont and Martimort (2000). Indeed, their result refers to the notion of ratiÞability [see Cramton and Palfrey

(1995)], which allows buyer i to have only �reasonable� or �consistent� beliefs about θj . In contrast, we do not

need any �sophisticated� argument in order to make our point: simply no beliefs of i support buyer j�s rejection

of S0.
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truthtelling is strictly dominant for each L-type and serially weakly dominant for each H-type.

Actually, MR admits two (asymmetric) non-truthful equilibria: One in which buyer 1 reports

truthfully and each type of buyer 2 reports L and the other in which buyer 2 reports truthfully

and each type of buyer 1 reports L. However, it seems reasonable to discard them because

they both involve the use of iteratively weakly dominated strategies and are Pareto dominated

for buyers by the truthful equilibrium. We also note that there exist a continuum of robust

mechanisms since we can Þnd a robust one for each positive small α.

8 Concluding remarks

We found that if the seller uses simple sale mechanisms in which the quantity sold to a buyer

and his payment depend solely on his own report, buyers can realize strict gains at the seller�s

loss by coordinating their purchases and reallocating the goods. However, we showed that when

the seller judiciously designs her mechanism by exploiting the transaction costs in coalition

formation, buyer coalition does not hurt her and, in particular, the buyers are unable to

implement efficient arbitrage. We also showed that the optimal outcome can be implemented

through a menu of two-part tariffs.

Some might Þnd unnatural the feature of the optimal collusion-proof mechanisms that a

buyer�s payment depends on the other buyer�s report while the quantity he receives is indepen-

dent of such a report. However, this is due to the fact that we focused on the case of constant

marginal cost. In a more general environment with variable marginal cost, (i) our main result

still holds and (ii) even without buyer coalition, both the quantity received by a buyer and his

payment will depend on the other�s report under dominant strategy implementation. Further-

more, the feature that a buyer�s payment depends on the other buyer�s report exists in Vickrey

auctions, where the price that a winner pays depends on other bidders� bids.

Our results suggest that buyer coalitions are likely to emerge either when they have better

information about each other�s preferences than the seller has, or when the seller is constrained

to use a restricted set of contracts such that a buyer�s payment cannot depend on other buyers�

actions. For instance, when there are a large number of buyers (possibly a mass of buyers),

the seller may have incomplete information about their number and identities. This would

impose restrictions on the set of contracts available to the seller, as in Alger (1999). It would

be interesting to study the case in which the seller can use only individual contracts: i.e., the

quantity sold to a buyer and his payment do not depend on what other buyers do. In this

setting, the collusion-proofness principle might not hold and the optimal mechanism might
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involve letting collusion occur.38

APPENDIX
Proof of Proposition 1

The arguments of the proof for the single-buyer model show that (BICH) and (BIRL) bind

in the optimum. After replacing in Π the transfers as obtained from (BICH) and (BIRL)

written with equality, (i)-(ii) emerge as necessary and sufficient conditions for the optimum

and (BICL) and (BIRH) are automatically satisÞed.

Proof of Proposition 2(b)

The side mechanism Sd =
n
φd(θ1, θ2), xid(θ1, θ2, eφ), yid(θ1, θ2)o mentioned in the statement

of Proposition 2(b) is formally deÞned as follows. For simplicity, let φdjk = φ
d(θj , θk), xidjk,eφ =

xid(θj , θk, eφ) and yidjk = yid(θj , θk) with j, k ∈ {H,L}.
Reports manipulations: φdHH = (θH , θL), φ

d
HL = φ

d
LH = φ

d
LL = (θL, θL).

39

Reallocation of goods40: x1dHH = −q∗H−q∗L
2 , x2dHH =

q∗H−q∗L
2 ; x1dHL = �x > 0, with �x close to 0,

x2dHL = −�x; x2dLH = −x1dHL = �x; x1dLL = x2dLL = 0.
Side transfers: y1dHH = − t∗H−t∗L

2 , y2dHH =
t∗H−t∗L
2 ; y1dHL = y2dLH = �y, y2dHL = y1dLH = −�y;

y1dLL = y
2d
LL = 0, where �y > 0 is still to be deÞned.

In words, an HH-coalition reports HL; then goods and payments are equally shared be-

tween the buyers. A coalition HL or LH reports LL; then goods are slightly reallocated from

L-type to H-type and H-type pays �y to L-type.

We prove that for a small �x > 0 there exists a �y > 0 such that (BICS) are satisÞed

and (BIRS) are slack � (BB : x) and (BB : y) are satisÞed by deÞnition. Therefore, Sd

is feasible and strictly increases the payoff of each buyer type with respect to playing Md

non-cooperatively.

38Another direction for extension is to consider different timing for buyer coalitions as Laffont and Martimort

(1997) discuss. To focus on coordination of purchases and reallocation, we adopted the timing chosen by Laffont

and Martimort (1997, 2000) but the analysis can be extended to a timing in which buyers can form a coalition

after receiving the seller�s offer and before deciding whether to accept or reject the offer. Independently, deQuiedt

(2002) recently studied collusion with this timing in auctions.
39We recall that when the manipulation is deterministic, i.e., pφ(eθ1,eθ2, eφ) = 1 for some eφ ∈ Θ2, we write

φ(eθ1,eθ2) = eφ (see Section 2.2).
40Since the report manipulation is deterministic, we do not write eφ in xid

jk,eφ.
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Let bqH ≡ q∗L + �x, bqL ≡ q∗L − �x and consider constraint (BICSH):
pL[θHu(bqH)− θLu(q∗L)− �y] + (1− pL){θHu(q∗L + q∗H2

)− θLu(q∗L)−
θH
2
[u(q∗H)− u(q∗L)]}

≥ pL(∆θ)u(q
∗
L) + (1− pL)[θHu(bqL)− θLu(q∗L) + �y] (21)

Let �y = �y ≡ θH [u(q
∗
L) − u(bqL)] > 0, so that (i) the right hand side of (21) is equal to

UM
d
(θH) = (∆θ)u(q

∗
L); (ii) if �x = 0, then (21) is strictly satisÞed and therefore, when �x > 0

is close to 0, (21) is still strictly satisÞed and (BIRSH) is strictly satisÞed as well; (iii) (BIR
S
L)

holds strictly. Given a small �x > 0, consider increasing �y above �y until the point at which

(21) binds. Then, (BIRSH) still holds strictly since the right hand side of (21) increased above

UM
d
(θH); clearly, (BIRSL) holds strictly as well since now �y > �y. In order to prove that

(BICSL) is satisÞed, add up (BIC
S
L) and (BIC

S
H) (which binds) to obtain an inequality which

holds strictly because bqH > q∗L and q∗L+q
∗
H

2 > bqL. Therefore, Sd satisÞes (BICS) and (BIRS)
and the payoff of each type of buyer is strictly larger than from playing Md non-cooperatively.

Thus, with Md, the buyer coalition strictly reduces the seller�s proÞt because (i) in the

states of nature in which reports are manipulated, the quantity sold to buyers is smaller than

under truthtelling, which reduces the surplus generated by the trade and (ii) each type of buyer

obtains a higher payoff than with truthtelling.41

Proof of Proposition 3

The proof is omitted since it is a straightforward adaptation of the proof of Proposition 3 in

Laffont and Martimort (2000).

Proof of Proposition 4

We are interested in sale mechanisms such that L-type�s incentive constraint is not binding.

Since we are Þnding conditions under which S0 is optimal for the third party, the incentive

constraint of L-type will be slack in the side mechanism as well. In what follows, for the sake

of brevity, let xi
jk,eφ denote xi(θj , θk, eφ) with j, k ∈ {H,L}. Likewise, pφjk,eφ denotes pφ(θj , θk, eφ).

41Actually, Sd may not be the optimal side mechanism against Md. In particular, goods are not efficiently

reallocated within HL-coalition since otherwise we are not sure of whether (BIRS) and (BICS) can all be

satisÞed. However, if the third party chooses the optimal side mechanism against Md, then still the proÞt is

smaller than if Md is played non-cooperatively.
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The third-party maximizes the following objective,

(1− pL)2
Peφ∈Θ2 pφHH,eφ[θHu(q1(eφ) + x1HH,eφ)− t1(eφ) + θHu(q2(eφ) + x2HH,eφ)− t2(eφ)]

+pL(1− pL)
Peφ∈Θ2 pφLH,eφ[θLu(q1(eφ) + x1LH,eφ)− t1(eφ) + θHu(q2(eφ) + x2LH,eφ)− t2(eφ)]

+pL(1− pL)
Peφ∈Θ2 pφHL,eφ[θHu(q1(eφ) + x1HL,eφ)− t1(eφ) + θLu(q2(eφ) + x2HL,eφ)− t2(eφ)]

+p2L
Peφ∈Θ2 pφLL,eφ[θLu(q1(eφ) + x1LL,eφ)− t1(eφ) + θLu(q2(eφ) + x2LL,eφ)− t2(eφ)]

subject to the following constraints.

� Budget balance constraints: for the quantity reallocation
2X
i=1

xi(θ1, θ2, eφ) = 0, for any (θ1, θ2) ∈ Θ2 and any eφ ∈ Θ2;
for the side transfers

2X
i=1

yi(θ1, θ2) = 0, for any (θ1, θ2) ∈ Θ2,

� H-type�s Bayesian incentive constraint for buyer 1: (BICS1 (θH))

pL
X
eφ∈Θ2

pφ
HL,eφ[θHu(q1(eφ) + x1HL,eφ)− t1(eφ)− y1HL]

+(1− pL)
X
eφ∈Θ2

pφ
HH,eφ[θHu(q1(eφ) + x1HH,eφ)− t1(eφ)− y1HH ]

≥ pL
X
eφ∈Θ2

pφ
LL,eφ[θHu(q1(eφ) + x1LL,eφ)− t1(eφ)− y1LL]

+(1− pL)
X
eφ∈Θ2

pφ
LH,eφ[θHu(q1(eφ) + x1LH,eφ)− t1(eφ)− y1LH ],

� H-type�s acceptance constraint for buyer 1: (BIRS1 (θH))

pL
Peφ∈Θ2 pφHL,eφ[θHu(q1(eφ) + x1HL,eφ)− t1(eφ)− y1HL]

+(1− pL)
Peφ∈Θ2 pφHH,eφ[θHu(q1(eφ) + x1HH,eφ)− t1(eφ)− y1HH ] ≥ UM(θH),

� L-type�s acceptance constraint for buyer 1: (BIRS1 (θL))

pL
Peφ∈Θ2 pφLL,eφ[θLu(q1(eφ) + x1LL,eφ)− t1(eφ)− y1LL]

+(1− pL)
Peφ∈Θ2 pφLH,eφ[θLu(q1(eφ) + x1LH,eφ)− t1(eφ)− y1LH ] ≥ UM(θL),

� H-type�s Bayesian incentive constraint for buyer 2 : (BICS2 (θH))
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� H-type�s acceptance constraint for buyer 2: (BIRS2 (θH))
� L-type�s acceptance constraint for buyer 2: (BIRS2 (θL)),
where (BICS2 (θH)), (BIR

S
2 (θH)), (BIR

S
2 (θL)) are in the same way as (BIC

S
1 (θH)), (BIR

S
1 (θH)),

(BIRS1 (θL)) are deÞned.

We introduce the following multipliers:

� ρx(θ1, θ2, eφ) for the budget-balance constraint for the quantity reallocation in state
(θ1, θ2, eφ),

� ρy(θ1, θ2) for the budget-balance constraint for the side-transfers in state (θ1, θ2),
� δi for the H-type�s Bayesian incentive constraint concerning buyer i,
� viH for the H-type�s acceptance constraint concerning buyer i,
� viL for the L-type�s acceptance constraint concerning buyer i.
We deÞne the Lagrangian function as follows:

L = E(U1 + U2) +
X
i=1,2

δi(BICSi )(θH) +
X
i=1,2

viH(BIR
S
i )(θH) +

X
i=1,2

viL(BIR
S
i )(θL)

+
X

(θ1,θ2)∈Θ2

X
eφ∈Θ2

ρx(θ1, θ2, eφ)(BB : x)(θ1, θ2, eφ) + X
(θ1,θ2)∈Θ2

ρy(θ1, θ2)(BB : y)(θ1, θ2)

Step 1: Optimizing with respect to yi(θ1, θ2)
After optimizing with respect to yiHH , we have:

ρyHH − δi(1− pL)− viH(1− pL) = 0, for i = 1, 2.

After optimizing with respect to y1HL and y
2
HL respectively, we have:

ρyHL − δ1pL − v1HpL = 0;

ρyHL + δ
2(1− pL)− v2L(1− pL) = 0

After optimizing with respect to y1LH and y
2
LH respectively, we have:

ρyLH + δ
1(1− pL)− v1L(1− pL) = 0;

ρyLH − δ2pL − v2HpL = 0

After optimizing with respect to yiLL, we have:

ρyLL + δ
ipL − viLpL = 0, for i = 1, 2.
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In what follows, without loss of generality, we restrict our attention to symmetric multipliers:

δ ≡ δ1 = δ2, vH ≡ v1H = v2H , vL ≡ v1L = v2L
From the above equations, we have:

pL(δ + vH) = (1− pL)(vL − δ)
Step 2: Optimizing with respect to xi(θ1, θ2, eφ) given pφ(θ1, θ2, eφ)
For simplicity, let ρx

jk,eφ = ρx(θj, θk, eφ).
After optimizing with respect to xi

HH,eφ, we have:42
ρx
HH,eφ + pφHH,eφ(1− pL + δ + vH)(1− pL)θHu0(qi(eφ) + xiHH,eφ) = 0, for i = 1, 2, and any eφ ∈ Θ2.
The above equations imply that q1(eφ) + x1

HH,eφ = q2(eφ) + x2
HH,eφ for any eφ ∈ Θ2. Since

x1
HH,eφ+x2HH,eφ = 0 from the budget balance constraint, we have qi(eφ)+xiHH,eφ = q1(eφ)+q2(eφ)

2 for

each eφ. Hence, any total quantity which is available to HH−coalition is always split equally
between the two buyers. We will see that the same result holds for LL−coalition.

After optimizing with respect to x1
HL,eφ and x2HL,eφ respectively, we have:

ρx
HL,eφ + pφHL,eφ(1− pL + δ + vH)pLθHu0(q1(eφ) + x1HL,eφ) = 0, for any eφ ∈ Θ2,

ρx
HL,eφ + pφHL,eφ(pLθL − δθH + vLθL)(1− pL)u0(q2(eφ) + x2HL,eφ) = 0, for any eφ ∈ Θ2.

By using pL(δ + vH) = (1− pL)(vL − δ), we obtain from the two above equations:

θHu
0(q1(eφ) + x1

HL,eφ) =
µ
θL − 1− pL

pL
(∆θ)²

¶
u0(q2(eφ) + x2

HL,eφ), for any eφ ∈ Θ2,
where ² ≡ δ

1−pL+δ+vH . Since θ
²
L = θL−1−pLpL

(∆θ)², any total quantity available toHL−coalition
is split according to the following condition:

θHu
0(q1(eφ) + x1

HL,eφ) = θ²Lu0(q2(eφ) + x2HL,eφ), for any eφ ∈ Θ2.
After optimizing with respect to x1

LH,eφ and x2LH,eφ respectively, we have:
ρx
LH,eφ + pφLH,eφ(pLθL − δθH + vLθL)(1− pL)u0(q1(eφ) + x1LH,eφ) = 0, for any eφ ∈ Θ2,

ρx
LH,eφ + pφLH,eφ(1− pL + δ + vH)pLθHu0(q2(eφ) + x2LH,eφ) = 0, for any eφ ∈ Θ2.

42 In homogeneous coalitions, HH and LL, the reallocation cannot lead to corner solutions. In HL−coalition,
instead, this is conceivable but it is not going to occur when the seller designs the sale mechanism optimally.

Hence, we only consider interior solutions for the reallocation problem.
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From the two above equations, we obtain:

θHu
0(q2(eφ) + x2

LH,eφ) = θ²Lu0(q1(eφ) + x1LH,eφ), for any eφ ∈ Θ2.
After optimizing with respect to xi

LL,eφ, we have:
ρx
LL,eφ + pφLL,eφ(pLθL − δθH + vLθL)pLu0(qi(eφ) + xiLL,eφ) = 0, for i = 1, 2 and any eφ ∈ Θ2.

The above equations imply that q1(eφ) + x1
LL,eφ = q2(eφ) + x2LL,eφ. Since x1LL,eφ + x2LL,eφ = 0 from

the budget balance constraint, we have qi(eφ) + xi
LL,eφ = q1(eφ)+q2(eφ)

2 .

Step 3: Optimizing with respect to φ(θ1, θ2)
Recall that we want to Þnd conditions under which the third party optimally requires any

coalition with (θ1, θ2) = (θj, θk) to report (θj, θk), i.e., φ(θj, θk) = (θj, θk).

� HH coalition:

(θH , θH) ∈ arg max
�φ∈Θ2

(
2θHu(

q1(�φ) + q2(�φ)

2
)− t1(�φ)− t2(�φ)

)
.

� HL coalition:

(θH , θL) ∈ arg max
�φ∈Θ2

(
θHu

h
q²H(q

1(�φ) + q2(�φ))
i
+ θ²Lu

h
q²L(q

1(�φ) + q2(�φ))
i

−t1(�φ)− t2(�φ)

)
.

� LH coalition:

(θL, θH) ∈ arg max
�φ∈Θ2

(
θ²Lu

h
q²L(q

1(�φ) + q2(�φ))
i
+ θHu

h
q²H(q

1(�φ) + q2(�φ))
i

−t1(�φ)− t2(�φ)

)
.

� LL coalition:

(θL, θL) ∈ arg max
�φ∈Θ2

(
2θ²Lu(

q1(�φ) + q2(�φ)

2
)− t1(�φ)− t2(�φ)

)
.

Finally, notice that the above conditions are equivalent to (6)-(11).

Some missing elements in the proof to Proposition 5

The transfers t∗∗ in M∗∗ are given as follows:

t∗∗HL =
(1 + pL)θL − (3− p2L)θH

2
u(q∗L) + θH

pL(3− pL)
2

u(q∗H)

+(1− pL)(2− pL)θHu(q
∗
H + q

∗
L

2
) +

pL(1− pL)
2

V 11 (2q
∗
L),
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t∗∗LH =
(pL + 3)θL + (2pL + p

2
L − 1)θH

2
u(q∗L) + θH

pL(1− pL)
2

u(q∗H)

−pL(1− pL)θHu(q
∗
H + q

∗
L

2
)− pL(1 + pL)

2
V 11 (2q

∗
L),

t∗∗HH =
(pL + 2)θL − (1− pL)(2 + pL)θH

2
u(q∗L) + θH

2 + 2pL − p2L
2

u(q∗H)

−pL(2− pL)θHu(q
∗
H + q

∗
L

2
)− p

2
L

2
V 11 (2q

∗
L),

t∗∗LL =
(p2L + 2pL − 1)θ1L

2
u(q∗L)− θH

(1− pL)2
2

u(q∗H) + (1− pL)2θHu(
q∗H + q

∗
L

2
)

+
1− p2L
2

V 11 (2q
∗
L).

Lemma for the proof of Proposition 5

Lemma 1 A single crossing condition for coalitions holds:

∂V2(x)

∂x
>
∂V ²1 (x)

∂x
>
∂V ²0 (x)

∂x
for any x > 0 and ² ≥ 0.

Proof. We have V2(x) = 2θHu(
x
2 ) and V

²
0 (x) = 2θ²Lu(

x
2 ); hence

∂V2(x)
∂x = θHu

0(x2 ) and
∂V ²0 (x)
∂x = θ²Lu

0(x2 ). For an HL-coalition, let us consider for simplicity interior allocations

(but the proof is easily adapted to the non-interior case). Then q²H(x) and q
²
L(x) are such

that θHu0[q²H(x)] = θ²Lu
0[q²L(x)] and the envelope theorem implies ∂V ²1 (x)

∂x = θHu
0[q²H(x)] =

θ²Lu
0[q²L(x)]. Since u

0 is strictly decreasing and θH > θ²L, we have q
²
H(x) >

x
2 > q

²
L(x); hence

∂V2(x)
∂x = θHu

0(x2 ) > θHu
0[q²H(x)] = θ

²
Lu

0[q²L(x)] > θ
²
Lu(

x
2 ) =

∂V ²0 (x)
∂x .

Proof that β deÞned at page 20 is negative

Let g(z) ≡ V 11 (2q∗L+z)−V 11 (2q∗L)−θH [u(q∗L + z)− u(q∗L)]; we want to show that g(q∗H−q∗L) < 0
because β = g(q∗H − q∗L). Since g(0) = 0 and we can prove that g0(z) < 0 ∀z ∈ [0, q∗H − q∗L),
we obtain g(q∗H − q∗L) < 0. We Þnd g0(z) ≡ θHu

0 £q1H(2q∗L + z)¤ − θHu0(q∗L + z). g0(z) < 0 is

equivalent to q1H(2q
∗
L + z) > q

∗
L + z, which holds for ∀z ∈ [0, q∗H − q∗L) since otherwise we have

θHu
0 £q1H(2q∗L + z)¤ ≥ θHu0(q∗L + z) > θHu0(q∗H) = θvLu0(q∗L) > θvLu0 £q1L(2q∗L + z)¤, a violation

of θHu0[q1H(x)] = θ
v
Lu

0[q1L(x)] for x = 2q
∗
L + z.

Proof of Proposition 6

We assume here that the seller proposes the menu of two-part tariffs {T ∗∗H , T ∗∗L }. We

consider Þrst the case without buyer coalition and then examine the case with buyer coalition.
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Proof that with {T ∗∗H , T ∗∗L }, under buyers� noncooperative behavior the same out-
come arises as with M∗∗. For the sake of brevity, let p̄ ≡ θHu0(q∗L) and recall that if buyers
choose tariffs (T ∗∗j , T

∗∗
k ), then the buyer who chose T

∗∗
j (resp. T ∗∗k ) faces the marginal price p̄

for quantities above q∗j (resp. q∗k) and the marginal price c for quantities below q
∗
j (resp. q

∗
k).

Suppose that buyer 2 chooses the tariff designed for his type and consider the decision

problem of H-type of buyer 1 (buyers are ex ante symmetric). If he selects T ∗∗H , then he buys
the quantity which maximizes θHu(q)−cq1[q≤q∗H ]−[cq

∗
H + p̄(q − q∗H)] 1[q>q∗H ] and the maximum

is achieved at q = q∗H . Given that his expected Þxed fee is pLA
∗∗
HL+(1−pL)A∗∗HH , his expected

payoff is (∆θ)u(q∗L). Suppose now that he selects T ∗∗L . Then, he would buy the quantity
which maximizes θHu(q)− cq1[q≤q∗L] − [cq

∗
L + p̄(q − q∗L)] 1[q>q∗L]. The maximum is attained at

q = q∗L. Given that the expected Þxed fee is pLA
∗∗
LL+(1−pL)A∗∗LH , his expected payoff is again

(∆θ)u(q∗L).
Consider now L-type of buyer 1. If he chooses T ∗∗L , he buys the quantity which maximizes

θLu(q)− cq1[q≤q∗L] − [cq
∗
L + p̄(q − q∗L)] 1[q>q∗L]. The solution is q = q

∗
L and his expected payoff

(taking into account Þxed fees) is 0. If he chooses T ∗∗H , then he will consume quantity q
FB
L such

that θLu0(qFBL ) = c and his expected payoff would be,

θLu(q
FB
L )− cqFBL − pLA∗∗HL − (1− pL)A∗∗HH .

We now show that the above payoff is smaller than 0. Since pLA∗∗HL+(1−pL)A∗∗HH = θHu(q∗H)−
(∆θ)u(q∗L)− cq∗H , we need to prove that

θLu(q
FB
L )− cqFBL + (∆θ)u(q∗L) ≤ θHu(q∗H)− cq∗H (22)

Notice that the right hand side of (22) would be smaller if q∗H were replaced by qFBL < q∗H .
Therefore, (22) holds if it is satisÞed when q∗H is replaced by qFBL . When q∗H is replaced by

qFBL , (22) boils down to (∆θ)u(q∗L) < (∆θ)u(q
FB
L ), which holds since q∗L < q

FB
L .

Proof that allowing coalition formation does not affect the outcome We now study

the case with buyer coalition. We Þrst deÞne the third-party�s program when the seller offers

a menu of two-parts tariffs. The side-contract takes the form:

{φ(eθ), qi(eθ, eφ), xi(eθ, eφ), yi(eθ); i = 1, 2},
where eθi is buyer i�s report to the third-party and eθ = (eθ1,eθ2). Let φ(·) be the tariff selection
function that tells each buyer (possibly randomly) which tariff to select as a function of eθ. Leteφ ∈ Θ2 denote a realized outcome of φ(·) and let pφ(eθ, eφ) denote the probability that the third
party requests the buyers to choose the tariffs eφ when they report him eθ. Let qi(eθ, eφ) denote
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the quantity which the third party recommends buyer i to buy as a function of (eθ, eφ). Let
xi(eθ, eφ) denote the reallocation function which determines the quantity that buyer i receives
from the third-party. Therefore, qi(eθ, eφ) + xi(eθ, eφ) is the total quantity received by buyer i.
yi(·) is the monetary transfer from buyer i to the third party as deÞned in Section 2.2. We

impose the usual ex post budget balance constraints for the reallocation of goods and for the

side transfers. Finally, observe that the payment of buyer i to the seller depends both on the

chosen tariffs eφ and the quantity bought qi(eθ, eφ). Hence, it is denoted by ti(qi(eθ, eφ), eφ). Let
us deÞne the null side-contract, denoted by S0, as S0 ≡ {φ(·) = Id(·), qi(·) = q∗(eθi), x1(·) =
x2(·) = 0, y1(·) = y2(·) = 0} where q∗(θi) equals q∗H (q∗L) if eθi = θH (eθi = θL).

As in DeÞnition 1, we say that a side-contract S∗ = {φ∗(·), qi∗(·), xi∗(·), yi∗(·)} is coalition-
interim-efficient with respect to an incentive compatible mechanism M providing the reserva-

tion utilities
©
UM(θL), U

M(θH)
ª
if and only if it solves the following program:

max
φ(·),qi(·),xi(·),yi(·)

X
(θ1,θ2)∈Θ2

p(θ1, θ2)[U1(θ1) + U2(θ2)]

subject to

U i(θi) =
P
θj∈Θ p(θ

j)
nPeφ∈Θ2 pφ(θi, θj , eφ) hθiu(qi(θi, θj, eφ) + xi(θi, θj, eφ))

−ti(qi(θi, θj , eφ), eφ)i− yi(θi, θj)o for any θi ∈ Θ;

(BICS) U i(θi) ≥Pθj∈Θ p(θ
j)
nPeφ∈Θ2 pφ(eθi, θj, eφ)[θiu(qi(eθi, θj, eφ) + xi(eθi, θj, eφ))

−ti(qi(eθi, θj, eφ), eφ)]− yi(eθi, θj)o for any (θi,eθi) ∈ Θ2;
(BIRS) U i(θi) ≥ UM(θi), for any θi ∈ Θ;

(BB : x) x1(θ1, θ2, eφ) + x2(θ1, θ2, eφ) = 0, for any (θ1, θ2) ∈ Θ2 and any eφ ∈ Θ2
(BB : y) y1(θ1, θ2) + y2(θ1, θ2) = 0, for any (θ1, θ2) ∈ Θ2.

In what follows, for the sake of brevity we use qi
jk,eφ instead of qi(θj, θk, eφ)with jk ∈ {HH,HL,LH,LL}.

pφ
jk,eφ and xijk,eφ are similarly deÞned. The third-party maximizes the following objective

(1− pL)2
Peφ∈Θ2 pφHH,eφP2

i=1[θHu(q
i
HH,eφ + xiHH,eφ)− ti(qiHH,eφ, eφ)]

+pL(1− pL)
Peφ∈Θ2 pφLH,eφ[θLu(q1LH,eφ + x1LH,eφ) + θHu(q2LH,eφ + x2LH,eφ)−P2

i=1 t
i(qi

LH,eφ, eφ)]
+pL(1− pL)

Peφ∈Θ2 pφHL,eφ[θHu(q1HL,eφ + x1HL,eφ) + θLu(q2HL,eφ + x2HL,eφ)−P2
i=1 t

i(qi
HL,eφ, eφ)]

+p2L
Peφ∈Θ2 pφLL,eφP2

i=1[θLu(q
i
LL,eφ + xiLL,eφ)− ti(qiLL,eφ, eφ)]
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subject to the usual budget balance constraints for the quantity reallocation and for the side

transfers and, in addition,

� H-type�s Bayesian incentive constraint for buyer 1:

pL
X
eφ∈Θ2

pφ
HL,eφ[θHu(q1HL,eφ + x1HL,eφ)− t1(q1HL,eφ, eφ)− y1HL] +

(1− pL)
X
eφ∈Θ2

pφ
HH,eφ[θHu(q1HH,eφ + x1HH,eφ)− t1(q1HH,eφ, eφ)− y1HH ]

≥ pL
X
eφ∈Θ2

pφ
LL,eφ[θHu(q1LL,eφ + x1LL,eφ)− t1(q1LL,eφ, eφ)− y1LL] +

(1− pL)
X
eφ∈Θ2

pφ
LH,eφ[θHu(q1LH,eφ + x1LH,eφ)− t1(q1LH,eφ, eφ)− y1LH ],

� H-type�s Bayesian incentive constraint for buyer 2 :

pL
X
eφ∈Θ2

pφ
LH,eφ[θHu(q2LH,eφ + x2LH,eφ)− t2(q2LH,eφ, eφ)− y2LH ] +

(1− pL)
X
eφ∈Θ2

pφ
HH,eφ[θHu(q2HH,eφ + x2HH,eφ)− t2(q2HH,eφ, eφ)− y2HH ]

≥ pL
X
eφ∈Θ2

pφ
LL,eφ[θHu(q2LL,eφ + x2LL,eφ)− t2(q2LL,eφ, eφ)− y2LL] +

(1− pL)
X
eφ∈Θ2

pφ
HL,eφ[θHu(q2HL,eφ + x2HL,eφ)− t2(q2HL,eφ, eφ)− y2HL],

� H-type�s acceptance constraint for buyer 1:

pL
X
eφ∈Θ2

pφ
HL,eφ[θHu(q1HL,eφ + x1HL,eφ)− t1(q1HL,eφ, eφ)− y1HL] +

(1− pL)
X
eφ∈Θ2

pφ
HH,eφ[θHu(q1HH,eφ + x1HH,eφ)− t1(q1HH,eφ, eφ)− y1HH ] ≥ UM(θH)

� H-type�s acceptance constraint for buyer 2:

pL
X
eφ∈Θ2

pφ
LH,eφ[θHu(q2LH,eφ + x2LH,eφ)− t2(q2LH,eφ, eφ)− y2LH ] +

(1− pL)
X
eφ∈Θ2

pφ
HH,eφ[θHu(q2HH,eφ + x2HH,eφ)− t2(q2HH,eφ, eφ)− y2HH ] ≥ UM(θH)
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� L-type�s acceptance constraint for buyer 1:

pL
X
eφ∈Θ2

pφ
LL,eφ[θLu(q1LL,eφ + x1LL,eφ)− t1(q1LL,eφ, eφ)− y1LL] +

(1− pL)
X
eφ∈Θ2

pφ
LH,eφ[θLu(q1LH,eφ + x1LH,eφ)− t1(q1LH,eφ, eφ)− y1LH ] ≥ UM(θL)

� L-type�s acceptance constraint for buyer 2:

pL
X
eφ∈Θ2

pφ
LL,eφ[θLu(q2LL,eφ + x2LL,eφ)− t2(q2LL,eφ, eφ)− y2LL] +

(1− pL)
X
eφ∈Θ2

pφ
HL,eφ[θLu(q2HL,eφ + x2HL,eφ)− t2(q2HL,eφ, eφ)− y2HL] ≥ UM(θL)

We introduce the same multipliers and Lagrangian function as in the proof of Proposition 4.

Step 1 here is similar to the step 1 in the proof of Proposition 4: we obtain vL = δ+
pL
1−pL (δ+vH).

Step 2: Optimization with respect to xi
jk,eφ, given (pφjk,eφ, qijk,eφ)

After optimizing with respect to xi
HH,eφ:43

ρx
HH,eφ + pφHH,eφ(1− pL + δ + vH)(1− pL)θHu0(qiHH,eφ + xiHH,eφ) = 0, for i = 1, 2 and any eφ ∈ Θ2.
The above equations imply q1

HH,eφ + x1HH,eφ = q2HH,eφ + x2HH,eφ. Since x1HH,eφ + x2HH,eφ = 0 from
the budget balance constraint, we have qi

HH,eφ + xiHH,eφ = (q1HH,eφ + q2HH,eφ)/2 for each eφ ∈ Θ2.
After optimizing with respect to x1

HL,eφ and x2HL,eφ respectively, we have:
ρx
HL,eφ + pφHL,eφ(1− pL + δ + vH)pLθHu0(q1HL,eφ + x1HL,eφ) = 0, for any eφ ∈ Θ2,

ρx
HL,eφ + pφHL,eφ(pLθL − δθH + vLθL)(1− pL)u0(q2HL,eφ + x2HL,eφ) = 0, for any eφ ∈ Θ2.

Since vL = δ +
pL
1−pL (δ + vH), we obtain from the two above equations:

θHu
0(q1
HL,eφ + x1HL,eφ) = θ²Lu0(q2HL,eφ + x2HL,eφ), for any eφ ∈ Θ2. (23)

Similarly, after optimizing with respect to x1
LH,eφ and x2LH,eφ respectively, we obtain

θHu
0(q2
LH,eφ + x2LH,eφ) = θ²Lu0(q1LH,eφ + x1LH,eφ), for any eφ ∈ Θ2.

43The remark about interior solutions for the reallocation problem which we made in the proof of proposition

4 applies here as well.
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After optimizing with respect to xi
LL,eφ, we Þnd

ρx
LL,eφ + pφLL,eφ(pLθL − δθH + vLθL)pLu0(qiLL,eφ + xiLL,eφ) = 0, for i = 1, 2 and any eφ ∈ Θ2.

The above equations imply q1
LL,eφ + x1LL,eφ = q2LL,eφ + x2LL,eφ. Since x1LL,eφ + x2LL,eφ = 0 from the

budget balance constraint, we have qi
LL,eφ + xiLL,eφ = (q1LL,eφ + q2LL,eφ)/2 for any eφ ∈ Θ2.

Step 3: Optimizing with respect to qi
jk,eφ given pφjk,eφ

Given eφ, a realized outcome of φ(·), let q̄1eφ (resp. q̄2eφ) denote the quantity level at which
the kink occurs for buyer 1 (resp. for buyer 2). For instance, if eφ = (θH , θH), then we set

q̄1θH ,θH = q̄2θH ,θH = q∗H . We consider the third party�s optimization problem with respect to

(q1
jk,eφ, q2jk,eφ). Let m ∈ {0, 1, 2} denote the number of buyers with H-type in the coalition

with (θ1, θ2) = (θj, θk). Then, the total surplus that the coalition derives from consuming

quantity x is given by V ²m(x). Therefore, we can write the payoff of the coalition as a function

of (q1
jk,eφ, q2jk,eφ), without considering the Þxed fees, as follows:

V ²m(q
1
jk,eφ + q2jk,eφ)− c(q1jk,eφ + q2jk,eφ) if q1

jk,eφ ≤ q̄1eφ and q2jk,eφ ≤ q̄2eφ
V ²m(q

1
jk,eφ + q2jk,eφ)− p̄(q1jk,eφ − q̄1eφ)− c(q̄1eφ + q2jk,eφ) if q1

jk,eφ > q̄1eφ and q2jk,eφ ≤ q̄2eφ
V ²m(q

1
jk,eφ + q2jk,eφ)− p̄(q2jk,eφ − q̄2eφ)− c(q1jk,eφ + q̄2eφ) if q1

jk,eφ ≤ q̄1eφ and q2jk,eφ > q̄2eφ
V ²m(q

1
jk,eφ + q2jk,eφ)− p̄(q1jk,eφ − q̄1eφ + q2jk,eφ − q̄2eφ)− c(q̄1eφ + q̄2eφ) if q1

jk,eφ > q̄1eφ and q2jk,eφ > q̄2eφ
(24)

For any eφ, we Þnd below the maximum value of the function deÞned in (24) with respect to

(q1
jk,eφ, q2jk,eφ) ∈ R2+. If we denote that maximum value by Ujk(eφ), then the net payoff which jk

coalition receives if it reports eφ to the seller is Ujk(eφ) minus the Þxed fees associated with eφ.
Step 4: Optimizing with respect to φ(θ1, θ2).
Instead of Þnding conditions such that coalitions report truthfully and then verifying that

such conditions are satisÞed by the null side mechanism S0, we prove directly that S0 is optimal

for the third party when ² = 1, given {T ∗∗H , T ∗∗L }. In other words, our menu of two part tariffs
is weakly collusion-proof since we show that the third party will require each j-type to choose

the tariff T ∗∗j and to buy quantity q∗j .

HH coalition If HH coalition chooses (T ∗∗H , T
∗∗
H ) (which means p

φ
HH,HH = 1) then it buys

a total quantity q > 0 in order to maximize V2(q)− cq1[q≤2q∗H ] − [c2q
∗
H + p̄(q − 2q∗H)] 1[q>2q∗H],

where V2(q) = 2θHu(
q
2). The solution is q = 2q∗H , therefore choosing (T

∗∗
H , T

∗∗
H ) yields the
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coalition the same payoff 2θHu(q∗H)−2t∗HH that is obtained by reporting HH in the mechanism

M∗∗.
If it chooses (T ∗∗H , T

∗∗
L ), then it should select (q

H , qL) (quantities which are bought by the

buyer who chose T ∗∗H and T ∗∗L , respectively) in order to maximize V2(q
H + qL)− cqH1[qH≤q∗H]−£

cq∗H + p̄(q
H − q∗H)

¤
1[qH>q∗H ]

− cqL1[qL≤q∗L]− [cq
∗
L + p̄(q − q∗L)] 1[q>q∗L]. Certainly, q

H ≥ q∗H and
qL ≥ q∗L since marginal price is c for q

H ≤ q∗H and qL ≤ q∗L while the marginal beneÞt for
HH coalition from having an additional unit of good when it owns total quantity q∗H + q

∗
L (or

less) is (at least) ∂V2(q∗H+q
∗
L)

∂x = θHu
0(q

∗
H+q

∗
L

2 ) > c. However, it is not optimal to set qH > q∗H
and/or qL > q∗L because then marginal price jumps to p̄ > θHu

0(q
∗
H+q

∗
L

2 ). This establishes that

� conditional on choosing (T ∗∗H , T
∗∗
L ) � HH coalition will buy the total quantity q∗H + q

∗
L and

pay t∗∗HL + t
∗∗
LH after taking into account the Þxed fees. Therefore, choosing (T ∗∗H , T

∗∗
L ) yields

the coalition the same payoff that is obtained by reporting HL in the mechanism M∗∗.
If it chooses (T ∗∗L , T

∗∗
L ), then it will buy the total quantity 2q

∗
L � because

∂V2(2q∗L)
∂x = p̄ > c

but ∂V2(q)∂x < p̄ for q > 2q∗L � and will pay 2t
∗∗
LL overall. Hence, choosing (T

∗∗
L , T

∗∗
L ) yields the

same payoff that is obtained by reporting LL in the mechanism M∗∗.
Finally, since M∗∗ satisÞes (CICHH,HL) and (CICHH,LL), it is optimal for HH coalition

to choose (T ∗∗H , T
∗∗
H ).

HL coalition If HL coalition selects (T ∗∗H , T
∗∗
L ), then it chooses q

H ≥ q∗H and qL ≥ q∗L
because the marginal price is c for qH < q∗H and qL < q∗L, and the marginal beneÞt for HL
coalition from having an additional unit of good when it owns total quantity q∗H + q

∗
L (or

less) is (at least) ∂V
1
1 (q

∗
H+q

∗
L)

∂x = c. Setting qH > q∗H and/or qL > q∗L is not proÞtable because

p̄ > c >
∂V 11 (q

H+qL)
∂x if qH + qL > q∗H + q

∗
L.

If it chooses (T ∗∗H , T
∗∗
H ), it will buy the total quantity q in order to maximize

V 11 (q)− cq1[q≤2q∗H ] − [c2q
∗
H + p̄(q − 2q∗H)] 1[q>2q∗H]

Since the above objective is maximized at q = q∗H + q
∗
L, taking into account the Þxed fees we

see that choosing (T ∗∗H , T
∗∗
H ) is not optimal if

V 11 (q
∗
H + q

∗
L)− c(q∗H + q∗L)− 2A∗∗HH ≤ V 11 (q∗H + q∗L)− c(q∗H + q∗L)−A∗∗HL −A∗∗LH (25)

By replacing the values of A∗∗HH , A
∗∗
HL and A

∗∗
LH and recalling that (CICHH,HL) binds in M

∗∗,
we Þnd that (25) reduces to

θH [u(q
∗
H)− u(

q∗H + q
∗
L

2
)] ≥ c(q

∗
H − q∗L
2

)

which can be proved by using the mean value theorem.
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If the coalition chooses (T ∗∗L , T
∗∗
L ), then it buys the total quantity 2q

∗
L because

∂V 11 (q)
∂x > c

if q < 2q∗L, but
∂V 11 (q)
∂x < p̄ if q > 2q∗L. Recalling the value of A

∗∗
LL, we Þnd that choosing

(T ∗∗L , T
∗∗
L ) yields HL coalition the same payoff that is obtained by reporting LL in M

∗∗. Since
(CICHL,LL) is satisÞed in M∗∗, choosing (T ∗∗L , T

∗∗
L ) is not better than (T

∗∗
H , T

∗∗
L ).

LL coalition It is straightforward to Þnd that LL coalition buys total quantity 2q∗L regardless
of the choice of tariffs. Therefore, it will choose (T ∗∗L , T

∗∗
L ) if and only if the Þxed fees are

larger for (T ∗∗H , T
∗∗
H ) and (T

∗∗
H , T

∗∗
L ) than for (T

∗∗
L , T

∗∗
L ). Since we have already proved that

2A∗∗HH ≥ A∗∗HL + A
∗∗
LH , we only need to show that A∗∗HL + A

∗∗
LH ≥ 2A∗∗LL. Recalling that

(CICHL,LL) binds in M∗∗, we have:

A∗∗HL +A
∗∗
LH ≥ 2A∗∗LL ⇔ t∗∗HL + t

∗∗
LH − 2t∗∗LL − cq∗H − cq∗L ≥ −2cq∗L

⇔ V 11 (q
∗
H + q

∗
L)− V 11 (2q∗L) ≥ c(q∗H − q∗L).

The latter inequality can be proved by using the mean value theorem.

Proof of Proposition 7

Let xi
θ,eφ = xi(θ, eφ) represent the reallocation function. For expositional convenience, let

{q(θ), t(θ)} represent the symmetric sale mechanism introduced in Subsection 6.1, i.e., Mn =

{qn, tn}. Given {q(θ), t(θ)}, the third party wishes to maximize the following objective

X
θ∈Θn

p(θ)

X
eφ∈Θn

pφ(θ, eφ) nX
i=1

h
θiu(qi(eφ) + xi

θ,eφ)− ti(eφ)i


subject to the budget balance constraints for quantity reallocation and side transfers, (BICS)

and (BIRS)

(BICSi (θH))
X

θ−i∈Θn−1
p(θ−i)

X
eφ∈Θn

pφ(θ−i, θH , eφ) hθHu(qi(eφ) + xiθ−i,θH ,eφ)− ti(eφ)i− yi(θ−i, θH)


≥
X

θ−i∈Θn−1
p(θ−i)

X
eφ∈Θn

pφ(θ−i, θL, eφ) hθHu(qi(eφ) + xiθ−i,θL,eφ)− ti(eφ)i− yi(θ−i, θL)
 ,

(BIRSi (θH))
X

θ−i∈Θn−1
p(θ−i)

X
eφ∈Θn

pφ(θ−i, θH , eφ) hθHu(qi(eφ) + xiθ−i,θH ,eφ)− ti(eφ)i− yi(θ−i, θH)

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≥ UM(θH),

(BIRSi (θL))
X

θ−i∈Θn−1
p(θ−i)

X
eφ∈Θn

pφ(θ−i, θL, eφ) hθLu(qi(eφ) + xiθ−i,θL,eφ)− ti(eφ)i− yi(θ−i, θL)


≥ UM(θL).

After writing down the Lagrangian function we can Þnd the conditions under which the null

side mechanism solves this maximization problem. In particular, consider the m-coalition

θm,n−m = (H...HL...L): Under which conditions is the third party reporting truthfully and

not reallocating when eθ = θm,n−m?44 We describe such conditions by considering multipliers
such that δi = δ, viH = vH and v

i
L = vL for any i.

45 The manipulation and reallocation which

are chosen by the third party need to maximize

pmHp
n−m
L

X
eφ∈Θn

pφ(θm,n−m, eφ)( mX
i=1

h
θHu(q

i(eφ) + xi
θm,n−m,eφ)− ti(eφ)i (26)

+
nX

i0=m+1

h
θLu(q

i0(eφ) + xi0
θm,n−m,eφ)− ti0(eφ)i

)

+pm−1H pn−mL (δ + vH)

X
eφ∈Θn

pφ(θm,n−m, eφ) mX
i=1

h
θHu(q

i(eφ) + xi
θm,n−m,eφ)− ti(eφ)− yi(θm,n−m)i


+pmHp

n−m−1
L vL

X
eφ∈Θn

pφ(θm,n−m, eφ) nX
i0=m+1

h
θLu(q

i0(eφ) + xi0
θm,n−m,eφ)− ti0(eφ)− yi0(θm,n−m)i


−pmHpn−m−1L δ

X
eφ∈Θn

pφ(θm,n−m, eφ) nX
i0=m+1

h
(θL +∆θ)u(q

i0(eφ) + xi0
θm,n−m,eφ)− ti0(eφ)− yi0(θm,n−m)i


+
X
eφ∈Θn

ρx
θm,n−m,eφ

Ã
nX
i=1

xi
θm,n−m,eφ − 0

!
+ ρyθm,n−m

Ã
nX
i=1

yi(θm,n−m)− 0
!
,

44The results we obtain below extend to any other m-coalition - i.e., the ones in which the m buyers with

H-type are not buyers 1 to m.
45Remember from the proof of Proposition 4 that δi , viH and viL represent the multipliers associated with

(BICiSH ), (BIR
iS
H ) and (BIR

iS
L ).
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where pH = 1− pL and ρxθm,n−m,eφ and ρyθm,n−m are the Lagrangian multiplier associated with

the budget balance constraint for quantity reallocation and the side transfer.

Step 1: Optimizing with respect to side-transfers yi(θm,n−m)
From the Þrst order conditions with respect to side transfers, we obtain:

ρyθm,n−m − pm−1H pn−mL (δ + vH) = 0 for yi(θm,n−m) with 1 ≤ i ≤ m
ρyθm,n−m + p

m
Hp

n−m−1
L (δ − vL) = 0 for yi

0
(θm,n−m) with m+ 1 ≤ i0 ≤ n

Therefore, we have

vL = δ + (δ + vH)
pL
pH
. (27)

Step 2: Optimizing with respect to quantity reallocation xi
θm,n−m,eφ

From the Þrst order conditions with respect to xi
θm,n−m,eφ, we have: for 1 ≤ i ≤ m

ρx
θm,n−m,eφ + pφ(θm,n−m, eφ) £pmHpn−mL + pm−1H pn−mL (δ + vH)

¤
θHu

0(qi(eφ) + xi
θm,n−m,eφ) = 0;

for m+ 1 ≤ i0 ≤ n,

ρx
θm,n−m,eφ + pφ(θm,n−m, eφ) £pmHpn−mL θL + p

m
Hp

n−m−1
L (vLθL − δθH)

¤
u0(qi

0
(eφ) + xi0

θm,n−m,eφ) = 0.

Then, by using (27), we have

θHu
0(qi(eφ) + xi

θm,n−m,eφ) = θ²Lu
0(qi

0
(eφ) + xi0

θm,n−m,eφ), (28)

for (i, i0) ∈ {1, . . . ,m} × {m+ 1, . . . , n} for any eφ ∈ Θ2
Therefore, conditional on that there is no manipulation of report, the third party does not

reallocate the goods in a m−coalition if there is ² ∈ [0, 1) such that (17) in the paper holds
Step 3: Optimizing with respect to report manipulation φ(θm,n−m)
The truthful (and deterministic) manipulation φ(θm,n−m) = θm,n−m is optimal if and only

if [after substituting (27) into (26)]

θm,n−m ∈ arg maxeφ∈Θn
£
pmHp

n−m
L + pm−1H pn−mL (δ + vH)

¤( mX
i=1

θHu(q
i(eφ) + xi

θm,n−m,eφ)
+

nX
i0=m+1

θ²Lu(q
i0(eφ) + xi0

θm,n−m,eφ)−
nX
i=1

ti(eφ)) , (29)
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in which xi
θm,n−m,eφ and xi0θm,n−m,eφ are such that θHu0(qi(eφ)+xiθm,n−m,eφ) = θ²Lu(qi0(eφ)+xi0θm,n−m,eφ),

for (i, i0) ∈ {1, . . . ,m} × {m+ 1, . . . , n}. The latter fact implies that
Pm
i=1 θHu(q

i(eφ) +
xi
θm,n−m,eφ)+Pn

i0=m+1 θ
²
Lu(q

i0(eφ)+xi0
θm,n−m,eφ)−Pn

i=1 t
i(eφ) is actually equal to V εm[Pn

i=1 q
i(eφ)][−Pn

i=1 t
i(eφ).

Hence, (29) is equivalent to condition (a) in proposition 7.

Proof of Proposition 8

Proof. The proof is very similar to the one provided for n = 2.
First, the seller can choose ² = 1 such that the third-party has the same virtual valuation as

she has; therefore, (17) holds at qn = q∗n.
Second, there exist transfers t∗∗n satisfying with equality (BICH), (BIRL) and (CICm+1,m)

(m = 0, 1, ..., n− 1) bind written with qn = q∗n and ε = 1. Let Cnm = n!
m!(n−m)! , so that writing

(BIRL) and (BICH) with equality give us(
θLu(q

∗
L)−

Pn−1
m=0C

n−1
m pn−1−mL (1− pL)mtLm = 0

θHu(q
∗
H)−

Pn
m=1C

n−1
m−1p

n−m
L (1− pL)m−1tHm = (∆θ)u(q∗L)

(30)

Let us deÞne ∆V 1m ≡ V 1m[mq∗H + (n −m)q∗L] − V 1m[(m− 1)q∗H + (n −m+ 1)q∗L], m = 1, ..., n.

∆V 1m represents the difference between the gross payoff that m−coalition obtains by reporting
truthfully and the one that it obtains by reporting m − 1. Constraints (CICm+1,m) written
with equality (m = 0, 1, ..., n − 1) yield (tH1, tH2, ..., tHn) as a function of (tL0, tL1, ..., tLn−1)
and of the constants (∆V 11 , ...,∆V

1
n ). More precisely,

tH1 = V
1
1 [q

∗
H + (n− 1)q∗L]− V 11 (nq∗L)− (n− 1)tL1 + ntL0

= ∆V 11 − (n− 1)tL1 + ntL0
tH2 =

∆V 12 +∆V
1
1

2 − n−2
2 tL2 +

n
2 tL0

...

tHn−1 =
∆V 1n−1+...+∆V

1
1

n−1 − 1
n−1 tLn−1 +

n
n−1 tL0

tHn =
∆V 1n+∆V

1
n−1+...+∆V

1
1

n + tL0

(31)

After setting tL2 = tL3 = ... = tLn−1 = 0 (this is one of many possibilities) and substituting
(31) into (30), we obtain the following linear system in (tL0, tL1) which admits a (unique)

solution because the matrix of the unknowns is non-singular.

θLu(q
∗
L) = pn−1L tL0 + (n− 1)pn−2L (1− pL)tL1

θHu(q
∗
H) + const(∆V

1
1 , ...,∆V

1
n )− (∆θ)u(q∗L) =

1− pnL
1− pL tL0 − (n− 1)p

n−1
L tL1
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Third, the single crossing condition for coalitions holds:
∂V ²m+1(x)

∂x > ∂V ²m(x)
∂x form = 0, 1..., n−1.

We consider for simplicity interior allocations because the seller optimally serves any type

of buyer.46 Then, q²Hm(x) and q
²
Lm(x) are such that θHu

0[q²Hm(x)] = θ²Lu
0[q²Lm(x)] and the

envelope theorem implies ∂V
²
m(x)
∂x = θHu

0[q²Hm(x)]. Likewise, θHu
0[q²Hm+1(x)] = θ

²
Lu

0[q²Lm+1(x)]

and
∂V ²m+1(x)

∂x = θHu
0[q²Hm+1(x)]. We below show (by contradiction) that q

²
Hm(x) > q

²
Hm+1(x);

this implies
∂V ²m+1(x)

∂x > ∂V ²m(x)
∂x . Suppose q²Hm+1(x) ≥ q²Hm(x). Then (i) the marginal utility of

each H-type is smaller in a (m+ 1)-coalition than in a m-coalition; (ii) we have q²Lm+1(x) <

q²Lm(x), which implies that the marginal utility of each L-type is higher in a (m+1)-coalition

than in a m-coalition. As a consequence, starting from θHu
0[q²Hm(x)] = θ²Lu

0[q²Lm(x)], we
obtain θHu0[q²Hm+1(x)] < θ

²
Lu

0[q²Lm+1(x)], which is a contradiction.
Finally, since (m+1)q∗Hm+1+(n−m−1)q∗Lm+1 ≥ mq∗Hm+(n−m)q∗Lm for m = 0, ..., n−1, we
argue as in the proof to Proposition 5 to conclude that M∗∗

n satisÞes all the coalition incentive

constraints.

Proof of Proposition 9

As in the case of two types, when Θ = {θL, θM , θH} the optimal mechanisms when there
are two buyers are closely related to the optimal mechanism for the single-buyer model. In

particular, the quantity each buyer receives is independent of the report of the other buyer

and equal to the quantity he would obtain in the single-buyer setting, as the Þrst part of

the statement describes. The transfers are such that the binding constraints are as in the

single-buyer model.

Proof of Proposition 10

For the sake of brevity, let Sjk ≡
Peφ∈Θ2 pφjk,eφ

h
θju(q

1(eφ) + x1
jk,eφ) + θku(q2(eφ) + x2jk,eφ)− t1(eφ)− t2(eφ)i

for j, k = L,M,H. Sjk denotes the expected real surplus of coalition jk given manipu-

lation of reports and reallocation of goods. Also, let U ijk ≡
Peφ∈Θ2 pφjk,eφu(qi(eφ) + xijk,eφ),

T ijk =
Peφ∈Θ2 pφjk,eφti(eφ) and yijk = yi(θj , θk). The third-party maximizes the following objec-

tive function:

p2HSHH + pHpM(SHM + SMH) + pHpL(SHL + SLH)

+p2MSMM + pMpL(SML + SLM) + p
2
LSLL

subject to the following constraints.

46The proof can be slightly modiÞed in order to cover the non-interior case.
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� Budget balance constraints: for the quantity reallocation
2X
i=1

xi(θ1, θ2, eφ) = 0, for any (θ1, θ2) ∈ Θ2 and any eφ ∈ Θ2
for the side transfers

2X
i=1

yi(θ1, θ2) = 0, for any (θ1, θ2) ∈ Θ2,

� Bayesian incentive constraint HM for H-type of buyer 1:

pL[θHU
1
HL − T 1HL − y1HL] + pM [θHU1HM − T 1HM − y1HM ] + pH [θHU1HH − T 1HH − y1HH ]

≥ pL[θHU
1
ML − T 1ML − y1ML] + pM [θHU1MM − T 1MM − y1MM ] + pH [θHU1MH − T 1MH − y1MH ]

� Bayesian incentive constraint HM for H-type of buyer 2

pL[θHU
2
LH − T 2LH − y2LH ] + pM [θHU2MH − T 2MH − y2MH ] + pH [θHU2HH − T 2HH − y2HH ]

≥ pL[θHU
2
LM − T 2LM − y2LM ] + pM [θHU2MM − T 2MM − y2MM ] + pH [θHU2HM − T 2HM − y2HM ]

� Bayesian incentive constraint ML for M-type of buyer 1:

pL[θMU
1
ML − T 1ML − y1ML] + pM [θMU1MM − T 1MM − y1MM ] + pH [θMU1MH − T 1MH − y1MH ]

≥ pL[θMU
1
LL − T 1LL − y1LL] + pM [θMU1LM − T 1LM − y1LM ] + pH [θMU1LH − T 1LH − y1LH ]

� Bayesian incentive constraint ML for M-type of buyer 2:

pL[θMU
2
LM − T 2LM − y2LM ] + pM [θMU2MM − T 2MM − y2MM ] + pH [θMU2HM − T 2HM − y2HM ]

≥ pL[θMU
2
LL − T 2LL − y2LL] + pM [θMU2ML − T 2ML − y2ML] + pH [θMU2HL − T 2HL − y2HL]

� H-type�s acceptance constraint for buyer 1:

pL[θHU
1
HL − T 1HL − y1HL] + pM [θHU1HM − T 1HM − y1HM ] + pH [θHU1HH − T 1HH − y1HH ] ≥ UM(θH)

� H-type�s acceptance constraint for buyer 2:

pL[θHU
2
LH − T 2LH − y2LH ] + pM [θHU2MH − T 2MH − y2MH ] + pH [θHU2HH − T 2HH − y2HH ] ≥ UM(θH)

� M-type�s acceptance constraint for buyer 1:

pL[θMU
1
ML − T 1ML − y1ML] + pM [θMU1MM − T 1MM − y1MM ] + pH [θMU1MH − T 1MH − y1MH ] ≥ UM(θM)
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� M-type�s acceptance constraint for buyer 2:

pL[θMU
2
LM − T 2LM − y2LM ] + pM [θMU2MM − T 2MM − y2MM ] + pH [θMU2HM − T 2HM − y2HM ] ≥ UM(θM)

� L-type�s acceptance constraint for buyer 1:

pL[θLU
1
LL − T 1LL − y1LL] + pM [θLU1LM − T 1LM − y1LM ] + pH [θLU1LH − T 1LH − y1LH ] ≥ UM(θL)

� L-type�s acceptance constraint for buyer 2:

pL[θLU
2
LL − T 2LL − y2LL] + pM [θLU2ML − T 2ML − y2ML] + pH [θLU2HL − T 2HL − y2HL] ≥ UM(θL)

We introduce the following multipliers:

� ρx(θ1, θ2, eφ) for the budget-balance constraint for the quantity reallocation in state
(θ1, θ2, eφ),

� ρy(θ1, θ2) for the budget-balance constraint for the side-transfers in state (θ1, θ2),
� δiHM for HM Bayesian incentive constraint concerning buyer i,

� δiML for ML Bayesian incentive constraint concerning buyer i,
� viH for H-type�s acceptance constraint concerning buyer i,
� viM for M-type�s acceptance constraint concerning buyer i,

� viL for L-type�s acceptance constraint concerning buyer i.
We deÞne the Lagrangian as follows:

L = p2HSHH + pHpM(SHM + SMH) + pHpL(SHL + SLH) + p
2
MSMM + pMpL(SML + SLM) + p

2
LSLL

+
X

(θ1,θ2)∈Θ2

X
eφ∈Θ2

ρx(θ1, θ2, eφ)(BB : x)(θ1, θ2, eφ) + X
(θ1,θ2)∈Θ2

ρy(θ1, θ2)(BB : y)(θ1, θ2) +

X
i=1,2

δiHM(BIC
S)iHM +

X
i=1,2

δiML(BIC
S)iML +

X
i=1,2

viH(BIR
S)iH +

X
i=1,2

viM(BIR
S)iM +

X
i=1,2

viL(BIR
S)iL

Step 1: Optimization with respect to yi(θ1, θ2)
After optimizing with respect to yiHH , we have:

ρyHH − (δiHM + viH)pH = 0, for i = 1, 2.
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After optimizing with respect to y1HM and y2HM respectively, we have:

ρyHM − (δ1HM + v1H)pM = 0;

ρyHM + (δ2HM − δ2ML − v2M)pH = 0.

After optimizing with respect to y1HL and y
2
HL respectively, we have:

ρyHL − (δ1HM + v1H)pL = 0;

ρyHL + (δ
2
ML − v2L)pH = 0.

After optimizing with respect to y1MH and y
2
MH respectively, we have:

ρyMH + (δ
1
HM − δ1ML − v1M)pH = 0;

ρyMH − (δ2HM + v2H)pM = 0.

After optimizing with respect to y1MM and y2MM respectively, we have:

ρyMM + (δiHM − δiML − viM)pM = 0 for i = 1, 2.

After optimizing with respect to y1ML and y
2
ML respectively, we have:

ρyML + (δ
1
HM − δ1ML − v1M)pL = 0;

ρyML + (δ
2
ML − v2L)pM = 0.

After optimizing with respect to y1LH and y
2
LH respectively, we have:

ρyLH + (δ
1
ML − v1L)pH = 0;

ρyLH − (δ2HM + v2H)pL = 0.

After optimizing with respect to y1LM and y2LM respectively, we have:

ρyLM + (δ1ML − v1L)pM = 0;

ρyLM + (δ2HM − δ2ML − v2M)pL = 0.

After optimizing with respect to yiLL, we have:

ρyLL + (δ
i
ML − viL)pL = 0, for i = 1, 2.

In what follows, we restrict our attention to symmetric multipliers (this is without loss of

generality, as Proposition 11 establishes47):

δHM ≡ δ1HM = δ2HM , δML ≡ δ1ML = δ2ML
vH ≡ v1H = v

2
H , vM ≡ v1M = v2M , vL ≡ v1L = v2L.

47 Indeed, we just need to show that there exists a system of multipliers such that the third-party Þnds it

optimal to offer the null-side contract.
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From the above conditions about side transfers we have:

pH
pL
(vL − δML) = δHM + vH =

pH
pM
(δML + vM − δHM)

Step 2: Optimizing with respect to xi(θ1, θ2, eφ)
As in the proof of Proposition 4, the side-contract may specify a stochastic manipulation.

However, the reallocation occurs after the outcome of the stochastic manipulation has been

observed. Here, we optimize the third party�s payoff with respect to xi
jk,eφ for any eφ ∈ Θ2.

After optimizing with respect to xi
HH,eφ, we have:48

ρx
HH,eφ + pφHH,eφ(pH + δHM + vH)pHθHu

0(qi(eφ) + xi
HH,eφ) = 0, for i = 1, 2

The above equations imply q1(eφ)+x1
HH,eφ = q2(eφ)+x2HH,eφ. Since x1HH,eφ+x2HH,eφ = 0 from the

budget balance constraint, we have qi(eφ) + xi
HH,eφ = q1(eφ)+q2(eφ)

2 , i = 1, 2, for any eφ ∈ Θ2.
After optimizing with respect to x1

HM,eφ and x2HM,eφ respectively, we have:
ρx
HM,eφ + pφHM,eφpM(pH + δHM + vH)θHu

0(q1(eφ) + x1
HM,eφ) = 0,

ρx
HM,eφ + pφHM,eφpH [θMpM + θM(δML + vM − δHM)−∆HδHM ]u0(q2(eφ) + x2HM,eφ) = 0.

DeÞne ²HM ≡ δHM
pH+δHM+vH

∈ [0, 1) and recall that θ²M ≡ θM − pH
pM
∆H²HM . Since (δHM +

vH)pM = pH(δML + vM − δHM), we obtain from the two above equations:

pM(pH + δHM + vH)θHu
0(q1(eφ) + x1

HM,eφ)
= [pMθM(pH + δHM + vH)− pH∆HδHM ]u0(q2(eφ) + x2HM,eφ).

Hence,

θHu
0(q1(eφ) + x1

HM,eφ) = θ²Mu0(q2(eφ) + x2HM,eφ) for any eφ ∈ Θ2
After optimizing with respect to x1

HL,eφ and x2HL,eφ respectively, we have:
ρx
HL,eφ + pφHL,eφpL(pH + δHM + vH)θHu

0(q1(eφ) + x1
HL,eφ) = 0,

ρx
HL,eφ + pφHL,eφ[θLpH(pL + vL − δML)− pH∆MδML]u0(q2(eφ) + x2HL,eφ) = 0.

48 In homogeneous coalitions � HH , MM and LL � the reallocation cannot lead to corner solutions. In HM ,

HL and ML coalitions instead, this is conceivable but is not going to occur when the seller designs the sale

mechanism optimally. Hence, we only consider interior solutions for the reallocation problem.
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DeÞne ²ML ≡ δML
pH+δHM+vH

= ²HM
δML
δHM

≥ 0 and recall that θ²L ≡ θL − pH
pL
∆M²ML. Since

pH(vL − δML) = pL(δHM + vH), from the two above equations we obtain:

pL(pH + δHM + vH)θHu
0(q1(eφ) + x1

HL,eφ)
= [θLpL(pH + δHM + vH)− pH∆MδML)]u0(q2(eφ) + x2HL,eφ).

Hence,

θHu
0(q1(eφ) + x1

HL,eφ) = θ²Lu0(q2(eφ) + x2HL,eφ) for any eφ ∈ Θ2
After optimizing with respect to xi

MM,eφ, we have:
ρx
MM,eφ + pφMM,eφ[θMpM −∆HδHM + θM(δML + vM − δHM)]pMu0(qi(eφ) + xiMM,eφ) = 0, for i = 1, 2.
The above equations imply q1(eφ) + x1

MM,eφ = q2(eφ) + x2MM,eφ. Since x1MM,eφ + x2MM,eφ = 0 from
the budget balance constraint, we have qi(eφ) + xi

MM,eφ = q1(eφ)+q2(eφ)
2 , i = 1, 2 for any eφ ∈ Θ2.

After optimizing with respect to x1
ML,eφ and x2ML,eφ respectively, we have:

ρx
ML,eφ + pφML,eφpL[pMθM −∆HδHM + θM(δML + vM − δHM)]u0(q1(eφ) + x1ML,eφ) = 0,

ρx
ML,eφ + pφML,eφpM [θL(pL − δML + vL)−∆MδML)]u0(q2(eφ) + x2ML,eφ) = 0.

Since vL− δML = pL
pH
(δHM + vH) and δML+ vM − δHM = pM

pH
(δHM + vH), from the two above

equations we obtain:

[θMpLpM(pH + vH + δHM)−∆HpLpHδHM ]u0(q1(eφ) + x1ML,eφ)
= [θLpLpM(pH + vH + δHM)− pHpM∆MδML]u0(q2(eφ) + x2ML,eφ).

Hence θ²Mu
0(q1(eφ) + x1

ML,eφ) = θ²Lu0(q2(eφ) + x2ML,eφ) for any eφ ∈ Θ2.
After optimizing with respect to xi

LL,eφ, we have:
ρx
LL,eφ + pφLL,eφ[θLpL −∆MδML + θL(vL − δML)]pLu0(qi(eφ) + xiLL,eφ) = 0, for i = 1, 2.

The above equations imply q1(eφ) + x1
LL,eφ = q2(eφ) + x2LL,eφ. Since x1LL,eφ + x2LL,eφ = 0 from the

budget balance constraint, we have qi(eφ) + xi
LL,eφ = q1(eφ)+q2(eφ)

2 , i = 1, 2, for any eφ ∈ Θ2.
Since we are considering symmetric multipliers, we can infer that

(i) after optimizing with respect to x1
MH,eφ and x2MH,eφ respectively, we have:
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θ²Mu
0(q1(eφ) + x1

MH,eφ) = θHu0(q2(eφ) + x2MH,eφ) for any eφ ∈ Θ2;
(ii) after optimizing with respect to x1

LH,eφ and x2LH,eφ respectively, we have:
θ²Lu

0(q1(eφ) + x1
LH,eφ) = θHu0(q2(eφ) + x2LH,eφ) for any eφ ∈ Θ2;

(iii) after optimizing with respect to x1
LM,eφ and x2LM,eφ respectively, we have:

θ²Lu
0(q1(eφ) + x1

LM,eφ) = θ²Mu0(q2(eφ) + x2LM,eφ) for any eφ ∈ Θ2.
Therefore, conditional on that there is no manipulation of report, i.e., φ(θj , θk) = (θj, θk)

for any jk, the third party will not reallocate the goods among the buyers if there is an

² ∈ [0, 1)× [0,+∞) such that:

θ²ju
0(q1(θj , θk)) = θ²ku

0(q2(θj , θk)) for j, k ∈ {H,M,L} .

For non-homogeneous coalitions this is equivalent to condition (19).

Step 3: Optimizing with respect to φ(θ1, θ2)
Let Sjk(eφ) ≡ θju(q1(eφ)+x1jk,eφ)+θku(q2(eφ)+x2jk,eφ)−t1(eφ)−t2(eφ) denote the real surplus of

jk coalition when reports to the seller are manipulated into eφ. Likewise, S1jk(eφ) ≡ θju(q1(eφ)+
x1
jk,eφ)− t1(eφ), S2jk(eφ) ≡ θku(q2(eφ) + x2jk,eφ)− t2(eφ) and uijk(eφ) ≡ u(qi(eφ) + xijk,eφ). Using this
notation we Þnd conditions under which the third party optimally requires any coalition with

(θ1, θ2) = (θj , θk) to report (θj, θk).

� HH coalition

(θH , θH) ∈ arg maxeφ∈Θ2 [p2H + pH(vH + δHM)]SHH(eφ)
= arg maxeφ∈Θ2

(
2θHu(

q1(eφ) + q2(eφ)
2

)− t1(eφ)− t2(eφ)) .
� HM coalition:

(θH , θM) ∈ arg maxeφ∈Θ2
(

pHpMSHM(eφ) + pM(vH + δHM)S1HM(eφ)
−pH∆HδHMu2HM(eφ) + pH(vM + δML − δHM)S2HM(eφ)

)
= arg maxeφ∈Θ2

n
pM(pH + vH + δHM)SHM(eφ)− pH∆HδHMu2HM(eφ)o

= arg maxeφ∈Θ2
½
SHM(eφ)− pH

pM
∆H²HMu

2
HM(

eφ)¾
= arg maxeφ∈Θ2

n
θHu

1
HM(

eφ) + θ²Mu2HM(eφ)− t1(eφ)− t2(eφ)o
where

θHu
0(q1(eφ) + x1

HM,eφ) = θ²Mu0(q2(eφ) + x2HM,eφ) holds.
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� HL coalition:

(θH , θL) ∈ arg maxeφ∈Θ2
(

pHpLSHL(eφ) + pL(vH + δHM)S1HL(eφ)
+pH(vL − δML)S2HL(eφ)− pH∆MδMLu2HL(eφ)

)

= arg maxeφ∈Θ2
½
SHL(eφ)− pH

pL
∆M²MLu

2
HL(

eφ)¾
= arg maxeφ∈Θ2

n
θHu

1
HL(

eφ) + θ²Lu2HL(eφ)− t1(eφ)− t2(eφ)o ,
where

θHu
0(q1(eφ) + x1

HL,eφ) = θ²Lu0(q2(eφ) + x2HL,eφ) holds.
� MM coalition:

(θM , θM) ∈ arg maxeφ∈Θ2
(

p2MSMM(
eφ) + pM(δML + vM)SMM(eφ)

−pMδHM
h
SMM(eφ) +∆Hu1MM(eφ) +∆Hu2MM(eφ)i

)

= arg maxeφ∈Θ2
(
pM(pM − δHM + δML + vM)SMM(eφ)
−pMδHM∆H(u1MM(eφ) + u2MM(eφ))

)

= arg maxeφ∈Θ2
½
SMM(eφ)− pH

pM
∆H²HM(u

1
MM(

eφ) + u2MM(eφ))¾
= arg maxeφ∈Θ2

(
2θ²Mu(

q1(eφ) + q2(eφ)
2

)− t1(eφ)− t2(eφ))

� ML coalition:

(θM , θL) ∈ arg maxeφ∈Θ2
(
pMpLSML(eφ)− δHMpL∆Hu1ML(eφ) + (vM + δML − δHM)pLS1ML(eφ)

−pMδML(S2ML(eφ) +∆Mu2ML(eφ)) + vLpMS2ML(eφ)
)

= arg maxeφ∈Θ2
(
pL(pM + δML + vM − δHM)SML(eφ)− δHMpL∆Hu1ML(eφ)

−δMLpM∆Mu2ML(eφ)
)

= arg maxeφ∈Θ2
n
θ²Mu

1
ML(

eφ) + θ²Lu2ML(eφ)− t1(eφ)− t2(eφ)o ,
where

θ²Mu
0(q1(eφ) + x1

ML,eφ) = θ²Lu0(q2(eφ) + x2ML,eφ) holds.
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� LL coalition:

(θL, θL) ∈ arg maxeφ∈Θ2
(

p2LSLL(
eφ)− pLδML(S1LL(eφ) +∆Mu1LL(eφ))

−pLδML(S2LL(eφ) +∆Mu2LL(eφ)) + vLpLSLL(eφ)
)

= arg maxeφ∈Θ2
½
SLL(eφ)− pH

pL
∆M²ML(u

1
LL(
eφ) + u2LL(eφ))¾

= arg maxeφ∈Θ2
(
2θ²Lu(

q1(eφ) + q2(eφ)
2

)− t1(eφ)− t2(eφ))

For HM coalition, for instance, we have θHu1HM(eφ) + θ²Mu
2
HM(

eφ) − t1(eφ) − t2(eφ) =
V εHM(q

1(eφ) + q2(eφ))− t1(eφ)− t2(eφ) since θHu0(q1(eφ) + x1HM,eφ) = θ²Mu0(q2(eφ) + x2HM,eφ) holds.
Hence, the condition (θH , θM) ∈ argmaxeφ∈Θ2

n
θHu

1
HM(

eφ) + θ²Mu2HM(eφ)− t1(eφ)− t2(eφ)o is
equivalent to (18) with jk = HM. The same remark applies to any other coalition and justiÞes

the whole condition (18).

Proof of Proposition 11

The proof of Proposition 11 depends on whether q∗H + q
∗
L ≥ 2q∗M or the reverse inequality

holds (notice that q∗H + q
∗
L > 2q

∗
M under non-monotone virtual values). Here we assume that

q∗H + q
∗
L ≥ 2q∗M , but our argument below can be adapted to the case of q∗H + q∗L < 2q∗M � see

the end of the proof. The proof consists of three steps.

Claim 1 If θvM ≥ θvL, then there exists ²∗ such that θ²
∗
M = θvM and θ²

∗
L = θ

v
L. If θ

v
M < θvL,

then there exists ²∗ such that θ²
∗
M = θ²

∗
L = θ̄

v
ML. In both cases, the no arbitrage constraints

(19) are satisÞed at q = q∗ and ² = ²∗.
Claim 2 Let α ≡ V ²

∗
MM(2q

∗
M) − V ²

∗
MM(q

∗
M + q∗L) − [V ²

∗
ML(2q

∗
M) − V ²

∗
ML(q

∗
M + q∗L)] ≥ 0. If

t is such that the following local downward coalition incentive constraints bind, then all the

coalition incentive constraints are satisÞed by mechanism {q∗, t} when ² = ²∗:49

V ²
∗
HH(2q

∗
H)− 2tHH ≥ V ²

∗
HH(q

∗
H + q

∗
M)− tHM − tMH (CICHH,HM)

V ²
∗
HM(q

∗
H + q

∗
M)− tHM − tMH ≥ V ²

∗
HM(q

∗
H + q

∗
L)− tHL − tLH (CICHM,HL)

V ²
∗
HL(q

∗
H + q

∗
L)− tHL − tLH ≥ V ²

∗
HL(2q

∗
M)− 2tMM (CICHL,MM)

V ²
∗
MM(2q

∗
M)− 2tMM ≥ V ²

∗
MM(q

∗
M + q∗L)− tML − tLM + α (CICmodiÞedMM,ML)

V ²
∗
ML(q

∗
M + q∗L)− tML − tLM ≥ V ²

∗
ML(2q

∗
L)− 2tLL (CICML,LL)

49We note that (CICMM,ML) is modiÞed with respect to the true constraint (CICMM,ML). In order to

understand why α is introduced in (CICmodiÞ edMM,ML), see the proof of Claim 2 when dealing with (CICHL,ML) and

(CICHL,LL).
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Claim 3 We can Þnd t∗∗ such that (BICHM), (BICML), (BIRL) and coalition incentive
constraints mentioned in Claim 2 are satisÞed with equality at q = q∗ and ε = ε∗.

Once Claims 1-3 are proved, we conclude that {q∗, t∗∗} is optimal under no coalition - since
it satisÞes the conditions of Proposition 9 - and is also weakly collusion-proof.

Proof of Claim 1
If θvM ≥ θvL, then take ²∗ = (1, pH+pMpH

).50 If θvM < θvL, then take ²
∗
HM = (θM−θ̄vML)pM

pH∆H
∈ (0, 1)

and ²∗ML =
(θL−θ̄vML)pL
pH∆M

> 0. In this way the virtual valuations for the third party in the side-

contract are equal to the virtual valuations for the seller when there is no coalition.

Proof of Claim 2
The following lemma establishes single crossing properties (when ² = ²∗) which are useful

to prove claim 2.

Lemma 2 (i) V ²
∗
jk is strictly concave, j, k = L,M,H.

(ii) For any x > 0, if θvM ≥ θvL then we have

∂V ²
∗
HH(x)

∂x
>

∂V ²
∗
HM(x)

∂x
≥ max

½
∂V ²

∗
HL(x)

∂x
,
∂V ²

∗
MM(x)

∂x

¾
(32)

min

½
∂V ²

∗
HL(x)

∂x
,
∂V ²

∗
MM(x)

∂x

¾
≥ ∂V ²

∗
ML(x)

∂x
≥ ∂V ²

∗
LL(x)

∂x
(33)

If θvM < θvL, then

∂V ²
∗
HH(x)

∂x
>
∂V ²

∗
HM(x)

∂x
=
∂V ²

∗
HL(x)

∂x
>
∂V ²

∗
MM(x)

∂x
=
∂V ²

∗
ML(x)

∂x
=
∂V ²

∗
LL(x)

∂x
(34)

Proof. (i) The result is obvious for V ²
∗
HH , V

²∗
MM and V ²

∗
LL, since V

²∗
jj (x) = 2θ²

∗
j u(

x
2 ), j =

L,M,H. About V ²
∗
jk with j 6= k, observe that

∂V ²
∗

jk (x)

∂x = θ²
∗
j u

0[q²∗j (x; jk)] and
∂2V ²

∗
jk (x)

∂x2
=

θ²
∗
j u

00[q²∗j (x; jk)]
∂q²

∗
j (x;jk)

∂x < 0 since
∂q²

∗
j (x;jk)

∂x =
θ²
∗
k u

00[q²
∗
k (x;jk)]

θ²
∗
j u

00[q²∗j (x;jk)]+θ
²∗
k u

00[q²∗k (x;jk)]
> 0.

(ii) It is straightforward to Þnd ∂V ²
∗

HH(x)
∂x = θHu

0(x2 ),
∂V ²

∗
HM (x)
∂x = θHu

0[q²∗H (x;HM)] =

θ²
∗
Mu

0[q²∗M(x;HM)],
∂V ²

∗
HL(x)
∂x = θHu

0[q²∗H (x;HL)] and
∂V ²

∗
MM (x)
∂x = θ²

∗
Mu

0(x2 ). Since
x
2 < q

²∗
H (x;HM) ≤

q²
∗
H (x;HL) and q

²∗
M(x;HM) <

x
2 , we obtain (32). The proofs of (33) and (34) are very similar

to the proof of (32), hence they are omitted.

In order to prove claim 2, we consider transfers such that the inequalities in the claim bind

and recall that (i) α ≥ 0, so that the true (CICMM,ML) is satisÞed; (ii) q∗H > q∗M ≥ q∗L. For
50 In fact, ²HM ∈ [0, 1). However, since we are interested in Þnding the Sup of the seller�s payoff, we take

²HM = 1.
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expositional simplicity, we introduce the following notation:

∆V ²
∗
HH ≡ V ²

∗
HH(2q

∗
H)− V ²

∗
HH(q

∗
H + q

∗
M) ∆V ²

∗
HM ≡ V ²∗HM(q∗H + q∗M)− V ²

∗
HM(q

∗
H + q

∗
L)

∆V ²
∗
HL ≡ V ²

∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) ∆V ²

∗
MM ≡ V ²∗MM(2q∗M)− V ²

∗
MM(q

∗
M + q∗L)

∆V ²
∗
ML ≡ V ²

∗
ML(q

∗
M + q∗L)− V ²

∗
ML(2q

∗
L)

We Þrst prove that all downward coalition incentive constraints are satisÞed and then we

deal with upward coalition incentive constraints.

Downward coalition incentive constraints
We start with downward coalition incentive constraints for HH coalition

CICHH The payoff of HH coalition is V ²
∗
HH(q

∗
H + q

∗
M)− tHM − tMH .

(CICHH,HL) V ²
∗
HH(q

∗
H + q

∗
M)− tHM − tMH ≥ V ²∗HH(q∗H + q∗L)− tHL − tLH

but −tHM − tMH = −∆V ²∗HM − tHL − tLH , hence (CICHH,HL) reduces to

V ²
∗
HH(q

∗
H + q

∗
M)− V ²

∗
HH(q

∗
H + q

∗
L) ≥ V ²

∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L)

which is satisÞed because q∗M ≥ q∗L and (32).

(CICHH,MM) V ²
∗
HH(q

∗
H + q

∗
M)− tHM − tMH ≥ V ²∗HH(2q∗M)− 2tMM

but −tHM − tMH = −∆V ²∗HM −∆V ²∗HL − 2tMM , hence (CICHH,MM) reduces to

V ²
∗
HH(q

∗
H + q

∗
M)− V ²

∗
HH(2q

∗
M) ≥ V ²

∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) + V

²∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M)

This inequality is satisÞed because q∗M ≥ q∗L, q∗H + q∗L ≥ 2q∗M and (32).

(CICHH,ML) V ²
∗
HH(q

∗
H + q

∗
M)− tHM − tMH ≥ V ²∗HH(q∗M + q∗L)− tML − tLM

but −tHM − tMH = −∆V ²∗HM −∆V ²
∗
HL −∆V ²

∗
MM − tML − tLM +α, hence (CICHH,ML) reduces

to

V ²
∗
HH(q

∗
H + q

∗
M)− V ²

∗
HH(q

∗
M + q∗L) + α

≥ V ²
∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) + V

²∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) + V

²∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L)

This inequality is satisÞed because α ≥ 0, q∗M ≥ q∗L, q∗H + q∗L ≥ 2q∗M and (32).

(CICHH,LL) V ²
∗
HH(q

∗
H + q

∗
M)− tHM − tMH ≥ V ²∗HH(2q∗L)− 2tLL
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but −tHM − tMH = −∆V ²∗HM −∆V ²
∗
HL−∆V ²

∗
MM −∆V ²

∗
ML−2tLL+α, hence (CICHH,LL) reduces

to

V ²
∗
HH(q

∗
H + q

∗
M)− V ²

∗
HH(2q

∗
L) + α

≥ V ²
∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) + V

²∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M)

+V ²
∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L) + V

²∗
ML(q

∗
L + q

∗
M)− V ²

∗
ML(2q

∗
L)

This inequality is satisÞed because α ≥ 0, q∗M ≥ q∗L, q∗H + q∗L ≥ 2q∗M , (32) and (33).

CICHM The payoff of HM coalition is V ²
∗
HM(q

∗
H + q

∗
L)− tHL − tLH .

(CICHM,MM) V ²
∗
HM(q

∗
H + q

∗
L)− tHL − tLH ≥ V ²

∗
HM(2q

∗
M)− 2tMM

but −tHL − tLH = −∆V ²∗HL − 2tMM , hence (CICHM,MM) reduces to

V ²
∗
HM(q

∗
H + q

∗
L)− V ²

∗
HM(2q

∗
M) ≥ V ²

∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M).

(CICHM,ML) V ²
∗
HM(q

∗
H + q

∗
L)− tHL − tLH ≥ V ²

∗
HM(q

∗
M + q∗L)− tML − tLM

but −tHL − tLH = −∆V ²∗HL −∆V ²
∗
MM − tML − tLM + α, hence (CICHM,ML) reduces to

V ²
∗
HM(q

∗
H + q

∗
L)− V ²

∗
HM(q

∗
M + q∗L) + α ≥ V ²

∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) + V

²∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L).

(CICHM,LL) V ²
∗
HM(q

∗
H + q

∗
L)− tHL − tLH ≥ V ²

∗
HM(2q

∗
L)− 2tLL

but −tHL − tLH = −∆V ²∗HL −∆V ²
∗
MM −∆V ²∗ML − 2tLL + α, hence (CICHM,LL) reduces to

V ²
∗
HM(q

∗
H + q

∗
L)− V ²

∗
HM(2q

∗
L) + α ≥ V ²

∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) +

V ²
∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L) + V

²∗
ML(q

∗
L + q

∗
M)− V ²

∗
ML(2q

∗
L).

CICHL The payoff of HL coalition is V ²
∗
HL(2q

∗
M)− 2tMM .

(CICHL,ML) V ²
∗
HL(2q

∗
M)− 2tMM ≥ V ²∗HL(q∗M + q∗L)− tML − tLM
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but −2tMM = −∆V ²∗MM − tML − tLM + α, hence (CICHL,ML) reduces to

V ²
∗
HL(2q

∗
M)− V ²

∗
HL(q

∗
M + q∗L) + α ≥ V ²

∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L). (35)

This inequality holds because the right hand side minus α reduces to V ²
∗
ML(2q

∗
M)−V ²

∗
ML(q

∗
M+q

∗
L)

and then we can use (33) and q∗M ≥ q∗L. Observe that (35) is the reason why α is introduced
in (CICmodiÞedMM ML): If α = 0, then we do not know whether (35) is satisÞed or not. A similar

argument applies to (36) below.

(CICHL,LL) V ²
∗
HL(2q

∗
M)− 2tMM ≥ V ²∗HL(2q∗L)− 2tLL

but −2tMM = −∆V ²∗MM −∆V ²∗ML − 2tLL + α, hence (CICHL,LL) reduces to

V ²
∗
HL(2q

∗
M)− V ²

∗
HL(2q

∗
L) + α ≥ V ²

∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L) + V

²∗
ML(q

∗
L + q

∗
M)− V ²

∗
ML(2q

∗
L)

(36)

This inequality holds because the right hand side minus α reduces to V ²
∗
ML(2q

∗
M)− V ²

∗
ML(2q

∗
L).

CICMM The payoff of MM coalition is V ²
∗
MM(q

∗
M + q∗L)− tML − tLM + α.

(CICMM,LL) V ²
∗
MM(q

∗
M + q∗L)− tML − tLM + α ≥ V ²∗MM(2q∗L)− 2tLL

but −tML − tLM = −∆V ²∗ML − 2tLL, hence (CICMM,LL) reduces to

V ²
∗
MM(2q

∗
M)− V ²

∗
MM(2q

∗
L) ≥ V ²

∗
ML(2q

∗
M)− V ²

∗
ML(2q

∗
L).

Upward CIC

CICHM The payoff of HM coalition is V ²
∗
HM(q

∗
H + q

∗
M)− tHM − tMH .

(CICHM,HH) V ²
∗
HM(q

∗
H + q

∗
M)− tHM − tMH ≥ V ²∗HM(2q∗H)− 2tHH

but −2tHH = −∆V ²∗HH − tHM − tMH , hence (CICHM,HH) reduces to

V ²
∗
HH(2q

∗
H)− V ²

∗
HH(q

∗
H + q

∗
M) ≥ V ²

∗
HM(2q

∗
H)− V ²

∗
HM(q

∗
H + q

∗
M).
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CICHL The payoff of HL coalition is V ²
∗
HL(q

∗
H + q

∗
L)− tHL − tLH .

(CICHL,HM) V ²
∗
HL(q

∗
H + q

∗
L)− tHL − tLH ≥ V ²

∗
HL(q

∗
H + q

∗
M)− tHM − tMH

but −tHM − tMH = −∆V ²∗HM − tHL − tLH , hence (CICHL,HM) reduces to
V ²

∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) ≥ V ²

∗
HL(q

∗
H + q

∗
M)− V ²

∗
HL(q

∗
H + q

∗
L).

(CICHL,HH) V ²
∗
HL(q

∗
H + q

∗
L)− tHL − tLH ≥ V ²

∗
HL(2q

∗
H)− 2tHH

but −2tHH = −∆V ²∗HH −∆V ²
∗
HM − tHL − tLH , hence (CICHL,HH) reduces to

V ²
∗
HH(2q

∗
H)− V ²

∗
HH(q

∗
H + q

∗
M) + V

²∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) ≥ V ²

∗
HL(2q

∗
H)− V ²

∗
HL(q

∗
H + q

∗
L).

CICMM The payoff of MM coalition is V ²
∗
MM(2q

∗
M)− 2tMM .

(CICMM,HL) V ²
∗
MM(2q

∗
M)− 2tMM ≥ V ²∗MM(q∗H + q∗L)− tHL − tLH

but −tHL − tLH = −∆V ²∗HL − 2tMM , hence (CICMM,HL) reduces to
V ²

∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) ≥ V ²

∗
MM(q

∗
H + q

∗
L)− V ²

∗
MM(2q

∗
M). (37)

In order to prove that (37) is satisÞed, recall that q∗H + q
∗
L ≥ 2q∗M and observe that lemma 2(ii)

is not helpful if θvM > θvL. We start by noticing that
∂V ²

∗
HL(x)
∂x = θHu

0[q²∗H (x;HL)],
∂V ²

∗
MM (x)
∂x =

θ²
∗
Mu

0(x2 ) and q
²∗
H (q

∗
H + q

∗
L;HL) = q

∗
H . Hence,

∂V ²
∗

HL(q
∗
H+q

∗
L)

∂x = θHu
0(q∗H) = c and

∂V ²
∗

MM (2q
∗
M )

∂x =

θvMu
0(q∗M) = c. Moreover, both

∂V ²
∗

HL
∂x and ∂V ²

∗
MM
∂x are strictly decreasing (because V ²

∗
HL and V

²∗
MM

are strictly concave), thus ∂V
²∗
HL(x)
∂x > c >

∂V ²
∗

MM (x)
∂x for any x ∈ [2q∗M , q∗H+q∗L]. After integrating

these inequalities in [2q∗M , q
∗
H + q

∗
L] we conclude that (37) is satisÞed.

(CICMM,HM) V ²
∗
MM(2q

∗
M)− 2tMM ≥ V ²∗MM(q∗H + q∗M)− tHM − tMH

but −tHM − tMH = −∆V ²∗HM −∆V ²∗HL − 2tMM , hence (CICMM,HM) reduces to
V ²

∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) + V

²∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) ≥ V ²

∗
MM(q

∗
H + q

∗
M)− V ²

∗
MM(2q

∗
M).

This inequality holds because q∗M ≥ q∗L, q∗H + q∗L ≥ 2q∗M , (32) and (37).
(CICMM,HH) V ²

∗
MM(2q

∗
M)− 2tMM ≥ V ²∗MM(2q∗H)− 2tHH

but −2tHH = −∆V ²∗HH −∆V ²
∗
HM −∆V ²∗HL − 2tMM , hence (CICMM,HH) reduces to

V ²
∗
HH(2q

∗
H)− V ²

∗
HH(q

∗
H + q

∗
M) + V

²∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L)

+V ²
∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) ≥ V ²

∗
MM(2q

∗
H)− V ²

∗
MM(2q

∗
M).

This inequality holds because q∗H > q
∗
M ≥ q∗L, q∗H + q∗L ≥ 2q∗M , (32) and (37).
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CICML The payoff of ML coalition is V ²
∗
ML(q

∗
M + q∗L)− tML − tLM .

(CICML,MM) V ²
∗
ML(q

∗
M + q∗L)− tML − tLM ≥ V ²∗ML(2q∗M)− 2tMM

but −2tMM = −∆V ²∗MM − tML − tLM + α, hence (CICML,MM) reduces to

V ²
∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L) ≥ V ²

∗
ML(2q

∗
M)− V ²

∗
ML(q

∗
M + q∗L) + α.

This inequality holds with equality.

(CICML,HL) V ²
∗
ML(q

∗
M + q∗L)− tML − tLM ≥ V ²∗ML(q∗H + q∗L)− tHL − tLH

but −tHL − tLH = −∆V ²∗HL −∆V ²
∗
MM − tML − tLM + α, hence (CICML,HL) reduces to

V ²
∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) + V

²∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L) ≥ V ²

∗
ML(q

∗
H + q

∗
L)− V ²

∗
ML(q

∗
M + q∗L) + α,

which reduces to

V ²
∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) ≥ V ²

∗
ML(q

∗
H + q

∗
L)− V ²

∗
ML(2q

∗
M).

(CICML,HM) V ²
∗
ML(q

∗
M + q∗L)− tML − tLM ≥ V ²∗ML(q∗H + q∗M)− tHM − tMH

but −tHM − tMH = −∆V ²∗HM −∆V ²
∗
HL−∆V ²

∗
MM − tML− tLM +α, hence (CICML,HM) reduces

to

V ²
∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) + V

²∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) + V

²∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L)

≥ V ²
∗
ML(q

∗
H + q

∗
M)− V ²

∗
ML(q

∗
M + q∗L) + α,

which reduces to

V ²
∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) + V

²∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) ≥ V ²

∗
ML(q

∗
H + q

∗
M)− V ²

∗
ML(2q

∗
M).

(CICML,HH) V ²
∗
ML(q

∗
M + q∗L)− tML − tLM ≥ V ²∗ML(2q∗H)− 2tHH

but −2tHH = −∆V ²∗HH−∆V ²
∗
HM−∆V ²

∗
HL−∆V ²

∗
MM−tML−tLM+α, hence (CICML,HH) reduces

to

V ²
∗
HH(2q

∗
H)− V ²

∗
HH(q

∗
H + q

∗
M) + V

²∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L)

+V ²
∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) + V

²∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L)

≥ V ²
∗
ML(2q

∗
H)− V ²

∗
ML(q

∗
M + q∗L) + α,

which reduces to

V ²
∗
HH(2q

∗
H)− V ²

∗
HH(q

∗
H + q

∗
M) + V

²∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) + V

²∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M)

≥ V ²
∗
ML(2q

∗
H)− V ²

∗
ML(2q

∗
M).
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CICLL The payoff of LL coalition is V ²
∗
LL(2q

∗
L)− 2tLL.

(CICLL,ML) V ²
∗
LL(2q

∗
L)− 2tLL ≥ V ²

∗
LL(q

∗
M + q∗L)− tML − tLM

but −tML − tLM = −∆V ²∗ML − 2tLL, hence (CICLL,ML) reduces to

V ²
∗
ML(q

∗
M + q∗L)− V ²

∗
ML(2q

∗
L) ≥ V ²

∗
LL(q

∗
M + q∗L)− V ²

∗
LL(2q

∗
L)

(CICLL,MM) V ²
∗
LL(2q

∗
L)− 2tLL ≥ V ²

∗
LL(2q

∗
M)− 2tMM

but −2tMM = −∆V ²∗MM −∆V ²∗ML − 2tLL + α, hence (CICLL,MM) reduces to

V ²
∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L) + V

²∗
ML(q

∗
M + q∗L)− V ²

∗
ML(2q

∗
L) ≥ V ²

∗
LL(2q

∗
M)− V ²

∗
LL(2q

∗
L) + α,

which reduces to

V ²
∗
ML(2q

∗
M)− V ²

∗
ML(2q

∗
L) ≥ V ²

∗
LL(2q

∗
M)− V ²

∗
LL(2q

∗
L).

(CICLL,HL) V ²
∗
LL(2q

∗
L)− 2tLL ≥ V ²

∗
LL(q

∗
H + q

∗
L)− tHL − tLH

but −tHL − tLH = −∆V ²∗HL −∆V ²
∗
MM −∆V ²∗ML − 2tLL + α, hence (CICLL,HL) reduces to

V ²
∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) + V

²∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L) + V

²∗
ML(q

∗
M + q∗L)− V ²

∗
ML(2q

∗
L)

≥ V ²
∗
LL(q

∗
H + q

∗
L)− V ²

∗
LL(2q

∗
L) + α,

which reduces to

V ²
∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) + V

²∗
ML(2q

∗
M)− V ²

∗
ML(2q

∗
L) ≥ V ²

∗
LL(q

∗
H + q

∗
L)− V ²

∗
LL(2q

∗
L).

(CICLL,HM) V ²
∗
LL(2q

∗
L)− 2tLL ≥ V ²

∗
LL(q

∗
H + q

∗
M)− tHM − tMH

but −tHM−tMH = −∆V ²∗HM−∆V ²
∗
HL−∆V ²

∗
MM−∆V ²

∗
ML−2tLL+α, hence (CICLL,HM) reduces

to

V ²
∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) + V

²∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M)

+V ²
∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L) + V

²∗
ML(q

∗
M + q∗L)− V ²

∗
ML(2q

∗
L)

≥ V ²
∗
LL(q

∗
H + q

∗
M)− V ²

∗
LL(2q

∗
L) + α,
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which reduces to

V ²
∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) + V

²∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M) + V

²∗
ML(2q

∗
M)− V ²

∗
ML(2q

∗
L)

≥ V ²
∗
LL(q

∗
H + q

∗
M)− V ²

∗
LL(2q

∗
L).

(CICLL,HH) V ²
∗
LL(2q

∗
L)− 2tLL ≥ V ²

∗
LL(2q

∗
H)− 2tHH

but −2tHH = −∆V ²∗HH −∆V ²
∗
HM −∆V ²∗HL −∆V ²

∗
MM −∆V ²∗ML − 2tLL + α, hence (CICLL,HH)

reduces to

V ²
∗
HH(2q

∗
H)− V ²

∗
HH(q

∗
H + q

∗
M) + V

²∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) + V

²∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M)

+V ²
∗
MM(2q

∗
M)− V ²

∗
MM(q

∗
M + q∗L) + V

²∗
ML(q

∗
M + q∗L)− V ²

∗
ML(2q

∗
L)

≥ V ²
∗
LL(2q

∗
H)− V ²

∗
LL(2q

∗
L) + α,

which reduces to

V ²
∗
HH(2q

∗
H)− V ²

∗
HH(q

∗
H + q

∗
M) + V

²∗
HM(q

∗
H + q

∗
M)− V ²

∗
HM(q

∗
H + q

∗
L) + V

²∗
HL(q

∗
H + q

∗
L)− V ²

∗
HL(2q

∗
M)

+V ²
∗
ML(2q

∗
M)− V ²

∗
ML(2q

∗
L) ≥ V ²

∗
LL(2q

∗
H)− V ²

∗
LL(2q

∗
L).

Proof of Claim 3
Consider the linear system in tmade of (CICHH,HM), (CICHM,HL), (CICHL,MM), (CICmodiÞedMM,ML),

(CICML,LL), (BICHM), (BICML) and (BIRL) written with equality with q = q∗. We show
that this system admits at least one solution in t. In order to prove this claim, it is not sufficient

to observe that the system has eight equations and nine variables. However, we report below

the 8× 9 matrix A of the unknowns and we can show that � for any probability distribution
(pL, pM , pH) � its rank is 8. This claim is proved by Þnding an 8 × 8 submatrix of A with

nonvanishing determinant. For instance, we can take A after deleting its second column, the

one corresponding to tHM and obtain an 8× 8 matrix with determinant equal to −4pL.
equation\variable tHH tHM tHL tMH tMM tML tLH tLM tLL

(CICHH,MM) −2 1 0 1 0 0 0 0 0

(CICHM,HL) 0 −1 1 −1 0 0 1 0 0

(CICHL,MM) 0 0 −1 0 2 0 −1 0 0

(CICmodiÞedMM,ML) 0 0 0 0 −2 1 0 1 0

(CICML,LL) 0 0 0 0 0 −1 0 −1 2

(BICHM) −pH −pM −pL pH pM pL 0 0 0

(BICML) 0 0 0 −pH −pM −pL pH pM pL

(BIRL) 0 0 0 0 0 0 −pH −pM −pL
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Since the rank of A is 8, the range (or image) of the function f(t) = At is R8; hence for any
b ∈ R8 the linear system At = b admits a solution (actually, inÞnitely many solutions exist).

In particular, there exists a solution for our speciÞc linear system.

How to modify Claim 2 if q∗H + q
∗
L < 2q

∗
M

Claim 2 Let α ≡ V ²∗HL(q∗H + q∗L)−V ²
∗
HL(q

∗
M + q

∗
L)− [V ²

∗
ML(q

∗
H + q

∗
L)−V ²

∗
ML(q

∗
M + q

∗
L)] > 0. If

t∗∗ is such that the following local downward coalition incentive constraints bind, then all the
coalition incentive constraints are satisÞed by mechanism {q∗, t∗∗} when ² = ²∗.

V ²
∗
HH(2q

∗
H)− 2tHH ≥ V ²

∗
HH(q

∗
H + q

∗
M)− tHM − tMH (CICHH,HM)

V ²
∗
HM(q

∗
H + q

∗
M)− tHM − tMH ≥ V ²

∗
HM(2q

∗
M)− 2tMM (CICHM,MM)

V ²
∗
MM(2q

∗
M)− 2tMM ≥ V ²

∗
MM(q

∗
H + q

∗
L)− tHL − tLH (CICMM,HL)

V ²
∗
HL(q

∗
H + q

∗
L)− tHL − tLH ≥ V ²

∗
HL(q

∗
M + q∗L)− tML − tLM + α (CICmodiÞedHL,ML )

V ²
∗
ML(q

∗
M + q∗L)− tML − tLM ≥ V ²

∗
ML(2q

∗
L)− 2tLL (CICML,LL)

The proof is very similar to the previous one and therefore it is omitted.

Proof of Proposition 12

Step 1 No reallocation occurs if ε = 1, conditional on no manipulation of reports.
Proof. In this setting, qεH(x) is not deÞned as in (5) but as follows: q

ε
H(x) ≡ argmaxz∈[0,x] U(z, θH)+

U(x−z, θL)− 1−pL
pL
ε[U(x−z, θH)−U(x−z, θL)]. When ε = 1 and x = q∗HL+q∗LH , this function

is maximized at z = q∗HL since, by deÞnition, (q
∗
HL, q

∗
LH) maximize U(qHL, θH)+U(qLH , θL)−

1−pL
pL
[U(qLH , θH)− U(qLH , θL)] under the constraint qHL + qLH = q∗HL + q∗LH ; hence, no real-

location occurs when ε = 1 if there is no manipulation of reports.

In order to deal with the coalition incentive constraints we deÞne V2(x) ≡ 2U(x2 , θH),
V ε1 (x) ≡ maxz∈[0,x] U(z, θH) + U(x− z, θL)− 1−pL

pL
ε[U(x− z, θH)− U(x− z, θL)] and V ε0 (x) ≡

2[U(x2 , θL)−
(1−pL)ε[U(x2 ,θH)−U(x2 ,θL)]

pL
].

Step 2 ∂V2(x)
∂x > max{∂V ²1 (x)∂x ,

∂V ²0 (x)
∂x } and 2q∗HH > max{q∗HL + q∗LH , 2q∗LL}.

Proof. We Þnd ∂V2(x)
∂x = U1(x2 , θH),

∂V ²1 (x)
∂x = U1[qεH(x), θH ] = U1(qεL(x), θL)−1−pL

pL
ε[U1(qεL(x), θH)−

U1(qεL(x), θL)] and ∂V ²0 (x)
∂x = U1(x2 , θL) − 1−pL

pL
ε[U1(x2 , θH)− U1(x2 , θL)]. Furthermore, q²H(x) >

x
2 > q

²
L(x) because the function U(z, θH) + U(x− z, θL)− 1−pL

pL
ε[U(x− z, θH)− U(x− z, θL)]

is strictly increasing in z for z ∈ [0, x2 ]; this implies ∂V2(x)
∂x > max{∂V ²1 (x)∂x ,

∂V ²0 (x)
∂x }. We have

2q∗HH > q
∗
HL+q

∗
LH because (i) from the Þrst order conditions for q

∗
HL and q

∗
LH it is straightfor-

ward to see that q∗HL > q
∗
LH ; (ii) the Þrst order conditions for q

∗
HH and q

∗
HL are U1(q∗HH , θH) =

C0(2q∗HH) and U1(q∗HL, θH) = C0(q∗HL + q∗LH), respectively; thus 2q∗HH ≤ q∗HL + q∗LH leads to
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the contradiction q∗HH ≥ q∗HL > q∗LH . From the Þrst order conditions for q∗HH and q∗LL it is
straightforward to see that q∗HH > q

∗
LL.

Step 3 Suppose q∗HL+q
∗
LH ≥ 2q∗LL and let t∗∗ be such that (BIRL), (BICH), (CICHH,HL)

and (CICHL,LL) bind when q = q∗ and ε = 1. Then {q∗, t∗∗} satisÞes all the coalition incentive
constraints.

Proof. Given that (CICHH,HL) and (CICHL,LL) bind, (CICHL,HH) reduces to V2(2q∗HH)−
V2(q

∗
HL + q

∗
LH) ≥ V 11 (2q

∗
HH) − V 11 (q∗HL + q∗LH), which holds since 2q∗HH > q∗HL + q

∗
LH and

∂V2(x)
∂x >

∂V 11 (x)
∂x . (CICLL,HL) reduces to

V 11 (q
∗
HL + q

∗
LH)− V 11 (2q∗LL) ≥ V 10 (q∗HL + q∗LH)− V 10 (2q∗LL) (38)

we now prove that this inequality holds. Examining the seller�s proÞt function after using

(BIRL) and (BICH) written with equality we see that (q∗HL, q
∗
LH) maximize U(qHL, θH) +

U(qLH ,θL)
pL

− 1−pL
pL
U(qLH , θH)−C(qHL+qLH) and q∗LL maximizes 2U(qLL,θL)pL

− 2(1−pL)
pL

U(qLL, θH)−
C(2qLL); the maximized values are equal to V 11 (q

∗
HL + q

∗
LH)−C(q∗HL + q∗LH) and V 10 (2q∗LL)−

C(2q∗LL), respectively. Revealed preferences imply V
1
1 (q

∗
HL+q

∗
LH)−C(q∗HL+q∗LH) ≥ V 11 (2q∗LL)−

C(2q∗LL) and V
1
0 (2q

∗
LL) − C(2q∗LL) ≥ V 10 (q∗HL + q∗LH) − C(q∗HL + q∗LH); thus, (38) is satisÞed.

(CICHH,LL) reduces to V2(q∗HL + q
∗
LH)− V2(2q∗LL) ≥ V 11 (q∗HL + q∗LH)− V 11 (2q∗LL), which holds

since q∗HL + q
∗
LH ≥ 2q∗LL and ∂V2(x)

∂x >
∂V 11 (x)
∂x . (CICLL,HH) reduces to V2(2q∗HH) − V2(q∗HL +

q∗LH) + V
1
1 (q

∗
HL + q

∗
LH) − V 11 (2q∗LL) ≥ V 10 (2q∗HH) − V 10 (2q∗LL), which holds in view of 2q∗HH >

q∗HL + q
∗
LH ≥ 2q∗LL, ∂V2(x)∂x >

∂V 10 (x)
∂x and (38).

Step 4 Suppose q∗HL+q
∗
LH < 2q

∗
LL and let t

∗∗∗ be such that (BIRL), (BICH), (CICHH,LL)
and (CICLL,HL) bind when q = q∗ and ε = 1. Then {q∗, t∗∗∗} satisÞes all the coalition
incentive constraints.

Proof. Given that (CICHH,LL) and (CICLL,HL) bind, (CICLL,HH) reduces to V2(2q∗HH)−
V2(2q

∗
LL) ≥ V 10 (2q

∗
HH) − V 10 (2q

∗
LL), which holds since q

∗
HH > q∗LL and ∂V2(x)

∂x >
∂V 10 (x)
∂x .

(CICHL,LL) is equivalent to (38), whose proof does not depend on whether q∗HL+q
∗
LH ≥ 2q∗LL or

q∗HL+q
∗
LH < 2q

∗
LL. (CICHH,HL) reduces to V2(2q

∗
LL)−V2(q∗HL+q∗LH) ≥ V 10 (2q∗LL)−V 10 (q∗HL+

q∗LH), which holds since q
∗
HL + q

∗
LH < 2q

∗
LL and

∂V2(x)
∂x >

∂V 10 (x)
∂x . Finally, (CICHL,HH) reduces

to V2(2q∗HH)− V2(2q∗LL) +V 10 (2q∗LL)− V 10 (q∗HL+ q∗LH) ≥ V 11 (2q∗HH)− V 11 (q∗HL+ q∗LH), which is
satisÞed in view of q∗HH > q

∗
LL,

∂V2(x)
∂x >

∂V 11 (x)
∂x and (38).

Proof of Proposition 13

We start by establishing the following inequality

t∗∗LH − t∗∗LL > t∗∗HH − t∗∗HL (39)
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Recalling that (CICHH,HL) and (CICHL,LL) bind in the transfer scheme t∗∗, we Þnd

t∗∗HH =
V2(2q

∗
H)− V2(q∗H + q∗L)

2
+
t∗∗LH + t

∗∗
HL

2

t∗∗LL =
V 11 (2q

∗
L)− V 11 (q∗H + q∗L)

2
+
t∗∗LH + t

∗∗
HL

2

hence (39) is equivalent to

V 11 (q
∗
H + q

∗
L)− V 11 (2q∗L) > V2(2q∗H)− V2(q∗H + q∗L) (40)

DeÞne g(z) ≡ V 11 (2q∗L+z)−V 11 (2q∗L)− [V2(q∗H+q∗L+z)−V2(q∗H+q∗L)] and notice that g(0) = 0
while (40) is equivalent to g(q∗H − q∗L) > 0. Now we prove that g0(z) > 0 if z ∈ (0, q∗H − q∗L),
hence g(q∗H − q∗L) > 0. We Þnd

g0(z) = θHu0[q1H(2q
∗
L + z)]− θHu0(

q∗H + q
∗
L + z

2
)

Thus, g0(z) > 0 if and only if q1H(2q
∗
L + z) <

q∗H+q
∗
L+z
2 . In order to establish the latter

inequality we apply the implicit function theorem to θHu0[q1H(x)] = θ
1
Lu

0[x−q1H(x)] [recall that
q1L(x) = x− q1H(x)] and obtain

dq1H(x)

dx
=

θ1Lu
00[q1L(x)]

θHu00[q1H(x)] + θ
1
Lu

00[q1L(x)]
=

1
θHu00[q1H(x)]
θ1Lu

00[q1L(x)]
+ 1

Moreover, using again θHu0[q1H(x)] = θ1Lu
0[q1L(x)], we Þnd

θHu
00[q1H(x)]

θ1Lu
00[q1L(x)]

=
u0[q1L(x)]u

00[q1H(x)]
u0[q1H(x)]u00[q

1
L(x)]

and

the assumption that u00
u0 is strictly increasing implies

u0[q1L(x)]u
00[q1H(x)]

u0[q1H(x)]u00[q
1
L(x)]

< 1. Hence, dq
1
H(x)
dx > 1

2

and q1H(q
∗
H + q

∗
L)− q1H(2q∗L + z) > q∗H−q∗L−z

2 . Since q1H(q
∗
H + q

∗
L) = q

∗
H , the latter condition is

equivalent to q
∗
H+q

∗
L+z
2 > q1H(2q

∗
L+z), the inequality which implies g

0(z) > 0 for z ∈ (0, q∗H−q∗L).
(a)-1. The proof of �reporting L is strictly dominant for each L-type�.

It is useful to write down the payoff matrices in M∗∗ for L-type and H-type, respectively. For
example, θLu(q∗H)− t∗∗HL, the entry in the left table below corresponding to row H and column

L, is the payoff to L-type if he claims H and his opponent reports L.

L-type L H

L θLu(q
∗
L)− t∗∗LL θLu(q

∗
L)− t∗∗LH

H θLu(q
∗
H)− t∗∗HL θLu(q

∗
H)− t∗∗HH

H-type L H

L θHu(q
∗
L)− t∗∗LL θHu(q

∗
L)− t∗∗LH

H θHu(q
∗
H)− t∗∗HL θHu(q

∗
H)− t∗∗HH
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�Reporting L is strictly dominant for each L-type� is equivalent to

θLu(q
∗
L)− t∗∗LL > θLu(q

∗
H)− t∗∗HL (41)

θLu(q
∗
L)− t∗∗LH > θLu(q

∗
H)− t∗∗HH (42)

We Þrst show that (42) holds and then prove (41). In view of the expressions for t∗∗, (42)
is equivalent to

[θL − (1 + pL)θH ]u(q∗L) + [(2 + pL)θH − 2θL]u(q∗H) > 2pLθHu(
q∗H + q

∗
L

2
)− pLV 11 (2q∗L)

The deÞnition of V 11 and the strict concavity of u imply that V
1
1 (2q

∗
L) > (θH + θ

1
L)u(q

∗
L) and

u(
q∗H+q

∗
L

2 ) < u(q∗H)− q∗H−q∗L
2 u0(q∗H) = u(q

∗
H)− q∗H−q∗L

2
c
θH
. Hence, it is sufficient to prove that

[2θL − (2− pL)θH ]u(q∗L) + [(2 + pL)θH − 2θL]u(q∗H) ≥ 2pLθH [u(q∗H)−
q∗H − q∗L
2

c

θH
],

which reduces to

[(2− pL)θH − 2θL][u(q∗H)− u(q∗L)] + pLc(q∗H − q∗L) ≥ 0

If (2− pL)θH − 2θL ≥ 0, then we are done. If instead (2− pL)θH − 2θL < 0, then we use again
the strict concavity of u to write u(q∗H)− u(q∗L) < u0(q∗L)(q∗H − q∗L) = c

θ1L
(q∗H − q∗L). We obtain

[(2− pL)θH − 2θL] cθ1L (q
∗
H − q∗L) + pLc(q∗H − q∗L) > 0, which is easy to verify.

In order to prove (41), simply observe that it is obtained by adding t∗∗LH−t∗∗LL and t∗∗HH−t∗∗HL
to the left and the right hand side of (42), respectively. Since the latter holds, (39) implies

that (41) is satisÞed as well.

(a)-2. The proof of �each H-type strictly prefers to report H (L) if his opponent plays H

(L)�.

By observing the right payoff matrix above we Þnd that �each H-type strictly prefers to

report H (L) if his opponent plays H (L)� is equivalent to

θHu(q
∗
L)− t∗∗LL > θHu(q∗H)− t∗∗HL and θHu(q

∗
L)− t∗∗LH < θHu(q∗H)− t∗∗HH (43)

These inequalities are proved as follows. If we had θHu(q∗L)− t∗∗LH ≥ θHu(q∗H)− t∗∗HH , then (39)
would imply θHu(q∗L)− t∗∗LL > θHu(q∗H)− t∗∗HL and (BICH) would be violated: contradiction.
Hence, θHu(q∗L) − t∗∗LH < θHu(q

∗
H) − t∗∗HH ; since (BICH) binds, we infer θHu(q∗L) − t∗∗LL >

θHu(q
∗
H)− t∗∗HL.

(b) Since t∗∗LL > t
∗∗
LH and t∗∗HL > t

∗∗
HH , buyer 1, for instance (regardless of his type), has a

chance to be better off with respect to the truthtelling equilibrium only if his opponent plays
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H more often than under truthtelling. However, this cannot occur in any equilibrium of M∗∗

� regardless of buyer 2�s beliefs about θ1 - since reporting L is strictly dominant for L-type of

buyer 2. Hence, in any equilibrium of M∗∗ the probability that 2 reports H is at most equal

to the probability that 2 reports H under truthtelling.

(c) Each L-type reports L in any equilibrium of M∗∗. Consider the payoff bimatrix (in
Section 7) of the game played by 1H and 2H (actually, tjk should be replaced by t∗∗jk, for any
jk). That game has two equilibria, since report Lweakly dominates H both for 1H and for

2H . In one of them, both 1H and 2H play H; in the other one, both 1H and 2H play L. In

the latter equilibrium, the payoff of j−type is θju(q∗L) − t∗∗LL, j = L,H. From (15) we know

that θLu(q∗L) − t∗∗LL < 0 and θHu(q∗L) − t∗∗LL < (∆θ)u(q∗L) because pL[θHu(q
∗
L) − t∗∗LL] + (1 −

pL)[θHu(q
∗
L)− t∗∗LH ] = (∆θ)u(q∗L) and t∗∗LL > t∗∗LH . Thus, the untruthful equilibrium is strictly

Pareto dominated by truthtelling.

Proof of Proposition 14

(a) MR is optimal under no coalition formation since qR = q∗ and (BICH) and (BIRL)
bind. In order to show that MR is weakly collusion-proof, notice that no reallocation occurs

if ² = 1 since qR = q∗, hence we need to prove that all coalition incentive constraints are
satisÞed by MR when ² = 1.

First observe that we need to take care only of local (upward and downward) coalition

incentive constraints. Indeed, both (CICHH,LL) and (CICLL,HH) are automatically satisÞed

if all the other coalition incentive constraints hold, thanks to the single crossing condition.

To prove this claim, suppose that (CICHH,HL), (CICHL,HH), (CICHL,LL) and (CICLL,HL)

are all satisÞed. Then, add up (CICHH,HL) and (CICHL,LL) to Þnd V2(2q∗H) − 2tHH ≥
V2(q

∗
H+q

∗
L)−V 11 (q∗H+q∗L)+V 11 (2q∗L)−2tLL; since V2(q∗H+q∗L)−V 11 (q∗H+q∗L)+V 11 (2q∗L) > V2(2q∗L)

by single crossing, we obtain V2(2q∗H)−2tHH > V2(2q∗L)−2tLL. Thus, (CICHH,LL) is satisÞed.
About (CICLL,HH), add up (CICLL,HL) and (CICHL,HH) to obtain V 10 (2q

∗
L)−2tLL ≥ V 10 (q∗H+

q∗L)−V 11 (q∗H + q∗L)+V 11 (2q∗H)−2tHH > V 10 (2q∗H)−2tHH by single crossing; hence (CICLL,HH)
is satisÞed. Therefore, we take care only of (CICHH,HL), (CICHL,HH), (CICHL,LL) and

(CICLL,HL).

From (BIRL), (BICH) and (20) written with equality we obtain

tLL = θH [u(q
∗
L)− u(q∗H)] + α+ tHL tHH =

θHu(q
∗
H)− (∆θ)u(q∗L)− pLtHL

1− pL
tLH =

θLu(q
∗
L) + pLθH [u(q

∗
H)− u(q∗L)]− pLα− pLtHL
1− pL

We substitute these expressions into the local coalition incentive constraints � after letting

K ≡ (2− pL)θHu(q∗H) + [θL − (2− pL)θH ]u(q∗L) � to Þnd that (CICHH,HL) and (CICHL,HH)
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are equivalent to

K + pLα− (1− pL)[V2(2q∗H)− V2(q∗H + q∗L)]
≤ tHL ≤ K + pLα− (1− pL)[V 11 (2q∗H)− V 11 (q∗H + q∗L)]

(44)

while (CICHL,LL) and (CICLL,HL) are equivalent to

K − (2− pL)α− (1− pL)[V 11 (q∗H + q∗L)− V 11 (2q∗L)]
≤ tHL ≤ K − (2− pL)α− (1− pL)[V 10 (q∗H + q∗L)− V 10 (2q∗L)]

(45)

If V2(2q∗H)− V2(q∗H + q∗L) < V 11 (q∗H + q∗L)− V 11 (2q∗L), then we set tHL so that (CICHH,HL)
binds. We want to prove that the other local coalition incentive constraints hold if α > 0 is

small. For this purpose, Þrst we show that they are strictly satisÞed when α = 0 and then

argue by continuity. (CICHL,HH) is strictly satisÞed because of single crossing [see (44)],

while (CICHL,LL) is equivalent to V2(2q∗H)− V2(q∗H + q∗L) ≤ V 11 (q∗H + q∗L) − V 11 (2q∗L) � which
strictly holds by hypothesis � and (CICLL,HL) reduces to V2(2q∗H)− V2(q∗H + q∗L)− [V 10 (q∗H +
q∗L) − V 10 (2q∗L)] ≥ 0. In order to establish that the latter inequality holds strictly, deÞne

g(z) ≡ V2(q
∗
H + q

∗
L + z) − V2(q∗H + q∗L) − [V 10 (2q∗L + z) − V 10 (2q∗L)]; we want to prove that

g(q∗H − q∗L) > 0. Observe that g(0) = 0 and g0(z) = θHu0(q
∗
H+q

∗
L+z
2 )− θ1Lu0(q∗L+ z

2) > 0 because

θHu
0(q

∗
H+q

∗
L+z
2 ) > c > θ1Lu

0(q∗L +
z
2) for any z ∈ [0, q∗H − q∗L). Here transfers are found by

solving the linear system made up of (BIRL), (BICH), (CICHH,HL) and (20), all written

with equality:

tRHL = (pLθ
1
L − θH)u(q∗L) + pLθHu(q∗H) + 2(1− pL)θHu(

q∗H + q
∗
L

2
) + pLα

tRLH = (θL + pLθH)u(q
∗
L) + pLθHu(q

∗
H)− 2pLθHu(

q∗H + q
∗
L

2
)− pL(1 + pL)

1− pL α

tRHH = pLθ
1
Lu(q

∗
L) + (1 + pL)θHu(q

∗
H)− 2pLθHu(

q∗H + q
∗
L

2
)− p2L

1− pLα

tRLL = pLθ
1
Lu(q

∗
L)− (1− pL)θHu(q∗H) + 2(1− pL)θHu(

q∗H + q
∗
L

2
) + (1 + pL)α

If V2(2q∗H)− V2(q∗H + q∗L) ≥ V 11 (q∗H + q∗L)− V 11 (2q∗L), then we set

tRHL =K − (2− pL)α− (1− pL)[V 11 (q∗H + q∗L)− V 11 (2q∗L)] + β

with β > 0 and small so that (CICHL,LL) is slightly slack. We now show that the other

local coalition incentive constraints are strictly satisÞed when α = 0, hence they are still

so if α > 0 is small. (CICLL,HL) is strictly satisÞed because of single crossing [see (45)],

while (CICHH,HL) is equivalent to V2(2q∗H)− V2(q∗H + q∗L) + β
1−pL ≥ V 11 (q∗H + q∗L)− V 11 (2q∗L) �
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which holds strictly by assumption � and (CICHL HH) reduces to V 11 (q
∗
H + q

∗
L) − V 11 (2q∗L) −

[V 11 (2q
∗
H)−V 11 (q∗H+q∗L)]− β

1−pL ≥ 0. The latter inequality holds strictly because of the following
argument. DeÞne g(z) ≡ V 11 (2q∗L+ z)−V 11 (2q∗L)− [V 11 (q∗H + q∗L+ z)− V 11 (q∗H + q∗L)] and notice
that g(0) = 0. Moreover, g0(z) = θHu

0[q1H(2q
∗
L + z)] − θHu0[q1H(q∗H + q∗L + z)] > 0 because

q1H(2q
∗
L + z) < q

1
H(q

∗
H + q

∗
L + z) for any z ∈ [0, q∗H − q∗L]. Hence g(q∗H − q∗L) > β

1−pL since β > 0
is small. In this case transfers are found by solving the linear system made up of (BIRL),

(BICH), (CIC
β
HL,LL) and (20), all written with equality:

tRHL = (2− pL)θHu(q∗H) + [θL − (2− pL)θH ]u(q∗L)− (1− pL)[V 11 (q∗H + q∗L)− V 11 (2q∗L)]
−(2− pL)α+ β

tRLL = (1− pL)θHu(q∗H) + [θL − (1− pL)θH ]u(q∗L)− (1− pL)[V 11 (q∗H + q∗L)− V 11 (2q∗L)]
−(1− pL)α+ β

tRHH = pLθ
1
Lu(q

∗
L) + (1− pL)θHu(q∗H) + pL[V 11 (q∗H + q∗L)− V 11 (2q∗L)]

+
pL(2− pL)
1− pL α− pL

1− pLβ
tRLH = (θL + pLθH)u(q

∗
L)− pLθHu(q∗H) + pL[V 11 (q∗H + q∗L)− V 11 (2q∗L)]

+pLα− pL
1− pLβ

(b) Since tRLL > t
R
LH and t

R
HL > t

R
HH by (15), we can apply exactly the same arguments of

the proof of Proposition 13(b).

(c) Consider tR with α = 0. Then, by (20) and since (BICH) binds, each H-type is

indifferent between reporting H or L, regardless of the report of the opponent. If α > 0 is

small, then from (20) we infer that H-type strictly prefers reporting H if his opponent plays

L; since (BICH) binds, he strictly prefers reporting L when his opponent plays H. About

L-type, he strictly prefers reporting L when his opponent plays H because θHu(q∗L)− tRLH >
θHu(q

∗
H) − tRHH implies θLu(q∗L) − tRLH > θLu(q

∗
H) − tRHH . Furthermore, he strictly prefers

reporting L when his opponent plays L because (20) implies θLu(q∗L)− tRLL > θLu(q∗H)− tRHL
when α = 0 or α > 0 is small.
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