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Abstract

In this article we introduce a new axiom for bargaining solutions,
named Proportional Concession Monotonicity (PCM), which imposes that
no player benefit when all players collectively make proportional conces-
sions with respect to their respective utopia values. We reconsider the
leximin solution (Imai, 1983), and obtain an alternative characterization
on the basis of PCM.
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1 Introduction

The lexicographic maxmin solution – or leximin solution – for bargaining prob-
lems is a bargaining solution based on a wealth criterion proposed by Rawls
(1971) that considers most preferrable from a societal stance, the outcome that
maximizes the payoffs of the worst-off individuals in the economy. The solution
embodies this idea by assigning to each bargaining problem the unique outcome
that results from the lexicographic optimization procedure that first maximizes
the payoffs of the worst-off individuals, then the payoffs of the second worst-off
individuals, then the third worst-off, and so on, until all the fruits of cooperation
have been allocated.

We consider the scale-invariant variation of the leximin solution, proposed
by Imai (1983), which constitutes a lexicographic extension of the wellknown
Kalai-Smorodinsky bargaining solution (Kalai & Smorodinsky, 1975). While
the original leximin solution has seen a number of alternative axiomatic charac-
terizations (Thomson & Lensberg, 1989; Chun & Peters, 1989; Chang & Hwang,

∗Partly written while at Óbuda University, Budapest. The author thanks the funding of
the OTKA (Hungarian Fund for Scientific Research, NF-72610).

†University of Heidelberg, Department of Economics, Bergheimerstraße 58, 69115 Hei-
delberg, Germany. Telephone: +49 6221 542958. Email address: bram.driesen@awi.uni-
heidelberg.de.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6774913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1999, 2001; Chen, 2000), Imai’s scale invariant version has received less atten-
tion. Notable exceptions are Chang & Liang (1998) who obtain an alternative
characterization for three-person problems by weakening Imai’s monotonicity
axiom, and Chun & Peters (1989) who illustrate how their characterization of
the original leximin solution can be modified to one of the lexicographic Kalai-
Smorodinsky solution.

In this article we provide another characterization for Imai’s solution, using
Pareto Optimality and a new axiom named Proportional Concession Monotonic-

ity (PCM). In the context of bargaining, a concession is defined as a player’s
willingness to forego feasible outcomes yielding a payoff higher than a certain
utility level. The use of concessions in bargaining theory goes back as far as
the work of Zeuthen (1930), and the concept has been more recently applied
by a.o. Anbarci (1995) and Driesen et al. (2011). The axiom PCM introduced
here, imposes that no bargainer make a strict gain when all collectively make
concessions w.r.t. their respective utopia values, that are proportional in size.

2 Preliminaries

An n-person bargaining problem is fully defined by a player set N := {1, . . . , n},
n ≥ 2, a feasible set S ⊂ R

N , and a disagreement point d ∈ S. The set R
N

denotes the players’ payoff space in the sense that an outcome x ∈ R
N assigns to

each player i ∈ N a utility payoff of xi. The interpretation is that players seek
agreement on a feasible outcome z ∈ S, and that failure to cooperate results in
the disagreement point d, which is an unfavorable outcome for all players. In
general, a bargaining problem is denoted by the pair (S, d). However, without
loss of generality, we make the simplifying assumption that d = 0, where 0 ∈ R

N

denotes the vector that assigns a zero payoff to each bargainer. This allows for
denoting bargaining problems by their feasible sets, i.e. writing S instead of
(S,0).

For vectors x, y ∈ R
N , x > y denotes xi > yi for all i ∈ N , x ≧ y means

xi ≧ yi for all i ∈ N , and x ≥ y denotes x ≧ y and x 6= y. The relations
‘<’, ‘≦’ and ‘≤’ are defined similarly. The sets R

N
+ := {z ∈ R

N | z ≧ 0}
and R

N
++ := {z ∈ R

N | z > 0} define the positive resp. the strictly positive
orthant of RN . We make the usual assumptions on bargaining problems S, that
S is convex and closed, that the problem is non-degenerate in the sense that
there exist z ∈ S with z > 0, and that S ∩ R

N
+ , the set of individually rational

outcomes, is compact. The class of all such problems is denoted B.
A set S ⊂ R

N is said to be comprehensive whenever x ∈ S and x ≧ y imply
that y ∈ S. Comprehensiveness of a problem S ∈ B may be interpreted as free
disposal of utility. The comprehensive hull of a set S ⊂ R

N is defined as the
smallest comprehensive set that contains S. It is denoted com S.

The vector e(Q) where Q ⊆ N and Q 6= ∅ denotes the outcome that assigns
to all players i ∈ Q the payoff 1 and to all players not in Q the payoff 0. The
utopia point u(S) of a problem S ∈ B is the outcome in R

N that accords each
bargainer i ∈ N the maximal utility payoff she can obtain from an individually
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rational outcome. That is, u(S) := (u1(S), . . . , un(S)) where ui(S) := max{zi |
z ∈ S ∩ R

N
+}. For vectors x ∈ R

N
++, define x−1 := (1/x1, . . . , 1/xn). For S ∈ B

define the normalized problem S := u(S)−1S. Clearly, S ∈ B and u(S) = e(N).
A bargaining solution, or solution, is a map ϕ : B → R

N that assigns to each
problem S ∈ B an outcome ϕ(S) ∈ S. For any problem, ϕ thus determines a
unique feasible outcome on which the players in N compromise.

2.1 The leximin solution

Based on Kalai’s (1977) work, Imai (1983) introduces a lexicographic extension
of the Kalai-Smorodinsky bargaining solution, that reconciles monotonicity con-
siderations with efficiency.

Definition. Let ≻l denote the lexicographic ordering on R
N . That is, x ≻l y

if and only if xi > yi for some i ∈ N and xj = yj for all j < i. Let µ be such
that for each x ∈ R

N there is a permutation π for N with µ(x) = π(x) and
µ1(x) ≦ . . . ≦ µn(x). The lexicographic maxmin ordering ≻, is defined by x ≻ y
if and only if µ (x) ≻l µ (y). For a set S ⊂ R

N , the point ξ(S) ∈ R
N denotes

the ≻-maximal point of S, i.e. ξ(S) ∈ S and ξ(S) ≻ z for all z ∈ S \ {ξ(S)}.
The leximin solution L : B → R

N (Imai, 1983) is defined by

L(S) := uξ
(

S
)

(1)

where u := u(S).

Imai shows that L is found by the following procedure. Consider S ∈ B. Start-
ing from the disagreement point 0 ≡ x0, increase the utilities of all players
simultaneously in the direction of the utopia point u(S), until the boundary of
the set S is reached, say in the point x1. Consider the players for whom the
utilities can be further increased from x1 without stepping out of the bargaining
set. Starting from x1, increase the utilities of these players further in the direc-
tion of their respective utopia values, again until the boundary of S is reached,
say in the point x2. Continue this procedure until finally a point xk is reached
from which no player’s utility payoff can be further increased without stepping
out of the bargaining set. Then L(S) = xk.

2.2 Axioms

A list of properties, or axioms, is said to characterize a bargaining solution
ϕ : B → R

N , whenever ϕ is the unique solution that satisfies these properties.
The purpose of this article is to give an alternative characterization of the lex-
imin solution. The first axiom used is Pareto Optimality, a classic property in-
troduced by Nash (1950) that says that the entire produce of cooperation should
be allocated. For S ∈ B, the Pareto set P (S) := {z ∈ S | x ≧ z implies x = z}
contains all points in S on which there exists no feasible Pareto improvement.

(PO) ϕ : B → R
N satisfies Pareto Optimality if ϕ(S) ∈ P (S) for all S ∈ B.
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Kalai (1977) introduces the axiom Monotonicity, which says that a contraction
of the set of feasible allocations should not be beneficial for any bargainer.

(MON) ϕ : B → R
N satisfies Monotonicity if ϕ(S) ≧ ϕ(T ) for all S, T ∈ B with

S ⊇ T .

It is wellknown that L violates MON. We introduce a version of this property,
that is weaker in the sense that the contraction of the feasible set is of a specific
type. Following Zeuthen (1930), a concession is defined as a player’s willingness
to forego all outcomes that yield him a utility payoff that exceeds a certain
utility level. The property Proportional Concession Monotonicity says that a
contraction of the set of feasible outcomes that results when all bargainers make
concessions that are proportional in size, should not benefit a single player.

(PCM) ϕ : B → R
N satisfies Proportional Concession Monotonicity if for all

S, T ∈ B with
T := {z ∈ S | z ≦ γu(S)}

for some γ > 0, we have ϕ(S) ≧ ϕ(T ).

Note that when outcomes are interpreted as von Neumann-Morgenstern utility
payoffs, then the concessions defined in the axiom PCM are equal in normalized

vNM utility terms. Thus, PCM imposes that no player gain when all players
lower demands ‘equally’ in search of a suitable compromise.

3 Main Result

In the remainder of this article we prove the following Theorem.

Theorem 3.1. A bargaining solution ϕ : B → R
N satisfies PO and PCM if

and only if ϕ = L.

The proof of Theorem 3.1 is separated in two Propositions, the first of which
establishes that the solution L satisfies the axioms of Theorem 3.1.

Proposition 3.2. The bargaining solution L satisfies PO and PCM.

Lemma 3.3. For all S ⊂ R
N , ξ(S) = ξ(com S).

Proof. Let S ⊂ R
N . If S = com S the result is trivial. Thus, assume

S ⊂ com S. Observe that either ξ(com S) ≻ ξ(S) or ξ(com S) = ξ(S). Take
some x ∈ (com S)\S. There is an i ∈ N and a > 0 such that x′ := x+ae(i) ∈ S;
then x′ ≻ x. Thus, a point in (com S) \ S is always ≻-dominated by a point in
S. It follows that ξ(com S) ≻ ξ(S) is impossible. Hence, ξ(S) = ξ(com S).

Note that Chang and Hwang (1999) already note this property of ξ.

Lemma 3.4. For each set S ⊂ R
N and constant β > 0, we have ξ(βS) = βξ(S).
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Proof. Let x, y ∈ S with x ≻ y. Then there is an i ∈ N such that µj(x) =
µj(y) for all j < i and µi(x) > µi(y). Hence, βµj(x) = βµj(y) for all j < i and
βµi(x) > βµi(y). Since βµi(z) = µi(βz) for each z ∈ S and i ∈ N , this implies
µj(βx) = µj(βy) for all j < i and µi(βx) > µi(βy). That is, βx ≻ βy. Since
the implications can be reversed, it follows that x ≻ y if and only if βx ≻ βy.

Let x := ξ(S). Then x ≻ y for all y ∈ S with y 6= x. By the above, this is
equivalent to βx ≻ βy for all βy ∈ βS with βy 6= βx. This in turn, is equivalent
to βx = ξ(βS). It follows that βξ(S) = ξ(βS).

Proof of Proposition 3.2. It is immediate from the definition that L satisfies
PO. It is thus sufficient to show that L satisfies PCM. Consider the problem
S ∈ B with S = S. From the definition of L it follows that this choice is without
loss of generality. Let T ∈ B with T := {z ∈ S | z ≦ γu(S)} for some γ > 0.
Then T = S ∩ {z ∈ R

N | zi ≦ γ for all i ∈ N}. Consider S′ := com S. Let
z∗ := ξ(S′), and construct the point ẑ where ẑi := min{γ, z∗i } for all i ∈ N .
Since z∗ ∈ S′ and ẑ ≦ z∗, it follows from comprehensiveness of S′ that ẑ ∈ S′.
Moreover, ẑ ∈ {z ∈ R

N | zi ≦ γ for all i ∈ N}. Define T ′ := com T , and
observe that T ′ = S′ ∩ {z ∈ R

N | zi ≦ γ for all i ∈ N}. Hence, ẑ ∈ T ′. Suppose
ξ(T ′) 6= ẑ. This implies there is a z ∈ T ′ such that z ≻ ẑ. We distinguish
between three cases.

1. γ ≦ µ1(z
∗). Then ẑ = (γ, . . . , γ). In that case, z ≻ ẑ implies there is an

i ∈ N such that zi > γ. But then z /∈ T ′, a contradiction.

2. γ > µn(z
∗). Then ẑ = z∗. In that case, z ≻ ẑ implies z ≻ z∗. Since

z ∈ T ′ ⊂ S′, this implies ξ(S′) 6= z∗, a contradiction.

3. There is a k ∈ {2, . . . , n} such that µk−1(z
∗) < γ ≦ µk(z

∗). Note that
z ≻ ẑ implies there is an i ∈ {2, . . . , n} such that µi′ (z) = µi′(ẑ) for
all i′ < i and µi(z) > µi(ẑ). If i ≧ k, then as in argument 1, µi(z) > γ
implying z /∈ T ′. If i < k, then z ≻ ẑ implies z ≻ z∗, which as in argument
2 means ξ(S′) 6= z∗. Both are contradictions.

It follows that ξ(T ′) = ẑ. That is, ξi(com T ) = min{γ, ξi(com S)} for all i ∈ N .
By Lemma 3.3 this implies ξi(T ) = min{γ, ξi(S)} for all i ∈ N .

By definition of L, L(S) = ξ(S). Observe that u(T ) = γe(N), implying
T = 1

γ
T . Then by Lemma 3.4 and the definition of L,

L(T ) = u(T )ξ(T ) = γξ

(

1

γ
T

)

= ξ(T ).

Hence, Li(T ) = min{γ, Li(S)} ≦ Li(S) for all i ∈ N . This concludes the
proof.

Proposition 3.5 establishes that L is the unique solution satisfying the axioms
of Theorem 3.1.

Proposition 3.5. If ϕ : B → R
N satisfies PO and PCM, then ϕ = L.
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Consider a bargaining problem S ∈ B. Following Imai (1983), we define the
sequences {xj}kj=0, {γ

j}kj=1, {α
j}kj=1, and {Qj}kj=1.

Definition. Let V ⊂ R
N . Given y ∈ com V , let

Q(V, y) := {i ∈ N | y + εe(i) ∈ com V for some ε > 0}.

For y ∈ com V with Q(V, y) = ∅, define α(V, y) := 0 and x(V, y) := y. For
y ∈ com V such that Q(V, y) 6= ∅, define

x(V, y) := y + α(V, y)e(Q(V, y))

where
α(V, y) := max {α ∈ R | y + α e(Q(V, y)) ∈ com V } .

Let S be the normalized problem associated with S, and let u := u(S). Con-
struct the sequence {xj}∞j=0 where x0 := 0 and xj := ux(S, u−1xj−1) for j ≧ 1.

Let k be the smallest integer such that xk = xk+1. Then for j = 1, . . . , k define

Qj := Q(S, u−1xj−1), αj := uα(S, u−1xj−1), and γj :=

j
∑

j′=1

αj .

Note that for each j, Qj is equivalently defined by Q(S, xj−1).

A straightforward adaptation of Imai’s (1983) Lemmas 3 and 4 shows that
xk ∈ P (S) and that L(S) = xk. Hence, to establish Proposition 3.5, it is
sufficient to prove that any bargaining solution satisfying PO and PCM applied
to the problem S, yields xk. Imai’s characterization of L is obtained by making
use of auxiliary bargaining problems. The present approach is similar. For
j = 1, . . . , k, define

T j := {z ∈ S | z ≦ γju}.

Note that γj > 0 implies T j ∈ B for each j. For j = 2, . . . , k define the sets

Gj := P (T j) ∩ {z ∈ S | zi = xj−1

i for all i /∈ Qj}.

The following Lemma is useful.

Lemma 3.6. Gj = {xj} for each j = 2, . . . , k.

Proof. Take some 1 < j ≦ k, and observe that T j = S ∩ Sj, where

Sj :=
{

z ∈ R
N | z ≦ γju

}

.

Note that xj ∈ T j. For any i ∈ N we either have i /∈ Q(S, xj) or i ∈ Q(S, xj). In
case of the latter we have xj

i = γjui, implying i /∈ Q(Sj , xj). Hence, Q(T j, xj) =

∅. It follows that xj ∈ P (T j). By construction, xj
i = xj−1

i for all i /∈ Qj ,
implying xj ∈ Gj .
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Assume that there is a y ∈ Gj with y 6= xj . That is, yi = xj−1

i for all i /∈ Qj ,
y ∈ P (T j), and y 6= xj . If either y ≧ xj or y ≦ xj , then y = xj . Thus, y 6= xj

implies there are i′, i′′ ∈ Qj with yi′ < xj
i′ and yi′′ > xj

i′′ . Since xj
i = γjui

for all i ∈ Qj, the latter implies y /∈ Sj , contradicting y ∈ Gj . It follows that
Gj = {xj}.

Proof of Proposition 3.5. Let ϕ : B → R
N be a bargaining solution satisfying

PO and SPC. Observe that x1 ∈ T 1 ⊆ com {x1}, implying P (T 1) = {x1}. By
PO it follows that ϕ(T 1) = x1. For 1 < j ≦ k, assume that ϕ(T j−1) = xj−1.
Observe that

T j−1 = {z ∈ S | z ≦ γj−1u(S)}

= {z ∈ T j | z ≦ γj−1u(S)}

= {z ∈ T j | z ≦ (γj−1/γj)u(T j)},

and that γj−1/γj > 0. Then by PCM we obtain ϕ(T j) ≧ ϕ(T j−1). Observe
that for any x ∈ T j with x ≧ xj−1, we have xi = xj−1

i for all i /∈ Qj . It follows

that ϕi(T
j) = xj−1

i for all i /∈ Qj. By PO we have ϕ(T j) ∈ P (T j). Hence,
ϕ(T j) ∈ Gj . By Lemma 3.6 this implies ϕ(T j) = xj . It follows that ϕ(T k) = xk.
Since T k = {z ∈ S | z ≦ γku}, it follows by PCM that ϕ(S) ≧ ϕ(T k), and thus,
by the above argument, ϕ(S) ≧ xk. By construction, xk ∈ P (S). Hence,
ϕ(S) = xk. This concludes the proof.

For S ∈ B the Nash bargaining solution yields the unique point x∗ in S that
maximizes the function

∏

i∈N xi. It satisfies PO but violates PCM.

Example. For n = 2, consider the problem S ∈ B with

S := com {e(1), e(2), (1/2, 3/4)}.

It is easily checked that the Nash bargaining solution of this game is given by
(1/2, 3/4). Consider next the problem Ŝ where Ŝ := {z ∈ S | zi ≦ 2/3 for i =
1, 2}, and observe that the Nash solution now yields the outcome (5/9, 2/3).
Since 5/9 > 1/2, we obtain a violation of PCM.

The solution D : B → R
N , defined by D(S) := 0 for all S ∈ B, satisfies PCM

but not PO. It follows from these two observations that the axioms PCM and
PO are independent.

4 Final Remarks

The leximin solution involves a normalization of the bargaining problem w.r.t.
the players’ utopia values. An alternative version is obtained when the problem
is normalized not w.r.t. the players’ utopia values, but their global utopia values.
Imai (1983) points out that his characterization proof can be modified in a
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straightforward way, to also characterize this alternative solution. The same is
true for the characterization proof presented in this article. In particular, it is
sufficient to replace the utopia point u(S) in the axiom PCM by the problem’s
global utopia point.

Chun & Peters (1991) define and characterize the lexicographic equal-loss

solution.1 Using an approach similar to the one presented in this article, it is
possible to obtain an alternative characterization for this bargaining solution
as well. This requires monotonicity under equal concessions, rather than pro-
portional concessions. Moreover, it requires adding the axiom Independence

of Irrelevant Alternatives other than the Ideal Point (Roth, 1977), which im-
poses that the solution remain invariant under contractions of the feasible set
as well as changes of disagreement point, that leave the problem’s utopia point
unaltered.2
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