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Abstract

This paper proposes a new solution concept to three-player coalitional bargaining
problems where the underlying economic opportunities are described by a partition
function. This classic bargaining problem is modeled as a dynamic non-cooperative
game in which players make conditional or unconditional o¤ers, and coalitions con-
tinue to negotiate as long as there are gains from trade. The theory yields a unique
stationary perfect equilibrium outcome–the negotiation value–and provides a uni…ed
framework that selects an economically intuitive solution and endogenous coalition
structure. For such games as pure bargaining games the negotiation value coincides
with the Nash bargaining solution, and for such games as zero-sum and majority voting
games the negotiation value coincides with the Shapley value. However, a novel situa-
tion arises where the outcome is determined by pairwise sequential bargaining sessions
in which a pair of players forms a natural match. In addition, another novel situation
exists where the outcome is determined by one pivotal player bargaining uncondition-
ally with the other players, and only the pairwise coalitions between the pivotal player
and the other players can form.
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1. Introduction

We study three-player coalitional bargaining games in which players can form pairwise or

multilateral coalitions and write binding agreements dividing the worth of coalitions among

their members. What coalitions will form? What will be the …nal outcome of negotiations?

This classical problem, a natural generalization of the two-player bargaining problem,

was …rst formulated by von Neumann and Morgenstern (1944), the founders of game theory,

and indeed was the central focus of their seminal work. Since the early days of game theory

these questions have interested and challenged many researchers but still remain largely

unanswered.1 The existing solution concepts have at least one of three shortcomings: there

are games of economic interest for which there exists no solution, or the solution set is too

big (multiple solutions), or the solution is counter-intuitive and/or intractable. Building on

the existing literature, this paper proposes a new theory that yields a solution that always

exists, is unique and economically intuitive, and is expressed by a simple analytical formula.

Cooperative game theory has developed numerous solution concepts to the coalition

bargaining problem. These include stable sets (von Neumann and Morgenstern (1944)),

the core, the Shapley value (Shapley (1953)), the Nash bargaining solution (Nash (1950,

1953)), the bargaining set (Aumann and Maschler (1964)), the kernel (Davis and Maschler

(1965)), and the nucleoulus (Schmeidler (1969)). In addition, Shenoy (1979), Aumann and

Dreze (1974), Hart and Kurz (1983), and Aumann and Myerson (1988) have developed

cooperative models of valuation and coalition formation.2

The focus of this paper, though, is on the non-cooperative foundations of negotiations.

This other strand of the literature models the negotiation process using a dynamic non-

cooperative game in extensive form, such as those of Rubinstein (1982), Gul (1989), Selten

(1981), Chatterjee et al. (1993), Hart and Mas-Colell (1996), and Ray and Vohra (1999),

among many others.3

The starting point of our analysis is an economic situation in which the underlying

opportunities are captured in a partition function. Partition functions generalize the concept

of characteristic function, which is the cornerstone of most cooperative and non-cooperative

models of coalitional bargaining. While characteristic functions describe in a single number

the worth of each coalition of players, with partition functions the worth of coalitions

1See, for example, Selten (1987, p. 42), Maschler (1992, p. 595), and Binmore, Osborne, and Rubisntein
(1992, p.204).

2See Gomes (1999a) for a discussion of these cooperative game theory solutions, and also the cooperative
foundations of the solution concept introduced in this paper.

3Several papers such as Bennett (1997), Moldovanu (1990), and Gomes, Hart, and Mas-Colell (1999)
address the non-cooperative n-person coalitional bargaining problem using a more general non-transferable
utility (NTU) framework.
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depends not only on the coalition itself but also on the coalitions formed by non-members,

i.e., the coalition structure. We believe that this generalization is important because it allows

us to capture any positive or negative externalities that formation of coalitions creates on

non-members (for example, see Ray and Vohra (1999) and Bloch (1996)).

In our model, similar to Gul (1989), each player owns an asset and can buy or sell assets

in exchange for cash payments. The values of combinations of assets are speci…ed by the

partition function, and thus depend on the coalition structure. As in Rubinstein (1982),

the negotiation game evolves with players making proposals to acquire assets–with a certain

lapse of time between proposals–followed by players that have received o¤ers making their

response (whether or not to accept the o¤er). The equilibrium concept used is stationary

perfect Nash equilibrium. Our analysis has two main points of departure from the existing

literature in strategic bargaining. First, we allow for the possibility of coalitions, once

formed, to remain negotiating with other players or other coalitions until all gains from

trade have been exploited. Second, we allow for a richer set of o¤ers that includes o¤ers

that are both conditional and unconditional on the acceptance decision of other players.

One very satisfactory feature of our model is that it provides a unique stationary perfect

equilibrium outcome, which we name the negotiation value. We also prove that this solution

is Pareto e¢cient and is continuous on the parameters of the game. A large part of this

paper is dedicated to the proof of the uniqueness, drawing on concepts of convex geometry

that are introduced in the paper. We show that the space of partition function games

is divided into twenty-six distinct regions (polyhedral cones) and that in each region the

negotiation value is given by a linear function of the parameters of the game. In the limit,

as the interval between o¤ers shrinks to zero, the di¤erent regions into which the space

of partition function games is divided collapses into eight regions.4 Another, important

property of the model is that the negotiation value for games in each region have very

intuitive economic properties. We now describe the particular features and characteristics

of the solution for each of the eight regions.

First, the Nash bargaining solution coincides with the negotiation value for games in

the region that contains pure bargaining games.5 Interestingly, this extends the Nash

bargaining solution to a broad class of multilateral bargaining problems, where the worth

of any pairwise coalition is less than a third–but not necessarily equal to zero, as in pure

bargaining games–of the grand coalition value. Naturally, for these games, we obtain that

the equilibrium coalition structure is such that only the grand coalition can form, but not

4Similarly to the negotiation value, the nucleolus also have linearity regions (see Schmeidler (1969) and
Brune (1983)).

5 In a pure bargaining game the cooperation of all players is needed to achieve gains from trade; otherwise
all players get their reservation value.
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any pairwise coalition.

Second, the Shapley value coincides with the negotiation value for games in the region

that contains zero-sum, simple majority voting, and one-seller two-buyer market games.

More generally, the set of games for which the Shapley value is the solution is characterized

by one simple linear inequality, and corresponds to situations where any coalition can form

in equilibrium.

Moreover, there is a third and novel situation where the outcome of negotiations is

determined by pairwise sequential bargaining sessions: a …rst pairwise bargaining session

in which a pair of players forms a natural coalition, strengthening their bargaining position

vis à vis the non-member, followed by a second pairwise bargaining session between the

natural coalition and the non-member. We provide an example of an oligopolistic industry

where there are gains from merging, in which negotiations develop in sequential bargaining

sessions. Negotiations develop sequentially in three regions because there are three possible

natural coalitions of players.

In addition, there is a fourth novel situation where the outcome of negotiations is de-

termined by one pivotal player bargaining unconditionally with the other two players. Any

pairwise coalition between the pivotal player and the other players can form, but not the

pairwise coalition between the non-pivotal players. We provide an example of a labor market

game with one …rm–the pivotal player–and two workers, where the …rm negotiates individ-

ually with each worker and the workers are better o¤ not forming a union to collectively

bargain for wages. The last three of the eight regions correspond to situations where each

of the three players can be pivotal.

Situations where there are natural coalitions or pivotal players have an equilibrium

allocation and coalition structure that are intrinsically di¤erent from the classical Nash

bargaining solution and Shapley value. A strong feature of our theory is that it yields

not only a unique solution concept, but also a uni…ed framework that selects an intuitive

equilibrium concept for all coalitional bargaining games in partition function.

Our solution concept is di¤erent from other coalitional bargaining models for essentially

two reasons. First, we allow for coalitions that reach an agreement to be able to further

negotiate with other players (see also Gul (1989) and Hart and Kurz (1983)). In contrast to

the strategic models of Selten (1981), Chatterjee et al. (1993), Ray and Vohra (1999), and

Hart and Mas-Colell (1996), once a coalition reaches an agreement, it cannot be further

renegotiated and the coalition leaves the game. Second, proposals in our model can be

both conditional or unconditional, while most papers on strategic bargaining only allow for

conditional o¤ers (an exception is Krishna and Serrano (1996)). With conditional o¤ers a

rejection by even only one of the players receiving the o¤er blocks other players that have
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accepted the o¤er from exiting the game with the amount o¤ered to them. Expanding the

strategy set adds a new degree of realism to strategic bargaining, and allows for a Pareto

e¢cient equilibrium outcome to arise. We show that when unconditional o¤ers are ruled

out, ine¢ciencies due to delays in reaching agreements can arise, and such ine¢ciencies can

be signi…cant for strictly super-additive games with small discount factors.6

The remainder of the paper is organized as follows: Section 2 presents the negotiation

model, Section 3 develops the game-theoretic analysis of negotiations, Section 4 establishes

the uniqueness of the solution, Section 5 studies the economic properties of the solution,

and the Appendix contains the proofs of the theorems.

2. The Negotiation Game

Let N = f1; 2; 3g be the set of players, and de…ne a coalition structure (c.s.) as a partition
¼ of the set of players N .7 Our analysis starts with a cooperative game in partition function

(see Thrall and Lucas (1963)). This cooperative game captures the worth v(C; ¼) 2 R of a
coalition C belonging to a coalition structure ¼.

Definition 1: A partition function game v assigns a value v(C;¼) 2 R to all coalitions

C 2 ¼ belonging to a partition ¼ of the set of players N: A partition function game is weakly
super-additive if the grand coalition is (weakly) e¢cient,

v(N; fNg) ¸
X
C2¼

v(C; ¼); for all ¼ and C 2 ¼. (1)

All partition function games considered in this paper are weakly super-additive. Note

that this assumption is weaker than the super-additivity assumption used in most of the

literature on cooperative and non-cooperative bargaining.

Throughout the paper, i; j; and k always refers to distinct elements in N , and, for

convenience, we de…ne the following variables associated with a game in partition function

v: vi = v(i; ff1g ; f2g ; f3gg); Vi = v(i; ffig ; fj; kgg); Vij = v(fi; jg ; ffi; jg ; fkgg); and
V = v(N; fNg): Also, ei 2 R3 is de…ned as the unit row vector with ith coordinate equal
to 1, and remaining values equal to zero.

We model negotiations as an in…nite horizon non-cooperative game with complete in-

formation, utilizing the cooperative game in partition function as the basic underlying

6Chatterjee et al. (1993) focus on the study of ine¢ciencies of equilibrium allocations of coalitional
games.

7For example, ¼ = ff1; 2g ; f3gg is the partition where players 1 and 2 form a coalition and 3 is left alone,
¼ = ff1; 2; 3gg is the partition where all the players form the grand coalition N , and ¼ = ff1g ; f2g ; f3gg is
the partition where no players form any coalitions.
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structure.

The players’ utility function over a stream of random cash ‡ows (xt)
1
t=0 is equal toP1

t=0 ±
tE (xt) : So players are risk-neutral and have a common per period discount factor

equal to ± 2 (0; 1). Also, there exists a common medium of exchange, money, that players

can use to transfer utility to other players.

In our negotiations, similar to Gul (1989), each player owns an asset that generates a

constant stream of cash ‡ow at each period. Players at every period of the game can buy or

sell assets in exchange for cash payments. If player i buys j’s asset, player j leaves the game

with the o¤ered amount, and player i is now the coalition fi; jg ; representing the fact that
he now owns the initial assets of both i and j:8 The partition function v describes the cash

‡ows generated by the assets for all their possible combinations. Speci…cally, the coalition

C generates a total per-period cash ‡ow equal to (1¡ ±) v(C; ¼); which is worth v(C;¼);
when the coalition C 2 ¼ belonging to the coalition structure ¼ is formed. For example, i’s
asset generates a per-period cash ‡ow equal to either (1¡ ±) vi or (1¡ ±)Vi depending on
whether the c.s. is ffig ; fjg ; fkgg or ffig ; fj; kgg :

Note that games in partition function are more general than games in characteristic

function, because they allow for the possibility of coalitions imposing externalities on other

players. The characteristic function game satis…es v (C) := v (C;¼) = v (C;¼0) for all
C 2 ¼ \ ¼0, which implies that vi = Vi for all i 2 N: However, the partition function game
can capture any positive (vi · Vi) or negative (vi ¸ Vi) externalities that the coalition

fj; kg creates for player i.
The negotiation game evolves with players making proposals to acquire the assets of

other players followed by those players that have received o¤ers accepting them or not,

as in Rubinstein (1982). However, unlike most models on non-cooperative bargaining, we

allow for a richer set of o¤ers that includes both conditional and unconditional o¤ers.

Speci…cally, the strategy set of i’s o¤ers, denoted by Si; includes the following types of

o¤ers: (1) O¤ers to only one player, such as an o¤er to buy player j at a price pj. Player

j’s asset is exchanged for the o¤ered amount conditional only on j’s acceptance. (2) Joint

o¤ers to both players, such as an o¤er to buy both j and k at a price pj and pk; respectively.

The joint o¤er must also specify the order in which the players sequentially respond to the

o¤er, and one of the four types of conditions: (i) conditional on both player j’s and k’s

acceptance decisions, (ii) conditional only on j’s acceptance decision and unconditional on

k’s acceptance decision; (iii) conditional only on k’s acceptance decision and unconditional

8Alternatively, i can sell his assets to player j: Also, equivalently, we can interpret the transaction as
players (…rms) i and j agreeing to merge their assets into a new …rm in exchange for a fraction of the
ownership stake of the new …rm.
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on j’s acceptance decision, or (iv) unconditional. In particular, if the o¤er to player j is

unconditional on k’s acceptance decision then if j accepts the o¤er j’s asset is transferred to

i and j leaves the game with the amount o¤ered, regardless of the response of player k (see

also Krishna and Serrano (1996)). If the o¤er to player j is conditional on k’s acceptance

decision; then j leaves the game with the amount o¤ered in exchange for his asset if and

only if both j and k accept the o¤er. Proposals can also be behavior strategies, ¢(Si) ;

which is a probability distribution over the set of o¤er strategies Si.

The coalition bargaining game or negotiation game (v; ±) is the game with the following

extensive form: At the beginning of each period one of the players belonging to the current

coalition structure ¼ is randomly chosen, with equal probability, to be the proposer.9 If

player i 2 ¼ is the proposer he then chooses an o¤er from the strategy set Si; and players

receiving the o¤er respond in the order speci…ed, either accepting or rejecting the o¤er. An

exchange of ownership of assets and cash takes place according to the responses of the o¤er

and the precise conditions attached to it (see previous paragraph). This de…nes the new

current coalition structure ¼; and the game is repeated, after a lapse of one period of time,

with a new proposer being randomly chosen as described.

Our notion of equilibrium is stationary subgame perfect Nash equilibrium (SSPNE). A

strategy pro…le is SSPNE if it is a subgame perfect equilibrium and the strategies are such

that the choice at each stage of the game depends only on the current coalition structure

and the current proposer, but neither on the history of the game nor on calendar time.

3. Game-theoretic Analysis of Negotiations

The analysis of the three-player coalitional bargaining game is consistent with the Rubin-

stein (1982) and Ståhl (1972) two-player bargaining model. Suppose that players j and

k form coalition fj; kg and player i remains independent, so that the coalition structure
(c.s.) is ffig ; fj; kgg. In the next period of the game coalition fj; kg and player i proceed
with a bilateral bargain as in Rubinstein (1982), in which both players i and fj; kg can
be chosen to propose o¤ers with probability equal to 1

2 . It is a well-known result (e.g.,

see Osborne and Rubinstein (1990) and Sutton (1986)) that the bilateral bargaining game

has a unique stationary perfect equilibrium (indeed, according to Rubinstein (1982) there

is a unique subgame perfect equilibrium), in which the two players with reservation val-

ues Vi = v (fig ; ffig ; fj; kgg) and Vjk = v (fj; kg ; ffig ; fj; kgg) split by half the surplus
V ¡ Vi ¡ Vjk.

9The model could be naturally extended to the case where the probability of i being chosen the proposer
is equal to w (i; ¼) ¸ 0; such that Pi2¼ w (i; ¼) = 1.
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Theorem 0: Let ¾ be an SSPNE of the negotiation game (v; ±). There is a unique SSPNE

outcome of the subgame starting with a coalition structure ffig ; fj; kgg ; where the equilib-
rium outcomes of player i and coalition fj; kg are, respectively, equal to

Xi = Vi +
1

2
(V ¡ Vi ¡ Vjk) and Xjk = Vjk + 1

2
(V ¡ Vi ¡ Vjk) : (2)

Throughout the paper, we represent the equilibrium outcome associated with an SSPNE

¾ by the variables
¡
Áij
¢
and (Ái) for all i; j 2 f1; 2; 3g ; where Ái represents the expected

equilibrium outcome of player i unconditional on the choice of the proposer, and Áij repre-

sents the expected equilibrium outcome of player i conditional on player j being chosen to

be the proposer. Our main goal in the paper is to solve for the values of (Ái) and
¡
Áij
¢
.

Suppose that we are given an SSPNE with equilibrium outcome (Ái) : What are the

expected equilibrium payo¤s in the subgame starting in the node after the acceptance-

decision stage with c.s. equal to f1; 2; 3g? Player i’s utility in the current period is the

‡ow (1¡ ±) vi: His utility in the subgame starting next period with the proposal stage is
Ái (because this subgame is just like the original game and the equilibrium is stationary),

which has a present value equal to ±Ái: This implies that player i’s expected utility is equal

to

yi = ±Ái + (1¡ ±) vi: (3)

Similarly, what are the expected equilibrium payo¤s in the subgame starting in the node

after the acceptance-decision stage with c.s. equal to ffi; jg ; fkgg? Player k and the

coalition fi; jg derive utility (1¡ ±)Vij and (1¡ ±)Vk in the current period, and their
utilities in the subgame starting next period with the proposal stage are equal to Xij and

Xk (according to Theorem 0), which have a present value equal to ±Xij and ±Xk. Their

expected utilities are then

Yij = ±Xij + (1¡ ±)Vij and Yk = ±Xk + (1¡ ±)Vk: (4)

3.1. Conditional and Unconditional O¤ers

Our …rst result provides a mathematical characterization of the SSPNE outcome of the

negotiation game. Theorem 1 allow us to map the game theory problem of …nding subgame

perfect equilibria into an equivalent and more tractable mathematical problem of solving a

system of equations subject to inequality constraints.
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Theorem 1: If ¾ is an SSPNE of the negotiation game (v; ±) then the equilibrium outcome¡
Áij
¢
and (Ái) associated with ¾ satis…es conditions (1) to (5) below:

(1) If Yj ¸ yj and Yk ¸ yk then Áii = V ¡ yj ¡ yk, Áji = yj; and Áki = yk: It is a best
response strategy for player i to o¤er yj to j; and o¤er yk to k conditional on their

joint acceptance.

(2) If Yj ¸ yj and Yk · yk then Áii = V ¡ yj ¡ Yk, Áji = yj ; and Áki = Yk: It is a best
response strategy for player i to o¤er yj to j unconditional on k’s acceptance, and o¤er

Yk to k conditional or unconditional on j’s acceptance.

(3) If Yj ¡ yj < Yk ¡ yk · 0 then Áii = V ¡ Yj ¡ yk, Áji = Yj ; and Áki = yk. It is a

best response strategy for player i to o¤er Yj to j conditional or unconditional on k’s

acceptance, and o¤er yk to k unconditional on j’s acceptance.

(4) If Yj ¡ yj = Yk ¡ yk · 0 then Áii = V ¡ Yj ¡ yk, Áji = ¹iYj + (1¡ ¹i) yj and
Áki = (1¡ ¹i)Yk+¹iyk, where ¹i 2 [0; 1] : It is a best response strategy for player i to
o¤er, with probability ¹i; Yj to j conditional or unconditional on k’s acceptance, and

o¤er yk to k unconditional on j’s acceptance and to o¤er, with probability 1 ¡ ¹i; yj
to j unconditional on k’s acceptance, and o¤er Yk to k conditional or unconditional

on j’s acceptance:

(5) The equilibrium outcome is related by the system of equations:

Ái =
1

3
(Á1i + Á2i + Á3i) for all i 2 f1; 2; 3g : (5)

Conversely, if there exists a set of numbers
¡
Áij
¢
and (Ái) for i; j 2 f1; 2; 3g satisfying

conditions (1) to (5) above, then there exists an SSPNE ¾ of the negotiation game (v; ±)

with an associated equilibrium outcome equal to
¡
Áij
¢
and (Ái) :

We provide an outline of the proof. We …rst look at the necessary part of the theorem

followed by the converse (su¢cient part).

The decision whether or not to accept an o¤er is dependent on the payo¤s (yi), which

are equal to the expected equilibrium payo¤ of players conditional on the c.s. remaining

equal to f1; 2; 3g after the acceptance decision; and the payo¤s Yij and Yk, which are equal
to the expected equilibrium payo¤s of coalition fi; jg and player k conditional on the c.s.
remaining equal to ffi; jg ; kg after the acceptance decision. With this in mind we can show
that the best acceptance strategy for players j and k for any given o¤er in the strategy set

Si is as follows:

8



(i) If i o¤ers pj to player j then j’s best response is to accept if and only if pj ¸ yj :

(ii) If i o¤ers pj to j and pk to k conditional on their joint acceptance then j and k’s best

response is to accept if and only if pj ¸ yj and pk ¸ yk; regardless of the order of

response.

(iii) If i o¤ers pj to j unconditional on k’s acceptance, and o¤er pk to k conditional on j’s

acceptance then the best responses are as follows. Player j’s best response, regardless

of whether he is the …rst or last to respond, is to accept if and only if pj ¸ yj. Player
k’s best response, also independent of the order of response, is to accept if and only

if pk ¸ Yk.

Note that the strategy above is a best response because if j accepts the o¤er and k

rejects the o¤er then k’s payo¤ is equal to Yk; and if j rejects the o¤er then k’s acceptance

decision is irrelevant for his payo¤.

(iv) If i o¤ers pj to j unconditional on k’s acceptance and o¤ers pk to k unconditional on

j’s acceptance then the best responses are as follows, where the order of response is

relevant for the strategies that each player chooses. Say that j is the …rst player to

respond followed by k. Player k’s best response is to accept if and only if pk ¸ Yk

and player j has previously accepted the o¤er, or accept if pk ¸ yk and player j has
previously rejected the o¤er. Player j’s best response is to accept if and only if pj ¸ Yj
and pk ¸ yk; or accept if pj ¸ yj and pk < yk:

This strategy is indeed a best response. If player j rejects he knows that player k’s best

response is to accept if pk ¸ yk; in which case j gets a payo¤ of Yj. Therefore, player j’s
best response is to accept any pj ¸ Yj ; whenever pk ¸ yk: On the other hand, if pk < yk;
player j knows that the best response of player k is to reject any o¤er pk < yk if player j

has previously rejected the o¤er, in which case j’s payo¤ is equal to yj : Therefore, player

j’s best response is to accept if and only if pj ¸ yj ; whenever pk < yk:
We prove in the Appendix that the maximum expected utility that player i can achieve

choosing o¤ers in the strategy set Si is Áii = max fV ¡ yj ¡ yk; V ¡ yj ¡ Yk; V ¡ Yj ¡ ykg.
Using both this result and the best acceptance strategies above we can easily see that

conditions (1) to (4) of the theorem are true: simply observe that the best response strategy

proposed in the statement of the theorem implements the maximum payo¤ for each of the

cases.

Condition (5) of the theorem also must hold. The equilibrium payo¤ of player i satis…es

Ái =
1
3

P3
j=1 Áij; because each player j 2 f1; 2; 3g is chosen to propose with probability

equal to 1
3 ; and player i’s payo¤ when j is chosen to propose is, by de…nition, equal to Áij :

9



In order to prove the converse we show that the stationary strategy pro…le constructed

using conditions (1) to (5) satis…es the one-stage deviation principle and that the in…nite-

horizon negotiation game is continuous at in…nity (see Fudenberg and Tirole (1991)).

We remark that the ability to use behavior strategies is important, and we will see later

on that there may not exist pure strategy equilibrium (see Example 2). Observe that the

best-response set of a player proposing o¤ers may not be single-valued. However, any choice

of strategy from the best-response set yields the same equilibrium outcome
¡
Áji
¢
in all but

one important case. Whenever Yj ¡ yj = Yk ¡ yk < 0; the probability that player i chooses
each of his best response strategies determines the payo¤ of players j and k conditional on

the event that player i is the proposer: for example, Áji = ¹iYj + (1¡ ¹i) yj is decreasing
in ¹i (because Yj < yj) and Áki = (1¡ ¹i)Yk+¹iyk is increasing in ¹i; where ¹i is as given
in case 4 of the theorem.

3.2. Discussion of Conditional and Unconditional O¤ers

We believe that expanding the strategy set to allow for the possibility of both conditional

or unconditional o¤ers adds a new degree of realism to strategic bargaining that is worth

exploring. Surprisingly, we will see in the following sections of the paper that even when

the new choices are added to the players’ strategy set, the mathematical problem of solving

for the equilibrium outcome is still very tractable.

The ability to make both conditional and unconditional o¤ers is an important point of

departure between our theory and other non-cooperative bargaining models. One one hand,

for example, in Selten (1981), Gul (1989), Chatterjee et al. (1993), Ray and Vohra (1996),

and Hart and Mas-Colell (1996), o¤ers are, implicitly, conditional on the acceptance of all

players: if even one player receiving an o¤er rejects it, then the o¤er is canceled and a new

player is chosen to become the new proposer. On the other hand, in Krishna and Serrano

(1996) o¤ers are, implicitly, unconditional on the acceptance decision of other players, and

thus a player that accepts an o¤er can exit the game with the o¤ered amount, regardless of

whether or not the o¤er is accepted by the other players.

We now intuitively discuss the implications of allowing for conditional and unconditional

o¤ers. We …rst show that when unconditional o¤ers are ruled out, ine¢ciencies in the ne-

gotiation outcome can arise that can be signi…cant for strictly super-additive games with

small discount factors. However, in negotiations with very patient players (large discount

factors), there is no signi…cant change in the equilibrium allocation when we restrict atten-

tion to only conditional o¤ers, as most papers in the literature do. We then discuss the

impact of ruling out conditional o¤ers (conditional on the acceptance of other players) and

show that our results would change in an essential way for several games of interest. We
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also provide a reinterpretation of Krishna and Serrano’s (1996) results in the framework of

conditional and unconditional o¤ers.

First, consider how our results change if players are restricted to using only conditional

o¤ers. Say for example that the equilibrium outcome is either as in case 2, Yk · yk and

Yj ¸ yj; or as in case 3, Yk ¡ yk < Yj ¡ yj · 0 (see Theorem 1). What is the best

response strategy for player i if he is restricted to using conditional o¤ers? Consider the

strategy of making an o¤er conditional on acceptance by both players. It is easy to see that

the maximum payo¤ that player i can achieve is Áii = V ¡ yj ¡ yk and the other players
get Áji = yj and Áki = yk. Alternatively, consider the strategy of proposing an o¤er yj ;

exclusively to player j. Upon acceptance by player j, a coalition fi; jg forms and continues
negotiating in the next round with player k. The payo¤ to all players then is equal to Áii =

Yij¡yj = V ¡yj¡Yk¡(1¡ ±) (V ¡ Vk ¡ Vij) ; Áji = yj, and Áki = Yk: Therefore, whenever
yk ¡ Yk ¸ (1¡ ±) (V ¡ Vk ¡ Vij) player i is better o¤ with an o¤er exclusively to player
j: Note, however, that there is a loss of e¢ciency equal to (1¡ ±) (V ¡ Vk ¡ Vij) ; because
there is a delay of one period until all gains from trade are fully exploited. We have just

intuitively seen that ine¢ciencies can arise in equilibrium when we rule out unconditional

o¤ers, and those ine¢ciencies can be signi…cant for strictly super-additive games with small

discount factors. The analysis also shows that the equilibrium allocation is approximately

the same with or without the ability to make unconditional o¤ers in negotiations with very

patient players.

Second, consider now how our results change if, as Krishna and Serrano (1996), and

unlike in most of the existing literature, players are restricted to using only unconditional

o¤ers. This restriction does not alter the results whenever the conditions of cases 2, 3,

and 4 of Theorem 1 are satis…ed. This is so because there is a best response strategy

where o¤ers are unconditional in such cases. For example, if Yk · yk and Yj ¸ yj; or if

Yk¡yk < Yj¡yj · 0; then it is a best response for player i to propose a joint unconditional
o¤er yj and Yk; where player j is chosen to be the …rst to respond to the o¤er, followed by k.

However, the restriction of using only unconditional o¤ers does signi…cantly alter the results

in case 1, where Yj ¸ yj and Yk ¸ yk; and the payo¤ of player i with conditional o¤ers is
equal to V ¡yj¡yk: The highest payo¤ that player i can achieve with unconditional o¤ers is
equal to max fV ¡ yj ¡ Yk; V ¡ Yj ¡ ykg (see proof of Theorem 1), which is strictly smaller
than the payo¤ he can achieve with conditional o¤ers: Also, o¤ers to only one player will

only result in a worse outcome for player i : suppose that Yj ¡ yj ¸ Yk ¡ yk (which implies
that max fV ¡ yj ¡ Yk; V ¡ Yj ¡ ykg = V ¡yj¡Yk), and assume that i makes an o¤er yj to
player j, forming the coalition fi; jg ; which then negotiates as a group with player k. The
payo¤ to player i is equal to Áii = V ¡ yj ¡ Yk ¡ (1¡ ±) (V ¡ Vk ¡ Vij) · V ¡ yj ¡ Yk; and

11



the payo¤ to player k is Yk: Note also that in the case where all o¤ers are unconditional, in

contrast with the case where all o¤ers are conditional, the equilibrium allocation is Pareto

e¢cient because a player would rather make a joint o¤er that is accepted by all players than

make an o¤er to form a coalition with one player and then negotiate with the remaining

player as a group.

Krishna and Serrano (1996) analyze a multilateral bargaining problem of dividing a

dollar among n players, and show that there is a unique subgame perfect equilibrium if

players are restricted to using only unconditional o¤ers. This result seems surprising in light

of our discussion in the previous paragraph, and we provide a reconciliatory explanation.

First, there is an added technological feature in Krishna and Serrano’s model: not only

can players accepting an o¤er unconditionally leave the game with the proposed o¤er, but

also the total amount over which the other players remain bargaining is reduced by the

o¤ered amount. In a sense, players in this set-up are given a degree of power–giving away a

share of the dollar without unanimous agreement–that seems too strong for many economic

problems of interest. However, Krishna and Serrano also naturally extend their results to

situations where the unanimous agreement of all players is needed. This is accomplished by

interpreting proposals as o¤ers to purchase the right to represent the remaining players in

future negotiations, in exchange for an immediate cash payment. In order for the model to

work, they also need to assume that the o¤eror is able to borrow the o¤ered amount from

a third party at no cost (interest) and with repayment due only when the o¤eror is able to

reach an agreement with other players in the negotiation.10

Interestingly, this arrangement in Krishna and Serrano (1996) can be reinterpreted in a

third way, using the framework of this paper. This is accomplished considering proposals

as o¤ers to purchase the right to represent another player for a price to be paid conditional

on the o¤eror reaching an agreement with the other remaining players in the negotiation.

This reformulation also underscores that the o¤ers in Krishna and Serrano (1996), although

they might seem at …rst to be unconditional o¤ers, are in reality conditional o¤ers.

3.3. Strategic Equivalence of Games

Von Neumann and Morgenstern (1944) introduced the concept of strategic equivalence for

characteristic function games. This concept can be straightforwardly extended to partition

function games.

Definition 2: A partition function game v with n players is strategically equivalent to the

10Krishna and Serrano (1996) do not explicitly describe the repayment terms of the borrowed funds; this
interpretation is inferred from the analysis that follows.
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partition function game v0 if and only if there exists n + 1 constants (c; a1; ¢ ¢ ¢ ; an) with
c > 0 such that v0 (C;¼) = cv (C; ¼) +

P
i2C ai for all C 2 ¼ and all c.s. ¼:

The idea behind the concept of strategic equivalence is that the strategic motivations

of the players in both games are exactly the same, and also the equilibrium outcomes for

both games are directly related. An immediate corollary of Theorem 1 establishes the

relationship of SSPNE solutions of strategic equivalent games.

Corollary 1: Let
¡
Áij
¢
and (Ái) be an SSPNE outcome of the negotiation game (v; ±)

and let v0 be a game that is strategically equivalent to v: v0 (C; ¼) = cv (C;¼) +
P
i2C ai

for all C 2 ¼ and all c.s. ¼ and c > 0: Then
¡
Á0ij
¢
and

¡
Á0i
¢
; where Á0i = ai + cÁi and

Á0ij = ai + cÁij; is an SSPNE outcome of the negotiation game (v0; ±) :

When considering games in characteristic function only essential games are of interest.

A game is said to be essential if v (N) >
P
i2N v(i): It can be easily shown that inessential

characteristic function games satisfy v (C) =
P
i2C v(i) for all coalitions C; and thus players

have no interesting strategic motivations (i.e., the equilibrium is Ái = v(i); see Von Neumann

and Morgenstern (1944)). Essential games have a convenient (0,1)-normalization associated

with the game v,

v (C)¡Pi2C v(i)
v (N)¡Pi2N v(i)

:

However, partition function games allow for a richer set of strategic considerations. For

example, it can well be the case that v (N; fNg) =Pi2N vi; but due to externality e¤ects
v (C; ¼) 6=Pi2C vi for some C 2 ¼. For example, a coalition between players fj; kg might
be able to impose negative externalities on player i; Vi < vi; and for this reason be able to

strategically demand some compensation from player i; even though v (N; fNg) =Pi2N vi:
In this paper we assume only that v (N; fNg) ¸ P

i2N vi; including the possibility
of strict inequality. Therefore, in general, the game does not have a strategic equiva-

lent (0,1)-normalization. Nevertheless, the 0-normalization associated with the game v,

v (C; ¼)¡Pi2C vi, is useful because it is relatively easier to compute the equilibrium of the

0-normalized game than the equilibrium of the original game.

3.4. Existence of Equilibrium

Our next result establishes the existence and e¢ciency of SSPNE outcomes.

Theorem 2: There exists an SSPNE for all games (v; ±). Furthermore, all SSPNE are

Pareto e¢cient.
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The proof of the theorem is an application of the Kakutani …xed point theorem. First,

note that the Pareto e¢ciency of all equilibrium allocations is an immediate consequence

of Theorem 1. In equilibrium, proposals by player i are such that
P3
j=1 Áji = V; and such

proposals are accepted with probability one. This implies that the sum of expected payo¤s

of players equals
P3
i=1

³
1
3

P3
j=1 Áij

´
= 1

3

P3
j=1

P3
i=1 Áij = V and thus is on the Pareto

frontier.

We …rst de…ne the subset X,

X =

(
x 2 R3 such that

3X
i=1

xi = V and xi ¸ xi = min fvi; Vig
)
; (6)

of agreements that are in the Pareto frontier and satisfy the individual rationality constraint

for all players. Also, consider the correspondence © : X ! R3£R3, where ©ji (x) represents
the expected payo¤ of player j when i is the proposer, which is de…ned using the conditions

(1) to (4) of Theorem 1, and consider the function F : R3 £ R3 ! R3 where F (x) =

(F1 (x) ; F2 (x) ; F3 (x)) and Fi (x) = 1
3

³P3
j=1 xij

´
; which corresponds to condition (5) of

Theorem 1. We show that the correspondence F ±© : X ! R3 satis…es all the conditions of

the Kakutani …xed point theorem (F ±© is u.h.c., X is compact, convex, and a non-empty

subset of the Euclidean space R3; and F ± ©(x) is non-empty and convex for all x) and
thus there is a …xed point x 2 X such that x 2 F ±©(x) : Using the converse of Theorem 1

the set of payo¤s ©ij (x) ; with x …xed point of F ± ©; satis…es all the conditions (1)-(5) of
Theorem 1 and thus there exists an SSPNE ¾ with expected equilibrium payo¤ equal to x:

4. The Negotiation Polyhedra

The results of the previous section encode the game theory and strategic elements of the

coalitional bargaining game into equations and inequalities. In this section we develop the

mathematics of the coalitional bargaining problem, and prove the main theorems of the

paper. Using concepts and theorems from convex geometry, introduced throughout the

section, we show that there is a unique SSPNE outcome for all negotiation games. We show

that the space of partition function games is divided into twenty-six distinct polyhedral

cones, and that in each region the SSPNE outcome is given by a distinct linear function of

the parameters of the game.

4.1. Stationary Equilibrium and Polyhedral Cones

What are the SSPNE outcomes of the negotiation game? Suppose that x 2 R3 is an SSPNE
outcome, and let y 2 R3 be given by yi = ±xi + (1¡ ±) vi (see expression (3)). It must
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then be true that Y ¡ y belongs to at least one of the following cases, where the triple
(i; j; k) 2 ¦ belongs to the set of permutations ¦ of the N players (the motivation for the

choice of labels for the cases will be clear later on):

I : Y1 ¡ y1 ¸ 0, Y2 ¡ y2 ¸ 0; and Y3 ¡ y3 ¸ 0;
II (i) : Yi ¡ yi · 0, Yj ¡ yj ¸ 0; and Yk ¡ yk ¸ 0;
III1 (i; j; k) : Yi ¡ yi < Yj ¡ yj · 0, and Yk ¡ yk ¸ 0;
III2 (k) : Yi ¡ yi = Yj ¡ yj < 0, and Yk ¡ yk ¸ 0;
IV1 (i; j; k) : Yi ¡ yi < Yj ¡ yj < Yk ¡ yk · 0;
IV2 (i) : Yi ¡ yi < Yj ¡ yj = Yk ¡ yk < 0;
IV3 : Yi ¡ yi = Yj ¡ yj = Yk ¡ yk < 0;
IV4 (k) : Yi ¡ yi = Yj ¡ yj < Yk ¡ yk · 0:

De…ne for each triple (i; j; k) the set of eight cases above as

Q(i; j; k) = fI; II(i); III1(i; j; k); III2(k); IV1(i; j; k); IV2(i); IV3; IV4(k)g :

The set of all cases is given by Q = [
(i;j;k)2¦

Q(i; j; k); when we consider all permutations of

N . Note that there are a total of twenty-six cases: one case I and IV3; three cases II (i) ;

III2 (k) ; IV2 (i) ; and IV4 (k) ; and six cases III1 (i; j; k) and IV1 (i; j; k) : Because of the

symmetry of the problem we can concentrate on the analysis of the eight cases in Q(i; j; k):
The following theorem is the result of the separate analysis of each case.

Theorem 3: Let r 2 R3 and ! 2 R3 be de…ned by

(r (v))i = vi +
1

3
(V ¡ v1 ¡ v2 ¡ v3) ; (7)

(! (v; ±))i = ± (Xi ¡ ri) + (1¡ ±) (Vi ¡ vi) :

A payo¤ Á = (Ái) is an SSPNE equilibrium outcome if and only if there exists Q 2 Q(i; j; k),
such that Á = r (v)+©Q ¢! (v; ±) and Q ¢! (v; ±) · 0; where (i; j; k) is any permutation of

N , P is the 3x3 matrix P =

264 ei

ej

ek

375 ; and ©Q and Q are given by the following matrices:
I: I and ©I are equal to264 ¡1 0 0

0 ¡1 0

0 0 ¡1

375P and
264 0 0 0

0 0 0

0 0 0

375P:
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II(i): II(i) and ©II(i) are equal to264 1 0 0

¡± ¡ (3¡ ±) 0

¡± 0 ¡ (3¡ ±)

375P and
1

(3¡ ±)

264 2 0 0

¡1 0 0

¡1 0 0

375P:
III1(i; j; k): III1(i;j;k) and ©III1(i;j;k) are equal to264 ¡ ¡3± ¡ 2±2¢ ¡±2 ¡ ¡9 + ±2 ¡ 9±¢

± (3¡ ±) 0

3 (1¡ ±) ¡ (3¡ 2±) 0

375P and
1¡

9 + ±2 ¡ 9±¢
264 (6¡ 5±) ¡3 (1¡ ±) 0

¡3 (1¡ ±) (3¡ 2±) 0

¡ (3¡ 2±) ¡± 0

375P:

III2 (k): III2(k) and ©III2(k) are equal to264 ¡± ¡± ¡ (6¡ 5±)
(3¡ 2±) ¡3 (1¡ ±) 0

¡3 (1¡ ±) (3¡ 2±) 0

375P and 1

± (6¡ 5±)

264 (3¡ 2±) ¡3 (1¡ ±) 0

¡3 (1¡ ±) (3¡ 2±) 0

¡± ¡± 0

375P:
IV1(i; j; k): IV1(i;j;k) and ©IV1(i;j;k) are equal to264 3 (1¡ ±) ¡ (3¡ 2±) 0

¡±2 ¡ ¡12± ¡ 2±2 ¡ 9¢ ¡ ¡9 + ±2 ¡ 9±¢
± (3¡ 2±) ±2

¡
9¡ 9± + ±2¢

375P and
1¡

9 + ±2 ¡ 9±¢
264 (6¡ 5±) ¡3 (1¡ ±) 0

¡3 (1¡ ±) (3¡ 2±) 0

¡ (3¡ 2±) ¡± 0

375P:

IV2(i): IV2(i) and ©IV2(i) are equal to264 ¡ (7± ¡ 6) ¡ (3¡ 2±) ¡ (3¡ 2±)
±2

¡
12± ¡ 2±2 ¡ 9¢ ¡

9 + ±2 ¡ 9±¢
±2

¡
9 + ±2 ¡ 9±¢ ¡

12± ¡ 2±2 ¡ 9¢
375P and 1

± (6¡ 5±)

264 4± ¡± ¡±
¡2± 3 ¡ (3¡ ±)
¡2± ¡ (3¡ ±) 3

375P:

IV3: IV3 and ©IV3 are equal to2666666664

(7± ¡ 6) (3¡ 2±) (3¡ 2±)
(3¡ 2±) (7± ¡ 6) (3¡ 2±)
(3¡ 2±) (3¡ 2±) (7± ¡ 6)
(6¡ 5±) (4± ¡ 3) (4± ¡ 3)
(4± ¡ 3) (6¡ 5±) (4± ¡ 3)
(4± ¡ 3) (4± ¡ 3) (6¡ 5±)

3777777775
P and

1

3±

264 2 ¡1 ¡1
¡1 2 ¡1
¡1 0 2

375P:
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IV4 (k): IV4(k) and ©IV4(k) are equal to26664
¡ (4± ¡ 3) ¡ (4± ¡ 3) ¡ (6¡ 5±)

± ± (6¡ 5±)
¡3 (1¡ ±) (3¡ 2±) 0

(3¡ 2±) ¡3 (1¡ ±) 0

37775P and 1

± (6¡ 5±)

264 (3¡ 2±) ¡3 (1¡ ±) 0

¡3 (1¡ ±) (3¡ 2±) 0

¡± ¡± 0

375P:

We remark that all systems of linear inequalities Q ¢ ! · 0 are feasible for all Q 2 Q
and ± 2 (0; 1). This implies that we can …nd a negotiation game (v; ±) that has an SSPNE
outcome satisfying any of the twenty-six cases above (see Examples in Section 5 for equilibria

in each of the regions).11 Note that P! = [!i; !j; !k]T and thus the e¤ect of multiplying the

matrices above by P is just to order the vector ! according to (i; j; k) : Also, the inequalities

have been conveniently expressed in such a way that none of the inequalities in Q ¢ ! · 0
are redundant, and thus the expressions cannot be further simpli…ed. Remarkably, the

result above holds for all values of the discount rate ± 2 (0; 1) :
We provide a brief outline of the steps involved in the proofs. The point of most interest

in the proof is the application of the Fourier-Motzkin elimination method (Dantzig (1963)

and Ziegler (1994)) to obtain the system of linear inequalities Q ¢ ! · 0. First, assume

that the statement of case Q is true. Conditions (1) to (4) of Theorem 1 de…ne explicit

expressions for the equilibrium payo¤ of player j when i is the proposer, Áji, as a function

of the equilibrium payo¤ x: Substituting these expressions into condition (5) of Theorem 1

gives us a system of linear equations, which has a unique solution equal to x = r +©Q ¢ !.
In the next step of the proof, we substitute the expression for the equilibrium outcome

into the conditions imposed by case Q; resulting in a system of linear inequalities. This

substitution yields, directly, that the system of linear inequalities is equal to Q ¢ ! · 0;

for all cases Q; except for the cases IV2(i); IV3; and IV4 (k) : These three cases are more

involved because the equilibrium strategies use behavior strategies, and the system of linear

inequalities depends on the probability distribution parameters. However, using the Fourier-

Motzkin elimination method we are able to eliminate the probability distribution parameters

from the system of linear inequalities, and obtain an equivalent system of inequalities equal

to Q ¢ ! · 0 (see, for example, case IV3 in the proof).
The system of inequalities Q ¢ ! · 0 de…ne a polyhedral cone H(Q); where H(Q) =©

! 2 R3 : Q ¢ ! · 0
ª
: A polyhedral cone is a cone12 determined by the intersection of a

…nite number of half-spaces containing the origin 0. The representation of the polyhedral

11Note that the equilibrium outcome is the same in the regions III2 (k) and IV4 (k) ; and in the regions
III1(i; j; k) and IV1(i; j; k): The equilibrium strategies, though, are di¤erent and for this reason we describe
these regions separately.
12A cone is set that contains all non-negative …nite linear combinations of points belonging to it.
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cones H(Q) using the matrices Q; or intersection of half-spaces, is known as the H-

representation of the polyhedral cones.

4.2. Uniqueness of Equilibrium

The goal of this section is to prove that all negotiation games have a unique SSPNE outcome.

By Theorem 3 uniqueness is an immediate consequence of the following claim: for all Q

and Q0 in Q if ! (v; ±) 2 H (Q) \H (Q0) then ©Q ¢ ! (v; ±) = ©Q0 ¢ ! (v; ±) :
The proof of the claim, though, is not straightforward. We proceed in steps and use

some key results from convex geometry (see Ziegler (1994)) that we now introduce.

We start by recalling some basic de…nitions. Given any …nite set of points V ½ R3; we
denote its conical hull by cone (V ) = fPn

i=1 ¸ivi : ¸i ¸ 0 and vi 2 V g : It is straightforward
that cone (V ) is a convex cone. An extremal ray of cone H ½ R3 is any point ! 2 H; ! 6= 0;
such that there exists a vector p 2 R3 where p is a supporting hyperplane to the cone H;
and H \ ©x 2 R3 : p ¢ x = 0ª = f¸! : ¸ ¸ 0g : A vector p de…nes a supporting hyperplane
if for all x 2 H then p ¢ x · 0. We denote the set of all extremal rays of a cone H as

ext(H): Also, the lineality space of a cone H =
©
x 2 R3 :  ¢ x = 0ª is equal to the linear

space lineal (H) =
©
x 2 R3 :  ¢ x = 0ª ; and the lineality of a cone is the dimension of the

lineality space.

With these basic de…nitions in place we formally state the key representation result

from the theory of polytopes: a polyhedral cone H with lineality zero can be represented

as H = cone (ext(H)) ; the convex hull of its extremal rays. The representation of the cone

as the convex hull of its extremal rays is also known as the V -representation of the cone.

We now de…ne the set of points that are the candidates to be the extremal rays of the

polyhedral cones H(Q):

Definition 3: De…ne the set of points V = [
(i;j;k)2¦

fai; bi; cijk; dijkg and the set of values
(© (º))º2V where,

ai = ei; ©(ai) = 0;

bi = ¡ (3¡ ±) ei + ±ej + ±ek; ©(bi) = ¡2ei + ej + ek;
cijk = ¡ (3¡ 2±) ei ¡ 3 (1¡ ±) ej + ±ek; ©(cijk) = ¡ei + ek;
dijk = ¡ (3¡ 2±) ei ¡ 3 (1¡ ±) ej + (4± ¡ 3) ek; ©(dijk) = ¡ei + ek;
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and associate (one-to-one correspondence) each element Q 2 Q to a subset of V as follows:

I = fa1; a2; a3g ; II(i) = fbi; aj ; akg ;
III1(i; j; k) = fbi; cijk; akg ; III2(k) = fcijk; cjik; akg ;
IV1(i; j; k) = fdijk; cijk; big ; IV2(i) = fdijk; dikj; big ;
IV3 = fdijk; dikj ; djik; djki; dkij; dkjig ; IV4(k) = fcijk; cjik; dijk; djikg :

Note that the set V has a total of eighteen points, and we remind that ei 2 R3 is the
ith unit vector. Also, from now on we refer to Q 2 Q, interchangeably, as a subset of V
using the one-to-one correspondence above. The next lemma shows that the set of points in

Q are the extremal rays of the cone H (Q) : The proof of the lemma is based on the direct

application of the results of convex geometry just introduced.

Lemma 1: For all Q 2 Q then H (Q) = cone (Q) and Q is the set of extremal rays of

the cone H (Q) : Furthermore, for all ! 2 H (Q) there is a unique representation of ! =P
º2Q ®ºº as a non-negative linear combination of points in Q; and for all ! 2 H (Q) ;

©Q ¢ ! =
P
º2Q ®º©(º).

This result allows us to represent the polyhedral cones H (Q) simply as a non-negative

linear combination of the points in Q: Also, note that we can compute the SSPNE outcomes

©Q ¢! =
P
º2Q ®º©(º), given any ! 2 H (Q) ; simply by computing the linear combination

of the values ©(º) ; where the parameters ®º are given uniquely by ! =
P
º2Q ®ºº: This

allows us to summarize all the information contained in Theorem 3 in the set of extremal

points V, the set of values (© (º))º2V ; and the set of subsets Q ½ 2V.
The other key step in the proof of the claim is to establish the relationship among the

polyhedral cones H (Q). Lemma 2 shows that the family H (Q) ; Q 2 Q; is a polyhedral
complex : for all Q 2 Q; H (Q) is a polyhedron; and for all Q;Q0 2 Q; H (Q) \ H (Q0)
is a face of both H (Q) and H (Q0) :13 This result is important because it shows that any
given ! (v; ±) belongs either to a unique polyhedral cone H (Q) or to a common face of two

polyhedral cones H (Q) and H (Q0) :

Lemma 2: The family H (Q) ; Q 2 Q; is a polyhedral complex. For any Q and Q0 in Q with
Q0 6= Q then H (Q)\H (Q0) = cone (Q \Q0) ; which is a common face of H (Q) and H (Q0) :
Furthermore, any ! 2 R3 is represented uniquely as ! =Pº2Q ®ºº, for some Q 2 Q.

With these results in place we are ready to prove the main result of the paper.

13The faces of a polyhedral cone are all the intersections of the polyhedron with hyperplanes for which
the polyhedron is entirely contained in one of the two half-spaces determined by the hyperplanes. The faces
of H (Q) are given by cone (Q0) where Q0 µ Q.
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Theorem 4: There exists a unique SSPNE outcome for any negotiation game (v; ±) : This

unique equilibrium outcome is de…ned as the negotiation value, and is a continuous function

of the parameters of the game. The negotiation value is equal to

©(v; ±) = r (v) +
X
º2Q

®º©(º) ;

where Q 2 Q and the coe¢cients (®º)º2Q are the unique non-negative numbers such that
! (v; ±) =

P
º2Q ®ºº; where ! (v; ±) and r (v) are given by expression (7).

Proof: From Theorem 3 we have that a payo¤ Á is an SSPNE outcome if and only if

there exists Q 2 Q such that Á = r (v)+©Q ¢! (v; ±) and ! (v; ±) 2 H (Q) : Lemma 1 implies
that ©Q ¢! (v; ±) =

P
º2Q ®º©(º) where ! (v; ±) =

P
º2Q ®ºº: Suppose now that there exists

another Q0 2 Q with Q 6= Q0 such that ! (v; ±) 2 H (Q)\H (Q0). Lemma 1 also implies that
! (v; ±) =

P
º2Q0 ®

0
ºº; and ©Q0 ¢ ! (v; ±) =

P
º2Q0 ®

0
º©(º) : However, Lemma 2 implies that

there is a unique representation of ! (v; ±) as a non-negative combination of º with all º 2 Q
and Q 2 Q. Therefore, ®º = ®0º for all º 2 Q\Q0 and ®º = ®0º = 0 for all º 2 Vn (Q \Q0) :
This implies that ©Q ¢ ! (v; ±) = ©Q0 ¢ ! (v; ±) =

P
º2Q ®º©(º) =

P
º2Q0 ®

0
º©(º) ; and thus

there is a unique SSPNE outcome. Q.E.D.

We refer from now on to the unique SSPNE outcome as the negotiation value. Existence

and uniqueness results, such as the one in this paper, are uncommon in most coalitional

bargaining models in the literature.14

4.3. The Limit Negotiation Value

Of particular interest is the limit negotiation value as the time interval between proposals

becomes arbitrarily small, and thus the discount rate ± converges to one. The limit nego-

tiation value has a particular simple and intuitive mathematical characterization that we

present in this section. Our next theorem shows that the twenty-six distinct cases (polyhe-

dral cones) collapse into only eight distinct cases (also polyhedral cones) in the limit when

± ! 1.

Theorem 5: Let X and r be given by expressions (2) and (7). The limit negotiation value

of (v; ±) as ± converges to 1 exists and is uniquely given by:

14For example, in the non-cooperative bargaining models of Selten (1981), and the related models of Ben-
nett (1997) and Moldovanu (1992), there can be multiple stationary solutions. Also, Ray and Vohra (1999)
show that there is always a stationary equilibrium, but there is no general uniqueness result. Cooperative
models of coalitional bargaining also commonly do not have both existence and uniqueness results.
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Case I. The negotiation value is Ái = ri if Xi ¸ ri for all i = 1; 2; 3:
Cases II (i). The negotiation value is Ái = Xi; Áj = rj ¡ (Xi¡ri)

2 ; and Ák = rk ¡ (Xi¡ri)
2 ;

if Xi · ri; (Xi ¡ ri) + 2 (Xj ¡ rj) ¸ 0; and (Xi ¡ ri) + 2 (Xk ¡ rk) ¸ 0:
Cases III (k). The negotiation value is Ái = Xi; Áj = Xj; and Ák = V ¡Xi ¡Xj ;
if X1 +X2 +X3 ¸ V; (Xi ¡ ri) + 2 (Xj ¡ rj) · 0; and 2 (Xi ¡ ri) + (Xj ¡ rj) · 0:
Case IV . The negotiation value is Ái = Xi +

1
3

³
V ¡P3

j=1Xj
´
if X1 +X2 +X3 · V:

This result can be easily proved using Theorems 3 and 4 by taking the limits of Q,

H (Q) ; and ©Q when ± ! 1: First, note that since !i ! Xi ¡ ri the results of cases
I and II(i) immediately follows. Also, note that all cases III1(i; j; k); III1(j; i; k); and

III2(k) have the same limit negotiation value and that case III (k) above is equivalent

to H (III1(i; j; k)) [ H (III1(j; i; k)) [ H (III2(k)) (see proof). Finally, all the di¤erent
polyhedral cones of type IV collapse into the polyhedral cone H (IV3): H (IV1(i; j; k)) [
H (IV2(i)) [H (IV4(k)) ½ H (IV3). The unique limit case IV is simply determined by one

linear inequality !1 + !2 + !3 · 0; which is equivalent to X1 +X2 +X3 · V:
Therefore, the twenty-six distinct cases (polyhedral cones) collapse in the limit into only

eight distinct cases. The next section develops the economic content of Theorems 4 and 5.

5. The Economics of Negotiations and Formation of Coalitions

In this section we explore the economic properties of the negotiation value. We analyze

several problems of economic interest and conclude that the negotiation value is intuitive

and captures well the essence of negotiations.

5.1. The Nash Bargaining Solution and the Negotiation Value

The classical solution concept for n-person pure bargaining situations is the Nash bargaining

solution. In such games the cooperation of all players is needed to achieve gains from

trade; otherwise all players get their reservation value. The Nash bargaining solution has

been obtained using both axiomatic cooperative game theory concepts (Nash (1950)) and

non-cooperative game theory concepts (see Rubinstein (1982) and Osborne and Rubinstein

(1990)).

We will see not only that the negotiation value proposed in this paper coincides with the

Nash bargaining solution for three-person pure bargaining games, but also that it generalizes

the Nash bargaining solution to a class of multilateral bargaining problems, in which the

cooperation of any pair of players creates only a fraction of the grand coalition gains. The

following proposition, though an immediate application of Theorem 4, formalizes this idea.
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Proposition 6: The negotiation value of the game (v; ±) is the Nash bargaining solution,

r (v) ; whenever (! (v; ±))i = ± (Xi ¡ ri)+(1¡ ±) (Vi ¡ vi) ¸ 0: Furthermore, in equilibrium,
only the grand coalition, but not any pairwise coalition, can form. In the limit when ± ! 1;

there is no advantage from being the proposer.

The interest of this proposition is perhaps best illustrated with an example.

Example 1: Multilateral bargaining games: Consider the negotiation game (v; ±) where

± 2 (0; 1), vi = Vi = 0; Vij · 1
3 for all pairs fi; jg ; and V = 1:

Note that this multilateral bargaining game is more general than a pure bargaining

game, in which vi = Vi = 0; Vij = 0; and V = 1: The negotiation value of the multilateral

bargaining game can be obtained by computing ri (v) = 1
3 ; and !i (v; ±) =

±
6 (1¡ 3Vjk) :

Because ! (v; ±) ¸ 0; Proposition 6 implies that the negotiation value is Ái (v; ±) = 1
3 ; which

is the Nash bargaining solution of the pure bargaining game. This generalizes the Nash

bargaining solution as the appropriate solution concept for games where all coalitions fi; jg
can achieve only a value Vij less than or equal to 1

3 of the grand coalition gains.

It is worth explaining the economic intuition of this result. The threat of any pair of

players i and j to form a coalition fi; jg is not credible because the most the coalition fi; jg
can get, alienating player k; is Yij = ±

2 (1 + Vij) · 2±
3 · 2

3 ; which is less than
2
3 ; the amount

they can get by agreeing to split the dollar equally. In other words, the ability of coalitions

to demand more than an equal split of the dollar is an outside option that is not credible

(see Sutton (1986) and Osborne and Rubinstein (1990)).

We believe that the negotiation value is a reasonable prediction of how players play a

multilateral bargaining model. Note that this prediction is in contrast to the prediction

of both Hart and Mas-Colell (1996) and Gul (1989) that the Shapley value will be the

outcome of the multilateral bargaining game. Their models have di¤erent comparative

statics implications than ours: in their model, a change in the values Vij changes the

outcome of the negotiation, while in our model the outcome remains unchanged, as long as

Vij · 1
3 : Which solution concept is more appropriate for the multilateral bargaining game

above is an interesting issue that experimental economic analysis can settle.

5.2. The Shapley Value and the Negotiation Value

Another well-established solution concept is the Shapley value. This is a central solution

concept that has also been derived using both axiomatic cooperative game theory (Shapley

(1953)) and non-cooperative game theory (Gul (1989), Hart and Moore (1990), and Hart
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and Mas-Colell (1996)). We now show that the negotiation value is also related to the

Shapley value.

The Shapley value has been generally studied in the context of characteristic function

games. We …rst provide a more general de…nition of the Shapley value that extends the

concept to games in partition function.

Definition 4: Let v be a game in partition function. De…ne the marginal contribution

of player i to the coalition S, i =2 S ½ N; as m (S; i) = v (S [ i; fS [ i; Nn (S [ i)g) ¡
v (S; fS;NnSg) : Also, let ¼ 2 ¦ denote any permutation of the three players, and let

S (¼; i) denote the coalition of players that come before player i: The Shapley value of

player i is de…ned as the average marginal contribution of player i to his predecessors:

Shi (v) =
1

3!

X
¼2¦

m (S (¼; i) ; i) :

First note that for games in characteristic function, v (S [ i; fS [ i; Nn (S [ i)g) =
v (S [ i) and v (S; fS;NnSg) = v (S) ; and thus the de…nition above coincides with the

standard de…nition of the Shapley value for games in characteristic function. More gener-

ally, for a three-player game in partition function we have that

Shi (v) =
1

6
(2 (V ¡ Vjk) + 2Vi + (Vij ¡ Vj) + (Vik ¡ Vk)) : (8)

In two of the six permutations player i is the last, and his marginal contribution is thus

V¡Vjk; in two of the permutations he is the …rst player, and his marginal contribution is thus
Vi; in one permutation he comes second, just after player j; and his marginal contribution is

thus Vij¡Vj; and in one permutation he comes second, just after player k; and his marginal
contribution is thus Vik ¡ Vk:

An important result of this paper establishes the relationship between the negotiation

value and the Shapley value.

Proposition 7: The negotiation value of game (v; ±) is

Ái = Shi (v) +
(1¡ ±)
3±

(2 (Vi ¡ vi)¡ (Vj ¡ vj)¡ (Vk ¡ vk)) ;

if IV3 ¢ ! (v; ±) · 0. In the limit when ± ! 1; if

X1 +X2 +X3 · V; (9)
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the negotiation value is equal to the Shapley value

Ái = Xi +
1

3

0@V ¡ 3X
j=1

Xj

1A = Shi (v) ;

and there is an advantage from being the proposer equal to

Áii = Shi (v) +
1

3

0@V ¡ 3X
j=1

Xj

1A :
Furthermore, any pairwise coalition can form in equilibrium.

Note that the condition in which the negotiation value is equal to the Shapley value,

X1 +X2 +X3 · V; is equivalent to

(V12 ¡ V3) + (V13 ¡ V2) + (V23 ¡ V1) ¸ V; (10)

which is a generalization of the value-additivity condition (VA) of Gul (1989) to partition

function games.15

The analysis of the equilibrium strategies is revealing. In equilibrium, a proposer i

randomly chooses a player, say j; and o¤ers him his Shapley value, Shj (v) ; while player

k is left with only Xk: Note that player i’s payo¤, Áii; is greater than his Shapley value

by 1
3

³
V ¡P3

j=1Xj
´
; and player k’s payo¤ is smaller than his Shapley value by the same

amount. Therefore, there is an advantage from being the proposer and a disadvantage from

being the last player to form a coalition. Thus the Shapley value arises as the equilibrium

in situations where players want to rush to form any pairwise coalition as soon as possible.

This property helps explain why both Gul (1989) and Hart and Mas-Colell (1996) get

the Shapley value as the equilibrium of their non-cooperative models; in both models the

framework is such that any two pairs of players are equally likely to meet and form a

coalition. Interestingly, note that this is the opposite of what happens in the case where

the Nash bargaining is the solution, because in this case no pairwise coalition can arise in

equilibrium.

We …nalize this section with the analysis of several games of economic interest.

Example 2: One-seller and two-buyer market game: Consider the negotiation game (v; ±)

where ± 2 (0; 1), vi = Vi = 0; V12 = vH = 1; V13 = vL; V23 = 0, and V = vH = 1; with

15Note also that for characteristic function games the negotiation value is exactly equal to the Shapley
value for any ± 2 (0; 1) such that IV3 ¢ ! (v; ±) · 0.
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vL < vH = 1: In this game player 1 is the seller, player 2 is the high valuation buyer, and

player 3 is the low valuation buyer.

The negotiation value can be easily obtained by …rst computing the fundamental pa-

rameters of the game according to our theory: ri =
vH
3 ; !1 =

±
6 (1¡ 3V23) = ±

6 ; !2 =
±
6 (1¡ 3V13) = ±

6 (1¡ 3vL) ; and !3 = ±
6 (1¡ 3V12) = ¡±

3 : Application of Proposition 7

shows that the conditions of case IV3 are satis…ed,

(7± ¡ 6)!1 + (3¡ 2±) (!2 + !3) = ¡1
2
± (3¡ 3± + (3¡ 2±) vL) · 0;

(3¡ 2±) (!1 + !3) + (7± ¡ 6)!2 = ¡1
2
± (3¡ 3± + (7± ¡ 6) vL) · 0;

(3¡ 2±) (!1 + !2) + (7± ¡ 6)!3 = ¡1
2
± (¡6 (1¡ ±) + (3¡ 2±) vL) · 0;

(6¡ 5±)!1 + (4± ¡ 3) (!2 + !3) = ¡1
2
± (¡3 (1¡ ±) + (4± ¡ 3) vL) · 0;

(4± ¡ 3) (!1 + !3) + (6¡ 5±)!2 = ¡1
2
± (¡3 (1¡ ±) + (6¡ 5±) vL) · 0;

(4± ¡ 3) (!1 + !2) + (6¡ 5±)!3 = ¡1
2
± (6 (1¡ ±) + (4± ¡ 3) vL) · 0;

if ± ¸ 6
7 and vH > vL ¸ max

n
3(1¡±)
6¡5± ;

6(1¡±)
3¡2± ;

3(1¡±)
4±¡3

o
.16 Note that this condition is equivalent

to vH > vL ¸ 0; when ± approaches one, which is also equivalent to condition (10). By

Proposition 7 we have that the negotiation value is the Shapley value

Á1 =
vH
2
+
vL
6
; Á2 =

vH ¡ vL
2

+
vL
6
=
1

2
vH ¡ 1

3
vL; and Á3 =

vL
6
;

if the conditions above are satis…ed. This solution generalizes the solution of the one-seller

two-buyer market game in Osborne and Rubinstein (1990) when players are allowed to use

contracts and resell the asset.

It is instructive to interpret the equilibrium strategies of the game. The one-seller

two-buyer game is an example of a game that has no equilibrium in pure strategy. The

behavior strategies are as follows, where ¢ = 1
6vL =

1
3

³
V ¡P3

j=1Xj
´
, and the probability

distribution parameters are p1; p2; and p3 given by (see proof of Theorem 3) p1 = p3+0:25;

p2 = 0:25¡ p3; and p3 2 [0; 0:25]:
Buyer 2 o¤ers to buy the seller’s asset for Á1¡¢ and pays buyer 3 Á3 = ¢ to leave the

market (with probability p2), and o¤ers to buy the seller’s asset for Á1 (with probability

1¡ p2); buyer 2’s payo¤ is Á2 +¢: Buyer 3 o¤ers to buy the seller’s asset for Á1 ¡¢ and

resell it to buyer 2 for Á1 +¢ (with probability p3), and o¤ers to buy the seller’s asset for
16Note that the value of the right-hand-side function of ± is contained in the interval (0; 1) for ± 2 (6=7; 1),

is decreasing in ±; and converges to zero when ± approaches one.
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Á1 and resell it to buyer 2 for Á1+2¢ (with probability 1¡p3); buyer 3’s payo¤ is 2¢: The
seller o¤ers to sell his asset to buyer 3 for Á1 +¢, who then resell the asset to buyer 2 for

Á1 (with probability p1), and o¤ers to sell his asset to buyer 2 for Á1+¢ (with probability

1 ¡ p1); the seller’s payo¤ is Á1 + ¢: Note that in all cases the player with the initiative
bene…ts by ¢:

In general we can readily tell when the negotiation value converges to the Shapley value

by inspecting whether condition (10) is satis…ed or not. The next examples illustrate the

applications to some other games.

Example 3: Three-person majority voting game: In this game v (S) = 1 if #S ¸ 2; and
v (S) = 0 otherwise.

Note that this game satis…es condition (10) because (V12 ¡ V3)+(V13 ¡ V2)+(V23 ¡ V1) =
3 > V = 1 and thus the negotiation value coincides with the Shapley value, which is just

an equal split of the dollar.

Example 4: Three-person zero-sum game: In this game vi = 0; Vjk = ¡Vi = ci > 0; and
V = 0:

This game also satis…es condition (10) because (V12 ¡ V3) + (V13 ¡ V2) + (V23 ¡ V1) =
2 (c1 + c2 + c3) > 0; and thus the negotiation value also coincides with the Shapley value

which is

Á1 = ¡c1 +
(c1 + c2 + c3)

3
; Á2 = ¡c3 +

(c1 + c2 + c3)

3
; and Á3 = ¡c3 +

(c1 + c2 + c3)

3
:

Interestingly, this solution coincides with the solution proposed by von Neumann and Mor-

genstern (1944) for three-person zero-sum games.

5.3. Natural Coalitions and Pivotal Players

We have seen that the Nash bargaining is the equilibrium outcome when no pairwise coali-

tion can form, and that the Shapley value is the equilibrium outcome when all pairwise

coalitions can form. A novel element of our theory is that neither the Nash bargaining

solution nor the Shapley value seems to be the right solution concept for a broad class of

games.

First, there are situations where the outcome of a negotiation is better determined by

sequential pairwise bargaining sessions: a …rst pairwise bargaining session in which a spe-

ci…c pairwise coalition is formed–natural coalition–followed by a second pairwise bargaining
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session between the natural coalition and the player that was left alone. We provide an

example of an oligopolistic industry where there are gains from merging, in which the con-

solidation occur in two stages, with the …rst stage being a combination of two natural merger

partners.

Second, there are other types of situations where the outcome of a negotiation is better

determined by one pivotal player bargaining unconditionally with the other players, where

any pairwise coalition between the pivotal player and the other players can form, but not

the pairwise coalition between the non-pivotal players. We provide an example of a labor

market game with one …rm (the pivotal player) and two workers, where the workers are

better o¤ bargaining individually with the …rm rather than forming a union to collectively

bargain for wages.

These two new situations have an equilibrium allocation that is intrinsically di¤erent

from the well-known Nash bargaining solution and the Shapley value. As we will see, the

situation where fj; kg is a natural coalition corresponds to case II(i) and the situation where
player k is pivotal corresponds to case III(k). The next proposition provide an intuitive

interpretation of each situation using outside options.

Proposition 8: The equilibrium coalition structures and outcome of the negotiation game

(v; ±) ; for ± close to one, are as follows:

(1) Natural coalition fj; kg: If Xi · ri; Xj ¸ vj + (Xjk¡vj¡vk)2 ; and Xk ¸ vk + (Xjk¡vj¡vk)2

then the equilibrium is the result of sequential bargaining between players j and k to form

coalition fj; kg ; followed by bargaining between coalition fj; kg and player i to form the

grand coalition. The outcome is Ái = Xi; Áj = vj+
(Xjk¡vj¡vk)

2 ; and Ák = vk+
(Xjk¡vj¡vk)

2 ;

and there is no advantage from being the proposer.

(2) Pivotal player k: If Xi +Xj ¸ Xij; Xj · vj + (Xjk¡vj¡vk)2 ; and Xi · vi + (Xik¡vi¡vk)
2

then equilibrium is the result of player k bargaining unconditionally with players i and j,

and the only pairwise coalitions that can form are either fk; ig or fk; jg. The outcome is
Ái = Xi; Áj = Xj ; and Ák = V ¡Xi¡Xj; and there is no advantage from being the proposer.

First, consider the case where fj; kg is a natural coalition. The outcome of negotiations
can be obtained proceeding backwards in the sequential bargaining sessions. In the last

bargaining session, the values of player i and the coalition fj; kg are, respectively, Xi and
Xjk; as we know from Theorem 0. In the …rst bargaining session, players j and k bargain

over Xjk using as disagreement points vj and vk; which are their status quo values if they do

not reach an agreement, and the coalition fj; kg does not form. Note that indeed only the
pairwise coalition fj; kg will form because neither j nor k want to form coalitions fj; ig and
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fk; ig: the payo¤s of the players left out when coalitions fj; ig and fk; ig forms are equal to,
respectively, Xk andXj; and we have thatXk ¸ vk+(Xjk¡vj¡vk)2 andXj ¸ vj+(Xjk¡vj¡vk)2 .

Now, consider the situation where player k is pivotal. The outcome of negotiations can

be obtained observing that players i and j cannot demand a higher payo¤ than Xi and Xj
from player k by threatening to form the coalition fi; jg because they would be worse o¤
pursuing this strategy as Xij · Xi +Xj : Also, note that players i and j are not willing to
accept any o¤er lower than Xi and Xj because they can guarantee this amount by credibly

holding out. This is so because if i holds out then k would successfully bargain with j to

form a coalition; j’s gain are vj +
(Xjk¡vj¡vk)

2 ¸ Xj; and thus j does not want to hold out
when i holds out.

Our next result compares the predictions of the negotiation value, the Nash bargaining

solution, and the Shapley value in situations where there are natural coalitions and pivotal

players.

Corollary 2: The Nash bargaining and the Shapley value bias the limit negotiation value

in the following systematic ways:

(1) Whenever fj; kg forms a natural coalition then ri ¸ Ái ¸ Shi(v), Áj ¸ rj ; and Ák ¸ rk:
(2) Whenever player k is a pivotal player then ri ¸ Ái ¸ Shi (v), rj ¸ Áj ¸ Shj (v) ; and
rk · Ák · Shk (v) :

As we expected the players j and k when forming a natural coalition are able to

strengthen their bargaining position and get more than their Nash bargaining value (the

opposite happening with the player left out). Interestingly, the Shapley value underes-

timates the equilibrium outcome of player i, because we have that V · P3
j=1Xj and

Shi(v) = Xi +
1
3

³
V ¡P3

j=1Xj
´
· Xi = Ái:

In the situation where k is a pivotal player then player k gets more than the Nash

bargaining solution, but less then the Shapley value, and the opposite happens with players

j and k: This is so because both players i and j get more than the Shapley value, Shi (v) =

Xi +
1
3

³
V ¡P3

j=1Xj

´
· Xi = Ái and, similarly, Áj ¸ Shj (v), which implies that Ák ·

Shk (v) ; because
P
Shi (v) =

P
Ái = V:

A better understanding of negotiations can be grasped by analyzing more closely two

examples, each one illustrating one of the two new situations.

Example 5: Labor market game: In this game ± 2 (0; 1), vi = Vi = 0; V12 = v; V13 = v;
V23 · 1 ¡ 2v where v 2

£
1
3 ; 1
¤
; and V = 1. The …rm is player 1, and players 2 and 3 are

the two workers.
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How much are the …rm’s pro…ts and the employee wages? Are the workers better o¤

forming a union to collectively bargain for wages?

As we have done so far, we can solve the game by looking directly at the parameters

!1 =
±

6
(1¡ 3V23) ¸ ±

3
(3v ¡ 1) ; !2 = ±

6
(1¡ 3v) ; and !3 = ±

6
(1¡ 3v) :

Since the conditions of case III2(1) hold,

¡± (!2 + !3)¡ (6¡ 5±)!1 · ¡2± (1¡ ±) (3v ¡ 1) · 0
(3¡ 2±)!2 ¡ 3 (1¡ ±)!3 = ¡1

6
±2 (3v ¡ 1) · 0

¡3 (1¡ ±)!2 + (3¡ 2±)!3 = ¡1
6
±2 (3v ¡ 1) · 0

the negotiation value is equal to

Á1 =
2 (1¡ ±) + ±v

6¡ 5± ; Á2 =
1

2

µ
4¡ (3 + v) ±
6¡ 5±

¶
; and Á3 =

1

2

µ
4¡ (3 + v) ±
6¡ 5±

¶
;

and the limit negotiation value (± ! 1) is equal to

Á1 = v; Á2 =
1¡ v
2
; and Á3 =

1¡ v
2
;

where Á1 ¸ Á2 = Á3. Therefore, in equilibrium, the …rm hires both employees for a wage of
1¡v
2 ; and the …rm’s pro…t is v:

Note that the …rm is not able to hire any employee at a wage lower than 1¡v
2 : Otherwise,

the employee could just wait until the …rm signs a contract with the other employee and

bargain with the …rm for a wage equal to half of the extra pro…ts that he could bring to the

…rm, which results in a wage equal to 1
2 (1¡ v) : Also, the …rm is not willing to sign a wage

contract above 1
2 (1¡ v) with any employee. The threat of forming a union to bargain for

higher wages is not credible. The union can bargain for a total wage package equal to half

of the surplus that the union brings to the …rm, which is equal to 1
2 (1 + V23) · 1 ¡ v:17

Therefore, collective bargaining results in a wage per worker lower than the amount the

…rm is willing to o¤er in the …rst place.

Note that, contrary to what we assumed so far, if V23 ¸ 1¡2v then a di¤erent equilibrium
would arise. In this new situation condition (10) holds, and thus the Shapley value is the

limit equilibrium outcome. Interestingly, in this case the workers would collectively bene…t

from forming a union. However, the union is not stable, because the …rm would be tempted

17Note that we assume V23 · 1 ¡ 2v; and thus it can be either positive, if v · 1
2
(e.g., workers derive

utility from participating in a union), or negative (e.g., there are costs associated with operating a union).
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to make a higher individual o¤er to only one member of the union. This stylized example

illustrates that the theory of negotiations in this paper can bring new insights to collective

bargaining and unionization models.

Example 6: Oligopolistic industries and mergers and acquisitions : Consider the game vi =

Vi = 0; V = 1; V12 = vH ; V13 = vL1 ; V23 = vL2 where vH 2
£
1
3 ; 1
¤
and vL1 · vL2 · 1¡±vH

3¡± ·
vH :

In this example there are three …rms competing in an industry where there are gains

from consolidation. What are the prices at which …rms merge? Are there any natural

merger partners in this industry?

The negotiation value and strategies provide a direct answer to the questions above.

The parameters of the mergers and acquisitions game are

!1 =
±

6
(1¡ 3vL) ; !2 = ±

6
(1¡ 3vL) ; and !3 = ±

6
(1¡ 3vH) :

The conditions of case II(3) hold,

!3 =
±

6
(1¡ 3vH) · 0;

¡±!3 ¡ (3¡ ±)!1 = ¡1
2
± (1¡ ±vH + (3¡ ±) vL) · 0;

¡±!3 ¡ (3¡ ±)!2 = ¡1
2
± (1¡ ±vH + (3¡ ±) vL) · 0;

and thus the negotiation value is

Á1 =
1

2

µ
2¡ ± + ±vH
3¡ ±

¶
; Á2 =

1

2

µ
2¡ ± + ±vH
3¡ ±

¶
; and Á3 =

1¡ ±vH
3¡ ± ;

and the limit negotiation value is equal to

Á1 =
1+ vH
4

; Á2 =
1 + vH
4

; and Á3 =
1¡ vH
2

;

where Á1 = Á2 ¸ Á3; whenever vL · 1¡vH
2 and vH 2

£
1
3 ; 1
¤
:

It is worth exploring several issues that are behind this solution. Note that the industry

does not consolidate in a random fashion. If …rms 1 and 3 merge their pro…tability increases

by vL: However, there are still gains from further consolidation with …rm 2. What are

the gains for each merging …rm? Assume that the initial merger between …rms 1 and 3

is irreversible or divesting is too costly to be considered a viable option.18 Firm 2 and

18We do not explore further the role of this assumption in this paper, although we believe the results are
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conglomerate f1; 3g will then split the merger gains in a Nash bargaining way, each getting,
respectively, 12 (1¡ vL) and 1

2 (1 + vL) : Note that the value of the conglomerate f1; 3g is
1
2 (1 + vL) · 1

4 (3¡ vH) = Á1 + Á3: Therefore, one can predict that …rms 1 and 3 are not
going to merge and, by the same reasoning, one can also rule out a merger between …rms 2

and 3.

Consider now a merger between …rms 1 and 2. The value of the conglomerate f1; 2g
is equal to 1

2 (1 + vH) and the value of …rm 3 is 12 (1¡ vH) (see previous paragraph). How
should the value of the conglomerate f1; 2g be split among …rms 1 and 2? Firm 2 has an

apparent stronger bargaining position than …rm 1 because vL1 · vL2 and thus it seems

reasonable that …rm 2 should receive a higher share of the value than …rm 1. This intuitive

idea is wrong, however. Firm 2 does not have any credible outside options other than to

merge with …rm 1, and thus the Nash bargaining solution is an equal split of the value of

the conglomerate f1; 2g :

5.4. Externalities in Negotiations

We discuss in this section the role of externalities in negotiations. The formation of coalitions

may impose externalities on the non-members: in a partition function game coalition fi; jg
creates an externality worth Vk¡ vk for player k. How important are these externalities for
the outcome of negotiations?

Proposition 9: The negotiation game (v; ±) ; where v is a game in partition function, and

the negotiation game (v; ±) ; where v is the characteristic function game

vi = vi; vij = ±
¡1 ((2¡ ±) vk ¡ (2¡ ±)Vk + ±Vij) ; V = V;

have the same SSPNE equilibrium outcome. In particular, in the limit as ± ! 1; both

negotiation games v and v; where v is the characteristic function game

vi = vi; vij = Vij ¡ (Vk ¡ vk) ; V = V;

have the same SSPNE equilibrium outcome.

This proposition illustrates that the worth of a coalition is equally dependent on how

much value it creates, Vij ; and howmuch negative externality it imposes on the non-members

of the coalition, ¡ (Vk ¡ vk) : It is an interesting issue for experimental economics to assess
not dependent on it.
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whether the presence of externalities in‡uences the equilibrium allocations as predicted by

the negotiation value.

Another interesting point illustrated by the proposition is that all equilibrium outcomes

spanned by partition function games can also be replicated with characteristic function

games. Therefore, the characteristic functions introduced by von Neumann and Morgen-

stern (1944) are su¢cient to capture most of the interesting strategic elements of negotia-

tions.

6. Conclusions

This paper introduces a new concept of value for three-player coalition bargaining games–

the negotiation value. The negotiation value is Pareto e¢cient and is the unique subgame

perfect Nash equilibrium of a dynamic non-cooperative game in which players make condi-

tional or unconditional o¤ers, and coalitions remain negotiating as long as there are gains

from trade. The underlying economic opportunities in the model are described by a par-

tition function game, which allows us to capture the role of externalities in negotiations:

the value of a coalition depends not only on its own worth but also on how much negative

externality it imposes on its non-members.

The theory developed in the paper provides a uni…ed framework that selects an economi-

cally intuitive solution for all partition function games. This solution can either be the Nash

bargaining solution (case in which no pairwise coalition forms), the outcome of sequential

bargaining sessions (case in which only the pairwise coalition between two natural partners

forms), the outcome of a pivotal player bargaining with the other players (case in which

only the two pairwise coalitions with the pivotal player forms), or the Shapley value (case

in which all pairwise coalitions forms).

We conclude with a discussion of several natural extensions of this paper. First, although

we restricted our analysis to three-player coalitional bargaining games, the framework of this

paper is suitable to generalizations, and the concept of negotiation value can be extended to

n-player games (see Gomes (1999b)). Second, even though we favor the non-cooperative ap-

proach to bargaining, analyzing the cooperative game theory foundations of the negotiation

value can enhance our understanding of this solution concept. Furthermore, comparison

of the cooperative formulation of this new solution with well-established solutions from co-

operative game theory such as the nucleolus, the core, and the Shapley value allows for a

deeper understanding of each solution concept (see Gomes (1999a)).

Moreover, we note that most of the literature in coalitional bargaining (including this

paper) follows the von Neumann and Morgenstern (1944) approach of describing the coali-
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tional game using characteristic or partition function forms. However, given a game in

strategic form in which players have a given strategy set and are allowed to write binding

agreements, how is the characteristic or partition function generated? One major gap in

the literature in coalitional bargaining is the lack of a theory for the determination of the

partition function, starting from a game in strategic form (see Shubik (1983) and Ray and

Vohra (1997, 1999)). Gomes (1999c) shows that the solution of the strategic form game and

the solution of the coalitional bargaining game in partition function are naturally linked,

and provides a consistent way to obtain the partition function form given a strategic form

game.
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Appendix

Proof of Theorem 1: Suppose that ¾ is an SSPNE of the game (v; ±) : We have already seen in
the discussion following the theorem what the best acceptance strategy is. Given that we already
know how players respond to o¤ers, let us determine the best proposal strategy. Obviously, if i
proposes an o¤er that is unacceptable to all other players (or if he chooses not to propose), then his
payo¤ is equal to yi:

(i) If i proposes an o¤er only to player j; then the highest payo¤ i can get is Yij ¡ yj : This is so
because in the continuation game the equilibrium payo¤ of the coalition fi; jg is Yij and the
minimum that player j accepts is pj = yj :

(ii) If i proposes an o¤er to both players j and k conditional on their joint acceptance, then the
highest payo¤ i can get is V ¡ yj ¡ yk. This is immediately true because the minimum that
players j and k accept is pj = yj and pk = yk; respectively.

(iii) If i proposes an o¤er both to players j and k conditional on j accepting but unconditional on
k accepting, then the highest payo¤ i can get is V ¡yj¡Yk: This is an immediate implication
of the best response strategies of j and k; because players j and k accept a minimum o¤er of
pj = yj and pk = Yk, respectively.

(iv) If i proposes an o¤er to both players j and k unconditional on the acceptance of both, then
the highest payo¤ i can achieve is½

max fV ¡ yj ¡ Yk; V ¡ Yj ¡ yk; Yij ¡ yj ; Yik ¡ yk; yig ; if Yk · yk or Yj · yj
max fV ¡ Yj ¡ Yk; Yij ¡ yj ; Yik ¡ yk; yig ; if Yk ¸ yk and Yj ¸ yj : (11)

Let us prove this claim. Obviously, player i can achieve Yij ¡ yj , Yik ¡ yk or yi with an o¤er
that only one or none of the players accepts. Consider then the best o¤er that i can make that is
acceptable by both j and k: Assume that i chooses player j to be the …rst player to respond to the
o¤er. We have seen before that j accepts the o¤er if and only if pj ¸ Yj and pk ¸ yk; or pj ¸ yj
and pk < yk; and that player k accepts the o¤er if and only if pk ¸ Yk; if player j has previously
accepted the o¤er, or if player j has previously rejected the o¤er, if pk ¸ yk. Therefore, player i can
buy players’ j and k assets at a minimum cost equal to min fYj + yk; yj + Ykg if Yk · yk; and equal
to Yj + Yk if Yk ¸ yk; when player j is the …rst player to respond. But since player i can choose
either j or k to be the …rst player to respond then he can buy both players’ assets at a minimum
cost equal to min fYj + yk; yj + Ykg if Yk · yk or Yj · yj ; and equal to Yj + Yk if Yk ¸ yk and
Yj ¸ yj ; which proves the claim.

We have shown, so far, that player i’s expected utility when chosen to propose, Áii; is equal to

Áii = max fyi; Yij ¡ yj ; Yik ¡ yk; V ¡ yj ¡ yk; V ¡ yj ¡ Yk; V ¡ Yj ¡ ykg :

We now show that Yij¡yj · V ¡yj¡Yk (and also Yik¡yk · V ¡yk¡Yj) and that yi · V ¡yj¡yk:
Alternatively, it is always a best response strategy for player i to make an o¤er that is acceptable
by all players.

First, let us prove that Yij¡yj · V ¡yj¡Yk; and that the inequality holds strictly if Vk+Vij < V
holds strictly (similarly we also have that Yik¡yk · V ¡yk¡Yj). Note …rst that Yij¡yj · V ¡yj¡Yk
is equivalent to Yij + Yk · V; and

Yij + Yk = ±Xij + (1¡ ±)Vij + ±Xk + (1¡ ±)Vk
= ± (Xk +Xij) + (1¡ ±) (Vk + Vij)
= ±V + (1¡ ±) (Vk + Vij) ;
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However, since Vk + Vij · V then Yij + Yk · V; and if Vk + Vij < V then Yij ¡ yj < V ¡ yj ¡ Yk:
Now, let us show that yi · V ¡ yj ¡yk; and that the inequality holds strictly if v1+v2+v3 < V

holds strictly. This holds because vi + vj + vk · V and Ái + Áj + Ák · V; which then implies that
yi + yj + yk = ±

¡
Ái + Áj + Ák

¢
+ (1¡ ±) ( vi + vj + vk) · V:

We thus have that the highest expected utility that player i can achieve, conditional on being
chosen to be the proposer, is equal to

Áii = max fV ¡ yj ¡ yk; V ¡ yj ¡ Yk; V ¡ Yj ¡ ykg : (12)

Using this result and the best acceptance strategies we can easily prove that conditions (1) to (4) of
the theorem are true: just observe that the best response strategy proposed in the statement of the
theorem implements the maximum payo¤ for each of the cases. Condition (5) of the theorem also
holds (see discussion following the theorem), which completes the necessary part of the theorem.

We now prove the converse of the theorem. Suppose that we are given payo¤s
¡
Áji
¢
and (Ái) for

i; j 2 f1; 2; 3g satisfying all the conditions above. We claim that the stationary strategy pro…le ¾ of
proposals and responses considered above is a stationary subgame perfect equilibrium. We use the
one-stage deviation principle for in…nite-horizon games to prove the claim. This proposition states
that in any in…nite-horizon game with observed actions that is continuous at in…nity, a strategy
pro…le ¾ is subgame perfect if and only if there is no player i and strategy ¾0i that agrees with ¾i
except at a single stage t of the game and history ht; such that ¾0i is a better response to ¾¡i than
¾i conditional on history ht being reached (see Fudenberg and Tirole (1991)).

Note …rst that the game is continuous at in…nity: for each player i his utility function is such
that, for any two histories h and h0 such that the restrictions of the histories to the …rst t periods
coincides, then the payo¤ of player i; jui (h)¡ ui (h0)j ; converges to zero as t converge to in…nity: It
is immediately clear that the negotiation game is continuous at in…nity because jui (h)¡ ui (h0)j ·
M
¡
±t+1 + ±t+2 + ¢ ¢ ¢ ¢ = M

1¡± ±
t+1; where M ¸ V ¡min fvj ; Vjg ¡min fvk; Vkg.

The strategy pro…le ¾i is such that, by construction, no single deviation ¾0i at both the proposal
and response stage can lead to a better response than ¾i. Therefore, by the one-stage deviation
principle, the stationary strategy pro…le ¾ is a subgame perfect Nash equilibrium. Q.E.D.

Proof of Theorem 2: For the proof of Pareto e¢ciency of the SSPNE, see the discussion
following the statement of Theorem 2.

Consider the subsetX; de…ned by expression (6), of all agreements that are in the Pareto frontier
and satisfy the individual rationality constraint for all players. Any equilibrium payo¤ belongs to
the set X because the minimum that a player i can get is equal to min fvi; Vig where vi is his payo¤
if no coalition is formed, and Vi is his minimum payo¤ if the coalition fj; kg is formed. Note that
the set X is non-empty because v1 + v2 + v3 · V and xi = min fvi; Vig · vi: Obviously the set X
is also compact and convex.

We now de…ne a correspondence © : X ! R3£R3, where ©ji (x) represents the expected payo¤
of player j when i is the proposer. Given any payo¤ x = (x1; x2; x3) ; let ©(x) µ R3 £ R3 be a
system of payo¤s that satisfy conditions (1) to (4) of Theorem 1, de…ned as follows:
1) If Yj ¸ yj and Yk ¸ yk then ©ii (x) = V ¡ yj ¡ yk, ©ji (x) = yj ; and ©ki (x) = yk:
2) If Yj ¸ yj and Yk · yk then ©ii (x) = V ¡ yj ¡ Yk, ©ji (x) = yj ; and ©ki (x) = Yk:
3) If Yj ¡ yj < Yk ¡ yk · 0 then ©ii (x) = V ¡ Yj ¡ yk, ©ji (x) = Yj ; and ©ki (x) = yk:
4) If Yj ¡ yj = Yk ¡ yk · 0 then ©ii (x) = V ¡ Yj ¡ yk = V ¡ yj ¡ Yk, and ©ji (x) = [Yj ; yj] ; and
©ki (x) = [Yk; yk] :

Note that the correspondence is single-valued for all elements x 2 X; except at the points x
where Yj ¡ yj = Yk ¡ yk < 0; where ©ji (x) = [Yj ; yj ] and ©ki (x) = [Yk; yk] ; two convex sets
(closed intervals). We thus have that for x 2 X, ©(x) is a convex (and non-empty) set. Also, the
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correspondence © is upper hemi-continuous (u.h.c.). The correspondence © is obviously continuous
at any point x 2 X ¡D where

D = fx 2 X such that Yi ¡ yi = Yj ¡ yj < 0 for some pair (i; j) with i 6= jg ;

and is u.h.c. at any x 2 D: Note that © is not lower hemi-continuous (and therefore discontinuous)
at a point x 2 D:

De…ne now a function F : R3 £ R3 ! R3 as F (x) = (F1 (x) ; F2 (x) ; F3 (x)) with Fi (x) =
1
3

³P3
j=1 xij

´
for any x = (xij)i;j2f1;2;3g : This function is obviously continuous. Consider now the

composition F ± © : X ! R3: The composition is u.h.c. because © is u.h.c. and F is continuous.
Also note that F ±©(x) is convex for all x:

We prove that the image of F ±©(X) µ X: This is so because, for any x 2 X;P3
j=1©ji (x) = V;

and thus
P3
i=1 (F ±©)i (x) =

P3
i=1

1
3

P3
j=1©ij (x) =

1
3

P3
j=1

P3
i=1©ij (x) = V: Also, ©ij (x) ¸

min fyi; Yig ¸ xi for any i 6= j because xi ¸ xi and yi = ±xi + (1¡ ±) vi ¸ xi. Finally, note that
©ii (x) ¸ V ¡ yj ¡ yk ¸ xi because xi + xj + xk = V; and vi + vj + vk · V ; thus yi + yj + yk =
±xi + (1¡ ±) vi + ±xj + (1¡ ±) vj + ±xk + (1¡ ±) vk · V . Then xi · yi · V ¡ yj ¡ yk · ©ii (x) ;
implying that ©ii (x) ¸ xi. This then implies that (F ±©)i (x) = 1

3

P3
j=1©ij (x) ¸ xi; which shows

that F ±©(x) 2 X:
All the conditions of the Kakutani …xed point theorem hold for the correspondence F±© : X ! X

and thus there is a …xed point x 2 X such that x 2 F ± ©(x) : X is compact, convex, and a non-
empty subset of the Euclidean space R3; F ±©(x) is non-empty and convex for all x; and F ± © is
u.h.c.

From Theorem 1 the set of payo¤s ©ij (x) for x …xed point of F ±© satis…es conditions (1) to (5)
of Theorem 1. The theorem then implies that there exists an SSPNE ¾ with expected equilibrium
payo¤ equal to x: Q.E.D.

Proof of Theorem 3: Consider the 0-normalized game u: ui = 0; Ui = Vi ¡ vi; Ujk =
Vjk¡ vj ¡ vk; and U = V ¡ v1¡ v2¡ v3: By Corollary 1 the equilibrium outcome (Ái) of game (v; ±)
and the equilibrium outcome (xi) of game (u; ±) are related by xi = Ái ¡ vi; and thus the set of
equilibrium outcomes satis…es ©(u; ±) = ©(v; ±)¡ (v1; v2; v3) :

Moreover, the de…nitions of Q and ©Q are independent of the game, r(u) = r(v) ¡ vi; and
! (u; ±) = ! (v; ±) ; because

(! (u; ±))i = Ui +
±

2
(U ¡ Ui ¡ Ujk)¡ ±

3
U = Vi +

±

2
(V ¡ Vi ¡ Vjk)¡

0@vi + ±
3

0@V ¡ 3X
j=1

vj

1A1A = (! (v; ±))i :

Therefore, proving the theorem for the 0-normalized game (u; ±) is equivalent to proving it for the
game (v; ±) :

In the remainder of this proof we consider only the 0-normalized game (u; ±) : The variables
(yi), (Yi) ; and (Yij) for the normalized game (u; ±) are yi := ±xi; Yi := Ui + ±

2 (U ¡ Ui ¡ Ujk) ; and
Yij := Ujk +

±
2 (U ¡ Ui ¡ Ujk) ; and we also consider the transformation of variables

r =
U

3
and ! = ! (u; ±) = Y ¡ ±

3
U: (13)

We now analyze separately each of the following cases Q 2 Q:
I: Y1 ¡ ±x1 ¸ 0, Y2 ¡ ±x2 ¸ 0; and Y3 ¡ ±x3 ¸ 0:
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Conditions (1)-(4) of Theorem 1 give us the following system of equilibrium payo¤s:

Á11 = U ¡ ±x2 ¡ ±x3 Á21 = ±x2 Á31 = ±x3
Á12 = ±x1 Á22 = U ¡ ±x1 ¡ ±x3 Á32 = ±x3
Á13 = ±x1 Á23 = ±x2 Á33 = U ¡ ±x1 ¡ ±x2

and by condition (5) these equilibrium payo¤s satisfy the following system of equations:

x1 =
1

3
(U ¡ ±x2 ¡ ±x3 + 2±x1) ;

x2 =
1

3
(U ¡ ±x1 ¡ ±x3 + 2±x2) ;

x3 =
1

3
(U ¡ ±x1 ¡ ±x2 + 2±x3) :

The unique solution of the system of linear equations above is xi = U
3 = ri for all i: The conditions

that must be satis…ed by the solution xi = U
3 are Yi ¡ ±xi ¸ 0 for all i; which are equivalent to,

Yi ¸ ±U

3
for all i: (14)

Using the transformation of variables in (13), we obtain the expressions for ©I and I : By the
converse of Theorem 1 we have that if the game satis…es the system of inequalities (14) then there
is an equilibrium with outcome given by ©I . This …nal step of the proof is similar for each of the
next following cases, and for this reason will be omitted in the remaining cases.

II(i): Yi ¡ ±xi · 0, Yj ¡ ±xj ¸ 0; and Yk ¡ ±xk ¸ 0:
Conditions (1)-(4) of Theorem 1 give us the following system of equilibrium payo¤s:

Áii = U ¡ ±xk ¡ ±xj Áji = ±xj Áki = ±xk
Áij = Yi Ájj = U ¡ ±xk ¡ Yi Ákj = ±xk
Áik = Yi Ájk = ±xj Ákk = U ¡ ±xj ¡ Yi

Substituting these values in the system of linear equations (5) we have

xi =
1

3
(U ¡ ±xk ¡ ±xj + 2Yi) ;

xj =
1

3
(U ¡ ±xk ¡ Yi + 2±xj) ;

xk =
1

3
(U ¡ ±xj ¡ Yi + 2±xk) :

The unique solution of the system is

xi =
2Yi + U (1¡ ±)

3¡ ± ;

xj =
U ¡ Yi
3¡ ± ;

xk =
U ¡ Yi
3¡ ± :
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This solution is the equilibrium of the normalized game if the system of inequalities, Yi ¡ ±xi · 0,
Yj ¡ ±xj ¸ 0; and Yk ¡ ±xk ¸ 0; holds. This system of inequalities corresponds to

Yi ¡ ±
µ
2Yi + U (1¡ ±)

3¡ ±
¶

· 0;

Yj ¡ ±
µ
U ¡ Yi
3¡ ±

¶
¸ 0;

Yk ¡ ±
µ
U ¡ Yi
3¡ ±

¶
¸ 0;

which can be simpli…ed to

3Yi · U±;

(3¡ ±)Yj + ±Yi ¸ U±;

(3¡ ±)Yk + ±Yi ¸ U±:

Note that after the transformation of variables in (13), we obtain the expressions for ©II(i) and
II(i): Similarly, we also can establish the converse result.

III1(i; j; k): Yi ¡ ±xi < Yj ¡ ±xj · 0, and Yk ¡ ±xk ¸ 0:
Conditions (1)-(4) are:

Áii = U ¡ ±xk ¡ Yj Áji = Yj Áki = ±xk
Áij = Yi Ájj = U ¡ ±xk ¡ Yi Ákj = ±xk
Áik = Yi Ájk = ±xj Ákk = U ¡ ±xj ¡ Yi

and the system of equation (5) is

xi =
1

3
(2Yi + U ¡ ±xk ¡ Yj) ;

xj =
1

3
(±xj + Yj + U ¡ ±xk ¡ Yi) ;

xk =
1

3
(U ¡ Yi ¡ ±xj + 2±xk) :

Solving the system of equations yields:

xi =
(1¡ ±) ((3¡ ±)U ¡ 3Yj) + (6¡ 5±)Yi

9 + ±2 ¡ 9± ;

xj =
3 (1¡ ±) (U ¡ Yi) + (3¡ 2±)Yj

9 + ±2 ¡ 9± ;

xk =
(3¡ 2±)U ¡ (3¡ 2±)Yi ¡ Yj±

9 + ±2 ¡ 9± :

This solution is the equilibrium of the normalized game if the system of inequalities, Yi¡ ±xi · Yj¡
±xj · 0, and Yk¡±xk ¸ 0; holds. This system of inequalities corresponds, after some simpli…cations,
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to: ¡
9 + ±2 ¡ 9±¢Yk + ¡3± ¡ 2±2¢Yi + Yj±2 ¸ ¡

3± ¡ 2±2¢U;
(3¡ ±)Yj + Yi± · ±U;

(9¡ 6±)Yj ¡ 9 (1¡ ±)Yi > ±2U:

The transformation of variables in (13) gives us the expressions for ©III1(i;j;k) and III1(i;j;k): Note
that due to the upper hemi-continuity of the Nash equilibrium correspondence (see Fudenberg and
Tirole (1991)), we claim that if all the inequalities III1(i;j;k) ¢! · 0 hold, and the last inequality is
strict, then r(u) + ©III1(i;j;k) ¢ ! is an SSPNE outcome of the normalized game. Therefore, we can
replace the last inequality, (9¡ 6±)Yj ¡ 9 (1¡ ±)Yi > ±2U; by (9¡ 6±)Yj ¡ 9 (1¡ ±)Yi ¸ ±2U .

III2 (k) : Yi ¡ ±xi = Yj ¡ ±xj < 0, and Yk ¡ ±xk ¸ 0:
Conditions (1)-(4) are:

Áii = U ¡ Yj ¡ ±xk Áji = Yj Áki = ±xk
Áij = Yi Ájj = U ¡ ±xk ¡ Yi Ákj = ±xk

Áik = (1¡ p)Yi + p±xi Ájk = pYj + (1¡ p) ±xj Ákk = U ¡ ±xi ¡ Yj
where p 2 [0; 1] is the probability that player k chooses an o¤er unconditional on player j accept-
ing and conditional on player i accepting, and (1¡ p) is the probability that he chooses an o¤er
unconditional on player i accepting and conditional on player j accepting.

The system of equations (5) is

xk =
1

3
(U ¡ ±xi ¡ Yj + 2±xk) ;

xj =
1

3
(pYj + (1¡ p) ±xj + U ¡ ±xk ¡ Yi + Yj) ;

xi =
1

3
((1¡ p)Yi + p±xi + Yi + U ¡ ±xk ¡ Yj) ;

Yi ¡ ±xi = Yj ¡ ±xj ;
where the last equation, Yi ¡ ±xi = Yj ¡ ±xj ; corresponds to one of the conditions of case III2 (k) :
The unique solution of the system of equations is

xi =
(3¡ 2±)Yi + (1¡ ±) (2±U ¡ 3Yj)

± (6¡ 5±) ;

xj =
(3¡ 2±)Yj + (1¡ ±) (2±U ¡ 3Yi)

± (6¡ 5±) ;

xk =
(2¡ ±)U ¡ Yi ¡ Yj

6¡ 5± ;

p =
(9± ¡ 9)Yi + (9¡ 6±)Yj ¡ ±2U

(3Yi + 3Yj ¡ 2±U) ± :

This solution is the equilibrium of the normalized game if the system of inequalities, Yi ¡ ±xi =
Yj ¡ ±xj < 0, and Yk ¡ ±xk ¸ 0; holds (note that the condition Yj ¡ ±xj = Yi ¡ ±xi is already
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satis…ed), and in addition p 2 [0; 1] : This is equivalent to

±

µ
(2¡ ±)U ¡ Yi ¡ Yj

6¡ 5±
¶

· Yk

±

µ
(3¡ 2±)Yj + (1¡ ±) (2±U ¡ 3Yi)

± (6¡ 5±)
¶

> Yj

and the inequalities arising from the restriction p 2 [0; 1] are
(9± ¡ 9)Yi + (9¡ 6±)Yj ¡ ±2U

(3Yj + 3Yi ¡ 2±U) ± · 1;

(9± ¡ 9)Yi + (9¡ 6±)Yj ¡ ±2U
(3Yj + 3Yi ¡ 2±U) ± ¸ 0:

Note that the …rst two inequalities can be restated as

± ((2¡ ±)U ¡ Yi ¡ Yj) · (6¡ 5±)Yi;
3Yj + 3Yi < 2±U:

But since 3Yj +3Yi¡ 2±U < 0 then the denominator of the conditions imposed on p is negative and
the inequalities are equivalent to

(9¡ 6±)Yi ¡ 9 (1¡ ±)Yj · ±2U;

(9¡ 6±)Yj ¡ 9 (1¡ ±)Yi · ±2U:

Therefore, the system of inequalities is equivalent to

(6¡ 5±)Yk + ± (Yi + Yj) ¸ ± (2¡ ±)U;
3Yj + 3Yi < 2±U;

(9¡ 6±)Yi ¡ 9 (1¡ ±)Yj · ±2U;

(9¡ 6±)Yj ¡ 9 (1¡ ±)Yi · ±2U:

The upper hemi-continuity of the Nash equilibrium correspondence implies that the same equi-
librium outcome given by the formula above also holds when the second inequality holds strictly,
3Yj+3Yi · 2±U: But note that if we add up both of the two last inequalities we obtain ± (3Yi + 3Yj) ·
2±2U; and therefore the second inequality can be dropped from the system of inequalities. Finally,
the transformation of variables in (13) gives the desired expressions.

IV1(i; j; k): Yi ¡ ±xi < Yj ¡ ±xj < Yk ¡ ±xk · 0
Conditions (1)-(4) are:

Áii = U ¡ Yj ¡ ±xk Áji = Yj Áki = ±xk
Áij = Yi Ájj = U ¡ ±xk ¡ Yi Ákj = ±xk
Áik = Yi Ájk = ±xj Ákk = U ¡ Yi ¡ ±xj
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The system of equation (5) is

xi =
1

3
(U ¡ Yj ¡ ±xk + 2Yi) ;

xj =
1

3
(U ¡ ±xk ¡ Yi + Yj + ±xj) ;

xk =
1

3
(U ¡ Yi ¡ ±xj + 2±xk) :

The solution of the system is,

xi =

¡
3 + ±2 ¡ 4±¢U ¡ 3 (1¡ ±)Yj + (6¡ 5±)Yi

9 + ±2 ¡ 9± ;

xj =
3 (1¡ ±) (U ¡ Yi) + (3¡ 2±)Yj

9 + ±2 ¡ 9± ;

xk =
(3¡ 2±)U ¡ (3¡ 2±)Yi ¡ Yj±

9 + ±2 ¡ 9± ;

and the conditions are Yi ¡ ±xi < Yj ¡ ±xj < Yk ¡ ±xk · 0: The conditions can be expressed, after
some algebra, as:

(9± ¡ 9)Yi + (9¡ 6±)Yj > ±2U;¡
2±2 ¡ 12± + 9¢Yj ¡ Yi±2 + ¡¡9¡ ±2 + 9±¢Yk < ¡±2U;¡

9¡ 9± + ±2¢Yk + ¡3± ¡ 2±2¢Yi + Yj±2 · ¡
3± ¡ 2±2¢U:

The upper hemi-continuity of the Nash equilibrium correspondence implies that the equilibrium
outcome also holds when the …rst and second inequality hold strictly. Finally, the transformation of
variables in (13) gives the desired expressions.

IV2(i). Yi ¡ ±xi · Yj ¡ ±xj = Yk ¡ ±xk < 0:
Conditions (1)-(4) are:

Áii = U ¡ Yj ¡ ±xk Áji = pYj + (1¡ p) ±xj Áki = (1¡ p)Yk + p±xk
Áij = Yi Ájj = U ¡ Yi ¡ ±xk Ákj = ±xk
Áik = Yi Ájk = ±xj Ákk = U ¡ Yi ¡ ±xj

where p 2 [0; 1] is the probability that player i chooses an o¤er unconditional on player j accept-
ing and conditional on player k accepting, and (1¡ p) is the probability that he chooses an o¤er
unconditional on player k accepting and conditional on player j accepting.

The system of equation (5) is

xi =
1

3
(U ¡ Yj ¡ ±xk + 2Yi) ;

xj =
1

3
(pYj + (1¡ p) ±xj + U ¡ Yi ¡ ±xk + ±xj) ;

xk =
1

3
((1¡ p)Yk + p±xk + ±xk + U ¡ Yi ¡ ±xj) ;

±xj ¡ Yj = ±xk ¡ Yk:
Note that the …rst and last equation determines the value of xi; and xj = ±

¡1 (±xk + Yj ¡ Yk) as a
function of xk: It remains then only to solve for the values of xk and p using the second and third
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equations:

±¡1 (±xk + Yj ¡ Yk) =
1

3
(pYj + (2¡ p) (±xk + Yj ¡ Yk) + U ¡ Yi ¡ ±xk) ;

xk =
1

3
((1¡ p)Yk + (1 + p) ±xk + U ¡ Yi ¡ (±xk + Yj ¡ Yk)) ;

collecting all terms in xk and p yields:

(3¡ ±)xk ¡ Ykp+ p±xk + 3
±
(Yj ¡ Yk)¡ U ¡ 2Yj + 2Yk + Yi = 0;

¡3xk + ±pxk + (1¡ p)Yk ¡ Yj + U ¡ Yi + Yk = 0:

Subtracting the …rst and second equations cancels all terms in p and gives us the solution for xk :

xk =
2±U ¡ 2Yi± ¡ (3¡ ±)Yj + 3Yk

(6¡ ±) ± :

The last equation can be rewritten as (±xk ¡ Yk) p¡3xk+U+2Yk¡Yj¡Yi = 0. Since ±xk¡Yk > 0
then there is a unique solution for p. We have then found a unique solution:

xi =
(2¡ ±)U ¡ Yj ¡ Yk + 4Yi

6¡ ± ;

xj =
2±U ¡ 2Yi± + 3Yj ¡ (3¡ ±)Yk

(6¡ ±) ± ;

xk =
2±U ¡ 2Yi± ¡ (3¡ ±)Yj + 3Yk

(6¡ ±) ± ;

with

p =

¡¡9¡ 2±2 + 12±¢Yk + ¡9 + ±2 ¡ 9±¢Yj + Yi±2 ¡ ±2U
± ((3¡ ±)Yk + (3¡ ±)Yj ¡ 2±U + 2Yi±) :

This is the equilibrium of the game if the system of inequalities Yi ¡ ±xi · Yj ¡ ±xj = Yk ¡ ±xk < 0
holds (note that the condition Yj ¡ ±xj = Yk ¡ ±xk is already satis…ed) and p 2 [0; 1] ; which is
equivalent to:

(3¡ 2±)Yj + (7± ¡ 6)Yi + (3¡ 2±)Yk ¸ ±2U;

(3¡ ±)Yk + (3¡ ±)Yj + 2Yi± < 2±U;¡¡9¡ 2±2 + 12±¢Yk + ¡9 + ±2 ¡ 9±¢Yj + Yi±2 ¡ ±2U
± ((3¡ ±)Yk + (3¡ ±)Yj ¡ 2±U + 2Yi±) · 1;¡¡9¡ 2±2 + 12±¢Yk + ¡9 + ±2 ¡ 9±¢Yj + Yi±2 ¡ ±2U
± ((3¡ ±)Yk + (3¡ ±)Yj ¡ 2±U + 2Yi±) ¸ 0;
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But note that the second inequality implies that the denominators in the third and fourth inequalities
are negative. Therefore the system of inequalities is equivalent to:

(3¡ 2±)Yj + (7± ¡ 6)Yi + (3¡ 2±)Yk ¸ ±2U;

(3¡ ±)Yk + (3¡ ±)Yj + 2±Yi < 2±U;¡
12± ¡ 2±2 ¡ 9¢Yj + ¡9 + ±2 ¡ 9±¢Yk + ±2Yi · ±2U;¡
12± ¡ 2±2 ¡ 9¢Yk + ¡9 + ±2 ¡ 9±¢Yj + ±2Yi · ±2U:

The upper hemi-continuity of the Nash equilibrium correspondence implies that the equilibrium
outcome also holds when the second inequality holds strictly, (3¡ ±)Yk + (3¡ ±)Yj + 2±Yi · 2±U:
But note that adding up the last two inequalities we get ± ((3¡ ±)Yk + (3¡ ±)Yj + 2±Yi) · 2±2U
and thus the second inequality becomes redundant. Finally, the transformation of variables (13)
gives the desired expressions.

IV3. Yi ¡ ±xi = Yj ¡ ±xj = Yk ¡ ±xk < 0
Conditions (1)-(4) are:

Áii = U ¡ Yj ¡ ±xk Áji = piYj + (1¡ pi) ±xj Áki = (1¡ pi)Yk + pi±xk
Áij = pjYi + (1¡ pj) ±xi Ájj = U ¡ Yi ¡ ±xk Ákj = (1¡ pj)Yk + pj±xk
Áik = pkYi + (1¡ pk) ±xi Ájk = (1¡ pk)Yj + pk±xj Ákk = U ¡ Yi ¡ ±xj

where pi; pj and pj all belong to the interval [0; 1] : The system of equation (5),

xi =
1

3
(U ¡ Yj ¡ ±xk + pjYi + (1¡ pj) ±xi + pkYi + (1¡ pk) ±xi) ;

xj =
1

3
(U ¡ Yi ¡ ±xk + piYj + (1¡ pi) ±xj + (1¡ pk)Yj + pk±xj) ;

xk =
1

3
(U ¡ Yi ¡ ±xj + (1¡ pi)Yk + pi±xk + (1¡ pj)Yk + pj±xk) ;

implies that xi + xj + xk = U: Imposing the condition ±xi ¡ Yi = ±xj ¡ Yj = ±xk ¡ Yk we thus get
the system of equations

±xi ¡ Yi = ±xj ¡ Yj = ±xk ¡ Yk;
xi + xj + xk = U;

which has the unique solution:

xi =
Yi
±
+
1

3

±U ¡ Yi ¡ Yj ¡ Yk
±

;

xj =
Yj
±
+
1

3

±U ¡ Yi ¡ Yj ¡ Yk
±

;

xk =
Yk
±
+
1

3

±U ¡ Yi ¡ Yj ¡ Yk
±

:

The restrictions Yi ¡ ±xi = Yj ¡ ±xj = Yk ¡ ±xk < 0 imply that
± (xi + xj + xk) = ±U > Yi + Yj + Yk;
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which is equivalent to

Yi + Yj + Yk < ±U:

We are now interested in solving the system of equations for pi; pj; and pk:

U ¡ Yj ¡ ±xk + pjYi + (1¡ pj) ±xi + pkYi + (1¡ pk) ±xi ¡ 3xi = 0;
piYj + (1¡ pi) ±xj + U ¡ ±xi ¡ Yk + (1¡ pk)Yj + pk±xj ¡ 3xj = 0;
(1¡ pi)Yk + pi±xk + (1¡ pj)Yk + pj±xk + U ¡ Yi ¡ ±xj ¡ 3xk = 0:

After rearranging terms, the system is equivalent to:

(±xi ¡ Yi) (pj + pk) = U ¡ Yj ¡ ±xk + 2±xi ¡ 3xi;
(±xj ¡ Yj) (pi ¡ pk) = ¡±xi + ±xj + Yj + U ¡ 3xj ¡ Yk;
(±xk ¡ Yk) (pi + pj) = ¡2Yk ¡ U + Yi + ±xj + 3xk;

and substituting the expressions for xi; xj ; xk results in:

¡± (±U ¡ Yi ¡ Yj ¡ Yk) (pj + pk) = 4±Yk ¡ 5Yi± ¡ 3Yj ¡ 3Yk + 6Yi + 4Yj± ¡ ±2U;
± (±U ¡ Yi ¡ Yj ¡ Yk) (pi ¡ pk) = 3 (Yk + 2Yj± ¡ Yi± ¡ ±Yk + Yi ¡ 2Yj) ;
± (±U ¡ Yi ¡ Yj ¡ Yk) (pi + pj) = ¡7±Yk + 2Yi± + 2Yj± + ±2U + 6Yk ¡ 3Yi ¡ 3Yj :

We can immediately verify that any vector pi; pj and pk is the unique solution of the system of linear
equations:

pi = pk +
(1¡ ±) (3Yk ¡ 6Yj + 3Yi)
± (±U ¡ Yi ¡ Yj ¡ Yk) ;

pj =
±2U + (4Yk ¡ 5Yi + 4Yj) (1¡ ±)¡ (Yi + Yj + Yk)

± (±U ¡ Yi ¡ Yj ¡ Yk) ¡ pk;
pk = pk:

Note that pi; pj and pj all belong to the interval [0; 1] (we must also have Yi + Yj + Yk < ±U). This
imposes the following six additional inequalities that must hold:

pk +
(1¡ ±) (3Yk ¡ 6Yj + 3Yi)
± (±U ¡ Yi ¡ Yj ¡ Yk) ¸ 0;

pk +
(1¡ ±) (3Yk ¡ 6Yj + 3Yi)
± (±U ¡ Yi ¡ Yj ¡ Yk) · 1;

±2U + (4Yk ¡ 5Yi + 4Yj) (1¡ ±)¡ (Yi + Yj + Yk)
± (±U ¡ Yi ¡ Yj ¡ Yk) ¡ pk ¸ 0;

±2U + (4Yk ¡ 5Yi + 4Yj) (1¡ ±)¡ (Yi + Yj + Yk)
± (±U ¡ Yi ¡ Yj ¡ Yk) ¡ pk · 1;

pk ¸ 0;

pk · 1:

We use the Fourier-Motzkin elimination method (see Dantzig (1963) and Ziegler (1994)) to
eliminate the parameter pk from the above system of inequalities. We …rst rewrite the system of
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inequalities as follows:

pk +
(1¡ ±) (3Yk ¡ 6Yj + 3Yi)
± (±U ¡ Yi ¡ Yj ¡ Yk) ¸ 0;

pk ¡ ±
2U + (4Yk ¡ 5Yi + 4Yj) (1¡ ±)¡ (Yi + Yj + Yk)

± (±U ¡ Yi ¡ Yj ¡ Yk) ¸ ¡1;
pk ¸ 0;

¡pk ¡ (1¡ ±) (3Yk ¡ 6Yj + 3Yi)
± (± ¡ Yi ¡ Yj ¡ Yk) ¸ ¡1;

¡pk + ±
2U + (4Yk ¡ 5Yi + 4Yj) (1¡ ±)¡ (Yi + Yj + Yk)

± (±U ¡ Yi ¡ Yj ¡ Yk) ¸ 0;

¡pk ¸ ¡1;
where in the …rst three inequalities the coe¢cient of pk is +1 and in the last three inequalities the
coe¢cient of pk is ¡1: By the Fourier-Motzkin elimination method we can eliminate the variable pk
by adding each of the …rst three inequalities to each of the last three inequalities. Then the system
is equivalent to

0 ¸ ¡1;
(1¡ ±) (3Yk ¡ 6Yj + 3Yi)
± (±U ¡ Yi ¡ Yj ¡ Yk) +

±2U + (4Yk ¡ 5Yi + 4Yj) (1¡ ±)¡ (Yi + Yj + Yk)
± (±U ¡ Yi ¡ Yj ¡ Yk) ¸ 0;

(1¡ ±) (3Yk ¡ 6Yj + 3Yi)
± (±U ¡ Yi ¡ Yj ¡ Yk) ¸ ¡1;

¡±
2U + (4Yk ¡ 5Yi + 4Yj) (1¡ ±)¡ (Yi + Yj + Yk)

± (±U ¡ Yi ¡ Yj ¡ Yk) ¡ (1¡ ±) (3Yk ¡ 6Yj + 3Yi)
± (±U ¡ Yi ¡ Yj ¡ Yk) ¸ ¡2;

0 ¸ ¡1;

¡±
2U + (4Yk ¡ 5Yi + 4Yj) (1¡ ±)¡ (Yi + Yj + Yk)

± (±U ¡ Yi ¡ Yj ¡ Yk) ¸ ¡2;

¡(1¡ ±) (3Yk ¡ 6Yj + 3Yi)
± (±U ¡ Yi ¡ Yj ¡ Yk) ¸ ¡1;

±2U + (4Yk ¡ 5Yi + 4Yj) (1¡ ±)¡ (Yi + Yj + Yk)
± (±U ¡ Yi ¡ Yj ¡ Yk) ¸ 0;

0 ¸ ¡1:

Note that the …rst, …fth, and last inequality are always satis…ed, and the remaining six inequalities
can be simpli…ed to:

(3¡ 2±) (Yi + Yj + Yk)¡ 9 (1¡ ±)Yi · ±2U;

(3¡ 2±) (Yi + Yj + Yk)¡ 9 (1¡ ±)Yj · ±2U;

(3¡ 2±) (Yi + Yj + Yk)¡ 9 (1¡ ±)Yk · ±2U;

(4± ¡ 3) (Yi + Yj + Yk) + 9 (1¡ ±)Yi · ±2U;

(4± ¡ 3) (Yi + Yj + Yk) + 9 (1¡ ±)Yj · ±2U;

(4± ¡ 3) (Yi + Yj + Yk) + 9 (1¡ ±)Yk · ±2U:
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The upper hemi-continuity of the Nash equilibrium correspondence implies that the equilibrium
outcome also holds when the inequality Yi + Yj + Yk · ±U holds strictly. Also, adding up the …rst
three equations (or the last three) yields Yi+Yj +Yk · ±U . Finally, the transformation of variables
(13) gives the desired expressions.

IV4(k): Yi ¡ ±xi = Yj ¡ ±xj < Yk ¡ ±xk · 0:
Conditions (1)-(4) are:

Áii = U ¡ Yj ¡ ±xk Áji = Yj Áki = ±xk
Áij = Yi Ájj = U ¡ Yi ¡ ±xk Ákj = ±xk

Áik = pYi + (1¡ p) ±xi Ájk = (1¡ p)Yj + p±xj Ákk = U ¡ Yi ¡ ±xj
where p 2 [0; 1] is the probability that player k chooses an o¤er unconditional on player j accepting
and conditional on player i accepting, and (1¡ p) is the probability that he chooses an o¤er uncon-
ditional on player i accepting and conditional on player j accepting. The system of equation (5)
is

xi =
1

3
(U ¡ ±xk ¡ Yj + Yi + pYi + (1¡ p) ±xi) ;

xj =
1

3
(U ¡ ±xk ¡ Yi + Yj + (1¡ p)Yj + p±xj) ;

xk =
1

3
(U ¡ Yi ¡ ±xj + 2±xk) ;

±xi ¡ Yi = ±xj ¡ Yj :
As before, we obtain the unique solution

xi =
(3¡ 2±)Yi ¡ 3 (1¡ ±)Yj + 2± (1¡ ±)U

± (6¡ 5±) ;

xj =
(3¡ 2±)Yj ¡ 3 (1¡ ±)Yi + 2± (1¡ ±)U

± (6¡ 5±) ;

xk =
(2¡ ±)U ¡ Yi ¡ Yj

6¡ 5± ;

p =
9 (± ¡ 1)Yj + (9¡ 6±)Yi ¡ ±2U

(3Yi + 3Yj ¡ 2±U) ± :

This is the equilibrium of the game if the system of inequalities Yi ¡ ±xi = Yj ¡ ±xj < Yk ¡ ±xk · 0
holds (note that the condition Yi ¡ ±xi = Yj ¡ ±xj is already satis…ed) and p 2 [0; 1]:

Yj ¡ (3¡ 2±)Yj ¡ 3 (1¡ ±)Yi + 2± (1¡ ±)U
6¡ 5± < Yk ¡ ±

µ
(2¡ ±)U ¡ Yi ¡ Yj

6¡ 5±
¶
;

±

µ
(2¡ ±)U ¡ Yi ¡ Yj

6¡ 5±
¶

¸ Yk;

9 (± ¡ 1)Yj + (9¡ 6±)Yi ¡ ±2U
(3Yi + 3Yj ¡ 2±U) ± · 1;

9 (± ¡ 1)Yj + (9¡ 6±)Yi ¡ ±2U
(3Yi + 3Yj ¡ 2±U) ± ¸ 0:
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The …rst two inequalities simplify to

(4± ¡ 3) (Yi + Yj) + (6¡ 5±)Yk > ±2U;

(6¡ 5±)Yk + ± (Yi + Yj) · ± (2¡ ±)U:
But adding up (4± ¡ 3) (Yi + Yj)+(6¡ 5±)Yk¡±2U > 0 and¡ (6¡ 5±)Yk¡± (Yi + Yj)+± (2¡ ±)U ¸
0 implies that 3 (Yi + Yj)¡ 2±U < 0: We can then simplify the third and fourth inequalities to:

¡±2U + 9Yj± ¡ 6Yi± ¡ 9Yj + 9Yi ¸ (¡2± + 3Yi + 3Yj) ±;
¡±2U + 9Yj± ¡ 6Yi± ¡ 9Yj + 9Yi · 0;

which after further simpli…cations yields:

(4± ¡ 3) (Yi + Yj) + (6¡ 5±)Yk > ±2U;

(6¡ 5±)Yk + ± (Yi + Yj) · ± (2¡ ±)U;
±2U + (6± ¡ 9)Yj + (9¡ 9±)Yi ¸ 0;

±2U + (6± ¡ 9)Yi + (9¡ 9±)Yj ¸ 0:

The upper hemi-continuity of the Nash equilibrium correspondence implies that the equilibrium
outcome also holds when the …rst inequality holds strictly, (4± ¡ 3) (Yi + Yj) + (6¡ 5±)Yk ¸ ±2U:
Finally, the transformation of variables (13) gives the desired expressions. Q.E.D.

Proof of Lemma 1: We will use the following result in order to obtain the set of extremal
rays of the cone H = f! :  ¢ ! · 0g : A vector x 2 H is an extremal ray of the cone H if and only if
x 2 H and ix = 0 and jx = 0, for i and j two linearly independent row vectors of the matrix
:

First note that any two º and º0 in V are linearly independent. This is true for all ± 2 (0; 1)
because

¡ (3¡ ±) < ¡ (3¡ 2±) < ¡3 (1¡ ±) < (4± ¡ 3) < ± < 1

for ± 2 (0; 1) and the de…nitions of º 2 V:
Also, note that once we establish that Q = ext (H (Q)) ; then from the theory of cones for any

! 2 H(Q) = cone (Q) there is a unique representation as a non-negative combination of the extremal
rays, ! =

P
º2Q ®ºº with ®º ¸ 0:

Also, note that it is immediately clear that for allQ 2 Q the matrix Q of theH-representation of
the conesH (Q) have rank equal to 3 (full rank). Therefore, lineal (H (Q)) =

©
x 2 R3 : Q ¢ x = 0

ª
=

f0g and thus all cones H (Q) have lineality zero.
Note that if ©Q ¢ º = ©(º) for all º 2 Q and all Q 2 Q, then if ! = Pº2Q ®ºº we have that

©Q ¢! =
P
º2Q ®º©(º) because ©Q is a linear transformation. Therefore, it is enough to prove that

©Q ¢ º = ©(º) for all º 2 Q and all Q 2 Q.
With these results in place we now analyze each of the cones H (Q) for all Q 2 Q:
For Q = I it is straightforward that H (Q) =

©
! 2 R3+

ª
= cone (a1; a2; a3) : Note also that

©Q ¢ ai = 0 = © ¢ ai; for all i 2 f1; 2; 3g.
For Q = II(i) the extremal rays of the cone H (Q) are bi; aj ; and ak because Q ¢ bi; Q ¢ aj ;

and Q ¢ ak are, respectively, equal to24 ¡ (3¡ ±)
0
0

35 ;
24 0
¡ (3¡ ±)

0

35 ; and
24 0

0
¡ (3¡ ±)

35 :
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Furthermore, we have that ©Q ¢ bi; ©Q ¢ aj ; and ©Q ¢ ak are, respectively, equal to24 ¡2
1
1

35 ;
24 0
0
0

35 ; and
24 0
0
0

35 :
For Q = III1(i; j; k) we have that the extremal rays of H (Q) are bi; cijk; and ak because Q ¢ bi;

Q ¢ cijk; and Q ¢ ak are, respectively, equal to24 0
0

¡ ¡9 + ±2 ¡ 9±¢
35 ;

24 0
¡ ¡9 + ±2 ¡ 9±¢

0

35 ; and
24 ¡ ¡9 + ±2 ¡ 9±¢

0
0

35 :
Furthermore, ©Q ¢ bi; ©Q ¢ cijk;and ©Q ¢ ak are, respectively, equal to24 ¡2

1
1

35 ;
24 ¡1

0
1

35 ; and 0
0
0
:

For Q = III2(k) the extremal rays of H (Q) are cijk; cjik; and ak because Q ¢ cijk; Q ¢ cjik;
and Q ¢ ak are, respectively, equal to24 0

(¡6 + 5±) ±
0

35 ;
24 0

0
(¡6 + 5±) ±

35 ; and
24 ¡6 + 5±

0
0

35 :
Furthermore, ©Q ¢ cijk; ©Q ¢ cjik;and ©Q ¢ ak are equal to24 ¡1

0
1

35 ;
24 0
¡1
1

35 ; and
24 0
0
0

35 :
For Q = IV1(i; j; k) the extremal rays of H (Q) are dijk; cjik; and bi because Q ¢ dijk; Q ¢ cjik;

and Q ¢ bi are, respectively, equal to24 0
0

¡3 (1¡ ±) ¡9 + ±2 ¡ 9±¢
35 ;
24 0
¡3 (1¡ ±) ¡9 + ±2 ¡ 9±¢

0

35 ; and
24 ¡9¡ ±2 + 9±

0
0

35 :
Furthermore, ©Q ¢ dijk; ©Q ¢ cjik; and ©Q ¢ bi are equal to24 ¡1

0
1

35 ;
24 ¡1

0
1

35 ; and
24 ¡2

1
1

35 :
For Q = IV2(i) the extremal rays of H (Q) are dijk; djik; and bi because Q ¢ dijk; Q ¢ dikj ; and

Q ¢ bi; are, respectively, equal to24 0
0

¡3± (1¡ ±) (6¡ ±)

35 ;
24 0
¡3± (1¡ ±) (6¡ ±)

0

35 ; and
24 ¡3 (1¡ ±) (6¡ ±)

0
0

35 :
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Furthermore, ©Q ¢ dijk; ©Q ¢ dikj ; ©Q ¢ bi; are equal to24 ¡1
0
1

35 ;
24 ¡1

1
0

35 ;
24 ¡2

1
1

35 :
For Q = IV3 the extremal rays of H (Q) are dijk; dikj ; djik; dkij ; djki; dkji because Q ¢ dijk;

Q ¢ dikj ; Q ¢ djik; Q ¢ dkij ; Q ¢ djki; Q ¢ dkji; are equal to, respectively, 9± (1¡ ±) multiplied by26666664
0
¡1
¡2
¡2
¡1
0

37777775 ;
26666664

0
¡2
¡1
¡2
0
¡1

37777775 ;
26666664
¡1
0
¡2
¡1
¡2
0

37777775 ;
26666664
¡2
0
¡1
0
¡2
¡1

37777775 ;
26666664
¡2
0
¡1
0
¡2
¡1

37777775 ;
26666664
¡2
¡1
0
0
¡1
¡2

37777775 :

Furthermore, ©Q ¢ dijk; ©Q ¢ dikj ; ©Q ¢ djik; ©Q ¢ dkij ; ©Q ¢ djki; ©Q ¢ dkji; are equal to24 ¡1
0
1

35 ;
24 ¡1

1
0

35 ;
24 0
¡1
1

35 ;
24 0

1
¡1

35 ;
24 1
¡1
0

35 ;
24 1

0
¡1

35 :
Finally, for Q = IV4 (k) the extremal rays of H (Q) are cijk; cjik; dijk; and djik because Q ¢ cijk;

Q ¢ cjik;Q ¢ dijk; Q ¢ djik; are equal to, respectively, (6¡ 5±) multiplied by2664
¡3 (1¡ ±)

0
0
¡±

3775 ;
2664
¡3 (1¡ ±)

0
¡±
0

3775 ;
2664

0
¡3 (1¡ ±)

0
¡±

3775 ;
2664

0
¡3 (1¡ ±)

¡±
0

3775 :
Furthermore, ©Q ¢ cijk; ©Q ¢ cjik; ©Q ¢ dijk; ©Q ¢ djik are equal to24 ¡1

0
1

35 ;
24 0
¡1
1

35 ;
24 ¡1

0
1

35 ;
24 0
¡1
1

35 :
Q.E.D.

Proof of Lemma 2:
We …rst show that the …rst part of the lemma (for any Q and Q0 in Q with Q0 6= Q then

H (Q) \ H (Q0) = cone (Q \Q0)) implies that any ! 2 R3 can be represented uniquely as ! =P
º2Q ®ºº, for some Q 2 Q.
By Theorems 2 and 3 we have that [

Q2Q
H (Q) = R3 and therefore there exists a Q 2 Q such

that ! 2 H (Q) : But since H (Q) = cone (Q) then ! 2 R3 can be represented as ! = P
º2Q ®ºº

with ®º ¸ 0: Conversely, this representation is unique. Suppose that ! =
P
º2Q ®ºº =

P
º2Q0 ®0ºº

where Q,Q0 2 Q and Q0 6= Q; with ®º ¸ 0 for all º 2 Q and ®0º ¸ 0 for all º 2 Q0: Extend, for
convenience, the de…nitions of ®º and ®0º to º 2 V, setting ®º = 0 for all º 2 VnQ and ®0º = 0 for
all º 2 VnQ0. The …rst part of Lemma 2 implies that ! =Pº2Q\Q0 ®00ºº (extend the de…nitions of
®00º to º 2 V setting ®00º = 0 for all º 2 Vn (Q \Q0)). But then, since the representation of ! 2 H(Q)
and ! 2 H(Q0) is unique, it must be the case that ®00º = ®0º = ®º for all º 2 V. This proves the
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uniqueness part of the lemma.
We proceed to prove the …rst part of the lemma. It is obvious that

cone (Q \Q0) ½ H (Q)\H (Q0) : The di¢cult part is the converse: cone (Q \Q0) ¾ H (Q)\H (Q0) :
We use the following claim to prove the converse. Recall that any vector p 2 R3 can be associated

with the hyperplane H; where H = f! : p:! = 0g : A hyperplane H is separating if and only if for
all ! 2 H (Q) and !0 2 H (Q0) then p:! · 0 and p:!0 ¸ 0:

Claim 1: Suppose that for any two cones H (Q) = cone (Q) and H (Q0) = cone (Q0) ; there exists a
separating hyperplane H such that if º 2 (Q [Q0) n (Q \Q0) then º =2 H: Then H (Q) \H (Q0) =
cone (Q \Q0) :

Proof of Claim 1: We need to prove that cone (Q \Q0) ¾ H (Q)\H (Q0) : It is obvious that
H (Q) \H (Q0) is a cone and that H (Q) \H (Q0) ½ cone (Q [Q0). But the separating hyperplane
H is such that H (Q) \H (Q0) ½ H and all º 2 (Q [Q0) n (Q \Q0) are such that º =2 H; and thus
º =2 H (Q) \H (Q0) : Therefore, H (Q) \H (Q0) ½ cone (Q \Q0) : Q.E.D.

We now proceed showing that for each pair Q and Q0 in Q with Q0 6= Q there exists a separating
hyperplane H; associated with a vector p; such that º =2 Q \ Q0 implies that º =2 H: Note that
throughout the remaining of the proof we rely heavily on the variables in De…nition 3.

1. First, consider the case with Q = I:

Consider the separating hyperplane associated with p = ei: By Claim 1 it is straightfoward
that H (I) \H (II(i)) = cone (aj ; ak) ; H (I) \H (III1(i; j; k)) = H (I) \H (III2(k)) = cone (ak),
H (I) \H (IV1 (i; j; k)) = H (I) \H (IV2 (i)) = H (I) \H (IV4 (k)) = f0g : Also, H (I) \H (IV3) =
f0g, because p = ei + ej + ek de…nes a separating hyperplane: p ¢ º > 0 for º 2 I and p ¢ º < 0 for
all º 2 IV:
2. Now consider the case with Q = II(i):

The intersection H (II(i))\H (III1(i; j; k)) = cone (bi; ak) ; because p = ±ei+(3¡ ±) ej de…nes
a separating hyperplane: for cone H (II(i)) ; p ¢ bi = 0, p ¢ ak = 0, p ¢ aj = 3¡ ± > 0; and for cone
H (III1(i; j; k)) ; p ¢ cijk = 9± ¡ ±2 ¡ 9 < 0: Similarly, we have that H (II(j)) \ H (III1(i; j; k)) =
cone (ak), and H (II(k)) \H (III1(i; j; k)) = f0g (separating hyperplane is p = ek):

The intersection H (II(i))\H (III2 (k)) = cone (ak) and H (II(i))\H (III2 (i)) = f0g because
p = ei de…nes a separating hyperplane.

The intersection H (II(i)) \ H (IV1 (i; j; k)) = cone (bi), because p = ±ei + (3¡ ±) ej de…nes
a separating hyperplane: for the cone H (II(i)) see the previous paragraph, and for the cone
H (IV1 (i; j; k)) we have that p ¢ bi = 0; p ¢ dijk = 9± ¡ ±2 ¡ 9 < 0, p ¢ cjik = 9± ¡ ±2 ¡ 9 < 0.
Similarly, we also have that H (II(i)) \H (IV1 (j; i; k)) = H (II(i)) \H (IV1 (j; k; i)) = f0g :

The intersection,H (II(i))\H (IV2 (i)) = cone (bi), because p =
¡
3± ¡ 2±2¢ ei+±2ej+¡9 + ±2 ¡ 9±¢ ek

de…nes a separating hyperplane: for cone H (II(i)) we have p ¢ bi = 0; p ¢ aj = ±2 > 0; and p ¢ ak =
9+±2¡9± > 0; and for cone H (IV2 (i)) we have p ¢dijk = ¡3 (1¡ ±)

¡
9 + ±2 ¡ 9±¢ < 0; and p ¢dikj =

¡3 (1¡ ±) (± ¡ 3)2 < 0:
The intersectionH (II(i))\H (IV3) = f0g because p =

¡
3± ¡ 2±2¢ ei+±2ej+¡9 + ±2 ¡ 9±¢ ek de-

…nes a separating hyperplane: for coneH (II(i)) see the previous paragraph, and for cone H (IV3), p¢
dijk = ¡3 (1¡ ±)

¡
9 + ±2 ¡ 9±¢ < 0; p¢dikj = ¡3 (1¡ ±) (3¡ ±)2 < 0; p¢djki = ¡3 (1¡ ±) ¡9¡ ±2 ¡ 3±¢ <

0; p ¢dkji = ¡3 (1¡ ±)
¡
9¡ ±2 ¡ 6±¢ < 0; p ¢djik = ¡27 (1¡ ±)2 < 0; p ¢dkij = ¡9 (1¡ ±) (3¡ ±) < 0:

Finally, the intersection H (II(i)) \ H (IV4 (k)) = f0g because p = ±ei + (3¡ ±) ej de…nes a
separating hyperplane: for cone H (II(i)) see the …rst paragraph of item 2, and for cone H (IV4 (k)) ;
p¢cijk = 9±¡±2¡9 < 0; p¢cjik = 6±+±2¡9 < 0; p¢dijk = 9±¡±2¡9 < 0; and p¢djik = 6±+±2¡9 < 0.
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3. Now consider the case with Q = III1(i; j; k):

The intersection H (III1(i; j; k)) \ H (III2 (k)) = cone (cijk; ak) because p = ¡9 (1¡ ±) ei +
(9¡ 6±) ej de…nes a separating hyperplane: for cone H (III1(i; j; k)) ; p ¢ cijk = 0, p ¢ ak = 0; and
p ¢ bi = ¡27± + 27 + 3±2 > 0; and for cone H (III2 (k)) ; p ¢ cjik = 3± (¡6 + 5±) < 0: Similarly, we
also have that H (III1(i; j; k)) \H (III2 (i)) = H (III1(i; j; k)) \H (III2 (j)) = f0g :

The intersection H (III1(i; j; k)) \H (IV1(i; j; k)) = cone (cijk; bi) because p =
¡
3± ¡ 2±2¢ ei +

±2ej+
¡
9 + ±2 ¡ 9±¢ ek de…nes a separating hyperplane: for coneH (III1(i; j; k)) ; p¢bi = 0; p¢cijk = 0;

p ¢ ak = 9 + ±2 ¡ 9± > 0 and for cone H (IV1(i; j; k)) ; p ¢ dijk = ¡3 (1¡ ±) ¡9 + ±2 ¡ 9±¢ < 0:
Similarly, we also have that H (III1(i; j; k)) \ H (IV1 (i; k; j)) = cone (bi) and H (III1(i; j; k)) \
H (IV1(j; i; k)) = H (III1(i; j; k)) \H (IV1(j; k; i)) = f0g :

The intersection H (III1(i; j; k)) \ H (IV2 (i)) = cone (bi) because p =
¡
3± ¡ 2±2¢ ei + ±2ej +¡

9 + ±2 ¡ 9±¢ ek de…nes a separating hyperplane: see items 2 and 3 above. Similarly,H (III1(i; j; k))\
H (IV2 (j)) = H (III1(i; j; k)) \H (IV2 (k)) = f0g : We also have that H (III1(i; j; k)) \H (IV3) =
f0g ; because p = ¡3± ¡ 2±2¢ ei + ±2ej + ¡9 + ±2 ¡ 9±¢ ek also de…nes a separating hyperplane: see
items 2 and 3 above.

The intersection H (III1(i; j; k))\H (IV4 (k)) = cone (cijk) because p = 3 (1¡ ±) ei+(2± ¡ 3) ej
de…nes a separating hyperplane: for cone H (III1(i; j; k)) ; p ¢ cijk = 0; p ¢ ak = 0; and p ¢ bi = 9± ¡
±2¡9 < 0; and for cone H (IV4 (k)), p ¢cjik = ± (6¡ 5±) > 0; p ¢dijk = 0; and p ¢djik = ± (6¡ 5±) > 0:
Similarly, we have that H (III1(i; j; k)) \ IV4 (j) = H (III1(i; j; k)) \H (IV4 (k)) = f0g :
4. Now consider the case with Q = III2(k):

The intersection H (III2 (k))\H (IV1(i; j; k)) = cone (cijk) ; because p =
¡
3± ¡ 2±2¢ ei+ ±2ej +¡

9 + ±2 ¡ 9±¢ ek de…nes a separating hyperplane: for cone H (III2 (k)) ; p ¢ cijk = 0; p ¢ cjik =
3±2 (1¡ ±) > 0; p ¢ bk = 9 + ±2 ¡ 9± > 0; and for cone H (IV1(i; j; k)) ; see item 3 above. Similarly,
H (III2 (j)) \H (IV1(i; j; k)) = H (III2 (i)) \H (IV1(i; j; k)) = f0g :

The intersection H (III2 (k))\H (IV2 (i)) = f0g and H (III2 (k))\H (IV3) = f0g because p =¡
3± ¡ 2±2¢ ei + ±2ej + ¡9 + ±2 ¡ 9±¢ ek de…nes a separating hyperplane: see previous the paragraph
for cone H (III2 (k)) and item 3 for cones H (IV2 (i)) and H (IV3).

The intersection H (III2 (k))\H (IV4 (k)) = cone (cijk; cjik) because p = ±ei+ ±ej +(6¡ 5±) ek
de…nes a separating hyperplane: for cone H (III2 (k)) ; p ¢ cijk = p ¢ cjik = 0; p ¢ bk = 6¡ 5± > 0; and
for cone H (IV4 (k)) ; p ¢ dijk = p ¢ djik = ¡3 (1¡ ±) (6¡ 5±) < 0:
5. Now consider the case with Q = IV1 (i; j; k) :

The intersectionH (IV1 (i; j; k))\H (IV2 (i)) = cone (bi; dijk) because p = ±2ei+
¡
12± ¡ 2±2 ¡ 9¢ ej+¡

9 + ±2 ¡ 9±¢ ek de…nes a separating hyperplane: for cone H (IV1 (i; j; k)) ; p ¢ dijk = 0; p ¢ cijk =
3 (1¡ ±) ¡9 + ±2 ¡ 9±¢ > 0; p ¢ bi = 0; and for cone H (IV2 (i)) ; p ¢ dikj = ¡3± (1¡ ±) (6¡ ±) < 0:

The intersection H (IV1 (i; j; k)) \H (IV3) = cone (dijk) because p = (4± ¡ 3) ei + (4± ¡ 3) ej +
(6¡ 5±) ek de…nes a separating hyperplane: for cone H (IV1 (i; j; k)) ; p ¢ dijk = 0; p ¢ cijk =
3 (± ¡ 1) (5± ¡ 6) > 0; p ¢ bi = 3 (± ¡ 1) (± ¡ 3) > 0; and for cone H (IV3) ; p ¢ dikj = 9± (± ¡ 1) < 0;
p ¢ dkji = 18± (± ¡ 1) < 0; p ¢ djki = 9± (± ¡ 1) < 0; p ¢ djik = 0; p ¢ dkij = 18± (± ¡ 1) < 0:

The intersection H (IV1 (i; j; k)) \ H (IV4 (k)) = cone (cijk; dijk) because p = 3 (1¡ ±) ei +
(2± ¡ 3) ej de…nes a separating hyperplane: for cone H (IV1 (i; j; k)) ; p ¢ dijk = 0; p ¢ cijk = 0;
p ¢ bi = 9± ¡ 9 ¡ ±2 < 0; and for cone H (IV4 (k)) ; p ¢ cjik = p ¢ djik = ± (6¡ 5±) > 0: Similarly,
H (IV1 (i; j; k)) \H (IV4 (j)) = H (IV1 (i; j; k)) \H (IV4 (i)) = f0g :
6. Now consider the case with Q = IV2 (i) :
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The intersection H (IV2 (i))\H (IV3) = cone (dijk; dikj) ; because p = (7± ¡ 6) ei+(3¡ 2±) ej+
(3¡ 2±) ek de…nes a separating hyperplane: for cone H (IV2 (i)) ; p ¢dijk = 0; p ¢dikj = 0; and p ¢bi =
3 (± ¡ 1) (± ¡ 6) > 0; and for cone H (IV3) ; p ¢ dkji = 18± (± ¡ 1) < 0; p ¢ !IV (j;ki) = 18± (± ¡ 1) < 0;
p ¢ djik = 9± (± ¡ 1) < 0; p ¢ dkij = 9± (± ¡ 1) < 0:

The intersection H (IV2 (i))\H (IV4 (k)) = cone (dijk), because p = ±2ei+
¡
12± ¡ 2±2 ¡ 9¢ ej +¡

9 + ±2 ¡ 9±¢ ek de…nes a separating hyperplane: for cone H (IV2 (i)) see item 5 above, and for cone
H (IV4 (k)) ; p ¢ cijk = ¡3 (± ¡ 1)

¡
9 + ±2 ¡ 9±¢ > 0; p ¢ cjik = 9 (± ¡ 1) (¡3 + 2±) > 0; p ¢ dijk = 0;

p ¢ djik = 3± (± ¡ 1) (± ¡ 3) > 0. Similarly, H (IV2 (i)) \H (IV4 (i)) = f0g.
7. Finally, consider the case with Q = IV3:

The intersection H (IV3)\H (IV4 (k)) = cone (dijk; djik) ; because p = (4± ¡ 3) ei+(4± ¡ 3) ej+
(6¡ 5±) ek de…nes a separating hyperplane: for cone H (IV3) see item 5 above, and for cone
H (IV4 (k)) ; p ¢ cijk = 3 (± ¡ 1) (5± ¡ 6) > 0; p ¢ cjik = 3 (± ¡ 1) (5± ¡ 6) > 0; p ¢ dijk = 0; p ¢ djik = 0:

We have then proved for all possible pairs Q and Q0 in Q with Q0 6= Q that H (Q) \H (Q0) =
cone (Q \Q0) : Q.E.D.

Proof of Theorem 5: From the discussion following the theorem the only non-obvious point
remaining to be proved is that case III (k) ; which is associated with the polyhedral cone

H (III (k)) =
n
! 2 R3 :

X
! ¸ 0; !i + 2!j · 0; 2!i + !j · 0

o
;

satis…es H (III (k)) = H (III1(i; j; k)) [H (III1(j; i; k)) [H (III2(k)) ; where

H (III1(i; j; k)) =
n
! 2 R3 :

X
! ¸ 0; !i + 2!j · 0; !j ¸ 0

o
;

H (III1(j; i; k)) =
n
! 2 R3 :

X
! ¸ 0; 2!i + !j · 0; !i ¸ 0

o
;

H (III2(k)) =
n
! 2 R3 :

X
! ¸ 0; !i · 0; !j · 0

o
:

We …rst show that H (III1(i; j; k))[H (III1(j; i; k))[H (III2(k)) ½ H (III (k)) : Suppose that
! 2 H (III1(i; j; k)) [ H (III1(j; i; k)) [ H (III2(k)) : If ! 2 H (III1(i; j; k)) then 2!i + 4!j · 0
and ¡3!j · 0; which imply 2!i + !j · 0 and thus ! 2 H (III2(k)) (a similar argument holds for
III1(j; i; k)): Obviously, if ! 2 H (III2(k)) then ! 2 H (III(k)) : Now we show that H (III (k)) ½
H (III1(i; j; k))[H (III1(j; i; k))[H (III2(k)) : Suppose that ! 2 H (III (k)) : Then we have either
!j · 0 or !j ¸ 0; and either !k · 0 or !k ¸ 0. If either !j ¸ 0 or !k ¸ 0 holds then either !
belongs either to case III1(i; j; k) or to case III1(j; i; k). Otherwise, we must have both !j · 0 and
!k · 0, which then imply that ! belongs to case III2(k). Q.E.D.

Proof of Proposition 7: Consider the normalized game (u; ±). We have that

!i (u; ±) = Ui +
±

2
(U ¡ Ui ¡ Ujk)¡ ±

3
U and ri (u; ±) =

1

3
U;

and thus !i + !j + !k = Ui +
±
2 (U ¡ Ui ¡ Ujk) ¡ ±

3U + Uj +
±
2 (U ¡ Uj ¡ Uik) ¡ ±

3U + Uk +
±
2 (U ¡ Uk ¡ Uij)¡ ±

3U:

We then have that Ái (u; ±) = ri +
!i
± ¡ 1

3
!i+!j+!k

± is equal to

Ái (u; ±) =
1

6

µ
(2U + Uik ¡ 2Ujk + Uij) + 1

±
((4¡ 2±)Ui ¡ (2¡ ±)Uj ¡ (2¡ ±)Uk)

¶
:
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But the Shapley value of i is Shi (u) = 1
6 (2 (U ¡ Ujk) + 2Ui + (Uij ¡ Uj) + (Uik ¡ Uk)) ; and we

have that Ái (u; ±)¡ Shi (u) = (1¡±)
3± (2Ui ¡ Uj ¡ Uk) :

Now for a general game (not normalized) we have that Ái (v; ±) = Ái (u; ±) + vi and Shi (v) =
vi + Shi (u) because

Shi (v) =
1

6

0@ 2 (V ¡ vi ¡ vj ¡ vk ¡ (Vjk ¡ vj ¡ vk))
+2 (Vi ¡ vi) + ((Vij ¡ vi ¡ vj)¡ (Vj ¡ vj))

+ ((Vik ¡ vi ¡ vk)¡ (Vk ¡ vk))

1A ;
and then we have that

Ái (v; ±)¡ Shi (v) = Ái (u; ±)¡ Shi (u) =
(1¡ ±)
3±

(2 (Vi ¡ vi)¡ (Vj ¡ vj)¡ (Vk ¡ vk)) :

Note that in the limit as ± ! 1 we have that Ái (v; ±)! Shi (v) : Note also that if there are no
externalities, Vi = vi for all i 2 f1; 2; 3g ; and then we have that Ái (v; ±) = Shi (v) as the formula
above shows. Q.E.D.

Proof of Proposition 8: First note that ri = vi + 1
3 (V ¡ v1 ¡ v2 ¡ v3) : We then have that

ri = V ¡ rj ¡ rk for all i: Also note that Xi = V ¡Xjk: This implies ri ¡Xi = V ¡ rj ¡ rk ¡Xi =
Xjk ¡ rj ¡ rk.

From Theorem 5 we have that II(i) is equivalent to Xi ¡ ri · 0; (Xi ¡ ri) + 2 (Xj ¡ rj) ¸ 0,
(Xj ¡ rj) · 1

2 (Xjk ¡ rj ¡ rk) ; (Xi ¡ ri) + 2 (Xk ¡ rk) ¸ 0, (Xk ¡ rk) · 1
2 (Xjk ¡ rj ¡ rk).

Also, we have that III(k) is equivalent to X1 +X2 +X3 ¸ V , Xi +Xj ¸ Xij ; (Xi ¡ ri) +
2 (Xj ¡ rj) · 0 , (Xj ¡ rj) · 1

2 (Xjk ¡ rj ¡ rk) ; and 2 (Xi ¡ ri) + (Xj ¡ rj) · 0 , (Xi ¡ ri) ·
1
2 (Xik ¡ ri ¡ rk). Q.E.D.

Proof of Proposition 9: Consider the negotiation game (v; ±) : The game v is in characteristic
function because V i = vi: By Theorem 4 if we show that r (v; ±) = r (v; ±) and ! (v; ±) = ! (v; ±)
then the equilibrium outcome of both games (v; ±) and (v; ±) must be the same.

By de…nition we have that

ri = vi +
1

3
(V ¡ v1 ¡ v2 ¡ v3) and !i = vi + ±

2
(V ¡ vi ¡ vjk)¡

µ
vi +

±

3
(V ¡ v1 ¡ v2 ¡ v3)

¶
;

It is thus obvious that r (v; ±) = r (v; ±) : Substituting the expression for the game v we have that

!i = vi +
±

2

µ
V ¡ vi ¡ (2¡ ±) vk ¡ (2¡ ±)Vk + ±Vij

±

¶
¡
µ
vi +

±

3
(V ¡ v1 ¡ v2 ¡ v3)

¶
;

and after simpli…cations we have that

!i = Vi +
±

2
(V ¡ Vi ¡ Vjk)¡

µ
vi +

±

3
(V ¡ v1 ¡ v2 ¡ v3)

¶
= !i:

Taking the limit as ± ! 1 of v proves the second part of the proposition. Q.E.D.
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