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Nonlinear Taxation, Tax Arbitrage and Equilibrium Asset Prices

Abstract

This paper investigates the equilibrium implications of the presence of nonlinearly taxed, redun-

dant securities, and of the resulting tax arbitrage opportunities. Heterogeneity in taxation leads

to discrepancies in assets' pre-tax market prices of risk. We show that this mispricing is set

so that agents e®ectively cooperate to minimize aggregate taxes, even though individually each

agent may not minimize his own tax bill. Unlike the bulk of the existing tax arbitrage literature,

but consistent with empirical evidence, equilibrium in our model allows discrepancy between

agents' marginal tax rates. Equilibrium with a zero net supply derivative reveals ¯nancial inno-

vation to alleviate taxation, in particular when the derivative is taxed linearly or is taxed less

heterogeneously across agents than is the stock itself. In the presence of two redundant, positive

supply securities, clientele e®ects arise, where one agent holds the aggregate supply of each risky

security, and only the bond is traded across agents. Clientele e®ects are shown to arise when

agents' tax rates are highly heterogeneous and when the aggregate wealth is divided fairly evenly

across agents.



1. Introduction

The presence of heterogeneously taxed, redundant securities is a common occurrence in ¯nancial

markets. For example: derivative securities may be subject to tax rules di®erent from the

underlying asset; some assets (e.g., municipal bonds) are exempt from some taxes (city and state

taxes, vs. federal taxes); or the same asset may be treated di®erently depending on an agent's

purpose in holding it (e.g., retirement investing). Financial economists have long recognized that

heterogeneous taxation of redundant securities can provide agents with opportunities for tax

arbitrage , where agents may be able to adjust their tax bill without a®ecting their risk exposure.

There has been substantial work to determine conditions (on tax rules in particular) under which

tax arbitrage is compatible with equilibrium (e.g., Schaefer (1982), Dammon and Green (1987)).

This is the case when agents face local arbitrage opportunities (a notion formalized by Ross

(1987)); once these have been exploited up to some (bounded) magnitude the tax treatment of the

assets is symmetrized and the opportunity disappears, hence equilibrium is possible. Although

its presence is well-recognized, little is known about the general equilibrium implications of tax

arbitrage (though Schaefer (1982) emphasizes the importance of such analysis). Some intuition

exists that agents will tend to \cooperate" to reduce taxes. For example, Samuelson (1964) states

that \rich men will buy bonds at a discount from poor men [...]. Such a tax swap involves the

purchase by the rich of the low tax base of the poor, at the expense of the government". However,

this notion has hardly been formalized.

Our objective is to study the e®ects of tax arbitrage on prices and allocations, in a general

equilibrium framework. A general analysis of tax arbitrage requires a fairly complex environment,

leading to a formidable problem, which this paper starts to investigate. We do not incorporate

all the nuances of a realistic tax code, and although explicit representation is taken as far as

possible, endogeneous quantities subsist in some equilibrium expressions. Our emphasis is on

the characterization and implications of equilibrium, while assuming the existence of optimal

policies and equilibrium. Our environment is necessarily complex in several respects: redundant

securities must be incorporated, to allow any notion of arbitrage; while nonlinear taxation must

be assumed, to limit the arbitrage opportunities. Furthermore, a continuous-time framework is

employed for several reasons: to provide tractability; to allow comparison with an abundance

of benchmark models; and to circumvent (Basak and Gallmeyer (1998)) an issue identi¯ed by

Dammon and Green (1987), that in a single-period ¯nite-state setting, equilibrium is precluded

when taxation is su±ciently heterogeneous across agents.

We work in a continuous time, pure exchange setting with two agents, possibly heteroge-

neous in their preferences, endowments and tax schedules. Agents trade in an untaxed riskless

bond that does not pay dividends, and two redundant, taxed, dividend-paying risky securities.

Agents' tax bills are a (generally nonlinear) function of their taxable income; taxable income in

turn is a nonlinear function of the dividends received from each security, a generalization over

the previous literature. To focus on the novel e®ects of this nonlinearity in dividends, much of
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1the paper assumes tax bills linear in taxable income. For tractability and clarity of our conclu-

sions, we abstract away from capital gains taxation (a formidable problem in its own right, e.g.,

Constantinides (1983)). Tax treatment is generally taken to be heterogeneous across securities

(via their contribution to taxable income). However, even homogeneous rules may have an asym-

metric impact across securities, since a security's e®ective taxation depends on how important

its dividends are relative to its capital gains and also on the price volatility.

Our agents' optimization problem is non-standard, because of the redundancy in the risky

securities and the nonlinearity in taxation. The redundancy adds an extra step in an agent's

optimization; once he has chosen his risk exposure, he must decide how to allocate that risk

between the two securities. The problem is simpli¯ed by solving this step ¯rst, by o®setting

tax-arbitrage and price-arbitrage opportunities. If (before-tax) the two risky securities were

identically priced, an agent would allocate his risk between them so as to minimize his tax

bill, indulging in tax-arbitrage activity until the e®ective marginal tax rates across the two

securities become equated. However, under asymmetric taxation, a pre-tax mispricing between

the securities (a divergence in their pre-tax market prices of risk) is allowed and the agent divides

his risk between the two securities until the discrepancy in e®ective tax rates counterbalances

the mispricing. He does not necessarily minimize his tax bill, because exploiting the mispricing

(price-arbitrage) may make up for paying additional taxes. Then, a tax-arbitrage opportunity

and a price-arbitrage opportunity both exist at the optimum, but the potential marginal pro¯ts

exactly o®set one another, which characterizes the allocation between the two securities.

The agent's remaining problem is one involving a single, \composite" risky asset whose

drift, under nonlinear taxation, will generally be policy-dependent. We employ techniques of

consumption-portfolio optimization in nonlinear ¯nancial markets (Cuoco and Cvitanic (1998))

to deal with this. These techniques consist in embedding the original (nonlinear) problem into a

family of perfect (linear) \¯ctitious" markets, where security prices dynamics are modi¯ed and

agents receive an additional stochastic \endowment" re°ecting the nonlinearity in the market

price of risk. The ¯ctitious markets are designed in such a way that the optimal policy in one of

them coincides with that in the actual, nonlinear market.

We examine in detail the case of the tax bill being linear in taxable income, while both

securities contribute to taxable income according to a piecewise linear schedule with a single kink

at zero. Here the family of ¯ctitious markets can be explicitly solved for. Tractability obtains

because the ¯ctitious stochastic endowment is constantly zero. In particular, under logarithmic

preferences and no stochastic endowment, fully explicit optimal policies are provided. This tax

scheme captures the e®ect of the asymmetric treatment of long and short positions, a real-life

feature of tax systems, but largely ignored by ¯nancial economists up to now. Relative to the

short sales prohibition typically assumed, this tax structure constitutes a more realistic way to

1This can be interpreted as taking agents to lie in particular tax brackets due to some \background income"
(e.g., wages) that is not explicitly incorporated into the model. The importance of such background income (which
dominates dividend income for the overwhelming majority of people) is a further motivation for this simplifying
assumption.
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bound tax-arbitrage trades and thus allow for existence of equilibrium. Of independent interest,

our analysis provides a valuable illustration of explicit use of the recently developed optimization

techniques in nonlinear markets.

The assets' mispricing and all other quantities are solved for by appealing to general equi-

librium restrictions. The pre-tax mispricing is set so that agents' allocation between the two

securities is consistent both with price-arbitrage o®setting tax-arbitrage, and with market clear-

ing. Under very general assumptions, it is shown that this is equivalent to minimization of

the aggregate tax proceeds (for given risk sharing among agents). This is somewhat surprising

because, individually, agents do not minimize their own tax bill.

The nonlinearity of taxable income in dividends, a novelty of our work with respect to the

existing literature (Schaefer (1982), Dammon and Green (1987), Dybvig and Ross (1986)), is

established to be rich in implications. In particular, unlike in earlier work, absence of arbitrage

for the agents requires neither a no-short sales constraint nor the equalization of marginal tax

rates across agents. So, equilibrium requires neither of these counterfactual restrictions. The

signi¯cance of nonlinearity of taxable income is further emphasized by studying the equilibrium

without this generalization (Section 7). Then, redundancy in the securities allows agents to fully

circumvent the nonlinearity in their tax bill and so to face a linear problem. Only when the

contributions to taxable income are also homogeneous across agents does equilibrium require

agents' marginal tax rates to be equated. Individual-speci¯c market prices of risk are then

equated and the economy collapses to a frictionless one.

The analysis of some equilibrium examples (with logarithmic preferences and tax bills linear

in taxable income) allows us to elaborate on the e®ects of tax arbitrage. First, we assume

one risky security (the \derivative") to be in zero net supply, and explore how and when this

derivative alleviates the tax burden. Such an analysis is of importance as much of the recent

¯nancial innovation may have been in response to features of the tax code, as pointed out, for

example, by Allen and Gale (1994, pp. 349-350). In our ¯rst example, the derivative is assumed

to contribute linearly to taxable income for both agents, while the stock is taxed nonlinearly.

We show that agents share their risk exposure between the assets in such a way that they

e®ectively face linear taxation. The linearly taxed derivative fully relieves the nonlinearity in the

tax schedule on the stock. In our second, more general example, one agent is taxed piecewise

linearly on both securities while the other is taxed linearly on both. We show, for given wealth

distribution and risky security prices, that the agents' market prices of risk (and the interest rate)

fall between those in the economy containing the stock alone and those in the economy with no

taxation. Hence the presence of the derivative causes risk-sharing to tend towards the no-tax

case and can be considered to relieve the frictional e®ects of the taxation. We can also look at

the determinants of the use of the innovation in equilibrium. We ¯nd that the derivative is used

only if: the nonlinearly taxed agent is wealthy enough (otherwise, he holds no risky security);

and taxation on the derivative is more homogeneous across agents than is taxation on the stock.

A well-recognized notion in the literature (and observed empirically) is that of a (tax) clientele
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e®ect, which we de¯ne as agents trading in disjoint sets of risky securities. The most extreme

type of clientele e®ect, with each agent holding the whole stock of a single risky security, has

been denoted a \clientele e®ect in prices" by Dybvig and Ross (1986). In an example with both

securities in positive supply we endogeneously generate such e®ects. We provide conditions for

the occurrence of such situations and characterization of the resulting equilibrium. Endogeneous

generation of a clientele e®ect is not trivial. A discontinuous kink in the taxation (at zero holding)

on each asset for at least one agent is a minimal requirement; this is the only way to generate

an extended price space over which a zero-holding is optimal. Moreover, equilibrium must allow

for divergence in agents' marginal tax rates, generically unequal in a clientele situation. For

simplicity, we assume piecewise linear tax schedules homogeneous across the two assets. Within

our example, we show clientele e®ects to arise when: agents' tax rates are far enough apart; and

the distribution of wealth is su±ciently even across agents. A distinctive feature of these clientele

states is that agents do not exchange risky securities with each other so, unlike in a standard

model, equilibrium is not driven by the ratio of marginal utilities. Rather, each risky security's

price re°ects the shadow cost of the single agent who is holding it. Which agent holds which

risky security depends on assets' relative taxation, and agents' wealths relative to the value of

the aggregate supply of each asset. For example, the higher taxed agent will hold the lower

taxed risky asset, if any, in accordance with aggregate tax minimization, but only if he is wealthy

enough.

This paper builds on the work of Schaefer (1982), who examines the e®ects of di®erential tax-

ation (in a one period framework with no uncertainty), mainly using numerical examples. The

payo®s from di®erent securities are allowed to contribute di®erently (but linearly and homoge-

neously across agents) to taxable income. Except if tax rules satisfy some \neutrality" conditions

that are not veri¯ed in practice, whenever agents occupy di®erent tax brackets, equilibrium is

possible only with imperfect capital markets. Schaefer assumes preclusion of short sales, but

points out that asymmetries in the treatment of long and short positions (such as in our work)

would su±ce. Although, as in our paper, mispricing occurs in the equilbria he describes, he does

not provide an analysis of its role. Dammon and Green (1987) extend Schaefer's work, also in

a one period setting, and with linear, homogeneous (across agents) contributions of assets to

taxable income, to provide a general condition for existence of prices that preclude unbounded

arbitrage and existence of equilibrium (shown to be equivalent): the existence of a set of feasible

trades such that agents equate marginal tax rates. This is a special case of our observation of

agents minimizing aggregate tax proceeds; but, under our more general tax scheme, minimiza-

tion of aggregate taxes does not require agents equating marginal tax rates. Jones and Milne

(1992) employ a di®erent approach to establish existence of equilibrium without assumptions on

tax schedules and asset returns. They show that it may su±ce for the government to be sub-

ject to a budget constraint precluding unbounded tax rebates and for agents to anticipate this.

Ross (1987) is related in that he also aims at identifying no-arbitrage conditions. He extends

the martingale approach to an environment with nonlinear taxation and ¯nds that assets should
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be priced according to their marginal contribution to an agent's income, net of taxes, and not

their actual cash-°ows. A somewhat related paper is by Basak and Gallmeyer (1998), who solve

for equilibrium when agents face linear di®erential dividend taxation from one risky security;

there, agents face individual-speci¯c market prices of risk as in the present work, but neither tax

arbitrage nor mispricing arise with a single risky security.

Our analysis of clientele e®ects complements the work of Dybvig and Ross (1986). Assuming

clientele e®ects arise, these authors derive pricing rules from agents' ¯rst-order conditions, under

the assumption that short sales are precluded. Dybvig and Ross' objectives are di®erent from

ours, in that they solely aim to identify when linear pricing rules apply and when they do not.

General conditions for the occurrence of clientele e®ects are not provided.

Section 2 describes the model, and Section 3 presents our technique for consumption-portfolio

choice in the presence of tax-arbitrage. Section 4 establishes general necessary conditions for

equilibrium and deduces a characterization of the mispricing and an analysis of its equilibrium

role. Sections 5 and 6 present some equilibrium examples, in the presence of a zero net supply

derivative security in the former section, and with redundant positive supply securities in the

latter one. Section 7 examines the case where taxable income is linear in dividends received.

Section 8 concludes and the Appendix provides all proofs.

2. The Economy

We consider a ¯nite horizon, [0; T ], continuous-time, pure-exchange economy with a single con-

sumption good (the numeraire). Uncertainty is represented by a ¯ltered probability space

(;F ; fF g;P) on which is de¯ned a one-dimensional Brownian motion W . The economy ist

populated by two agents, indexed by i 2 f1; 2g, homogeneous in their (complete) information

(represented by fF g, the augmented ¯ltration generated by W ) and beliefs (represented byt

P). All stochastic processes introduced are assumed adapted to fF g, all (in)equalities involvingt

random variables hold P-a.s., and all stochastic di®erential equations are assumed to have a

solution.

2.1. Investment Opportunities and Taxation

The agents trade in three securities: a locally riskless \bond" (money market account) with price

B, earning the instantaneous interest rate r, in zero net supply and paying no dividends; and two

risky securities with prices S and P , representing claims to the exogenously speci¯ed dividend

processes ± and ± , with dynamicsS P

h i
d± (t) = ± (t) ¹ (t)dt+ ¾ (t)dW (t) ; j 2 fS;Pg:j j ± ±j j

The security with price S is assumed to be in constant, positive net supply of one share and can

thus be viewed as a \stock". The second risky security is in constant net supply of s share,P
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with either s = 0 or s = 1 in our respective equilibrium examples. In the former case, whichP P

will allow us to study, in particular, the tax-relieving role of ¯nancial innovation, this security

may be interpreted as a derivative. The latter case will allow us to endogenize clientele e®ects;

an example ¯tting into this framework is that of long-lived, default-free bonds di®ering in their

tax treatment (e.g., corporate and municipal). The security prices have dynamics

dB(t) = B(t)r(t)dt ;

dS(t) + ± (t)dt = S(t) [¹ (t)dt+ ¾ (t)dW (t)] ;S S S

dP (t) + ± (t)dt = P (t) [¹ (t)dt+ ¾ (t)dW (t)] ;P P P

where the processes r, ¹ , ¹ , ¾ , ¾ are determined endogenously in equilibrium, with ¾ , ¾S P S P S P

2assumed bounded above and below away from zero. Agent i's holding (in units) of security j at
itime t is denoted by ® (t), j 2 fS;Pg.j

Agent i is taxed on dividends received from the risky securities: at time t, he pays the

instantaneous amount ³ ´
i i i i iT t (® (t)± (t)) + t (® (t)± (t)) ; (2.1)S PS S P P

i i iwhere T (¢), t (¢) and t (¢) are agent-speci¯c, deterministic, time-independent, continuous, con-S P
ivex and increasing functions, with a derivative (if it exists) less than one. The argument of T (¢)

in (2.1) is understood as i's taxable income . For convenience, we sometimes denote agent i's time
i i0t tax bill by T (t), and its derivative (i's marginal tax rate) by T (t). For much of the paper

i(Sections 3.3, 5, 6), to focus on the di®erential tax treatment across securities, we assume T (¢)
to be linear (w.l.o.g., equal to the identity): this can be interpreted as exogenously taking agents

to lie in particular tax brackets, and amounts to separately taxing dividends received from each

risky security. An important special case is that of a progressive piecewise linear contribution to
itaxable income, exhibiting a single kink at zero dividends and rates ¿ for long positions andj+

i¿ for short positions:j¡ ³ ´ ³ ´ ³ ´+ ¡
i i i i i it ® ± = ® ± ¿ ¡ ® ± ¿ ; (2.2)j j jj j j j+ j j¡

i i i i iwith 0 · ¿ · ¿ < 1, j 2 fS;Pg. In the special case of linear taxation, we have ¿ = ¿ ´ ¿ ,j¡ j+ j¡ j+ j³ ´
i i i iso that t ® ± = ® ± ¿ , j 2 fS;Pg. Beyond this special case, for clarity we assume allj jj j j j

i ifunctions T (¢), t (¢) to be continuously di®erentiable. Our setup leaves aside many featuresj

of actual tax systems (e.g., consumption or capital gains taxes). However, we capture several

real-life phenomena: di®erent tax brackets across agents, di®erences in tax treatment across

securities, and asymmetric tax treatment of long and short positions.

Without taxation, with all uncertainty generated by a one-dimensional Brownian motion,

one of our risky securities would be redundant, and so no-arbitrage would enforce identical

2For simplicity in exposition, we focus on equilibria where ¾ , ¾ are both positive. Our other primitives doS P

not rule out additional equilibria where one or both of ¾ , ¾ can be negative, but these equilibria have similarS P

features to the ones we discuss. The analysis of the continuously di®erentiable taxation case (Sections 3.1-3.2, 4,
5.1 and 7) is fully independent of the signs of the volatilities, and conceptually all our main conclusions are equally
valid for negative volatilities.
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instantaneous market prices of risk. This motivates our de¯nition of (pre-tax) mispricing as:

¹ (t)¡ r(t) ¹ (t)¡ r(t)S P
¢ (t) ´ ¡ :S;P

¾ (t) ¾ (t)S P

In the presence of heterogeneous taxation across securities, the securities may be \mispriced"

(non-zero ¢ ) when judged on a pre-tax basis, while not necessarily being mispriced after taxesS;P

are taken into account. Hence a non-zero \mispricing" may be compatible with no-arbitrage.

2.2. Agents' Endowments and Preferences

i i 1 2 iAgent i is endowed with e share of security j 2 fS; Pg, with: e > 0, e + e = 1; e ¸ 0,j S S S P
1 2e + e = s . In our later analyses, tax proceeds will either be assumed to be redistributed toPP P

the agents or taken out of the economy. In the former case, we assume agent i to be endowed with
i 1 2 1 2 ithe stochastic process ² (t) ¸ 0, with ² (t) + ² (t) = T (t) + T (t); in the latter case, ² (t) = 0.¡ ¢>i i i iAgent i chooses a consumption process c and a portfolio process ® ´ ® ;® , and pays taxesS P¡ ¢

i i i iT (t). A consumption-portfolio pair c ; ® is admissible if the associated wealth process X is
ibounded below, satis¯es X (T ) ¸ 0 and obeys the dynamic budget constraint

h i
i i i idX (t) = X (t)r(t) + ² (t)¡ c (t) dt

i i+® (t)S(t) f[¹ (t)¡ r(t)]dt+ ¾ (t)dW (t)g+ ® (t)P (t) f[¹ (t)¡ r(t)]dt+ ¾ (t)dW (t)gS S P PS P³ ´
i i i i i¡T t (® (t)± (t)) + t (® (t)± (t)) dt ; (2.3)S PS S P P

i i iwith X (0) = e S(0) + e P (0). The ¯rst and second line contain the standard terms, a±neS P

in portfolio holdings; the third, additional, line accounts for taxation and may exhibit non-

linearity in portfolio holdings, adding substantial complexity. Each agent derives time-additive,¡ ¢
istate-independent utility u c (t) from intertemporal consumption in [0; T ]. The function u (¢)i i

is assumed three times continuously di®erentiable, strictly increasing, strictly concave, and to
0 0satisfy lim u (c) =1 and lim u (c) = 0. Agent i's optimization problem is to maximizec!0 c!1i ih iR T i i iE u (c (t))dt over all admissible (c ; ® ) for which the expected integral is well-de¯ned.i0

3. Agents' Optimization in the Presence of Tax Arbitrage

Redundancy in the risky securities adds an extra layer to the solution for optimality: once the

agent has chosen his risk exposure, he must further decide how to allocate that risk between

the two securities. It turns out that the optimal allocation between S and P , for a given risk

exposure, obtains from non-satiation alone, independently of the preferences of the agent. Hence,

the problem is simpli¯ed by solving \in reverse", ¯rst for the optimal allocation between S and

P (Section 3.1), second for the optimal risk exposure (Section 3.2).

The ¯rst stage in the optimization introduces the concepts of tax-arbitrage and price-arbitrage.

Under no taxation, any mispricing between S and P would induce an agent to take on an

7



unbounded, costless, riskless position (long in one security and short in the other) yielding positive

gain: a \price-arbitrage opportunity." Under no mispricing, di®erential tax treatment of S and P

(due to di®erential contribution to taxable income) might induce an agent to prefer one security

to the other and so take on a long position in one ¯nanced by a short position in the other,

yielding positive gain (in the form of a tax rebate): a \tax-arbitrage opportunity." Under linear

taxation, the opportunity would allow for an unbounded pro¯table position. Under nonlinear

taxation, however, it may be that some bounded position equates the (marginal) tax treatments

of S and P and so is optimal, in which case we will call this a \bounded" or \local tax-arbitrage

opportunity" (as in Ross (1987)).

In equilibrium, agents' non-satiation requires no net arbitrage opportunity, but, under dif-

ferential taxation, a price-arbitrage opportunity (mispricing) may be present in equilibrium, yet

o®set by a tax-arbitrage opportunity. Any gain from buying the underpriced security and selling

the overpriced one must be o®set by an increase in taxes (and conversely, any attempt by the

agent to reduce his tax bill must be o®set by the mispricing). Section 3.1 quanti¯es these notions.

We introduce the risk-weighted sum of holdings in the risky securities,

¾ (t)Pi i i© (t) ´ ® (t)S(t) + ® (t)P (t) ; (3.1)S P¾ (t)S

interpreted as agent i's \composite" risk exposure, because all pairs of holdings in S and P that
i ilead to the same value for © (t) yield the same di®usion for i's wealth, © (t)¾ (t).S

3.1. Non-Satiation and Tax-Arbitrage

Agent i will divide his composite risk exposure between S and P in such a way that he is either

indi®erent to marginal shifts from one security to the other, or any shift yields negative gain.¡ ¢
i iProposition 3.1 presents the resulting condition on rational holdings ®̂ ; ®̂ .S P

iProposition 3.1. Let © (t) and ¢ (t) be given. (a) If taxation is continuously di®erentiable,S;P¡ ¢ ¡ ¡ ¢ ¡ ¢¢
i i i i i iagent i is indi®erent between all pairs ®̂ (t); ®̂ (t) ´ ®̂ © (t);¢ (t); t ; ®̂ © (t);¢ (t); tS;P S;PS P S P

i 3leading to the same value for his risk exposure © (t) and such that

³ ´ ³ ´
i i i i i iµ ®̂ (t); ®̂ (t); t = µ ®̂ (t); ®̂ (t); t ; (3.2)S S P P S P

where, for j 2 fS; Pg,
³ ´¹ (t)¡ r(t)ji i0 i0 i iµ (® ;® ; t) ´ ¡ d (t)t (® ± (t))T t (® ± (t)) + t (® ± (t)) ; (3.3)S P j j j S S P Pj j S P¾ (t)j

± (t) ± (t)S P
d (t) ´ ; d (t) ´ :S P

S(t)¾ (t) P (t)¾ (t)S P

3Existence of a solution to (3.2) (or (3.5)) on a positive measure space for ¢ (t) is guaranteed by theS;P

assumptions on tax schedules made in Remark 4.1.
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Equivalently,

h i ³ ´
i0 i i0 i i0 i i i i¢ (t) = d (t)t (®̂ (t)± (t))¡ d (t)t (®̂ (t)± (t)) T t (®̂ (t)± (t)) + t (®̂ (t)± (t)) :S;P S S P P S PS S P P S S P P

(3.4)¡ ¢
i i(b) If taxation is not continuously di®erentiable, agent i is indi®erent between all pairs ®̂ (t); ®̂ (t)S P

ileading to the same © (t) and such that

³ ´ ³ ´ ³ ´ ³ ´
i i i i i i i i i i i iµ ®̂ (t); ®̂ (t); t · µ ®̂ (t); ®̂ (t); t and µ ®̂ (t); ®̂ (t); t · µ ®̂ (t); ®̂ (t); t ;S P S P S P S PS[+] P [¡] P [+] S[¡]

(3.5)

where, for j; k 2 fS;Pg, k6= j,

¹ (t)¡ r(t)ji i0 i0µ (® ;® ; t) ´ ¡ d (t) lim t (x± (t))T (x± (t) + ® ± (t)) ; (3.6)j j jS P k kjj[¡]
x"®¾ (t) jj

¹ (t)¡ r(t)ji i0 i0µ (® ;® ; t) ´ ¡ d (t) lim t (x± (t))T (x± (t) + ® ± (t)) : (3.7)j j jS P k kjj[+]
x#®¾ (t) jj

(3.3) or (3.6)-(3.7) can be identi¯ed as agent i's (subjective) after-tax marginal market prices

of risk (or left and right limits thereof) for securities S and P , marginal in the sense of providing

the (after-tax) risk premium per unit of risk on the additional dollar invested in a risky security.

A security's relative favorability is, then, driven by its pre-tax risk-premium-to-risk ratio (price

favorability), minus its \net" marginal tax rate (accounting for both its marginal contribution to

taxable income and the agent's marginal tax rate) normalized by its risk and price-to-dividend

ratio (tax unfavorability). Thus, a non-zero pre-tax mispricing ¢ (t) is consistent with theS;P

existence of a solution to an agent's problem, and will o®set any di®erence in marginal tax rates

across assets. Whenever one security's after-tax marginal market price of risk dominates the

other, i can increase the drift of his wealth by exchanging the less favorable security for the more

favorable. In the di®erentiable taxation case, (3.2) states that at the optimum an agent must

face no after-tax mispricing, i.e., no discrepancy across securities between after-tax market prices

of risk, accounting for his individual-speci¯c (generally policy-dependent) marginal tax rates.

Equivalently, in (3.4), consistent with our intuition, any pre-tax mispricing must be exactly

compensated by the di®erential taxation of the assets at the agent's optimum.

To facilitate understanding of Proposition 3.1, rewrite the budget constraint (2.3) as:

³ ´
i i i i idX (t) = r(t)X (t) + ² (t)¡ c (t) dt+ © (t) [(¹ (t)¡ r(t))dt+ ¾ (t)dW (t)]S S

³ ´
i i i i i i¡® (t)P (t)¾ (t)¢ (t)dt¡ T t (® (t)± (t)) + t (® (t)± (t)) dt : (3.8)P S;P S PP S S P P

(3.4) can easily be checked to be the ¯rst-order condition of the problem to maximize the drift
iof wealth, for given © . The sharing between S and P a®ects only the second line of (3.8).

Increasing the value of the former term (the price-arbitrage pro¯t) in this line amounts to buying

the favorably mispriced security and selling the other, while decreasing the second term (the

agent's tax bill) amounts to ¯nancing purchases of the lower taxed security by sales of the more

heavily taxed one. Hence, (3.4) states that, at the optimum, the marginal pro¯t/cost from the
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former activity (price-arbitrage) is o®set by an increase/reduction in the tax bill (tax-arbitrage).

A consequence is that an agent generally does not minimize the amount of his tax bill: he may be

willing to pay more taxes and surrender tax-arbitrage pro¯ts in order to exploit the mispricing.

Remark 3.1. A tax-arbitrage opportunity arises from a divergence between the securities' prod-

uct of net marginal tax rate with d or d . These products represent \e®ective" tax rates, ac-S P

counting for the assets' dividend-to-price ratios, and how volatile, hence e®ective at adjusting

risk exposure, they are: they state by how much agent i's tax bill will vary if he adjusts his risk

exposure using one asset or the other. Hence, for the assets to be a®ected heterogeneously by

taxation, it is not necessary that they be subject to explicitly di®erent tax rules (in terms of

contribution to taxable income); it su±ces that d and d di®er.S P

Proposition 3.1 implies (via substitution into the dynamic budget constraint (2.3)) that any

non-satiated agent's optimal wealth will always follow:

h i
i i i i idX (t) = X (t)r(t) + ² (t)¡ c (t) dt+ © (t) f[¹ (t)¡ r(t)] dt+ ¾ (t)dW (t)gS S

³ ´
i i¡®̂ © (t);¢ (t); t P (t)¾ (t)¢ dtS;P P S;PP
³ ´
i i i i i i i¡T t (®̂ (© (t);¢ (t); t)± (t)) + t (®̂ (© (t);¢ (t); t)± (t)) dt ; (3.9)S;P S S;P PS S P P

¡ ¢ ¡ ¢
i i i iwhere ®̂ © (t);¢ (t); t , ®̂ © (t);¢ (t); t are as provided by Proposition 3.1. When theS;P S;PS P

i®̂ 's are not unique, all possible choices lead to the same wealth dynamics. Because non-satiationj

su±ces to pin down the choice between S and P , agents e®ectively face a (generally nonlinear)
ioptimization problem involving a single, \composite" risky security with volatility ¾ . © canS

be interpreted as the weight in the composite and (3.9) as the corresponding budget constraint.
i i iThe nonlinearity of the problem stems from both the nonlinearity in © of ®̂ and ®̂ and theS P

nonlinearity of the tax schedules.

3.2. Optimal Risk Exposure (©) and Consumption Choice

The methodology employed to deal with our nonlinear problem consists of embedding it into a

family of \¯ctitious", unconstrained, perfect (linear) market problems (Cvitanic and Karatzas

(1992), Cuoco and Cvitanic (1998)). The ¯ctitious price dynamics and endowments are modi¯ed

so that the solution to one of the perfect market problems coincides with that of the original
iproblem. Each (individual-speci¯c) ¯ctitious market, parametrized by the process º , has no

4taxation, one bond and one stock with price parameters (3.10) and agents' endowments (3.11):

ir (t) ´ r(t) ; ¹ (t) ´ ¹ (t)¡ º (t) ; ¾ (t) ´ ¾ (t) ; (3.10)i i iS Sº º º³ ´
i i i i² (t) ´ ² (t) + ~g º (t); t ; (3.11)iº

4In our application, it does not prove necessary to adjust the interest rate in the ¯ctitious market, because only
an agent's composite risk exposure, and not his total wealth, a®ects his individual-speci¯c price parameters. This
would not be the case if, for example, interest income from the bond were taxed nonlinearly.

10



n o
i iwhere ~g (º; t) ´ sup g (©; t) + ©º ; (3.12)

©

i ig (©; t) ´ ¡®̂ (©;¢ (t); t)P (t)¾ (t)¢ (t) (3.13)S;P P S;PP³ ´
i i i i i¡T t (®̂ (©;¢ (t); t)± (t)) + t (®̂ (©;¢ (t); t)± (t)) ;S;P S S;P PS S P P

i i 5and ®̂ , ®̂ are as provided by Proposition 3.1. We de¯ne the setS P

n o
i iN ´ º : ~g (º; t) <1 : (3.14)t

i iand N as the set of processes º such that, for any t, º(t) 2 N . The market price of risk in thet

¯ctitious market is given by

i¹ (t)¡ r (t) ¹ (t)¡ r(t) º (t)i i Sº ºµ i(t) ´ = ¡ ;º ¾ (t) ¾ (t) ¾ (t)i S Sº

and the ¯ctitious state price density process » has dynamicsiº

d» (t) = ¡» (t) [r (t)dt+ µ (t)dW (t)] :i i i iº º º º

iInformally, º re°ects the potential policy-dependence of agent i's marginal after-tax market price
iof risk, while ~g ensures agreement between the actual and ¯ctitious wealth dynamics. At the

supremum of the problem in (3.12), we have

h³ ´ i±Si i i i i i0 i0 i i0 i i0 i0 ig = ¡© º + ~g = ¡© t T + ®̂ ± t + ®̂ ± t T ¡ T ;S PS S S P PS

irevealing that the ~g endowment term captures convexity in the tax schedules causing not all
i0 i0of agent i's dividend income to be taxed at the marginal rate (t T ). Hence, part of his riskS

exposure in the actual economy is not rewarded at the ¯ctitious market price of risk µ but atiº

a higher rate.

Standard martingale methods (Cox and Huang (1989), Karatzas, Lehoczky and Shreve (1987))

can be used to solve agent i's (linear) optimization problem in the ¯ctitious market, for a given
iº . The determination of i's optimal policy in the original market involves setting up a dual,

i\minimax" problem. Proposition 3.2 establishes that, if º solves the dual, the optimum in

the corresponding ¯ctitious market is attainable and optimal in the actual economy. (At this
i i iminimax º , » ; µ are henceforth denoted » ; µ .)i iº º

iProposition 3.2. Assume that there exists a solution º to the problem
( " # " # )Z Z ³ ´T T

i i i imin maxE u (c (t))dt s.t. E » (t) c (t)¡ ² (t) dt · » (0)X (0) : (3.15)i º ººi iº2N c 0 0

Then, there exists a solution to agent i's optimization problem and his optimal consumption is
³ ´

i i i ic (t) = I y » (t) ; (3.16)

5 iNoting that g equals the supremum of the second line in (3.8) maximized over (® (t); ® (t)), and applyingS P
i ithe enveolope theorem shows that g is concave in © , when taxation is di®erentiable. In our subsequent examples

iwhere taxation is not di®erentiable, concavity of g (determined explicitly) can be veri¯ed case-by-case.
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h iR ¡ ¢Ti 0 i i i i i i i iwhere I (¢) is the inverse of u (¢) and y satis¯es E » (t) I (y » (t))¡ ² (t) dt = » (0)X (0).ii 0 º

The optimal holding in the composite asset is given by

i i iµ (t)X (t) · (t)i© (t) = + ; (3.17)
i¾ (t) ¾ (t)» (t)S S

¡ ¢R Rt ti i i i i i i i iwhere · satis¯es » (t)X (t) + » (s) c (s)¡ ² (s) ds = » (0)X (0) + · (s)dW (s).i0 0º

Proposition 3.1 then yields the portfolio strategy in terms of the actual securities S and P .

3.3. Optimization under Progressive Piecewise Linear Taxation

iWe illustrate Sections 3.1 and 3.2 using a linear T and piecewise linear contributions to taxable

income (2.2) for both securities. Proposition 3.1 explicitly provides agent i's optimal allocation

between the two risky securities given ©, as summarized by Table I Panel (a). Agent i is indi®erent¡ ¢
i ibetween all ®̂ ; ®̂ satisfying (3.1). Results are presented for the range of mispricings whichS P

6do not allow net unbounded arbitrage.

An agent is in one of thirteen cases (A-M), depending on the sign of his composite risk

exposure and the value of the mispricing. There are four values of the mispricing (A, C, E, F, H,

I, K, M) which exactly compensate the di®erential tax treatment of the two securities, as long

as the holdings in each remain within the positive or the negative region. At these mispricings,

the agent is indi®erent between all such portfolio allocations between S and P . Additional

price-arbitrage pro¯ts are exactly o®set by an increase in his tax bill. At intermediate levels of

mispricing (B, D, G, J, L), the agent rationally invests zero in one or both risky securities. He

is, then, at the kink in the tax schedule for one or both securities, and any price-favorability and

tax-favorability of one asset over the other is insu±cient to induce him to deviate from that kink.

For some values of the mispricing (e.g., those such that the agent can be in either B, G or L), he
iuses the same risky security for both signs of © ; for other mispricings (e.g., when the agent is in

ione of B, G or J), he uses one risky security for one sign of © and the other for the other sign.

In all cases, the agent never needs to hold more than one of the risky securities simultaneously;

if he holds both, they are perfect substitutes locally, and he is indi®erent between them. In the
i i iparticular case of linear taxation on both securities (¿ = ¿ ´ ¿ , j 2 fS;Pg), the mispricingj+ j¡ j

i i 7is pegged at ¢ (t) = d (t)¿ ¡ d (t)¿ , exactly o®setting the di®erential tax treatment.S;P S PS P

Applying (3.12)-(3.14), in this piecewise linear case with a kink at zero, an explicit deter-
i imination of the space of ¯ctitious market parameters N and the associated ~g is possible, ast

6 i i i iFrom (3.5), existence of an optimal solution requires: d (t)¿ ¡d (t)¿ · ¢ (t) · d (t)¿ ¡d (t)¿ .S P S;P S PS¡ P+ S+ P¡
i iFor mispricings outside this region, a ¯nite choice for ® and ® is never rational. For large enough mispricing,S P

i i¢ > d ¿ ¡ d ¿ , the price-favorability of S more than compensates for any tax unfavorability so there isS;P S PS+ P¡
i ia net unbounded arbitrage opportunity, and analogously for ¢ < d ¿ ¡ d ¿ .S;P S PS¡ P+

7Similar results (involving many more cases) would obtain with more than one kink in the tax schedules: either
the agent would be indi®erent between all holdings such that dividend income from each security lies between two
kinks in its tax schedule; or his holdings would be uniquely determined, the income from one security being ¯xed

iat a kink in its tax schedule, the holdings in the other security adjusting to attain © .
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Table I:
Panel (a): Portfolio Holdings Consistent with Non-Satiation (General Preferences).

Panel (b): Fictitious Market Parameter for a Logarithmic Agent

Panel (a) Panel (b)

¹ ¡ri i i iS¢ © ®̂ ; ®̂ ºS;P S P ¾S

i i i iA = d ¿ ¡ d ¿ < 0;¸ 0 < d ¿ ¾ d ¿S P S S SS¡ P+ S¡ S¡
³ ´

i i i i i iB 2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ < 0;= 0 < d ¿ ¾ d ¿S P S P S S SS¡ P+ S¡ P¡ S¡ S¡

i i i iC = d ¿ ¡ d ¿ < 0 · 0;· 0 < d ¿ ¾ d ¿S P S S SS¡ P¡ S¡ S¡
³ ´ ³ ´

i i i i i iD 2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ = 0;< 0 < ¢ + d ¿ ¾ ¢ + d ¿S P S P S;P P S S;P PS¡ P¡ S+ P¡ P¡ P¡

i i i iE = d ¿ ¡ d ¿ ¸ 0;< 0 < d ¿ ¾ d ¿S P S S SS+ P¡ S+ S+

i i i iF = d ¿ ¡ d ¿ · 0;¸ 0 = d ¿ ¾ d ¿S P S S SS¡ P+ S¡ S¡
h n o

i i2 max d ¿ ;¢ + d ¿ ;³ ´ S S;P PS¡ P¡
i i i iG 2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ = 0 = 0;= 0 (¹ ¡ r)n o iS P S P SS¡ P+ S+ P¡

i imin d ¿ ;¢ + d ¿S S;P PS+ P+

i i i iH = d ¿ ¡ d ¿ ¸ 0;· 0 = d ¿ ¾ d ¿S P S S SS+ P¡ S+ S+

i i i iI = d ¿ ¡ d ¿ · 0;> 0 > d ¿ ¾ d ¿S P S S SS¡ P+ S¡ S¡
³ ´ ³ ´

i i i i i iJ 2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ = 0;> 0 > ¢ + d ¿ ¾ ¢ + d ¿S P S P S;P P S S;P PS¡ P+ S+ P+ P+ P+

i i i iK = d ¿ ¡ d ¿ > 0 ¸ 0;¸ 0 > d ¿ ¾ d ¿S P S S SS+ P+ S+ S+

³ ´
i i i i i iL 2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ > 0;= 0 > d ¿ ¾ d ¿S P S P S S SS+ P+ S+ P¡ S+ S+

i i i iM = d ¿ ¡ d ¿ > 0;· 0 > d ¿ ¾ d ¿S P S S SS+ P¡ S+ S+

reported in Proposition 3.3.

¡ ¢
i iProposition 3.3. If taxation is piecewise linear with a single kink at zero, for any t, ~g º (t); t =£ ¤

i i i i i0 for any º (t) in N . N is a closed interval, denoted by º (t); º (t) , where the lower and uppert t

limits depend on ¢ (t) and are given in Table II.S;P

Depending on the mispricing value and the relative taxation of securities, Table II reveals
ithe agent to face three types of optimization problems. In the ¯rst type, whenever N is at
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Table II: Fictitious Market Parameter Space under Piecewise Linear Taxation

£ ¤ Casesi i i¢ N = º ; ºS;P t
(from Table I)

³ ´ ³ ´
i i i i(i) \Taxation of P closer to linear": d ¿ ¡ ¿ < d ¿ ¡ ¿P SP+ P¡ S+ S¡
n o

i i i= d ¿ ¡ d ¿ ¾ d ¿ AFIS P S SS¡ P+ S¡
³ ´ h ³ ´i

i i i i i i2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ ¾ d ¿ ; ¾ ¢ + d ¿ BGJS P S P S S S S;P PS¡ P+ S¡ P¡ S¡ P+
h ³ ´i

i i i i i i= d ¿ ¡ d ¿ ¾ d ¿ ; ¾ d ¿ + d ¾ ¿ ¡ ¿ CGJS P S S S S P SS¡ P¡ S¡ S¡ P+ P¡
³ ´ h ³ ´ ³ ´i

i i i i i i2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ ¾ ¢ + d ¿ ; ¾ ¢ + d ¿ DGJS P S P S S;P P S S;P PS¡ P¡ S+ P+ P¡ P+
h ³ ´ i

i i i i i i= d ¿ ¡ d ¿ ¾ d ¿ ¡ d ¾ ¿ ¡ ¿ ; ¾ d ¿ DGKS P S S P S S SS+ P+ S+ P+ P¡ S+
³ ´ h ³ ´ i

i i i i i i2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ ¾ ¢ + d ¿ ; ¾ d ¿ DGLS P S P S S;P P S SS+ P+ S+ P¡ P¡ S+
n o

i i i= d ¿ ¡ d ¿ ¾ d ¿ EHMS P S SS+ P¡ S+

³ ´ ³ ´
i i i i(ii) d ¿ ¡ ¿ = d ¿ ¡ ¿P SP+ P¡ S+ S¡

n o
i i i= d ¿ ¡ d ¿ ¾ d ¿ AFIS P S SS¡ P+ S¡

³ ´ h ³ ´i
i i i i i i2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ ¾ d ¿ ; ¾ ¢ + d ¿ BGJS P S P S S S S;P PS¡ P+ S¡ P¡ S¡ P+

h i
i i i i= d ¿ ¡ d ¿ ¾ d ¿ ; ¾ d ¿ CGKS P S S S SS¡ P¡ S¡ S+

³ ´ h ³ ´ i
i i i i i i2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ ¾ ¢ + d ¿ ; ¾ d ¿ DGLS P S P S S;P P S SS¡ P¡ S+ P¡ P¡ S+

n o
i i i= d ¿ ¡ d ¿ ¾ d ¿ EHMS P S SS+ P¡ S+

³ ´ ³ ´
i i i i(iii) Taxation of S \closer to linear": d ¿ ¡ ¿ > d ¿ ¡ ¿P SP+ P¡ S+ S¡

n o
i i i= d ¿ ¡ d ¿ ¾ d ¿ AFIS P S SS¡ P+ S¡

³ ´ h ³ ´i
i i i i i i2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ ¾ d ¿ ; ¾ ¢ + d ¿ BGJS P S P S S S S;P PS¡ P+ S+ P+ S¡ P+

h i
i i i i= d ¿ ¡ d ¿ ¾ d ¿ ; ¾ d ¿ BGKS P S S S SS+ P+ S¡ S+

³ ´ h i
i i i i i i2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ ¾ d ¿ ; ¾ d ¿ BGLS P S P S S S SS+ P+ S¡ P¡ S¡ S+

h i
i i i i= d ¿ ¡ d ¿ ¾ d ¿ ; ¾ d ¿ CGLS P S S S SS¡ P¡ S¡ S+

³ ´ h ³ ´ i
i i i i i i2 d ¿ ¡ d ¿ ; d ¿ ¡ d ¿ ¾ ¢ + d ¿ ; ¾ d ¿ DGLS P S P S S;P P S SS¡ P¡ S+ P¡ P¡ S+

n o
i i i= d ¿ ¡ d ¿ ¾ d ¿ EHMS P S SS+ P¡ S+
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isingleton (AFI, EHM), the agent faces a linear optimization problem. The value of º reveals
i ithe e®ective tax rate to be either ¿ or ¿ . In the former case (AFI), security S becomes theS¡ S+

more favorable for short positions, while P is more favorable for long positions, and vice versa

in the latter case (EHM). In either case, the mispricing is such that the market price of risk

provided by the more favorable security for long positions coincides with that provided by the

more favorable security for short positions, e®ectively symmetrizing the tax treatment of long

and short composite holdings. The agent is able to use security P to fully circumvent either

the higher tax rate for long positions in S (AFI), or the lower tax rate for short positions in S

(EHM).

iOtherwise, whenever N is a closed interval, the agent faces a nonlinear problem. From thet

proof of Proposition 3.3, we may also deduce that the optimal composite holding, which solves

(3.12) (Cuoco and Cvitanic (1998), Theorem 2), satis¯es

8
i i>· 0 when º (t) = º (t)< ¡ ¢i i i i© (t) = 0 when º (t) 2 º (t); º (t) :sup >: i i¸ 0 when º (t) = º (t)

When the agent's risk exposure is zero, he remains at the kink in the tax schedule for both risky

securities; for a region of market prices of risk he has no incentive to move away from the kink.
i i iHe faces an e®ective tax rate (º =¾ d ), between ¿ and ¿ , for short positions, and a higherS S S¡ S+

i i ie®ective tax rate (º =¾ d ), again between ¿ and ¿ , for long positions. The e®ective taxS S S¡ S+

rates are determined by which risky security is favorable to use to attain composite holdings of

that sign; the agent's (individual-speci¯c) ¯ctitious market price of risk (µ i) then coincides withº

the after-tax market price of risk on the security to be used.

If security P were not present, the agent would face a nonlinear optimization problem with
i itax rate ¿ for short positions and ¿ for long positions. In the presence of P , since he couldS¡ S+

ialways choose not to use P , the tax rate for short positions must always be at least ¿ , andS¡
ithat for long positions at most ¿ . In our second type of optimization problem, it is neverS+

optimal for the agent to use security P , so he uses the stock S for both negative and positiveh i
i i i i iholdings, facing tax rates ¿ and ¿ respectively (when N = ¾ d ¿ ; ¾ d ¿ ). In theS S S StS¡ S+ S¡ S+

third type of optimization problem, the mispricing makes security P favorable for short positions,

long positions or both. Use of security P does not allow full linearization of the tax schedule, but
iyields a tax rate for short positions higher than ¿ and /or yields a tax rate for long positionsS¡

iless than ¿ . Both of these latter two types resemble the problem with only one security taxedS+

di®erently on long versus short positions (Basak et al. (1998)).

Under piecewise linear taxation with a single kink at zero, the market price of risk (net of

taxation) provided by a security depends only on the sign of the holding therein, not on its

magnitude. It is never necessary for an agent to hold more than one risky security, and the whole

of his risk exposure is taxed at a constant rate. Hence, in spite of the nonlinearity, no ¯ctitious
i\endowment" term is needed to capture any risk exposure taxed at a higher rate, and ~g = 0.
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For the remainder of the section, we assume logarithmic preferences: u (c) ´ log c, and noi

iactual stochastic endowment: ² ´ 0. Proposition 3.4 reports agent i's explicit optimal policy.

iProposition 3.4. For u (c) ´ log c and ² ´ 0, agent i's optimal consumption is given byi

iX (t)ic (t) = ; (3.18)
T ¡ t

and his optimal investment in the composite asset by

Ã !
iµ i(t) ¹ (t)¡ r(t) º (t)Sºi i i© (t) = X (t) = ¡ X (t) ; (3.19)

2 2¾ (t) ¾ (t) ¾ (t)S S S

8
i i> º (t) if ¹ (t)¡ r(t) < º (t)S<

i i i(¹ (t)¡ r(t)) if º (t) · ¹ (t)¡ r(t) · º (t)where º (t) = ; (3.20)S S>: i iº (t) if ¹ (t)¡ r(t) > º (t)S

i iwhere º (t) and º (t) are as speci¯ed in Table II.

In a standard model with only security S and no taxation, the logarithmic agent would invest
i i 2© (t) = (¹ (t)¡ r(t))X (t)=¾ (t) in the risky asset. Under nonlinear taxation, we always haveS S

iº (t) > 0, implying the agent invests less, as a proportion of his wealth, in the risky assets. The

taxation discourages him from positive investment in the dividend-paying securities. His strategy

may remain linear in the pre-tax market price of risk, but shifted downwards; this occurs when
i ihe can use security P to fully symmetrize the tax schedule, when N is a singleton. When N ist t

a closed interval, the agent's optimal strategy becomes nonlinear in the pre-tax market price of

risk (Basak et al. (1998)). His long positions are reduced (as a fraction of his wealth) relative to

the untaxed case, while his short positions are increased, but not by as much. As an example,

Figure 1 plots the various optimal strategies of Panel (iii) in Table II. (Qualitatively the cases of

Panels (i) and (ii) are similar.)

Figure 1: Optimal Strategies of a Logarithmic Agent for Several Values of the Mispricing
when d (¿ ¡ ¿ ) > d (¿ ¡ ¿ ).P P+ P¡ S S+ S¡

©(t) ©(t)6 ¡ 6
X(t) X(t)¡ ¡¡¡

¡¡¡¡ ¡¡ ¡¡AFI BGJ¡ ¡¡ ¡¡ ¡
¡ ¡¡ ¡¡ ¡¡¡ ¡

¡¡ ¡ BGK,CGL¡¡¡¡ ¡¡-u u -u u¡¡ ¡ ¹ (t)¡r(t) ¹ (t)¡r(t)S Sd ¿ d ¿BGL d ¿ d ¿S S¡ S S+ S S¡ S S+2 2¡ ¡¡¡ ¡¾ (t) ¾ (t)¡¡¡ ¡ ¡S S

¡ ¡ ¡¡ ¡EHM ¡ ¡ DGL¡¡¡ ¡ ¡
¡ ¡¡¡ ¡¡ ¡¡ ¡

(a) (b)
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Panel (a) in the ¯gure corresponds to the ¯rst two types of optimization problem discussed

earlier (where either use of both securities e®ectively linearizes the problem or where S only is

used), while Panel (b) corresponds to the third type (where security P is used but does not allow

linearization of the problem). For example, DGL is followed when security P is favorable for

short holdings (D), while S is favorable for long holdings (L).

For our future analysis of equilibrium, it will prove convenient to combine Table II with Table

I Panel (a) and provide (necessary and su±cient) price conditions for our 13 original cases A-M.
iThese, together with the value of the ¯ctitious market parameter º (t), are reported in Table I

Panel (b), and are plotted in Figure 2. We note that the cases are mutually exclusive and cover

the whole space of price parameters consistent with no unbounded arbitrage.

Figure 2 and Table I (last column) show that for low enough pre-tax market price of risk and
ilow enough mispricing ¢ (A, B, C, F, I), the e®ective tax rate is ¿ . For high enough pre-taxS;P S¡

imarket price of risk and ¢ (E, H, K, L, M), the e®ective tax rate is ¿ . For intermediateS;P S+

levels of both, the after-tax market price of risk is zero, and the agent holds no risky assets

(G). Finally, when the mispricing is low and the pre-tax market price of risk is high (J) or vice-
iversa (D), the e®ective tax rate is that provided by P and lies intermediate between ¿ andS¡

i¿ . Ceteris paribus, a higher pre-tax market price of risk makes long positions preferred, andS+

conversely. A higher ¢ makes S preferable to P for long positions (and P to S for shortS;P

positions), and a lower ¢ makes it preferable for short positions.S;P

Figure 2: Cases over the Price Parameter Space for a Logarithmic Agent

6¢S;P

d ¿ ¡ d ¿S S+ P P¡ E H My
¤ ¤ ¤ ¤ ¤¶¶ L¤ ¤ ¤ ¤ ¤

¤ ¤ ¤ ¤ ¤¶¶D ¤ ¤ ¤ ¤ ¤
d ¿ ¡ d ¿S S+ P P+ ¤ ¤ ¤ ¤ ¤¶¶ ¢ K¢
d ¿ ¡ d ¿ ¶S S¡ P P¡ ¢¶ ¢G

C JC C C C ¢¢C C C C
C C C CB ¢¢0C C C C -

¹ ¡rSd ¿ d ¿C C C CS S¡ S S+¢ ¾¢ SC C C C
¢C C C C ¢

C C C Cd ¿ ¡ d ¿S S¡ P P+ ¢¢yC C C C
A F I

Note: - - - boundaries all belong to G.
h i

C C ¤ ¤i i i i i i iº = ¾ d ¿ ; º = ¾ d ¿ ; º 2 ¾ d ¿ ; ¾ d ¿ .S S S S S S S SS¡ S+ S¡ S+C C ¤ ¤
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i i iRemark 3.2. Recall, in the case of linear taxation on both risky securities (¿ = ¿ ´ ¿ ,j+ j¡ j
i ij 2 fS;Pg), the mispricing is uniquely pinned down: ¢ (t) = d (t)¿ ¡ d (t)¿ . Hence, theS;P S PS P

i i¯ctitious market parameter also is pegged: for any t, º (t) = ¾ (t)d (t)¿ , and i faces a linearS S S

problem. S and P become perfect substitutes. Our thirteen cases collapse to three (A-E, F-H,

I-M), whose occurrence depends on the sign of the tax-adjusted market price of risk on S. Given
i 8© (t), the agent is indi®erent to all allocations between S and P .

4. Equilibrium and the Role of Mispricing

De¯nition 4.1. An equilibrium is a price system (r; ¹ ; ¹ ; ¾ ; ¾ ) and admissible consumption-S P S P

i i i iportfolio processes (c ; ® ), i = 1; 2, such that: (i) (c ; ® ) solves agent i's optimization problem;

(ii) security markets clear:

1 2 1 2 1 2® (t) + ® (t) = 1 ; ® (t) + ® (t) = s ; X (t) +X (t) = S(t) + s P (t) ;P PS S P P

and (iii) the good market clears:

1 2 1 2 1 2c (t) + c (t) = ± (t) + s ± (t) + ² (t) + ² (t)¡ T (t)¡ T (t) ´ D(t) : (4.1)S P P

4.1. Determination of the Mispricing

1This subsection assumes that an equilibrium exists, with given sharing of risk across agents (© ,
2© ), and characterizes the mispricing. This will allow us to provide intuition on the economic role

of mispricing, and the properties of equilibrium. For clarity, most analyses assume the taxation

functions to be continuously di®erentiable, but the intuition is not limited to this case. For given
1 2 i i© , © , the mispricing has to be set so that agents' portfolio holdings ® , ® determined fromS P

non-satiation, clear the ¯nancial markets. This yields the expression for the mispricing reported

in Proposition 4.1.

Proposition 4.1. Assume that equilibrium exists, and that agents' composite risk exposure choices
1 2are given by © (t) and © (t). Then, the mispricing is given by

h ³ ´ ³ ´i
10 1 10 1 1¢ (t) = d (t)t ~® (t)± (t) ¡ d (t)t (© (t)¡ ~® (t)S(t))¾ (t)d (t)S;P S S P S PS S P S

³ ´
10 1 1 1 1 1¤T t (~® (t)± (t)) + t ((© (t)¡ ~® (t)S(t))¾ (t)d (t)) ; (4.2)S S PS S P S

8If the tax schedule has more than one kink, we still expect optimal risk exposure to be a piecewise linear
function of the market price of risk on S, with positive measure regions where an agent has no incentive to leave
the kinks in the tax schedules. However, the analysis becomes considerably more complicated due to a non-zero

i i¯ctitious endowment ~g in some states. This occurs when © is high enough for part of i's risk exposure to be
rewarded at a rate other than the marginal rate: either he is holding more than one risky security, or he is holding
enough of one security for his taxable income therein to lie beyond a non-zero kink in the tax schedule. The
associated ¯ctitious endowment is perceived by the agent as an additional (spanned) risky income stream and has
ambiguous e®ects on his behavior.
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¡ ¢
1 1 1 2where ~® (t) = ~® © (t);© (t); t satis¯es:S S

h ³ ´ ³ ´i
10 1 10 1 1d (t)t ~® (t)± (t) ¡ d (t)t (© (t)¡ ~® (t)S(t))¾ (t)d (t)S S P S PS S P S

³ ´
10 1 1 1 1 1¤T t (~® (t)± (t)) + t ((© (t)¡ ~® (t)S(t))¾ (t)d (t)S S PS S P S

h ³ ´ ³ ´i
20 1 20 2 1= d (t)t (1¡ ~® (t))± (t) ¡ d (t)t (© (t)¡ (1¡ ~® (t))S(t))¾ (t)d (t)S S P S PS S P S

³ ´
20 2 1 2 2 1¤T t ((1¡ ~® (t))± (t)) + t ((© (t)¡ (1¡ ~® (t))S(t))¾ (t)d (t)) : (4.3)S S PS S P S

At the individual level, the mispricing compensates each agent for di®erences in taxation
9across securities: he will adjust his portfolio holdings until the compensation is exact. As seen

in Section 3, by doing so he will in general not choose the portfolio strategy that minimizes the

amount of taxes paid. In spite of this, the mispricing is set so that agents e®ectively \cooperate"

and jointly minimize the amount of aggregate taxes paid, as reported in Corollary 4.1.

Corollary 4.1. In equilibrium, the mispricing adjusts so that, among all pairs of portfolio hold-¡ ¢
i i iings ® (t); ® (t) , i = 1; 2, that implement agents' composite risk exposure choices © (t) andS P

1 2clear ¯nancial markets, agents choose the one that minimizes aggregate taxes T (t) + T (t).

Recall from Section 3.1 that for a given risk exposure, each individual chooses an alloca-

tion between S and P so as to maximize the (instantaneous) mean growth of his wealth, which
iamounts to maximizing his (instantaneous) price-arbitrage pro¯t ¡® P¾ ¢ minus the as-P S;PP

isociated (instantaneous) tax bill T . Hence in aggregate, the sum of these terms across agents

should be maximized. However, in equilibrium, aggregate holdings in P are constrained by clear-

ing, so for given prices agents cannot manipulate the aggregate price-arbitrage pro¯t. This leaves

the total tax bill alone to be minimized. Unlike the tax-arbitrage pro¯t, at the aggregate level

any extra price-arbitrage pro¯t earned by one agent is exactly o®set by a loss to the other agent.

Therefore, such pro¯ts, hence the mispricing itself, can be viewed as a \fee" paid by one agent

to the other for agreeing to hold more of the (marginally) higher-taxed security. From (4.2), the

more heavily marginally taxed security is indeed the one that is favorably mispriced. Our equi-

librium examples in Sections 5 and 6 reveal that agents jointly minimize aggregate tax proceeds

by the more heavily taxed agent holding more of the less taxed security, and conversely.

10 20Equation (4.3) also reveals that, in equilibrium, agents' marginal tax rates (T , T ) will

generically not be equated. This is at odds with the bulk of existing models, and follows from

our assuming nonlinear contributions of dividends to taxable income. This result is a driving force

behind many of our main results, as the properties of equilibrium would be quite di®erent were

9This can be compared to the work of Basak and Croitoru (1998), who also endogenize mispricing between
redundant securities, using another type of market imperfection, portfolio constraints rather than taxes. As in the
current model, mispricing plays a role in market clearing: limiting agents' heterogeneity in portfolio demands, in
keeping with the constraints. The mispricing re°ects heterogeneity across agents (rather than heterogeneity across
assets as here). The mispricing does not preclude equilibrium, because the portfolio constraints keep arbitrage
trades bounded.
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equilibrium to require equalization of marginal tax rates: for example, in our setup, aggregate

taxes could not be minimized, nor would clientele e®ects (Section 6) be possible.

1Remark 4.1. Su±cient conditions for the existence of ~® (t) satisfying (4.3) are:S

i0 i0 i0 i0lim d t (® ± ) > lim d t (® ± ) ; lim d t (® ± ) > lim d t (® ± ) ;S S S P P P P P P S S SS P P S
® ± !1 ® ± !¡1 ® ± !1 ® ± !¡1S S P P P P S S

for i = 1; 2. This requirement on tax schedules is intuitive, ensuring that agents do not \pay" an

unbounded negative tax without taking on an unbounded exposure to risk.

4.2. Determination of Equilibrium

Although not our main focus, in this section we brie°y lay out the elements to fully solve for the

equilibrium. For convenience, we introduce a representative agent with possibly state-dependent

utility function (Cuoco and He (1994)):

³ ´ ³ ´
1 2U(c; ¸) ´ max u c + ¸u c ;1 2

1 2c +c =c

0 1 0 2where agent 2's weight ¸ is allowed to be stochastic. Identifying ¸(t) ´ u (c (t))=u (c (t)), using1 2

agents' ¯rst order condition (3.16) and good market clearing, we obtain the following equilibrium

conditions on the agent-speci¯c state price densities, the stochastic weighting and the stock price:

0 0U (D(t);¸(t)) ¸(0) U (D(t);¸(t))1 2» (t) = ; » (t) = ;0 0U (D(0);¸(0)) ¸(t) U (D(0);¸(0))
³ ´ h id¸(t) 2 1 2= µ (t)¡ µ (t) µ (t)dt+ dW (t)

¸(t) Ã !"Ã ! #
1 2 2º (t)¡ º (t) ¹ (t)¡ r(t) º (t)S

= ¡ dt+ dW (t) ;
¾ (t) ¾ (t) ¾ (t)S S S

iwhere º are determined from (3.15), D(t) is de¯ned in (4.1) and ¸(0) solves either agent's static
10budget constraint, i.e.,

" # " #Z Z ³ ´T T¡ ¢0 1 0 0 1 1E U (D(t);¸(t))I U (D(t);¸(t)) dt = E U (D(t);¸(t)) e ± (t) + e ± (t) dt :S PS P
0 0

Under standard regularity, equilibrium asset prices are given by

" #Z h ³ ´ iT1 i i0 i i0S(t) = E » (s) 1¡ t ® (s)± (s) T (s) ± (s)dsjFtS SS Si» (t) t
" #Z h ³ ´ iT1 0 i0 i i0= E U (D(s);¸(s)) 1¡ t ® (s)± (s) T (s) ± (s)dsjF (4.4)S S tS S0U (D(t);¸(t)) t

10 1 2 1The two agents' budget constraints are equivalent, and only determine the ratio y =y . We set y =
0 1 2U (±(0);¸(0)) without loss of generality so that » (0) = » (0) = 1.
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i iand an analogous expression for P , where the composite risk exposure © and the holdings ® ,S
i® are determined from (3.17) and (4.3). As in Ross (1987), dividends are priced based not onP

their actual cash-°ows (neither pre-tax nor after-tax ones), but on their marginal contribution

to agents' net after-tax income.

The evolution of the equilibrium distribution of consumption across agents (for which ¸

proxies) is driven primarily by the di®erence in their ¯ctitious market parameters, hence by the

di®erential in their e®ective tax rates. With homogeneous (or zero) taxation, ¸ would be constant,

and the equilibrium allocation Pareto optimal. Heterogeneous taxation perturbs risk-sharing and

typically drives the equilibrium away from a Pareto optimum.

In models without taxation (e.g., Karatzas, Lehoczky and Shreve (1987), Basak and Cuoco

(1998)), equilibrium quantities can be expressed in terms of the weighting ¸, which itself satis¯es

an equation where it is the only unknown. The solution of equilibrium is thus reduced to the

determination of ¸. In the presence of taxation, however, as in Basak and Gallmeyer (1998), dS

and d appear in the expression for the stochastic weighting dynamics. This is because, as wasP

seen in Section 3, these quantities a®ect the e®ective taxation of assets. Hence, the solution of

equilibrium has extra layers of complexity and it is necessary to solve for S, ¾ , P , ¾ . (4.4)S P

reveals that it is also, in general, necessary to jointly solve for each agent's portfolio holdings

to close the model: under nonlinear taxation, tax rates depend on agents' holdings. Hence,

yet another additional layer of complexity appears over the case of linear taxation (Basak and

Gallmeyer (1998)).

5. Equilibrium with a Zero Net Supply Security: The Tax-Relieving
Role of Financial Innovation

This section shows how, in equilibrium, the presence of a zero net supply \derivative" security

may allow some relief of the frictional taxation. Hence we derive a motivation for agents to

introduce such a security. It is fairly intuitive that the tax relief will depend on the taxation of

the derivative relative to the original stock. We additionally show that the use of the derivative

is more likely and the tax relief is larger when the derivative is taxed more homogeneously across

agents. As we have discussed earlier, the e®ective tax treatment of a security is driven not only by

the tax schedule thereon but also by the dividends paid out. Hence, the design of the derivative

security impacts the e®ectiveness of the tax relief; the more volatile its price and the lower its

dividends, the more e®ective the tax relief.

For clarity, we assume agents' tax bills to be linear in taxable income. Then, if both se-

curities are subject to linear taxation, adjustment of the mispricing between the securities to

o®set the tax-arbitrage will make them perfect substitutes, and so the derivative will play no

role. Hence we require at least one of the securities to e®ectively be taxed nonlinearly. We will

discuss two particular logarithmic utility examples, labeled Economies I and II , to illustrate
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our points. The former example consists of, for both agents, the stock S being subject to con-

tinuously di®erentiable taxation, while the derivative P is taxed linearly. Both securities remain

heterogeneously taxed across agents. This example represents the most extreme illustration of

relief of a nonlinear tax schedule via a derivative security. This is because we show that, despite

the nonlinear taxation of the stock, agents share the risk in such a way that they e®ectively face

linear taxation. The presence of a linearly taxed security fully linearizes each agent's problem.

Taxes are redistributed to both agents in the economy.

The second example is less extreme, but illustrates the point more generally. In this case,

we allow both securities to be taxed nonlinearly for one agent, so as to maintain nonlinearity

in the equilibrium, but for simplicity we let the other agent pay linear taxes on both securities.

To further aid in tractability, we assume the nonlinearly-taxed agent to be subject to piecewise

linear taxation ((2.2)) on both securities. Here we assume that taxes are redistributed to the

linearly taxed agent.

To address the tax-relieving role of the derivative, we introduce two benchmark economies,

labeled a and b, for comparison, one with only the stock present, and one with no taxation. The

economies, then, are summarized as follows:

Economy I : u (c) = log c, s = 0;i P¡ ¢
i i i i i 1 2T (t) = t ® (t)± (t) + ¿ ® (t)± (t), i = 1; 2, t (¢)6= t (¢).S PS S P P S S

Economy II : u (c) = log c, s = 0;i P
1 1 1 1 1 1 1 2T (t) = ¿ ® (t)± (t) + ¿ ® (t)± (t), ² (t) = T (t) + T (t);S PS S P P³ ´ ³ ´+ ¡P2 2 2 2 2 2T (t) = ® (t)± (t) ¿ ¡ ® (t)± (t) ¿ , ² (t) = 0.j jj2fS;P g j j+ j j¡

Benchmark a: No derivative P ; S taxed as in the appropriate example.
Benchmark b: No derivative P ; S untaxed.

5.1. Economy I : Both Agents Taxed Linearly on the Derivative

The analysis in this subsection generalizes readily to general preferences, but we specialize to log

utility for comparison with Sections 5.2 and 6. Proposition 3.1 ((3.4)) specializes to

³ ´
i0 i i¢ (t) = d (t)t ®̂ (t)± (t) ¡ d (t)¿ ; (5.1)S;P S S PS S P

i iyielding ®̂ (¢ (t); t), independent of © (t). Substituting into (3.9), we ¯nd each agent to faceS;PS
ia budget constraint linear in © :

½· ¸ ¾h i ¹ (t)¡ r(t)Pi i i i i idX (t) = X (t)r(t) + ² (t)¡ c (t) dt+ © (t)¾ (t) ¡ d (t)¿ dt+ dW (t)S P P¾ (t)Pn ³ ´ ³ ´o
i i0 i i i+ ®̂ (¢ (t); t) ± (t)t ®̂ (¢ (t); t) ± (t) ¡ t ®̂ (¢ (t); t) ± (t) dt : (5.2)S;P S S;P S S;P SS S S S S

Each agent faces an e®ectively linear taxation driven by the tax rate on the linearly taxed security,

P . An explanation is that, to prevent arbitrage, the mispricing must adjust to locally make the
iderivative a perfect substitute for the stock, and the derivative's local tax rate is always ¿ .P
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iThen, agent i only uses the linearly taxed security to implement adjustments in © and hence

faces a linear problem. The nonlinearity in the stock's taxation is taken care of by the extra

(risk-exposure independent) \endowment" term in the dynamic budget constraint; some part of
iagent i's existing holding is taxed at a rate other than the marginal rate ¿ , according to the taxP

schedule on S.

The equilibrium in Economy I is, then, similar to the case of heterogeneous linear taxation for

both agents (Basak and Gallmeyer (1998)), only adjusted for the ¯ctitious endowments. Propo-
isition 4.2 immediately yields the mispricing and holdings in S, independently of © . Proposition

5.1 summarizes the characterization of equilibrium.

Proposition 5.1. If equilibrium exists in Economy I, the mispricing, individual-speci¯c (after-

tax) market prices of risk, interest rate and stochastic weighting dynamics are given by

³ ´
10 1 1¢ (t) = d (t)t ~® (t)± (t) ¡ d (t)¿ ; (5.3)S;P S S PS S P

1where ~® (t) is determined from aggregate tax minimization, orS

³ ´ ³³ ´ ´
10 1 1 20 1 2d (t)t ~® (t)± (t) ¡ d (t)¿ = d (t)t 1¡ ~® (t) ± (t) ¡ d (t)¿ ; (5.4)S S P S S PS S P S S P

³ ´¸(t)1 1 2µ (t) = ¾ (t)¡ d (t) ¿ ¡ ¿ ; (5.5)± P P PS 1 + ¸(t)
³ ´12 2 1µ (t) = ¾ (t)¡ d (t) ¿ ¡ ¿ ; (5.6)± P P PS 1 + ¸(t)

³ ´21 ¸(t)2 2 1 2r(t) = ¹ (t)¡ ¾ (t) ¡ d (t) ¿ ¡ ¿ ; (5.7)± ± P P PS S 22 (1 + ¸(t))½· ¸ ¾³ ´ ³ ´11 2 1 2d¸(t) = ¸(t)d (t) ¿ ¡ ¿ ¾ (t) + d (t) ¿ ¡ ¿ dt+ dW (t) : (5.8)P P±P P P PS 1 + ¸(t)

The expressions (except for ¢ ) are identical to an economy with a single security taxedS;P

as P , linearly but di®erentially across agents. The tax di®erential, appropriately normalized,

acts as an additional driving factor in the interest rate and the market prices of risk (and hence

in the CCAPM). Interestingly enough, the taxation on S does not appear in the expressions.

(It impacts the values of the equilibrium quantities, however, because it a®ects agents' wealths

via the endowment term in their budget constraint, hence the value of ¸.) A comparison with

benchmark economy b (no taxation) reveals the higher taxed agent to have a reduced market

price of risk and the lower taxed to have an increased market price of risk in Economy I , and

the interest rate to be reduced by the di®erential taxation. Finally, at the individual level, each

agent's holding in the stock depends only on the mispricing and the tax schedules (and d andS

d ). Holdings in P , on the other hand, also re°ect the optimal risk exposure.P
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5.2. Economy II : One Logarithmic Agent Linearly Taxed on Both Securities;
One Logarithmic Agent Progressively Piecewise Linearly Taxed on Both

Since agent 1 is linearly taxed on both securities, (3.4) uniquely pins down the mispricing as

1 1¢ (t) = d (t)¿ ¡ d (t)¿ ; (5.9)S;P S PS P

independently of agents' holdings. The role of the mispricing is immediate from no-arbitrage,

preventing the linearly taxed agent from taking on an in¯nite tax-arbitrage position due to the

heterogeneous taxation of S and P . The linearly taxed agent is made indi®erent between the two

securities. Then, to prevent unbounded arbitrage for the nonlinearly taxed agent for all values

of d and d , equilibrium requiresS P

2 1 2 2 1 2¿ · ¿ · ¿ and ¿ · ¿ · ¿ :S¡ S S+ P¡ P P+

The nonlinearly taxed agent must everywhere face a worse tax schedule in both assets and hence

also in the composite risky asset than the linearly taxed agent: for long positions, he is taxed at

a higher rate and for short positions he is \rebated" at a lower tax rate.

Since agent 2 is the only one taxed nonlinearly, we will distinguish equilibria only by his

situation from Table I. Analysis reveals that the only (non-zero measure) equilibria (consistent
2with a nonnegative ¾ ) are cases G, J, L, having © ¸ 0. The intuition is that since agent 2S

is unfavorably taxed (relative to agent 1) on negative holdings of the composite, if his holding

were to be negative, agent 1 would also choose a negative holding, inconsistent with the positive

supply of the composite. The nonlinearly taxed agent either: holds neither risky security (G);

invests all his composite holdings in the derivative (J); or all in the stock (L). Accordingly, he

never holds any risky security short.

Proposition 5.2 summarizes the conditions for each of these three equilibria to occur.

Proposition 5.2. Assume that equilibrium exists in Economy II. Then:
1 1 2 2Case (G) exhibits ® (t) = 1, ® (t) = 0, ® (t) = 0, ® (t) = 0 and occurs if and only ifS P S P

n ³ ´ ³ ´o
2 1 2 1(1 + ¸(t))¾ (t) · min d (t) ¿ ¡ ¿ ; d (t) ¿ ¡ ¿ :± S PS+ S P+ PS

1 1 2 2Case (J) exhibits ® (t) = 1, ® (t) < 0, ® (t) = 0, ® (t) > 0 and occurs if and only ifS P S P

³ ´ ³ ´ ³ ´
2 1 2 1 2 1d (t) ¿ ¡ ¿ < d (t) ¿ ¡ ¿ and d (t) ¿ ¡ ¿ < (1 + ¸(t))¾ (t) :P S P ±P+ P S+ S P+ P S

1 1 2 2Case (L) exhibits ® (t) < 1, ® (t) = 0, ® (t) > 0, ® (t) = 0 and occurs if and only ifS P S P

³ ´ ³ ´ ³ ´
2 1 2 1 2 1 11d (t) ¿ ¡ ¿ < d (t) ¿ ¡ ¿ and d (t) ¿ ¡ ¿ < (1 + ¸(t))¾ (t) :S P S ±S+ S P+ P S+ S S

11To show that all three cases are consistent with \reasonable" parameter values, take for example: S = 100,
1 1 2 2 2 2P = 200, ± = 4, ± = 16, ¾ = 0:1, ¾ = 0:12, ¾ = 0:05, ¿ = ¿ = 0:2, ¿ = ¿ = 0:4, ¿ = ¿ = 0:1.S P S P ± S P S+ P+ S¡ P¡S ¡ ¢

2 1Then, the condition for (G) is: ¸ · 0:6; (L) obtains if this is not the case, since d ¿ ¡ ¿ = 0:08 <S S+ S¡ ¢
2 1d ¿ ¡ ¿ = 0:13, but only a slight modi¯cation of the parameters would yield case (J).P P+ P

24



Which case arises is driven by which security is taxed more heterogeneously across agents

and also by the distribution of wealth across these. Consistent with aggregate tax minimization,

the former decides which risky securities are traded (S only or both S and P ); the latter decides

which agents hold risky securities (1 only or both 1 and 2). The linearly taxed agent is indi®erent

between the two securities, so it is the nonlinearly taxed agent who determines whether P is used

or not. When agent 2 is relatively poor (G: low ¸), he (as a CRRA agent) desires low risk exposure

and his piecewise linear taxation drives him to its kink, so he holds nothing in the composite, nor

in either S or P . When agent 2 is relatively wealthy (high ¸), his holding can move away from

the kink to a positive holding in the composite. Since agent 2 is taxed higher than 1, he will

choose to put all his composite holding in the security that is taxed more homogeneously across

agents. In L it is the stock and, in J, the derivative. This choice also agrees with aggregate tax

minimization: for given risk sharing, the lower the heterogeneity in taxation, the more e®ectively

the tax rebate to the short agent (or the agent who reduces an existing long position) o®sets

the tax bill of the long agent and thus reduces the aggregate tax bill. A higher volatility for the

derivative (hence a lower d ) is also desirable.P

The three types of equilibria have properties similar either to the case of one agent restricted

from participating in the risky markets (Basak and Cuoco (1998)) (G), or to the case of hetero-

geneous linear taxation in one security (Basak and Gallmeyer (1998)) (J, L). In the latter case

the equilibrium is as if the nonlinear agent faced the more favorable asset only (P in J and S in

L). Proposition 5.3 characterizes the three equilibria.

Proposition 5.3. If equilibrium exists and the following cases occur, the individual-speci¯c

(after-tax) market prices of risk, the interest rate, and the dynamics of the stochastic weight-

ing are as follows:

1 2In case (G): µ (t) = (1 + ¸(t))¾ (t) ; µ (t) = 0 ;±S

2r(t) = ¹ (t)¡ (1 + ¸(t))¾ (t) ;± ±S S

d¸(t) = ¡¸(t)(1 + ¸(t))¾ (t)dW (t) :±S

³ ´¸(t)1 2 1In case (J): µ (t) = ¾ (t) + d (t) ¿ ¡ ¿ ;± P P+ PS 1 + ¸(t)
³ ´12 2 1µ (t) = ¾ (t)¡ d (t) ¿ ¡ ¿ ;P± P+ PS 1 + ¸(t)

³ ´2¸(t)2 2 2 1r(t) = ¹ (t)¡ ¾ (t) ¡ d (t) ¿ ¡ ¿ ;P± ± P+ PS S 2(1 + ¸(t))½· ¸ ¾³ ´ ³ ´12 1 2 1d¸(t) = ¡¸(t)d (t) ¿ ¡ ¿ ¾ (t)¡ d (t) ¿ ¡ ¿ dt+ dW (t) :P ± PP+ P P+ PS 1 + ¸(t)

³ ´¸(t)1 2 1In case (L): µ (t) = ¾ (t) + d (t) ¿ ¡ ¿ ;± S S+ SS 1 + ¸(t)
³ ´12 2 1µ (t) = ¾ (t)¡ d (t) ¿ ¡ ¿ ;S± S+ SS 1 + ¸(t)
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³ ´2¸(t)2 2 2 1r(t) = ¹ (t)¡ ¾ (t) ¡ d (t) ¿ ¡ ¿ ;S± ± S+ SS S 2(1 + ¸(t))½· ¸ ¾³ ´ ³ ´12 1 2 1d¸(t) = ¡¸(t)d (t) ¿ ¡ ¿ ¾ (t)¡ d (t) ¿ ¡ ¿ dt+ dW (t) :S ± SS+ S S+ SS 1 + ¸(t)

Agent 2 always has the lower market price of risk; this is because for long positions he faces

the higher tax rate.

Comparing with the two benchmark economies, for given wealth distribution ¸(t), security

prices S(t), P (t), and volatilities ¾ (t), ¾ (t), we have for any of the equilibria:S P

2 2 1 1µ (t) · µ (t) · µ (t) · µ (t) · µ (t) ;ba II II a

r (t) · r (t) · r (t) :a II b

The frictional taxation adversely a®ects risk-sharing across agents so that their market prices

of risk diverge from the common value taken on in a frictionless market (b). As a result, the

interest rate decreases to compensate for the increased tendency towards precautionary saving.

However, the divergence in risk-sharing and corresponding drop in the interest rate are not as

pronounced as in the economy with only the stock present (a). The derivative provides a means

for the agents to partially circumvent the frictional taxation.

6. Equilibrium with Two Positive Net Supply Securities: Clien-
tele E®ects

This section shows how clientele e®ects may arise in equilibrium and examines the properties of

the resulting equilibrium. We de¯ne a clientele e®ect as a situation where agents trade in disjoint

sets of risky securities. This naturally requires the assumption that both risky securities are in

positive net supply (s = 1), retained for the whole of this section. (If a zero net supply securityP

is present, either both agents trade in it or it is not traded at all.) This de¯nition includes both

clientele e®ects \in prices" as studied by Dybvig and Ross (1986), with each agent holding the

whole stock of a single risky security, as well as an \endogenous restricted participation" situation

where one agent holds the whole stock of both risky securities, and so the other agent does not

participate in the markets for these. The former situation is of more interest to us here.

As in the previous section, for clarity we assume tax bills to be linear in taxable income,

which amounts to agents lying in exogenously speci¯ed, heterogeneous tax brackets. Then, for

any clientele situation to occur, it is necessary for each asset to contribute nonlinearly (with a

kink at zero) to taxable income for at least one agent. Otherwise, for example if either asset is

linearly taxed for both agents, both agents will generically trade in that asset. For symmetry

and in order to simplify the expressions while retaining su±ciently rich a model, we introduce

Economy III , where each agent faces a piecewise linear tax schedule with a single kink at zero
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((2.2)) on each asset, and zero tax on negative holdings, on each security, under the assumption
12of log utility and the tax proceeds taken out of the economy:

iEconomy III : u (c) ´ log c, ² ´ 0, s = 1;i Ph i¡ ¢ ¡ ¢+ +i i i i 2 1T (t) = ® (t)± (t) + ® (t)± (t) ¿ ; ¿ > ¿ .S P + + +S P

i i iWith respect to the \general" case (with ¿ 6= 0, ¿ 6= ¿ ), these assumptions simplifyj¡ S+ P+

notation but should entail little loss of interest. In particular, heterogeneity is preserved across

assets (because e®ective tax rates also depend on d and d ), as well as across agents (because,S P

in equilibrium, both agents cannot take on short positions, so they will never face the zero tax

rate simultaneously).

As before, it will prove useful to distinguish several cases. We will denote by (A,B) the case

where agent 1 is in A and 2 in B, etc.. From now on, we will focus only on the following three

cases, which are the only ones possible in equilibrium, not of measure zero and exhibiting clientele
13 14e®ects: (K,G), (J,L), (L,J). In (J,L) and (L,J), each agent holds all of the aggregate stock of

one risky asset. Whether the economy is in (J,L) or (L,J), i.e., which agent holds which asset,

depends on whether d (t)=d (t) is greater or less than one, i.e., which asset is e®ectively moreS P

taxed: the lower taxed agent holds the more taxed asset, and conversely. This is consistent with

the minimization of aggregate tax proceeds. In (K,G) the higher-taxed agent (2) does not trade

at all in the risky securities and the lower-taxed (1) holds the whole supply of both.

Proposition 6.1 provides necessary and su±cient conditions for each of the three cases:

Proposition 6.1. Assume that equilibrium exists in Economy III. Then the equilibria exhibiting

clientele e®ects arise as follows.
1 1 2 2Case (K,G) exhibits ® (t) = ® (t) = 1, ® (t) = ® (t) = 0 and occurs if and only ifS P S P

¡ ¢
2 1min fd (t); d (t)g ¿ ¡ ¿S P + +1 + ¸(t) · : (6.1)

¾ (t)D

1 1 2 2Case (J,L) exhibits ® (t) = 0, ® (t) = 1, ® (t) = 1, ® (t) = 0 and occurs if and only ifS P S P

d (t) < d (t) andS P

¡ ¢ © ¡ ¢ª
2 1 2 2 1d (t) ¿ ¡ ¿ min d (t)¿ ; d (t) ¿ ¡ ¿1 + ¸(t)S S P+ + + + +< < : (6.2)

P (t)¾ (t) P (t)¾ (t)P P¸(t)¡ ¾ (t) ¡ ¾ (t)1 D 1 DX (t) X (t)

1 1 2 2Case (L,J) exhibits ® (t) = 1, ® (t) = 0, ® (t) = 0, ® (t) = 1 and occurs if and only ifS P S P

12The latter assumption is made only for tractability. Our intuition for the occurrence of clientele e®ects is
unrelated to whether or not tax proceeds are taken out of the economy.

13Equilibria are eliminated using Table I based on: market clearing, agreement of agents on the mispricing and
agreement on the assets' prices. Nine cases (not of measure zero) remain possible in equilibrium: (I,L), (J,K),
(J,L), (K,G), (K,J), (K,L), (L,J), (L,K), (M,J).

14Note that in these three cases both agents' composite risk exposures are non-negative. This is because market
clearing requires an agent who desires a short position to have a counterparty: hence, if one agent desires a short
position, both agents have to trade together in at least one asset and no clientele e®ect occurs.
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d (t) > d (t) andS P

¡ ¢ © ¡ ¢ª
2 1 2 2 1d (t) ¿ ¡ ¿ min d (t)¿ ; d (t) ¿ ¡ ¿1 + ¸(t)P P S+ + + + +< < : (6.3)

S(t)¾ (t) S(t)¾ (t)S S¸(t)¡ ¾ (t) ¡ ¾ (t)1 D 1 DX (t) X (t)

The after-tax aggregate dividend dynamics satisfy dD(t) = D(t) [¹ (t)dt+ ¾ (t)dW (t)] with,D D¡ ¢ ¡ ¢ ¡ ¢ ¡ ¢
1 2 1 1respectively, D(t) = (± (t) + ± (t)) 1¡ ¿ , ± (t) 1¡ ¿ + ± (t) 1¡ ¿ or ± (t) 1¡ ¿ +S P S P S+ + + +¡ ¢

2 15± (t) 1¡ ¿ , in the three cases.P +

The case the economy falls into is driven by the distribution of wealth across agents (¸ =
2 1X =X ), the relative tax rates of the agents and the relative dividends (d ) paid out by thej

assets. Conditions (6.1)-(6.3) all reveal clientele situations to be more likely when agents' tax

rates are further apart, which makes it easier for the agents to perceive securities di®erently.

(K,G) occurs if the lower-taxed agent (1) is rich enough. From the viewpoint of aggregate tax

minimization, it is always better for him to hold more of the taxed risky securities. For him to hold

all of both risky securities requires him to be rich enough because, under logarithmic preferences,

the amount he invests in risky securities is proportional to his wealth. Speci¯cally, occurrence of

(K,G) is driven by the lower taxed agent's wealth relative to the value of the aggregate stock of

risky securities and the aggregate risk in the economy; the higher either is, the more di±cult it

is to entice agent 1 to take on the whole stock, and the less likely (K,G). Prices must be able to

adjust enough to make agent 1 want to hold the whole supply of both S and P , while not enticing

the higher-taxed agent to hold any risky securities. This is facilitated by a higher tax di®erential

between the two agents. In contrast to (K,G), situations (J,L) and (L,J), where each agent holds

the whole supply of a di®erent risky security, occur when agents' wealths are relatively close to

each other. The optimum from the aggregate tax minimization viewpoint is for the lower-taxed

agent to hold the (e®ectively) higher-taxed security, and conversely. Accordingly, which one of

the two cases occurs depends on which asset is the lower taxed (via a lower d ); this decidesj

which agent holds which asset.

Proposition 6.2 characterizes the three equilibria with clientele e®ects.

Proposition 6.2. If equilibrium exists in Economy III and the following clientele cases occur, the

pre-tax mispricing, individual-speci¯c market prices of risk, interest rate and stochastic weighting

dynamics are as follows:

1In (K,G): ¢ (t) = (d (t)¡ d (t)) ¿ ;S;P S P +

1 2µ (t) = (1 + ¸(t))¾ (t) ; µ (t) = 0 ;D
15To show that these conditions are consistent with \reasonable" parameter values, take for example: S = 100,

1 2 1 2P = 200, ± = 4, ± = 16, ¾ = 0:1, ¾ = 0:12, ¿ = 0:1, ¿ = 0:45, X = 130, implying ¾ = 0:11, X = 170,S P S P D+ +

(1 + ¸)=¸ = 2:31. Then, the condition for (J,L) is satis¯ed since 1:96 < (1 + ¸)=¸ < 2:53, (the condition for (L,J)
can analogously be satis¯ed since it is a mirror image of (J,L), obtained by swapping agents). The condition for
(K,G) is then 1 + ¸ · 1:24, also feasible, for di®erent agents' wealths.
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2r(t) = ¹ (t)¡ (1 + ¸(t))¾ (t) ;D D

d¸(t) = ¡(1 + ¸(t))¾ (t)dW (t) :D
µ ¶

1 + ¸(t) P (t)¾ (t)P 2 1In (J,L): ¢ (t) = ¾ (t)¡ + d (t)¿ ¡ d (t)¿ < 0 ;S;P D S P+ +1¸(t) X (t)

P (t)¾ (t) S(t)¾ (t)P S1 2µ (t) = ; µ (t) = ; (6.4)
1 1X (t) ¸(t)X (t)

µ ¶21 P (t)¾ (t)P2r(t) = ¹ (t)¡ ¾ (t) ¡ ¾ (t)¡ ;D D D 1¸(t) X (t)
µ ¶µ ¶

P (t)¾ (t) S(t)¾ (t)P S
d¸(t) = (1 + ¸(t)) ¾ (t)¡ dt+ dW (t) :D 1 1X (t) ¸(t)X (t)

µ ¶
1 + ¸(t) S(t)¾ (t)S 1 2In (L,J): ¢ (t) = ¡ ¾ (t) + d (t)¿ ¡ d (t)¿ > 0 ;S;P D S P+ +1¸(t) X (t)

S(t)¾ (t) P (t)¾ (t)S P1 2µ (t) = ; µ (t) = ; (6.5)
1 1X (t) ¸(t)X (t)

µ ¶21 S(t)¾ (t)S2r(t) = ¹ (t)¡ ¾ (t) ¡ ¡ ¾ (t) ;D D D1¸(t) X (t)
µ ¶µ ¶

S(t)¾ (t) P (t)¾ (t)S P
d¸(t) = (1 + ¸(t)) ¾ (t)¡ dt+ dW (t) :D 1 1X (t) ¸(t)X (t)

In case (K,G), characterizations are similar to the restricted participation model of Basak

and Cuoco (1998). Cases (J,L) and (L,J), however, illustrate the extra level of complexity in

the solution of equilibrium, as we discussed in Section 4. Equilibrium quantities are functions of

not only the weighting ¸ and the risky security prices S and P , but also of either agent's wealth

process. In some sense, the stochastic weighting (or agents' relative wealths) does not play a

central role in these clientele \in prices" situations. This is because the agents do not trade risky

securities with each other. The equilibrium is instead driven by each agent's wealth relative to

the value of the security whose aggregate supply he is holding.

The individual-speci¯c market prices of risk are set so that the appropriate agent exactly

demands the aggregate supply of one or both risky securities. We may deduce that, in all three
2 1cases: µ (t) < ¾ (t) < µ (t). Noting that ¾ (t) equals the market price of risk in a frictionless,D D

benchmark economy with identical aggregate consumption (D), we see that, with respect to such

an economy, the lower taxed agent's market price of risk is increased and the higher taxed agent's

one is decreased (as in an economy with a single stock and di®erential linear taxation (Basak

and Gallmeyer (1998))). Even though, in (J,L) and (L,J), the lower taxed agent (1) holds the

e®ectively higher taxed security, he remains subject to an e®ectively lower taxation than agent 2,

via the mispricing favoring the security he is holding. The stochastic weighting dynamics reveal

the lower taxed agent to tend to become relatively wealthier over time, on average, at the expense

of the higher taxed agent. In all three cases, the interest rate is unambiguously reduced with
2respect to a frictionless economy with identical aggregate consumption (r(t) = ¹ (t)¡ ¾ (t) ).D D
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In case (K,G), the role of the mispricing is to make agent 1 indi®erent between the two risky

securities S and P , so its value re°ects the di®erential in their e®ective taxation for agent 1.

In cases (J,L) and (L,J), the mispricing must prevent both agents from deviating from their

zero-holding in one security, while clearing both markets. Hence, the mispricing re°ects the

di®erential in the premia required by each agent to hold S or P . In these regions, the price of

each security is set so that one agent demands the aggregate supply therein and hence solely

re°ects that agent's shadow cost. This is re°ected in equations (6.4) and (6.5).

7. The Case of Linear Taxable Income

We now make the assumption, typical in earlier work, that taxable income is linear in the

dividends received from the risky securities. Then, agent i's tax bill can be written as:
³ ´

i i i i i iT (t) = T ¿ ® (t)± (t) + ¿ ® (t)± (t) :S PS S P P

i(A particular case is that of taxable income being equal to total dividend income, where ¿ =S
i¿ = 1.) Proposition 3.1 ((3.4)) then yields the mispricing as satisfying:P

³ ´
i i i0¢ (t) = d (t)¿ ¡ d (t)¿ T (t) ; (7.1)S;P S PS P

i0revealing agent i's marginal tax rate T (and hence taxable income and tax bill) to be equal¡ ¢
i i ito ¢ (t)= ¿ d (t)¡ ¿ d (t) and hence independent of © (t). Hence, agents face a linearS;P S PS P

problem. This can be veri¯ed using the optimal portfolio holdings, that now obtain (using (3.1)
iand (7.1)) as explicit functions of © and ¢ :S;P

µ ¶¡ ¢¡1 ¢ (t)S;Pi0 i iT ¡ ¾ (t)¿ (t)d (t)© (t)i i S PP¿ d (t)¡¿ d (t)S PS Pi ¡ ¢®̂ (t) = ; (7.2)S i iS(t)¾ (t) ¿ d (t)¡ ¿ d (t)S S PS P
³ ´¾ (t)Si i i®̂ (t) = © (t)¡ ®̂ (t)S(t) : (7.3)P SP (t)¾ (t)P

Substitution into the dynamic budget constraint (2.3) yields

h i
i i i i idX (t) = X (t)r(t) + ² (t)¡ c (t) dt+ © (t)¾ (t)dW (t)S

· ¸i© (t) ¾ (t)S i i+ ¿ d (t) (¹ (t)¡ r(t))¡ ¿ d (t) (¹ (t)¡ r(t)) dt (7.4)S P P SS Pi i ¾ (t)¿ d (t)¡ ¿ d (t) PS PS P Ã ! Ã Ã !!³ ´ ³ ´¡1 ¡1¢ (t) ¢ (t) ¢ (t)S;P S;P S;Pi0 i i0+ T dt¡ T T dt ;i i i i i i¿ d (t)¡ ¿ d (t) ¿ d (t)¡ ¿ d (t) ¿ d (t)¡ ¿ d (t)S P S P S PS P S P S P

iwhich is always linear in the composite holding © (t), notwithstanding the nature of the tax
ifunction T (¢). The nonlinear taxation, however, does add a stochastic \endowment" term to the

budget constraint. Since each agent e®ectively faces a linear problem, the equilibrium is similar

to the case of heterogeneous linear taxation (Basak and Gallmeyer (1998)), but with stochastic,

endogenous e®ective tax rates.
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Important simpli¯cations occur under the additional assumption that the contributions of
1 2securities to taxable income are homogeneous across agents: ¿ = ¿ ´ ¿ , i = 1; 2, j 2 fS;Pg.jj j

This is the case in the earlier work of Schaefer (1982), Dammon and Green (1987), Dybvig and

Ross (1988). The determination of the mispricing is simpli¯ed with respect to Proposition 4.1,

as rearranging (7.1), summing across agents and using clearing yield

µ ¶ µ ¶³ ´ ³ ´¡1 ¡1¢ (t) ¢ (t)S;P S;P10 20T + T = ¿ ± (t) + s ¿ ± (t) : (7.5)S S P P P
¿ d (t)¡ ¿ d (t) ¿ d (t)¡ ¿ d (t)S S P P S S P P

Unlike in the general case, there is no direct dependence of the mispricing on agents' composite

risk exposure choices. In addition, from (7.1), agents' agreement on the mispricing implies

10 20T (t) = T (t) :

This explicitly reveals the often-quoted notion that in the presence of redundant securities agents

will adjust holdings to equate marginal tax rates (e.g., Schaefer (1982)), notwithstanding het-

erogeneity in taxation, wealth, and risk aversion. Our work, however, shows this ¯nding to

depend crucially on taxable income being linear in dividends, and computed homogeneously

across agents. This result implies that agents face equal marginal market prices of risk. Hence,

we may introduce a representative agent with constant weighting to deal with the equilibrium,

and equilibrium quantities will appear similar to an economy with no taxation. For example,

when the tax proceeds are returned to the economy, agents have logarithmic preferences, and P

is in zero net supply, the after-tax market prices of risk and interest rate are as in the no-tax

benchmark:

1 2µ (t) = µ (t) = ¾ (t) ;±S

2r(t) = ¹ (t)¡ ¾ (t) :± ±S S

In this sense, the presence of the derivative allows agents to fully circumvent the frictional

taxation.

8. Conclusion

This paper develops a general equilibrium, continuous time model with two heterogeneous agents

where the presence of redundant, nonlinearly taxed securities provides opportunities for tax

arbitrage. Tax arbitrage is shown to have important equilibrium implications. In the presence of

redundant securities, for given risk sharing, agents may choose between an in¯nity of portfolio

holdings leading to di®erent tax bills. We show that they always e®ectively \cooperate" and

pick the one that minimizes aggregate tax proceeds. Security prices re°ect this, via the pre-tax

mispricing, as do portfolio holdings. For example, in the presence of a positive net supply \stock"

and a zero net supply \derivative" both subject to piecewise linear taxation, trade in the latter

will occur only if it is taxed more homogeneously across agents, so that trade therein allows a
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reduction of the aggregate tax bill. Hence, not only do we exhibit how a derivative may alleviate

taxation, but we can sketch the conditions under which the tax alleviation is most e®ective.

Furthermore, in the presence of two redundant, positive net supply risky securities also subject

to piecewise linear taxation, in some states each agent holds the whole supply of one security (so

that the agents only exchange the riskless bond), the higher taxed agent holding the lower taxed

security, and conversely: our model endogenizes clientele e®ects.

The nonlinearity of taxable income in dividends received (not to be confused with the non-

linearity of tax bills in taxable income), a novelty of our work, is revealed to be a non-trivial

generalization as, under perfect markets, taxable income being linear allows agents to fully cir-

cumvent the nonlinear taxation and face a linear problem with homogeneous marginal tax rates.

In contrast, our setup allows for an equilibrium where agents' marginal tax rates are not equated,

an innovation with respect to the existing literature. Our main results can be seen as an o®spring

of this discrepancy in tax rates. Natural extensions of the present work would include study-

ing more general taxation schemes in greater detail, although explicit solutions are unlikely; or

incorporating taxation on capital gains, which would add signi¯cantly to the complexity of the

problem.
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Appendix: Proofs

i iProof of Proposition 3.1: We show (b), as (a) is a special case (where µ = µ every-j[¡] j[+]

where). Assume that, say, the ¯rst inequality in (3.5) is violated. Then, our assumptions on
i iT , t (implying they are continuously di®erentiable except on a countable set) imply that therej

exists x > 0 such that, 80 < x · x,

µ ¶³³ ´ ´ ³³ ´ ´ ³³ ´ ´¹ ¡ r S¾S Si0 i i0 i i i i¡ d t ®̂ + x ± T t ®̂ + x ± + t ®̂ ¡ x ± >S S S PS S S S P P¾ P¾S Pµµ ¶ ¶ µ ¶³³ ´ ´ ³³ ´ ´¹ ¡ r S¾ S¾P S Si0 i i0 i i i i¡ d t ®̂ ¡ x ± T t ®̂ + x ± + t ®̂ ¡ x ± : (A.1)P P S PP P S S P P¾ P¾ P¾P P P

Adding the riskless, costless position consisting of x share(s) of S, ¡xS¾ =P¾ share(s) of PS P

and (S¾ =P¾ ¡ 1)x share(s) of the bond to i's portfolio increases his wealth's drift byS P

· ¸ ³ ´¾S i i i i ix S (¹ ¡ r)¡ S (¹ ¡ r) + T t (®̂ ± ) + t (®̂ ± )S P S PS S P P¾Pµ ¶³³ ´ ´ ³³ ´ ´S¾Si i i i i¡T t ®̂ + x ± + t ®̂ ¡ x ±S PS S P P P¾P( · ¸Z ³³ ´ ´ ³³ ´ ´x ¾ S¾ S¾S S Si0 i i0 i= S (¹ ¡ r)¡ S (¹ ¡ r)¡ ± t ®̂ + x ± ¡ ± t ®̂ ¡ x ±S P S S P PS S P P¾ P¾ P¾0 P P P)µ ¶³³ ´ ´ ³³ ´ ´S¾Si0 i i i i¤T t ®̂ + x ± + t ®̂ ¡ x ± dx ;S PS S P P P¾P

positive from (A.1). The argument is similar, with only the signs being reversed, when the second

inequality in (3.5) fails. Hence, whenever (3.5) fails on a subset of £[0; T ] with positive measure,¡ ¢
i ifrom i's non-satiation there exists a portfolio strategy that is strictly prefered to ®̂ ; ®̂ . AllS P

portfolio strategies such that this is not the case yield the same wealth dynamics and so i is

indi®erent between them. Q.E.D.

Proof of Proposition 3.2: Follows from Theorem 2 in Cuoco and Cvitanic (1998), with only

obvious changes in notations. Q.E.D.

Proof of Proposition 3.3: Follows from the straightforward region-by-region solution of the

optimization problem in (3.12). Since very lengthy, details are omitted. Q.E.D.

Proof of Proposition 3.4: Substituting logarithmic utility and rearranging show that, for
i igiven º, the solution of the maximization problem in (3.15) veri¯es c (t) = » (0)X (0)=» (t)T .º ºh iR Ti i i iSubstitution into i's wealth process X (t) = E » (s)c (s)dsjF =» (t) leads to (3.18), into thett

i ide¯nition of · shows that · ´ 0, hence (3.19), and substitution into (3.15) shows that, at any
itime t, º (t) solves min j¹ (t)¡ º(t)¡ r(t)j, hence (3.20). Q.E.D.ii Sº(t)2[º (t);º (t)]
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Proof of Proposition 4.1: In equilibrium, (3.4) has to hold for both agents, hence portfolio

holdings satisfy
h i ³ ´

10 1 10 1 10 1 1 1 1d (t)t (® (t)± (t))¡ d (t)t (® (t)± (t)) ¤ T t (® (t)± (t)) + t (® (t)± (t))S S P P S PS S P P S S P P
h i ³ ´

20 2 20 2 20 2 2 2 2= d (t)t (® (t)± (t))¡ d (t)t (® (t)± (t)) ¤ T t (® (t)± (t)) + t (® (t)± (t)) :S S P P S PS S P P S S P P

2 1 iSubstitution of clearing in S (implying ® (t) = 1 ¡ ® (t)) and the de¯nition of © (implyingS S¡ ¢
i i i® (t) = © (t)¡ ® (t)S(t) ¾ (t)=P (t)¾ (t)) leads to (4.3). (3.4) then yields (4.2). Q.E.D.S PP S

Proof of Corollary 4.1: In equilibrium, aggregate taxes are given by
³ ´

1 1 1 1 1 1T t (® (t)± (t)) + t ((© (t)¡ ® (t)S(t))¾ (t)d (t))S S PS S P S
³ ´

2 2 1 2 2 1+ T t ((1¡ ® (t))± (t)) + t ((© (t)¡ (1¡ ® (t))S(t))¾ (t)d (t)) :S S PS S P S

The ¯rst-order condition of the problem consisting in minimizing this expression with respect to
1® (t) is (4.3). Q.E.D.S

¡ ¢
i i iProof of Equation (4.4): We ¯rst show that the solution º to (3.15) and the optimal ® ; ®S P

are related by ³ ´± (t)Si i0 i i0º (t) = t ® (t)± (t) T (t) : (A.2)SS SS(t)

Making use of (3.4), we may express (3.13) alternatively as
n ³ ´o

i i i i i i ig (©(t); t) = max ¡® (t)P (t)¾ (t)¢ (t)¡ T t (® (t)± (t)) + t (® (t)± (t)) s.t. (3.1):P S;P S PP S S P Pi i® ;®
S P

¡ ¢
i i0 i0 i i0Substituting ® and applying the envelope theorem yields g (©; t) = ¡± (t)t ®̂ (t)± (t) T (t)=S(t).S SS S S

sup i0 sup iOn the other hand, we have © solves g (© ; t) = ¡º (t). Since the optimal © coincides with

the supremal © (Cuoco and Cvitanic (1998), Theorem 2), we have (A.2). Applying Itô's Lemma¡ ¢ R £ ¡ ¢ ¤ti i i i i0 i i0and using µ = ¹ ¡ r ¡ º =¾ , we deduce that » (t)S(t)+ » (s) 1¡ t ® (s)± (s) T (s) ± (s)dsS S S SS S0

is a martingale, under appropriate regularity conditions. Hence (4.4) follows. Q.E.D.

Proof of Proposition 5.1: (5.3) and (5.4) follow from Propositions 3.1 and 4.1. Noting
i ithat, from (5.4), ®̂ (t) is independent of © (t), (5.2) reveals i to face the policy-independentS ¡ ¢

i 1 2 2 1market price of risk (¹ (t)¡ r(t)) =¾ (t) ¡ d (t)¿ , and so µ (t) ¡ µ (t) = d (t) ¿ ¡ ¿ .P P P PP P P

Then, applying Itô's lemma to agents' ¯rst-order conditions (3.16), matching drift and di®usion
1 2terms and using clearing in the consumption good market (here, c (t) + c (t) = ± (t)) leads toS

1 1 2 2(5.5)-(5.7). (5.8) follows from applying Itô's lemma to ¸(t) = y » (t)=y » (t). Q.E.D.

Proof of Proposition 5.2: The conditions for the equilibrium cases follow from substituting
ithe mispricing value (5.9) and the µ expressions of Proposition 5.3 into the ¢ and (¹ ¡ r) =¾S;P S S

conditions in Table I. The portfolio holdings follow from Table I and security market clearing.

Q.E.D.
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Proof of Proposition 5.3: The expressions for the market prices of risk and interest rate

obtain by applying Itô's lemma to both sides of agents' ¯rst-order conditions (3.16), matching

drifts and di®usions and using good market clearing. The stochastic weighting dynamics follow
1 1 2 2from applying Itô's lemma to ¸(t) = y » (t)=y » (t). Q.E.D.

Proof of Proposition 6.1: The conditions for the cases follow from agreement between agents

on ¢ (t) (yielding the conditions relating d (t) and d (t)) and from substituting the ¢S;P S P S;P

iand µ expressions in Proposition 6.2 into the ¢ and (¹ ¡ r) =¾ conditions in Table I. TheS;P S S

portfolio holdings, and hence the after-tax aggregate dividend D, follow from Table I and security

market clearing. Q.E.D.

Proof of Proposition 6.2: In (K,G), the mispricing value obtains from Table I, and the

expressions for the market prices of risk, interest rate and stochastic weighting dynamics follow
1 1 2 2from applying Itô's lemma to agents' ¯rst-order conditions (3.16) and ¸(t) = y » (t)=y » (t),

and using good market clearing. In (J,L) and (L,J), the market prices of risk follow from clearing

in the risky securities and the fact that for a logarithmic agent without stochastic endowment,
i i© (t) = µ (t)=¾ (t). The other expressions then obtain by applying Itô's lemma to (3.16) andS

1 1 2 2¸(t) = y » (t)=y » (t), and using good market clearing. Q.E.D.
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