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1. Introduction

Evaluating mutual fund performance combines data and judgment. The data typically con-

sist of returns on the funds and one or more benchmarks, and the judgment typically involves

specifying the benchmarks and their role in defining performance. Investing in mutual funds

also combines data and judgment. Rather than accept the standard performance measures

at face value, investors can allow their decisions to reflect doubts about either the adequacy

of the benchmarks or the stock-picking ability of fund managers.

In this study, we develop and implement a framework in which views about the ade-

quacy of the benchmarks–their ability to price other passive assets–can be incorporated

formally into both performance evaluation and the investment decision. The framework also

allows separate beliefs about potential managerial skill to enter the investment decision. To

accomplish these tasks, we introduce passive “non-benchmark” assets that are not used in

previous approaches. These assets provide information that can be used to estimate a fund’s

performance more precisely. They also allow beliefs that distinguish benchmark inadequacy

from managerial skill, and they help account for common variation in returns across funds

that is not captured by the benchmarks.

A mutual fund’s performance is often measured by alpha, the intercept in a regression of

the fund’s return on one or more passive benchmark returns.1 The choice of benchmarks is

often guided by a pricing model, as in Jensen’s (1969) pioneering use of the Capital Asset

Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) to investigate mutual fund

alphas relative to a single market-index benchmark. Other studies, beginning with Lehmann

and Modest (1987), examine fund alphas with respect to a set of multiple benchmarks viewed

as the relevant factors for pricing in a multifactor model, such as the Arbitrage Pricing Theory

of Ross (1976).

Alpha is typically computed by ordinary-least-squares (OLS) estimation of the regression

rA,t = αA + β 0ArB,t + ²A,t, (1)

where rA,t is the fund’s return in month t, rB,t is a k × 1 vector containing the benchmark
returns, and αA denotes the fund’s alpha. This standard approach ignores information about

alpha provided by returns on other non-benchmark passive assets. Even though such assets

play no role in the definition of alpha in (1), they can play a useful role in its estimation.

1Throughout our discussion, “returns” are rates of return in excess of a riskless interest rate, or they are
payoffs on zero-investment spread positions.
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To take one example, assume that the benchmark assets do indeed price other passive

assets. Consider the regression of a non-benchmark return rn,t on the benchmark returns,

rn,t = αn + β 0nrB,t + ²n,t, (2)

where the correlation between ²A,t and ²n,t is positive. If the benchmarks price other passive

assets, then αn = 0. Now suppose that over the same sample period used to obtain the OLS

estimate of αA, the OLS estimate of αn is less than its true value of zero. Given this outcome

and the positive correlation between ²A,t and ²n,t, the OLS estimate of αA is expected to be

less than its true value as well, and this information can be used in estimating αA.

Pricing models often motivate the choice of benchmarks, but non-benchmark assets can

provide additional information about a mutual fund’s alpha even with no assumption about

the benchmarks’ pricing ability. The explosive growth of the mutual fund industry in recent

years presents investors with many funds that have relatively short histories. Consider a

fund whose available return history is shorter than the histories of rn,t and rB,t. Suppose

that the OLS estimate of αn computed for the sample period of the fund’s available history

is less than the OLS estimate of αn computed for a longer sample period. Since the latter

estimate is more precise, the first estimate is more likely to be less than the true (unknown)

value of αn. Given the positive correlation between ²A,t and ²n,t, the same can be said of the

OLS estimate of αA relative to its true value, and this information can be used in estimating

αA. The additional information comes not through a pricing model, as in the first example,

but through the longer histories of the passive asset returns.

In the two examples described above, αn is assumed to be either zero or completely

unknown. One may well prefer an intermediate version in which the benchmarks are believed

to be relevant for pricing other passive assets, but not without error. In such a case, which we

handle in a Bayesian framework, non-benchmark assets can play a role that combines aspects

of both examples. Additional information about αA is provided by the extent to which the

short-history estimate of αn differs from zero as well as from its long-history estimate.

Our study does not recommend a particular set of benchmarks for defining alpha. Recent

academic studies compute mutual fund alphas with respect to a single market benchmark

(e.g., Malkiel (1995)) as well as sets of multiple benchmarks (e.g., Carhart (1997) and Elton,

Gruber, and Blake (1996)). We compute alphas in both single-benchmark and multiple-

benchmark settings. Alphas defined with respect to a single market benchmark may be of

interest whether or not one believes in the CAPM. We offer just two of many examples of

their use in practice: Morningstar, the leading provider of mutual fund information, reports

alphas computed with respect to one of several broad market indexes; Capital Resource
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Advisors, one of the largest providers of performance information to institutional clients,

reports alphas computed with respect to the S&P 500 Index. Our approach allows one to

estimate alpha under various assumptions about whether the benchmarks that define alpha

price other passive investments.

We investigate the performance of a large sample of equity mutual funds and find that

the information about a fund’s alpha provided by non-benchmark returns can be substantial,

especially for certain types of funds. Suppose, for example, that one has no confidence in

the CAPM’s pricing ability but nevertheless wishes to report a small-company growth fund’s

traditional alpha defined with respect to a single market benchmark. The absolute difference

between the OLS estimate and an alternative estimate that incorporates information in non-

benchmark returns has a median value across such funds of 8.3% per annum. If instead one

has complete confidence in the CAPM’s pricing ability, then the median absolute difference

in estimates is 7.2%. In both cases the alternative estimate is more precise, and its variance

is only about one-third that of the OLS estimate for the median small-company growth fund.

A number of studies observe that OLS estimates of mutual fund alphas are sensitive to

the specification of the benchmarks that define those alphas.2 When the estimation of a

fund’s alpha incorporates non-benchmark assets, the definition of alpha typically becomes

less important and, in some cases, even irrelevant. We estimate alphas defined with respect to

the CAPM and with respect to the three Fama and French (1993) benchmark factors, which

include size and value factors in addition to the market factor. When estimated using OLS,

the median difference in alphas between the two models is 2.3% per annum for all funds and

8.1% for small-company growth funds. When the estimation incorporates non-benchmark

assets but does not rely on the benchmarks to price them, those values fall to 1.2% and 2.0%.

If the benchmarks are instead assumed to price the non-benchmarks exactly, the estimates of

a fund’s alpha are identical under the two models, even though the definitions of the alphas

differ. In general, if alphas are defined with respect to different benchmarks but estimated

using the same set of passive assets (benchmark and non-benchmark), then the estimates

are identical if in each case the benchmarks are assumed to price the non-benchmark assets

exactly. Loosely speaking, if you believe that some pricing model holds exactly and want a

fund’s alpha with respect to it, you need not identify the model.

As in numerous previous studies, we find that estimated alphas for the majority of equity

mutual funds are negative.3 For each investment objective and each age group, we find a

2An early example is the study by Lehmann and Modest (1987).
3Grinblatt and Titman (1995) review the literature on mutual fund performance.
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posterior probability near 100% that the average of the funds’ CAPM alphas is negative when

the non-benchmark assets are excluded. Alphas for most funds remain negative when defined

with respect to multiple benchmarks as well as when the information in the non-benchmark

assets is used the estimation.

Non-benchmark assets permit a framework for defining a measure of managerial skill

when a pricing model is viewed as possibly flawed but not useless. A common interpretation

of alpha is that it represents the skill of the fund’s manager in selecting mispriced securities.

That interpretation is subject to a number of potential complications, including a concern

that the benchmarks used to define alpha might not price all passive investments.4 This

concern can be addressed by defining skill with respect to an expanded set of passive assets,

thus weakening the link to a pricing model. Preserving some role for a pricing model can

still be useful to an investor, in that a somewhat inaccurate pricing model can be of some

help in identifying optimal portfolios. We allow an investor to have prior beliefs about a

skill measure defined as the intercept in a regression of the fund’s return on an expanded

set of passive assets that includes both non-benchmark assets as well as the benchmarks

relevant to a particular pricing model. At the same time, we allow the investor to have

prior beliefs about the potential mispricing of the non-benchmark assets with respect to the

benchmarks. In other words, an investor can have prior beliefs that distinguish managerial

skill from pricing-model inaccuracy.

Performance evaluation is a topic of long-standing interest in the academic literature, but

few if any studies have pursued its obvious practical motivation: constructing a portfolio of

mutual funds. We compute portfolios having the maximum Sharpe ratio constructed from

an investment universe of over 500 no-load equity funds. Optimal portfolios are obtained by

combining the information in historical returns with an investor’s prior beliefs, accounting

for parameter uncertainty. We entertain priors representing a range of beliefs about both

managerial skill as well as the accuracy of each of three pricing models: the CAPM, the

three-factor Fama-French model, and the four-factor model of Carhart (1997). The last

model supplements the three Fama-French benchmarks with a “momentum” factor, the

current month’s difference in returns between the previous year’s best- and worst-performing

stocks. Returns on passive benchmark and non-benchmark assets are used in the modeling

and estimation, but only the mutual funds are assumed to be eligible for investment. The

compositions of the optimal portfolios are influenced substantially by prior beliefs about

both managerial skill and pricing models. We also find that a “hot-hand” portfolio of the

4Other well-known complications include the possibility that the manager uses information to change the
value of βA through time as conditional expected returns on the benchmarks fluctuate.
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previous year’s best-performing mutual funds does not enter the optimal portfolio under any

set of prior beliefs considered, even if the investor has complete confidence in the four-factor

model, which contains the momentum factor. Real estate funds, interestingly, tend to exhibit

positive sensitivities to that factor as well as to the three Fama-French factors, so those funds

occupy much of the optimal portfolio for such an investor.

We find that when the passive benchmarks used to define αA are not available for invest-

ment, there need not exist close substitutes for them in the universe of mutual funds. For an

investor who believes completely in the accuracy of the Fama-French model and precludes

managerial skill, the perceived maximum Sharpe ratio is only 66 percent of what could be

achieved by direct investment in that model’s benchmarks. For a believer in the Carhart

four-factor model, the corresponding value is 54 percent. Interestingly, actively managed

funds can be better substitutes for the benchmarks than existing passive funds, so active

funds can be selected even by investors who admit no possibility of managerial skill.

Our investment problem is related to the recent study by Baks, Metrick, and Wachter

(2000), who also consider investment in mutual funds under prior beliefs about manager

skill. Their investment universe includes mutual funds as well as the passive benchmarks

used to define αA, and they do not include beliefs about possible pricing-model errors. In

their setting, an investor buys an actively managed fund only if it appears to have a positive

αA. Those authors do not construct optimal portfolios, but they conclude that unless one is

extremely skeptical about the possibility of managerial skill, some actively managed funds

would be selected by an investor who wants a high overall Sharpe ratio. Our investment

universe differs from theirs in that we do not assume the benchmark returns can be earned

costlessly. Rather than attempt to construct after-cost versions of those returns, we simply

confine investors to the universe of mutual funds.

Section 2 discusses the econometric issues and reports results from computing alternative

estimates of alpha for 2,609 equity mutual funds. Section 3 presents the results of the

investment problem, and Section 4 briefly reviews our conclusions.

2. Estimating alpha

This section begins with some basic concepts underlying the use of non-benchmark assets.

We then describe the construction of our data, explain our methodology, and report results

based on a large sample of equity mutual funds. In this section, dealing with estimation, the
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prior beliefs about αA are “diffuse,” or completely non-informative. In the spirit of much of

the previous literature, the fund’s track record determines its estimated alpha without any

adjustment for what one might think to be reasonable magnitudes for that parameter. In

the next section, dealing with an investment problem, we consider the effects of informative

prior beliefs about managerial skill.

2.1. The role of non-benchmark assets

Let rN,t denote the m× 1 vector of returns in month t on m non-benchmark passive assets,

so the multivariate version of the regression in (2) is written as

rN,t = αN +BNrB,t + ²N,t, (3)

where the variance-covariance matrix of ²N,t is denoted by Σ. Let σ
2
² denote the variance of

the disturbance ²A,t in (1). Also define the regression of the fund’s return on all p (= m+ k)

passive assets,

rA,t = δA + c
0
ANrN,t + c

0
ABrB,t + uA,t, (4)

where the variance of uA,t is denoted by σ
2
u. All regression disturbances are assumed to be

normally distributed, independently and identically across t. A key to understanding the

role of non-benchmark assets is given by the equality

αA = δA + c
0
ANαN , (5)

which follows by taking expectations in (1) and (4) and applying the relation

βA = B
0
NcAN + cAB, (6)

which is easily verified using standard regression theory.

Intuition for how non-benchmark assets can help to estimate αA in (1) is developed most

easily if the second-moment parameters βA, cAN , and cAB are viewed as known. Assume the

fund’s history contains S observations, and define estimators of the intercepts in (1), (3),

and (4) as

ᾱA = (1/S)
SX
t=1

(rA,t − β 0ArB,t), (7)

ᾱN = (1/S)
SX
t=1

(rN,t − BNrB,t), (8)
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and

δ̄A = (1/S)
SX
t=1

(rA,t − c0ANrN,t − c0ABrB,t). (9)

Note using (6) that ᾱA is also equal to the result from substituting δ̄A and ᾱN into the

right-hand side of (5):

δ̄A + c
0
AN ᾱN = (1/S)

SX
t=1

(rA,t − (B0NcAN + cAB)0rB,t)
= ᾱA. (10)

Suppose first that the benchmarks have no assumed pricing ability. Then αN is a vector

of unknown parameters, but it can be estimated more precisely than in (8) if the available

history of rN,t and rB,t is longer than the S observations in the fund’s history. Substituting

ᾱN and δ̄A into the right-hand side of (5) gives ᾱA as an estimator of αA. Substituting the

more precise estimator of αN (along with δ̄A) produces a more precise estimator of αA, since

δ̄A is uncorrelated with either estimator of αN . Suppose instead that the benchmarks are

assumed to price the non-benchmark assets exactly, so αN = 0 and thus αA = δA. Then

both ᾱA and δ̄A are unbiased estimators of αA, but the sampling variance of δ̄A, σ
2
u/S, is less

than or equal to the sampling variance of ᾱA, σ
2
²/S. In this case, the non-benchmark asset

returns explain additional variance of the fund’s return and thereby provide a more precise

estimator of its alpha.

The basic idea is that a more precise estimator of αA is obtained by evaluating the right-

hand side of (5) at δ̄A and a more precise estimator of αN than ᾱN . That more precise

estimator of αN can be obtained by using a sample period longer than that available for

the fund, as in the case where the benchmarks are not assumed to have any pricing ability,

or by simply setting αN = 0, as in the case where the benchmarks are assumed to price

the non-benchmark assets perfectly. When ²A,t is correlated with the elements of ²N,t (i.e.

when cAN 6= 0), then the difference between ᾱN and a more precise estimator of αN supplies
information about the likely difference between ᾱA and αA. When the more precise estimator

of αN relies on a longer history, the additional information about αA is provided in essentially

the same way that sample means of long-history assets provide information about expected

returns on short-history assets, as in Stambaugh (1997).

Much of the intuition developed when βA, cAN , and cAB are known extends to the actual

setting in which those parameters must be estimated. Equation (5) also holds when all

quantities are replaced by OLS estimators based on the sample of S observations. That is,

α̂A = δ̂A + ĉ
0
AN α̂N , (11)
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where α̂A, α̂N , and δ̂A are the OLS estimates of the intercepts in (1), (3), and (4), respectively,

and ĉAN is the OLS estimate in (4). As before, the information in non-benchmark assets is

incorporated by replacing α̂N with a more precise estimator based either on a longer history

or some degree of belief in a pricing model. When all parameters are unknown, substituting

a more precise estimator of αN can in some cases produce an estimator of αA that is less

precise than the usual estimate of the fund’s alpha, α̂A. For example, if one assumes that

αN = 0 and substitutes that value into (11) in place of α̂N , the resulting alternative estimator

of αA is simply δ̂A. The mean of δ̂A is αA, but the variance of δ̂A can exceed that of α̂A. Since

cAN must be estimated and δ̂A and the elements of ĉAN are correlated, replacing α̂N with a

lower-variance quantity need not lower the variance of α̂A. Such an outcome is most likely

to occur as the number of non-benchmark assets increases without a sufficient increase in

the R-squared in (4). In essence, the degrees-of-freedom effect can outweigh the additional

explanatory power. We use between five and seven non-benchmark assets, depending on the

number of benchmarks, and we find that the information provided by those assets produces

a more precise estimate of αA for most funds in our sample. In the Bayesian framework

explained below, we also apply a moderate degree of shrinkage to the slope coefficients in

(4) to increase their precision and thereby enhance the information provided by the non-

benchmark assets. A potential direction for future research is the use of higher frequency

data to increase the precision of the slope coefficients.

Suppose two researchers agree on an overall set of p passive assets to include when

estimating αA, but they disagree about the subset of those passive assets to designate as

benchmarks for defining αA. Their chosen benchmark subsets might not even have any

members in common. Moreover, suppose each researcher believes his benchmarks price the

remaining passive assets perfectly. Then those researchers’ estimates of αA will be identical,

even though their definitions of αA are not. That is, the definition of αA is irrelevant to its

estimation if, for whatever benchmarks might be designated for defining αA, the remaining

non-benchmark assets would be assumed to be priced exactly by those benchmarks. Perhaps

ironically, if the benchmarks are not assumed to have perfect pricing ability, their designation

becomes relevant not only for defining αA but also for estimating it.

To understand the above statements, consider first the maximum-likelihood estimator

(MLE) of αA under the restriction that αN = 0. That estimator is given by δ̂A, the OLS es-

timator of the intercept in (4), which does not depend on which of the p assets are designated

as the benchmarks. Note that the disturbances ²N,t and uA,t are by construction uncorrelated

and, given the normality assumption, independent. The likelihood function can therefore be

expressed as a product of two factors, one for each regression. The restriction on αN does
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not affect the MLE of δA, which is δ̂A, since αN appears in the other factor. Substituting

δA along with the restricted MLE of αN (the zero vector) into the functional relation in (5)

gives δ̂A as the MLE of αA as well. It can also be verified that δ̂A arises as the restricted

estimator in a seemingly-unrelated-regression model, or SURM.5 That is, let regressions (1)

and (3) jointly constitute a SURM, and consider the estimation of the model subject to the

restriction αN = 0. The restricted coefficient estimator requires the unknown joint covari-

ance matrix of (²A,t ²
0
N,t). If that matrix is replaced by the sample covariance matrix of the

residuals from the first-pass unrestricted OLS estimation, the resulting “feasible” restricted

SURM estimator of αA is again simply δ̂A. With no restriction on αN , then of course both

the MLE and SURM estimator of αA is simply the usual estimator α̂A. When shrinkage is

applied to the slope coefficients in (4), as in the Bayesian setting described below, the same

type of result obtains. That is, the assumption αN = 0 implies that the posterior mean of

αA is equal to the posterior mean of δA, which doesn’t depend on the designation of the

benchmarks.

2.2. Data

Monthly returns on the benchmark and non-benchmark passive assets are constructed for

the 351
2
-year period from July 1963 through December 1998. The sample period for any

given fund, typically much shorter, is a subset of that overall period. We specify up to three

benchmark series, consisting of the three factors constructed by Fama and French (1993),

updated through December 1998.6 The first of these, MKT, is the excess return on a broad

market index. The other two factors, SMB and HML, are payoffs on long-short spreads

constructed by sorting stocks according to market capitalization and book-to-market ratio.

We estimate “Fama-French” alphas, defined with respect to all three benchmarks, as well as

“CAPM” alphas, defined with respect to just MKT.

When estimating CAPM alphas, SMB and HML become two of the non-benchmark

series. Five additional non-benchmark series are used in the estimation of both CAPM and

Fama-French alphas. The first of these, denoted as CMS, is the payoff on a characteristic-

matched spread in which the long position contains stocks with low HML betas (in a multiple

regression including MKT and SMB) and the short position contains stocks with high HML

betas. The long and short positions are matched in terms of market capitalization and book-

5Zellner (1962) introduces methods for estimating seemingly unrelated regressions. For a textbook treat-
ment, including estimation under linear restrictions, see Theil (1971).

6We are grateful to Ken French for supplying these data.
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to-market ratio, and the overall spread position is formed from a set of triple-sorted equity

portfolios constructed as in Pástor and Stambaugh (2000), who closely follow the procedures

of Daniel and Titman (1997) and Davis, Fama, and French (2000). At the end of June of

each year s, all NYSE, AMEX, and NASDAQ stocks in the intersection of the CRSP and

Compustat files are sorted and assigned to three size categories and, independently, to three

book-to-market categories. The nine groups formed by the intersection can be denoted by

two letters, designating increasing values of size (S, M, B) and book-to-market (L, M, H). We

then construct beta spreads within the four extreme groups of size and book-to-market: SL,

SH, BL, and BH. The stocks within each group are sorted by their HML betas and assigned

to one of three value-weighted portfolios.7 A spread within each group is constructed each

month (from July of year s through June of year s + 1) by going long $1 of the low-beta

portfolio and short $1 of the high-beta portfolio, and the value of CMS in month t is the

equally weighted average of the four spread payoffs in month t.

The second non-benchmark series, denoted as MOM, is the “momentum” factor con-

structed by Carhart (1997). At the end of each month t − 1, all stocks in the CRSP file
with return histories back to at least month t − 12 are ranked by their cumulative returns
over months t− 12 through t− 2. The value of MOM in month t is the payoff on a spread

consisting of a $1 long position in an equally weighted portfolio of the top 30% of the stocks

in that ranking and a corresponding $1 short position in the bottom 30%. This factor is

included as a fourth benchmark in some of the analysis in the next section, dealing with

investment, but this section confines the estimation of alphas to those based on the CAPM

and the three-factor Fama-French model.

The remaining three non-benchmark assets, whose returns are denoted as IP1, IP2,

and IP3, are portfolios constructed from a universe of 20 value-weighted industry portfo-

lios formed using the same classification scheme as Moskowitz and Grinblatt (1999). The

three portfolios mimic the first three principal components of the disturbances in multiple

regressions of the 20 industry returns on the other passive returns: MKT, SMB, HML, CMS,

and MOM. The vector of weights for IP1 is proportional to the eigenvector for the largest

eigenvalue of the sample covariance matrix of the residuals in those regressions, and the other

two portfolios are similarly formed using eigenvectors for the second and third eigenvalues.

7Using up to 60 months of data through December of year s − 1, the “pre-formation” HML betas are
computed in a regression of the stock’s excess returns on “fixed-weight” versions of the FF factors, which
hold the weights on the constituent stocks constant at their June-end values of year s. Using the fixed-weight
factors, as suggested by Daniel and Titman (1997), increases the dispersion in the “post-formation” betas
of the resulting portfolios.
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The specification of non-benchmark assets must be somewhat arbitrary, but our selection

of the five described above is based on several considerations. Recall that non-benchmark

assets supply information about αA, the fund’s alpha, when they explain additional variance

of the fund’s returns, i.e. when cAN 6= 0. Also, except when the benchmarks are assumed
to price the non-benchmark assets perfectly, the latter assets also provide information about

αA when they are mispriced by the benchmarks, i.e. when αN 6= 0. Our inclusion of

the three industry portfolios is motivated primarily by the first consideration, explaining

variance. Although we don’t dismiss the possibility of their being mispriced, those portfolios

are constructed to capture the most important sources of industry-related variation that is

not accounted for by the other passive assets. On the other hand, our inclusion of CMS and

MOM is motivated chiefly by the second consideration, mispricing. Evidence in other studies

indicates that those spread positions may not be priced completely by the three benchmark

factors, MKT, SMB, and HML. For example, Daniel and Titman (1997) conclude that,

during the post-1963 period, characteristic-matched spreads in HML beta produce nonzero

alphas with respect to the Fama-French three-factor model.8 Fama and French (1996) report

a large three-factor alpha for the momentum strategy of Jegadeesh and Titman (1993). Of

course, to be useful in estimating αA, CMS and MOM also have to explain additional variance

of the fund’s returns, and we find that to be the case for many funds.

Parsimony is a consideration limiting our number of non-benchmark assets to five. As

discussed earlier, the degrees-of-freedom effect in finite samples argues against indiscrimi-

nately specifying a large number of non-benchmark assets. One might instead include a

larger number of the characteristic-matched spreads, say one for each size/book-to-market

subgroup, or include all 20 industry portfolios instead of constructing the smaller set of three.

We tried such alternatives and found that they quite often produce estimates of αA similar

to those obtained using the smaller set of five, but the precision of the estimates based on the

larger set is lower. The OLS estimators of δA and cAN are undefined, or essentially infinitely

imprecise, when the total number of passive assets exceeds the length of the fund’s history.

The shrinkage estimator (explained below) can still be computed in that case, but it often

yields a less precise inference than when fewer non-benchmark assets are used. It is likely

that future research could refine the selection of non-benchmark assets and further increase

the precision of estimated alphas. For example, a different set of non-benchmark assets

could be specified for each fund, so that the assets have a high correlation with the specific

fund at hand. A larger number of non-benchmark assets could be used for a fund with a

longer history, since the degrees-of-freedom problem is then less severe. Our specification of

8Davis, Fama, and French (2000) find that a hypothesis of zero mispricing for such spreads cannot be
rejected within the longer 1929—97 period.
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non-benchmark assets, motivated chiefly by simplicity, probably understates the potential

gains from using non-benchmark assets to help estimate fund performance.

The mutual-fund data come from the 1998 CRSP Survivor Bias Free Mutual Fund Data-

base.9 Our sample contains 2,609 domestic equity mutual funds.10 We exclude multiple

share classes for the same fund as well as funds with only a year or less of available returns.

Funds are assigned to one of seven broad investment objectives, using information that the

CRSP database provides about classifications by Wiesenberger, ICDI, and Strategic Insight.

Table 1 lists the number of funds in each objective, further classifying funds within each

objective by the number of months in the fund’s available return history. For each fund we

compute the monthly return in excess of that on a one-month Treasury bill.

2.3. The Bayesian framework

We compute the posterior mean of αA by computing posterior means for the parameters of

the regressions in (3) and (4). Recall from an earlier discussion that the likelihood function

for each fund can be expressed as a product of two factors, one for each regression. We assume

that the disturbances in (4) are uncorrelated across funds, which implies that the likelihood

functions across funds are independent. Non-benchmark assets thus play yet another role, in

that they account for covariance in fund returns that is not captured fully by the benchmarks.

We also specify prior beliefs in which the parameters of the regression in (3) are independent

across funds as well as independent of the parameters of (4). Given the latter property, the

posterior distribution of αN is independent of δA and cAN , so the posterior mean of αA is

obtained simply by evaluating the right-hand side of (5) at the posterior means of αN , δA and

cAN . The independence of the prior and the likelihood across funds allows us to conduct the

analysis fund by fund. We also examine the posterior standard deviations of αA, which can

be computed using the posterior first and second moments of αN , δA and cAN . Derivations

of the posterior moments are provided in the Appendix. The specification of prior beliefs is

discussed below.

First consider the parameters of the regression in (3). The prior distribution for Σ, the

covariance matrix of ²N,t, is specified as inverted Wishart,

Σ−1 ∼W (H−1, ν). (12)

9CRSP, Center for Research in Security Prices, Graduate School of Business, The University of Chicago
1999, crsp.com. Used with permission. All rights reserved.
10We are grateful to Thomas Knox and the authors of Baks, Metrick, and Wachter (2000) for providing

us with a number of corrections to the CRSP Mutual Fund Database.
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We set the degrees of freedom ν = m + 3, so that the prior contains very little information

about Σ. From the properties of the inverted Wishart distribution (e.g., Anderson (1984)),

the prior expectation of Σ equals H/(ν − m − 1). We specify H = s2(ν − m − 1)Im, so
that E(Σ) = s2Im. Following an “empirical Bayes” approach, the value of s

2 is set equal

to the average of the diagonal elements of the sample estimate of Σ obtained using OLS.

Conditional on Σ, the prior for αN is specified as a normal distribution,

αN |Σ ∼ N(0, σ2αN (
1

s2
Σ)). (13)

Pástor and Stambaugh (1999) introduce the same type of prior for a single element of αN ,

and Pástor (2000) and Pástor and Stambaugh (2000) apply the multivariate version in

(13) to portfolio-choice problems. Having the conditional prior covariance matrix of αN be

proportional to Σ is motivated by the recognition that there exist portfolios of the passive

assets with high Sharpe ratios if the elements of αN are large when the elements of Σ

are small. Such combinations receive lower prior probabilities under (13) than when each

element of αN has standard deviation σαN but is distributed independently of Σ. The prior

distribution for BN is diffuse and independent of αN and Σ.

Our earlier discussion focuses on the cases in which the benchmarks’ ability to price the

non-benchmark assets is assumed to be either perfect or nonexistent. That is, either αN is

set to the zero vector or the prior beliefs about αN are diffuse. These two cases represent

the opposite extremes on a continuum characterized by σαN , the marginal prior standard

deviation of each element in αN . Specifying σαN = 0 is equivalent to setting αN = 0,

corresponding to perfect confidence in the benchmarks’ pricing ability. A diffuse prior for

αN corresponds to σαN = ∞. With a nonzero finite value of σαN , prior beliefs are centered
on the pricing restriction, but some degree of mispricing is entertained. We refer to σαN as

“mispricing uncertainty.”

Next consider the parameters of the regression in (4). The prior for σ2u, the variance of

uA,t, is specified as inverted gamma, or

σ2u ∼
ν0s

2
0

χ2ν0
, (14)

where χ2ν0 denotes a chi-square variate with ν0 degrees of freedom. Define cA = (c
0
AN c

0
AB)

0.

Conditional on σ2u, the priors for δA and cA are specified as normal distributions, independent

of each other:

δA|σ2u ∼ N(δ0,
Ã

σ2u
E(σ2u)

!
σ2δ ), (15)
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and

cA|σ2u ∼ N(c0,
Ã

σ2u
E(σ2u)

!
Φc). (16)

The marginal prior variance of δA is σ
2
δ , and the marginal prior covariance matrix of cA is Φc.

In this section, focused on estimation, we set σ2δ =∞, which implies that the prior for αA is
diffuse and that δ0 is irrelevant. In the next section, dealing with investment, we set σ

2
δ to

finite values and specify δ0 to reflect the fund’s costs. The conditional prior variance of δA is

positively related to σ2u for a reason similar to that given for the corresponding assumption

in (13). If the variation in the fund’s return is explained well by that of the benchmarks, so

that σ2u is low, then it is less likely that the fund’s manager can achieve a large value for δA.

Values for s0, ν0, c0, and Φc in (14) through (16) are specified using an empirical-Bayes

procedure. The basic idea is that a given fund is viewed as a draw from a cross-section of

funds with the same investment objective, so the prior uncertainty about a parameter for the

fund is governed by the cross-sectional dispersion of that parameter. The empirical-Bayes

procedure uses the data to infer those properties of the cross-section. The prior mean and

covariance matrix of cA, denoted by c0 and Φc, are set equal to the corresponding sample

cross-sectional moments of ĉA, the OLS estimate of cA, for all funds with at least 60 months

of data and the same investment objective as the fund at hand. (Recall that the investment

objectives are displayed in Table 1.) Setting Φc equal to the sample covariance matrix of

ĉA, without adjusting for the sampling variation in those estimates, overstates the dispersion

across funds in the true values of cA. In that sense, our use of this empirical-Bayes procedure

is conservative, in that it applies an intentionally modest degree of shrinkage toward the

cross-sectional mean of ĉA when computing the posterior moments of cA for a given fund.

With a diffuse prior on cA, or no shrinkage, the estimate (posterior mean) of cA is simply the

OLS value ĉA. The degree of shrinkage applied here, albeit conservative, gives a more precise

estimate of cA, especially for a short-history fund, and thereby allows the non-benchmark

assets to reveal more of their information about the fund’s alpha.

The inverted gamma prior density for σ2u implies (e.g., Zellner (1971, p. 372)),

E(σ2u) =
ν0s

2
0

ν0 − 2 , (17)

and

ν0 = 4 +
2(E(σ2u))

2

Var(σ2u)
. (18)

We substitute the cross-sectional mean and variance of σ̂2u for E(σ
2
u) and Var(σ

2
u) in (17)

and (18). The value of ν0 is set to the next largest integer of the resulting value on the

14



right-hand side of (18), and then that value of ν0 implies the value of s
2
0 using (17). Here

again, using the cross-sectional variance of σ̂2u without adjusting for sampling error produces

a conservative amount of shrinkage toward the cross-sectional mean of σ̂2u for funds with the

same objective.

Our framework assumes that funds’ sensitivities to passive assets are constant over time.

One way of relaxing this assumption is to model these coefficients as linear functions of state

variables, as for example in Ferson and Schadt (1996). In such a modification, passive asset

returns scaled by the state variables can be viewed as returns on additional passive assets

(dynamic passive strategies), and the approach developed here could be extended to such a

setting. Another approach to dealing with temporal variation in parameters could employ

data on fund holdings. Daniel, Grinblatt, Titman, and Wermers (1997) and Wermers (2000),

for example, use such data in characteristic-based studies of fund performance.

2.4. An alternative approach using GMM

The information in non-benchmark assets can also be incorporated in an estimate of the

fund’s alpha by using the generalized method of moments (GMM) of Hansen (1982). Let

γ denote the vector of parameters corresponding to the elements of δA, cAN , cAB, αN , and

BN . The estimate of γ can be obtained by minimizing g(γ)
0Wg(γ), where g(γ) denotes the

vector of (1 +m+ k) +m(1 + k) moment conditions

g(γ) ≡


1
S

P
t∈F (rA,t − δA − c0ANrN,t − c0ABrB,t)

 1
rN,t
rB,t


vec

(
1
T

PT
t=1 (rN,t − αN − BNrB,t)

Ã
1
rB,t

!0)
 , (19)

and F denotes the subset of the periods {1, . . . , T} representing the fund’s return history of
length S. The first set of moment conditions in (19) corresponds to the regression in (4),

and the second set corresponds to the regression in (3). The weighting matrix W is block

diagonal, since the disturbance in (3) is uncorrelated with that in (4). GMM estimates of the

fund’s alpha can be constructed under two cases, corresponding to σαN =∞ and σαN = 0 in

the Bayesian framework. With no restriction on αN , the above moment conditions serve to

exactly identify γ. Using the GMM estimate γ̌, the fund’s estimated alpha can be computed

as α̌A = δ̌A + č
0
AN α̌N . With the pricing restriction αN = 0, the second set of moment

conditions can be dropped and the fund’s alpha is estimated simply as α̌A = δ̌A.

The above GMM approach incorporates the information in non-benchmark assets in
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essentially the same manner as the Bayesian framework, but it permits a more general

stochastic setting. The disturbances in (3) and (4) are not assumed to obey a specific

distribution, and the weighting matrix W can be specified to allow non-i.i.d. behavior of

those disturbances. Moreover, it is straightforward to modify the above moment conditions

to allow the sensitivities (cA, BN) to be linear functions of state variables, as in Ferson and

Schadt (1996), whereas incorporating such an extension in the likelihood-based Bayesian

setting is more complicated. On the other hand, the Bayesian framework also offers some

advantages. First, it permits flexible non-extreme beliefs about pricing and skill, i.e., values

of σαN and σδ other than zero or infinity. Second, it provides finite-sample inference about

the funds’ alphas. Third, it increases the precision of the estimates of cA, particularly for

short-history funds, by shrinking the elements of cA to their cross-sectional averages. Finally,

as demonstrated in the next section, the Bayesian framework permits the data to be analyzed

in the context of mutual fund investment and accounts for parameter uncertainty in that

decision problem.

2.5. Results

Table 2 reports medians, within various fund classifications, of CAPM alphas (Panel A)

and Fama-French alphas (Panel B). The posterior mean of αA, denoted as α̃A, is computed

for σαN equal to zero, two percent (annualized), and infinity. Recall that the usual OLS

estimator, denoted as α̂A, makes no use of non-benchmark assets. Also reported are median

absolute differences between α̂A and α̃A. Not surprisingly, non-benchmark assets play a

greater role in the estimation of CAPM alphas, since two of the non-benchmark assets in

that case, SMB and HML, are already included as benchmarks when estimating Fama-French

alphas. Across all funds, the median value of |α̂A− α̃A| is two percent per annum for CAPM
alphas but about one percent or less, depending on σαN , for Fama-French alphas. Note also

that |α̂A− α̃A| is typically smaller for the funds with longer histories. With a longer history,
α̂A becomes more precise, so the additional information in non-benchmark returns has a

smaller impact.

The manner by which non-benchmark assets provide information is illustrated most dra-

matically in the case of CAPM alphas for small-company growth funds. For such funds,

incorporating the information in non-benchmark assets typically makes a difference of be-

tween 7.2% and 8.3% per annum when estimating the CAPM alpha, depending on σαN .

Nearly half of those 413 funds have track records of three years or less (see Table 1), and

the bulk of their track records fall toward the end of the overall period. In recent years,
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small-firm indexes have underperformed their CAPM predictions, which is relevant when

σαN = 0, and they have also underperformed their long-run historical averages, which is

relevant when σαN = ∞. (Both statements are relevant when σαN = 2%.) Incorporating

that information is accomplished in either case largely by including the size factor SMB as

a non-benchmark asset.

An important issue in performance evaluation is whether the mutual fund industry adds

value beyond standard passive benchmarks. We address this issue by computing posterior

probabilities that average fund alphas within various fund classifications are negative. These

probabilities are computed based on 100,000 draws of the average alpha from its posterior

distribution. The probabilities are reported in Table 3, together with posterior means of

average CAPM alphas (Panel A) and Fama-French alphas (Panel B). Some differences be-

tween the average alphas in Table 3 and the median alphas in Table 2 reflect skewness in the

cross-sectional distribution of fund alphas. For example, the average of the OLS estimates

of the CAPM alphas across all funds is −3.83%, compared to their median of −2.13%.

With few exceptions, Table 3 supports the inference that average fund alphas are negative.

For example, for each investment objective and each age group, the average of the OLS

estimates of the CAPM alphas is negative with 100% probability. The averages of the

OLS estimates of the Fama-French alphas are mostly negative, although they are reliably

positive for funds with histories longer than 10 years. When the non-benchmark assets are

included, the average performance across all funds remains significantly negative, although

the performance of long-history funds and aggressive growth funds improves with skeptical

prior beliefs about pricing (σαN = ∞). The importance of beliefs about pricing can be
illustrated by the average Fama-French alpha for small-cap growth funds. When the non-

benchmark assets are not used, there is a 50% probability that the average alpha for those

funds is negative. When the non-benchmark assets are included, the probability that the

average alpha is negative rises to 100% when those assets are believed to be exactly priced

by the benchmarks, but it drops to 9% when no pricing relation is used.

The alpha estimates in Tables 2 and 3 are generally higher for the funds with longer

histories. These patterns could reflect survival effects, although similar age-related patterns

emerge in the subsample of funds that existed at the end of 1998 (about 75% of our funds),

and the median CAPM α̂A’s for the shorter-lived funds are actually lower in that subsample

than in the overall sample that includes non-surviving funds. Nevertheless, at least part of

the age patterns could reflect survival effects, in that funds with poor track records are less

likely to be long lived.
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To investigate whether including the non-benchmark assets leads to a more precise infer-

ence about a fund’s alpha, we examine the ratio of two posterior variances. The numerator

of the ratio is the posterior variance of αA under our model in which non-benchmark assets

are used and the prior variance for the elements of αN is as given in the column heading.

Recall that the posterior mean of αA in that case is denoted as α̃A. The denominator of

the ratio is the posterior variance of αA when the non-benchmark assets are not used and

diffuse priors are assigned to all parameters. The posterior mean of αA in that case is the

OLS estimate α̂A. For ease of discussion, we commit a slight abuse of notation and refer to

the posterior variances in the numerator and denominator as the “variances” of α̃A and α̂A.

These variances reflect the precision of inferences about αA in the sense generally associated

with standard errors in a frequentist setting. In fact, the denominator of the ratio equals

the squared standard error computed in the usual regression model.

For most funds, a more precise inference about alpha is obtained by including non-

benchmark assets. Table 4 reports the median ratio of the variance of α̃A to the variance

of α̂A. Also reported is the fraction of those ratios that are less than one. For the CAPM

alpha estimates, the median variance ratio across all funds is approximately 0.7, and the

ratio is less than one for roughly 90% of the funds. For Fama-French alphas, the ratio has

a median of about 0.85 and is less than one for roughly 80% of the funds. In general, the

median ratio is higher for the funds with longer histories. Note from Table 1 that funds with

track records of at least 20 years represent only about 5% or our sample (139 out of 2609).

For those funds, the OLS estimates of Fama-French alphas are typically about as precise

as the estimates that incorporate the non-benchmark assets: the median variance ratios are

1.00 or just slightly less, and the ratios cluster fairly tightly around that value. At the other

extreme lies the variance ratio associated with estimating CAPM alphas for small-company

growth funds. That variance ratio has a median between 0.33 and 0.39, depending on σαN ,

and the ratio is less than one for all such funds in our sample. Thus, for small-company

growth funds in particular, not only is the CAPM α̃A substantially higher than the CAPM

α̂A, it is also substantially more precise.

Recall that estimates of αA are identical across different specifications of the benchmarks

when one assumes the non-benchmark assets are priced exactly under each specification.

In Table 2, note that the median values of α̃A are indeed the same in Panels A and B

when σαN = 0 (which sets αN = 0). Table 5 compares estimates of CAPM and Fama-French

alphas when σαN = 2% (Panel A) and σαN =∞ (Panel B). As expected, the median absolute

differences between models are typically larger in the second case, but those differences are

still substantially less than the median absolute differences between OLS estimates (Panel
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C). In other words, even when the non-benchmark assets are not believed to be priced

whatsoever by either model’s benchmarks, their presence in the estimation still makes the

definition of αA substantially less important than when they are not used at all. Across all

funds, the median absolute difference between estimated CAPM and Fama-French alphas is

0.42% (per annum) under σαN = 2% and 1.24% under σαN =∞, as compared to 2.28% for

the OLS estimates. For small-company growth funds, the median difference is 0.69% under

σαN = 2% and 2.03% under σαN =∞, as compared to 8.07% for the OLS estimates.

Table 6 compares alphas defined for a given set of benchmarks and estimated with or

without the pricing restriction imposed on the non-benchmark assets. That is, for αA defined

with respect to a given pricing model, we compare estimates under σαN = 0 to estimates

under σαN = ∞. Across all funds, the median difference is 0.94% for CAPM alphas and

0.68% for Fama-French alphas. Interestingly, the median differences display little if any

relation to the length of the fund’s history. Most of the median differences in the two-way

sort (by objective and age) are 2% or less, with the exception of sector funds. For the funds

with the longest histories, the effect of imposing the pricing restriction on the non-benchmark

assets is often as large as the effect of not including the non-benchmark assets at all (shown

earlier in Table 2). The latter effect is more important for history lengths of ten years or less

when estimating CAPM alphas and five years or less when estimating Fama-French alphas.

Note from Table 1 that about 85% of the equity funds in our sample have history lengths

less than 10 years, and about 60% have histories of five years or less.

3. Investing with priors about skill and pricing

Prior beliefs about pricing models can be useful to someone investing in mutual funds. A

pricing model implies that a combination of the model’s benchmark assets provides the

highest Sharpe ratio within a passive universe. That implication is useful to an investor

seeking a high Sharpe ratio, even if the investor has less than complete confidence in the

model’s pricing accuracy and cannot invest directly in the benchmarks. Prior beliefs about

managerial skill are also important in the investment decision. One investor might believe

completely in a model’s accuracy in pricing passive assets but believe active managers may

well possess stock-picking skill. Another investor might be skeptical about the ability of fund

managers to pick stocks as well as the ability of academics to build accurate pricing models.

This section applies the econometric framework described in the previous section to an

investment setting that allows an investor to combine information in the data with prior
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beliefs about both pricing and skill. Non-benchmark assets allow us to distinguish between

pricing and skill, and they supply additional information about funds’ expected returns in

essentially the same manner as in the estimation problem of the previous section. In addition,

non-benchmark assets help account for common variation in funds, making the investment

problem feasible using a large universe of funds. We begin the section with a discussion of

skill and prior beliefs, and then we present and discuss portfolios constructed under a range

of priors about pricing models and skill.

3.1. Prior beliefs

In both commercial and academic settings, much interest attaches to alphas defined with

respect to small sets of benchmarks identified by pricing models. Estimating such alphas is

the subject of the previous section. Alpha is often interpreted as skill displayed by the fund’s

manager in selecting mispriced securities, but a nonzero alpha need not reflect skill if some

passive assets can also have nonzero alphas. For example, a manager who starts a new fund

investing in non-benchmark passive assets whose alphas have historically been positive can

have a positive alpha in the absence of any skill. To address such concerns, one could expand

the set of benchmarks to include more passive assets, even to the point of including all assets

available to the manager. Indeed, as observed by Grinblatt and Titman (1989, p.412), “...

the unconditional mean-variance efficient portfolio of assets that are considered tradable by

the evaluated investor provides correct inferences about the investor’s performance ... links

between performance measures and particular equilibrium models are not necessary.” Chen

and Knez (1996) adopt a similar approach in a conditional setting, in that they evaluate funds

with respect to a set of passive benchmarks selected without regard to a pricing model: “...we

argue that for application purposes, one does not need to rely on asset pricing models to

define an admissible performance measure” (p. 515).

In practice, the number of passive assets must be limited in some fashion. Our empirical

design includes p passive assets, consisting of k benchmarks and m non-benchmark assets,

and the benchmarks are associated with popular asset pricing models. Suppose one admits

the possibility that the benchmarks do not price the non-benchmark assets exactly, that is

αN 6= 0. Then δA, the intercept in (4), is a better measure of skill, in that it is defined with
respect to the more inclusive set of passive assets. Of course, that measure might still be

nonzero for passive assets omitted from the set of p. The point is simply that inadequacy of

δA as a skill measure implies inadequacy of αA, whereas δA can be adequate when αA is not.
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The skill measure δA is defined with respect to the overall set of p assets, but the investor

nevertheless finds it useful to partition that set into k benchmark and m non-benchmark

assets. Even though the investor is unwilling to assume that the k benchmarks price the non-

benchmark assets exactly, he might nevertheless believe that the benchmarks possess some

pricing ability. That pricing ability, albeit imperfect, helps the investor identify portfolios

with high Sharpe ratios, as will be illustrated below. The investor’s prior beliefs about

pricing are represented as before, with a prior for αN characterized by σαN .

We assume that an investor selecting a portfolio of mutual funds generally has informative

prior beliefs about a fund manager’s ability to achieve a nonzero δA. Prior beliefs about δA,

given by (15), are characterized by the prior mean and standard deviation, δ0 and σδ. Recall

that in the estimation problem addressed in the previous section, the prior beliefs about δA

are diffuse (σδ =∞) and thus δ0 is irrelevant. In the investment problem addressed here, σδ
can be finite, and even zero, so the prior mean δ0 must be specified as well.

If a fund manager possesses no skill, then δA should simply reflect costs, since the returns

on the p passive assets used to define δA have no costs deducted. To represent a prior belief

that precludes skill, we set σδ = 0 and specify

δ0 = − 1
12
(expense + 0.01× turnover), (20)

where expense is the fund’s average annual expense ratio and turnover is the fund’s average

annual reported turnover. Multiplying the latter quantity by 0.01 is equivalent to assuming

a round-trip cost per transaction of one percent, approximately the 95 basis points estimated

by Carhart (1997) for the average fund in his sample. Carhart obtains that estimate as the

average slope coefficient in monthly cross-sectional regressions of fund return on “modified”

turnover (MTURN), which is reported turnover plus one-half the rate of change in total

net assets (TNA) adjusted for investment returns and mergers. Reported turnover is the

minimum of the fund’s purchases and sales divided by its average TNA. MTURN, which

essentially includes transactions arising from contributions and withdrawals, is the appropri-

ate measure for estimating transactions costs in Carhart’s regression. For example, a fund

that sells nothing in a year but experiences contributions doubling its size will have a value

of zero for turnover but a value of 0.50 for MTURN. The resulting purchases incur costs

impacting the fund’s return that year, and the year-by-year values of MTURN can better

explain that component of return variation and thereby provide an estimate of transactions

costs. In forecasting future transactions, however, it seems more reasonable to abstract from

growth or shrinkage of the fund and instead view a fund with either no sales or no purchases

as likely to be a low-turnover fund. Thus, we define turnover as the average of the reported
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turnover values.

When one admits some possibility of skill, the link between turnover and prior expected

performance becomes less clear. If the manager does possess skill, then high turnover is

likely to be accompanied by positive performance. On the other hand, if the manager

possesses no skill, then high turnover can only hurt expected performance. If the investor is

uncertain about whether the manager has skill, that is if σδ > 0, then the relation between

expected turnover and expected performance is ambiguous. A similar ambiguity arises with

expense ratios. We follow an empirical Bayes approach in specifying how prior expected

performance depends on expense and turnover when σδ > 0.11 Specifically, we estimate a

cross-sectional regression of estimated δA on
1
12
expense and 1

12
turnover, where the estimate

of δA is the posterior mean obtained with σδ =∞. Across a number of alternative methods
for including funds (e.g., minimum history length) and estimating the coefficients (OLS or

weighted least squares), we find that the coefficient on 1
12
expense is consistently about −1

and is at least twice its standard error. In contrast, the coefficient on 1
12
turnover fluctuates

within an interval roughly between −0.005 and 0.005 and is generally less than its standard
error.12 Guided by this result, we specify

δ0 = − 1
12
expense (21)

as the prior mean of δA when σδ > 0.

3.2. The investment problem

Under various prior beliefs about skill and pricing, we construct portfolios with the highest

Sharpe ratio, defined as expected excess return divided by the standard deviation of return.

The investment universe consists of 505 funds selected from the 2,609 equity mutual funds

analyzed in the previous section. The 505 funds are those that (i) charge no load fee, (ii)

exist at the end of 1998, (iii) have at least 36 months of return history under the most recent

manager, and (iv) have data on expense ratios and turnover rates. We exclude funds that

charge load fees simply because it is not clear how to treat the payment of such fees within

the single-period setting implicit in maximizing the Sharpe ratio. The p passive assets used

to define δA are included in the econometric specification, but since returns on those assets

11An alternative approach, proposed by Baks, Metrick, and Wachter (2000), is to specify a prior for
performance that is truncated below at a point that reflects expenses as well as an estimate of transactions
costs.
12Wermers (2000) finds that turnover does not exhibit a significant relation to net performance after

adjusting for risk and asset characteristics.
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do not include any implementation costs, only the mutual funds are assumed to be eligible

for investment. In addition, short positions in funds are precluded.

The stochastic setting is as defined in Section 2. Let R denote the sample data, consisting

of returns on passive assets and funds through month T , and let rT+1 denote the vector of

returns on the funds in month T + 1. In solving the investment problem, Sharpe ratios are

computed using moments of the predictive distribution of the funds’ returns,

p(rT+1|R) =
Z
θ
p(rT+1|R, θ) p(θ|R) dθ, (22)

where p(θ|R) is the posterior distribution of the parameter vector, θ.13 The first two moments
of this predictive distribution are derived in the Appendix. The fund’s history is used only

back to the month beginning the most recent manager’s tenure, whereas the return histories

of the p passive assets begin in July 1963.

A meaningful investment universe can include only those funds that exist at the end of the

sample period, December 1998, but this selection criterion raises the issue of survival bias.

In particular, under prior beliefs that admit the possibility of skill (σδ > 0), one might be

concerned that the posterior mean of a manager’s skill measure δA is overstated by a failure

to condition on the fund’s having survived. Baks, Metrick, and Wachter (2000) make the

interesting observation that, if a fund’s survival depends only on realized return histories,

then the posterior distribution of the parameters for the surviving funds is unaffected by

conditioning their survival. In other words, a sufficient assumption for this result is that once

one conditions on all the return histories, the probability of a fund’s surviving is unaffected

by further conditioning on the model’s unobserved parameters. The Bayesian posterior for

the parameters conditions on the return histories in any event, and with this assumption

those return histories subsume the information in knowing the fund survived. Like Baks,

Metrick, and Wachter, we find the notion that survival depends only on realized returns to

be plausible, and thus we proceed under that assumption.

3.3. Portfolio selections

Table 7 reports weights in the optimal portfolio for investors with various beliefs about man-

agerial skill and mispricing of passive assets under the CAPM. (The weights in each column

of Panel A add to 100 percent.) For convenience, we refer throughout to a portfolio having

13Early applications of Bayesian methods to portfolio choice, using diffuse prior beliefs, include Zellner
and Chetty (1965), Klein and Bawa (1976), and Brown (1979). Recent examples, using informative priors,
include Pástor (2000) and Pástor and Stambaugh (2000).
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the highest Sharpe ratio within a given universe as “optimal.” Mispricing uncertainty, σαN ,

is assigned values of zero, one percent, and two percent (per annum), while skill uncertainty,

σδ, is assigned values of zero, one percent, three percent, and infinity. Tables 8 and 9 report

corresponding results for two other pricing models, the Fama-French three-factor model (Ta-

ble 8) and the Carhart four-factor model (Table 9). Table 10 reports optimal weights for

σαN =∞, in which case the investor makes no use of the pricing models.

We stated earlier that a pricing model, even if not believed completely, helps identify the

portfolios with high Sharpe ratios. This point can be illustrated in Table 7, for example,

by examining the optimal portfolio’s correlation with the market index, MKT. Reported

in Panel B of Tables 7 through 10 is the optimal portfolio’s predictive correlation with the

portfolio having the highest Sharpe ratio among those that combine the factors of each

pricing model. The latter portfolio is optimal for an investor who believes completely in

the given pricing model and can invest only in the p passive assets. The investor here, in

contrast, can invest only in mutual funds and not in the p passive assets. An investor who

believes completely in the CAPM and in no possibility of fund-manager skill (σαN = σδ = 0)

selects a combination of market index funds that is virtually perfectly correlated with MKT.

A value of σαN = 1% means that, before examining the data, the investor assigns about a

five percent probability to the prospect that the expected return on a given non-benchmark

passive asset violates its CAPM prediction by more than 200 basis points per annum in

either direction. With that degree of mispricing uncertainty but the same belief about skill,

the optimal portfolio is still essentially composed of market index funds and has a correlation

with MKT that rounds to 1.00. With twice as much mispricing uncertainty (σαN = 2%),

the correlation with MKT is 0.89, which is still considerably higher than the value of 0.74

obtained in Table 10 when no pricing model is used.

The CAPM continues to influence portfolio choice when the investor admits the possibility

of managerial skill. A value of σδ = 1% means that, before examining a given fund’s track

record, the investor assigns about a 2.5% probability to the prospect that the fund’s manager

generates a positive skill measure gross of expenses of at least 200 basis points per year. (Of

course, given the symmetry of our prior, the investor assigns the same probability to a

negative skill measure of that magnitude, but the left tail is presumably less interesting with

short sales precluded.) With that amount of skill uncertainty, the CAPM can still help the

investor construct the portfolio with the highest Sharpe ratio, even with some uncertainty

about the CAPM’s ability to price passive assets. When σδ = 1%, the optimal portfolio has

a correlation of 0.92 with MKT when σαN = 2% (Table 7), as compared to a correlation of

only 0.76 when the CAPM is not used (Table 10). With three times as much skill uncertainty
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(σδ = 3%), the optimal portfolio’s correlation with MKT is 0.93 when σαN = 2% and 0.87

when the model is not used. That is, even with a substantial degree of willingness to accept

the possibility of managerial skill and only modest confidence in the CAPM, the investor’s

portfolio selection is still influenced by the pricing model.

Portfolio choice is influenced by beliefs in the other pricing models in essentially similar

ways as noted above for the CAPM. For both the Fama-French and four-factor models,

however, perfect confidence in the model does not result in an optimal portfolio of funds that

mimics as closely the optimal combination of the benchmarks from the model. Table 8 reports

optimal portfolios for investors with varying degrees of confidence in the three-factor Fama-

French model. After seeing the data, an investor who has complete prior confidence in that

model and admits no possibility of manager skill (σαN = σδ = 0) believes that the optimal

portfolio constructed from our universe of 505 no-load mutual funds has a correlation of only

0.75 with the optimal combination of the Fama-French benchmarks (Panel B). Moreover,

as reported in Panel C, that investor judges the highest Sharpe ratio obtainable within the

fund universe to be only 0.66 times that of the highest Sharpe ratio obtainable by combining

the benchmarks.14 Under the four-factor model, as reported in Table 9, the correlation

between the optimal fund portfolio and the optimal combination of the four benchmarks is

0.61, and the Sharpe ratio of the first portfolio is only slightly more than half that of the

second. Evidently, close substitutes for the Fama-French and Carhart benchmarks cannot

be constructed with long positions in funds from our no-load universe.

The main reason for the lack of benchmark substitutes is our precluding short sales of

mutual funds. When the short-sale constraint is removed, the Sharpe ratio of the optimal

fund portfolio increases to 0.99 times the Sharpe ratio of the efficient benchmark combination

under the Fama-French model and to 0.94 times the maximum under the Carhart model.

Since only a relatively small subset of funds can be shorted in practice, precluding short

sales in our fund universe seems reasonable. We also redid the analysis with an expanded

investment universe of 919 funds that includes funds with load fees. The improvement from

including the load funds is surprisingly small, despite the fact that we ignore their load fees.

Under the four-factor model, the Sharpe ratio rises only to 0.55 times the maximum, as

compared to multiple of 0.54 in the original no-load setting. Under the Fama-French model,

the Sharpe ratio rises so little that it rounds, as before, to only 0.66 times the maximum.

14If δ0 were set to zero for each fund, the correlation between the two portfolios would equal the Sharpe
ratio of the fund portfolio divided by the Sharpe ratio of the benchmark portfolio. In that case, the second
portfolio would have the highest possible Sharpe ratio for the overall universe of funds and passive assets with
investment weights unconstrained (i.e., short sales permitted), and an exact relation between correlations
and Sharpe ratios applies (e.g., Proposition 1 of Kandel and Stambaugh (1987)).
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We conclude that the universe of all equity mutual funds, including the load funds, provides

no close substitutes for the Fama-French and momentum benchmarks.

3.4. Portfolio comparisons

Differences in prior beliefs about pricing models and the potential for managerial skill can

lead to economically significant differences between optimal portfolios of mutual funds. Table

11 and Panels D and E of Table 10 present comparisons of portfolios constructed under

various specifications. The certainty-equivalent differences are computed for an investor

who maximizes the mean-variance objective,

Cp = Ep − 1
2
Aσ2p, (23)

where EP and σ
2
p denote the mean and variance of the excess return on the investor’s overall

portfolio (including unrestricted riskless borrowing and lending). Risk-aversion, A, is set

to 2.75, which is the level at which an investor would allocate 100% to MKT if the invest-

ment universe contained just that single risky position in addition to the riskless asset. In

comparing portfolios obtained under different specifications, one portfolio is designated as

optimal and the other as suboptimal, where the suboptimal portfolio is optimal under the

alternative specification. We compare the certainty equivalent for the optimal portfolio, Co,

to the certainty equivalent for a suboptimal portfolio, Cs. Both certainty equivalents are

computed using the predictive moments obtained under the prior beliefs associated with the

optimal portfolio.

Panel A of Table 11 compares portfolios formed with the same σαN and σδ but under

different pricing models. The difference between any two models ranges between 1 and 61

basis points per month, depending on the prior uncertainty about mispricing and skill.15

In general, sample averages receive more weight in estimating expected returns when one’s

prior beliefs about pricing and skill become less informative. As mispricing uncertainty

increases, the portfolios formed with beliefs centered on different pricing models become more

alike: the certainty-equivalent difference drops and the correlation increases. An increase in

skill uncertainty also tends to make the cross-model difference less important, although not

monotonically. The largest certainty-equivalent differences, which can exceed 50 basis points

15The reported certainty-equivalent difference is actually the average of two differences, one for each of the
two pricing models designated as producing the optimal portfolio. The correlation reported in Panel A is
similarly the average of two values, one for the predictive distribution associated with each model. Averaging
in this fashion treats the pricing models symmetrically, although generally the two values being averaged are
close to each other.
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per month, tend to occur between the CAPM and the four-factor model when σαN and σδ are

small. The smallest differences occur between the Fama-French and four-factor models when

σδ is large. When σαN and σδ are both one percent or less, however, the certainty-equivalent

difference between those two models is at least 19 basis points per month.

In Panel B of Table 11, the optimal portfolio under a given set of beliefs about skill and

mispricing is compared to the portfolio selected by an investor who rules out any ability of

academics to build models and any skill of portfolio managers to pick stocks. The portfolio

of this “completely skeptical” investor, for whom σαN = ∞ and σδ = 0, is designated as

the suboptimal portfolio in computing the pairwise comparisons described previously. (Its

weights are given in the first column of Table 10.) Suppose one forces that portfolio to be

held by an investor who has a modest degree of confidence in the CAPM, say σαN = 2%,

and who admits some possibility of managerial skill, say σδ = 1%. Then that investor suffers

a certainty-equivalent loss of 29 basis points per month, or about 3.5% per year. With

beliefs centered around the Fama-French model but again with σαN = 2% and σδ = 1%,

the certainty-equivalent loss falls to 15 basis points per month. When skill uncertainty is

one percent or less, complete belief in the four-factor model produces a portfolio quite close

to that obtained with no use of the model at all, with a certainty-equivalent difference of 6

basis points or less and a correlation of at least 0.97. As an investor’s willingness to accept

the prospect of managerial skill increases, so does the certainty-equivalent loss if forced to

hold the portfolio of the completely skeptical investor. With σδ = 3%, for example, the loss

is between 31 and 89 basis points per month with modest confidence (σαN = 2%) in one

of the three pricing models. With no use of a pricing model, the loss is 23 basis points, as

reported in Panel D of Table 10.

Even with no belief in a pricing model and no preconceived limit on the magnitude of

likely managerial skill, that is when both σαN and σδ are infinitely large, the investor is

generally ill-advised in using a fund’s historical average return as the input for its expected

return. If the fund’s history is shorter than those of the passive assets, then the histories of

the passive assets provide additional information about the fund’s expected return. Under

the above prior beliefs, the certainty-equivalent loss of holding the portfolio constructed

using sample-averages instead of holding the portfolio constructed using that additional

information about expected returns is 187 basis points per month, or more than 22 percent

annually (Panel D of Table 10). The predictive covariance matrix obtained when σαN =∞
and σδ = ∞ is used to construct both portfolios. As prior beliefs about pricing or skill

become informative, the loss incurred by holding the portfolio based on sample averages

becomes even greater, as is apparent in Panel C of Table 11.
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3.5. Who should buy actively managed funds?

One might presume that actively managed funds should be purchased only by those investors

who admit some possibility that active fund managers possess stock-picking skill. For in-

vestors presented with our universe of 505 no-load funds, that need not be the answer. An

investor who believes completely in the CAPM and admits no possibility of managerial skill

does indeed invest only in market-index funds (Table 7). As the investor’s beliefs depart

from complete confidence in the CAPM, however, actively managed funds enter the optimal

portfolio even if the investor still adheres to a belief that managerial skill is impossible. If

one can invest directly and costlessly in the p passive assets used to define the skill measure

δA, then indeed long positions in funds arise only when positive δA’s are thought possible.

Otherwise, one simply combines the passive assets to obtain the highest Sharpe ratio. Baks,

Metrick, and Wachter (2000) essentially pose their active management question in that con-

text. If instead the p passive assets are not available for investment, as in our setup, perfect

substitutes for them need not exist in the mutual fund universe, let alone in its passively

managed subset. As a result, some actively managed funds can become attractive even to

investors who admit no chance of managerial skill.

A striking example of the above possibility occurs in the first column of Table 8. The

investor in that case believes completely in the Fama-French model and in no chance of

managerial skill. Nevertheless, the bulk of that investor’s optimal portfolio is allocated to

actively managed value funds and real-estate specialty funds: Legg Mason Total Return,

Mutual Discovery, First American Investment Real Estate Securities and DFA AEW Real

Estate Securities. Table 12 reports posterior means and “t statistics” (posterior mean divided

by posterior standard deviation) of the intercept and slopes in (4) for all funds that receive at

least a ten percent allocation in any of the porfolios in Tables 7 through 10. The selection of

the above funds has nothing to do with their having superior historical performance. In fact,

three of the four funds listed above have negative δ̂A’s. With σαN = σδ = 0, the expected

returns on these funds, gross of costs, are assumed to conform exactly to the Fama-French

model. The presence of these funds in the optimal portfolio is instead driven by their risk

characteristics. Note, for example, that all four funds have relatively large positive (and

“significant”) slopes on HML.
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3.6. Hot hands?

To the universe of 505 no-load funds, we also add a portfolio of funds with recent high returns,

motivated by much previous research indicating short-run persistence in fund performance.16

At the end of each year, starting with December 1962, we sort all existing equity funds

by their total returns over the previous twelve months (including only funds with returns

reported for those months) and form the equally weighted “hot-hand” portfolio of the top

ten percent. As Carhart (1997) observes, this portfolio has a positive sensitivity to the

momentum factor MOM, which is confirmed by the results in Table 12. The hot-hand

portfolio appears in the last row of both panels, and the posterior mean of its coefficient on

MOM is 0.19 (with a t statistic of 13.5). This portfolio does not enter any of the optimal

portfolios reported in Tables 7 through 10. The same result occurs if the hot-hand portfolio

contains only no-load funds, as constructed by Hendricks, Patel, and Zeckhauser (1993).

As Carhart (1997) points out, the hot-hand portfolio is a kind of momentum play. Even

a strong belief in momentum, which in our setting amounts to a strong belief in Carhart’s

four-factor model, does not result in an allocation to the hot-hand strategy. As we discover,

one reason for this outcome is the existence of other funds that apparently offer even stronger

momentum plays, at least in the sense that they have higher coefficients on MOM. The first

column of Table 9 displays the portfolio selected by an investor who rules out skill and has

complete confidence in the four-factor model. Note that the bulk of this portfolio is invested

in real estate funds. The regression results in Table 12 reveal that the posterior means of the

MOM coefficients for many of these funds are higher than that for the hot-hand portfolio.

Perhaps as importantly, the coefficients on SMB, HML, and MKT for these funds are also

positive and relatively large.17 The highest-Sharpe-ratio portfolio of the benchmarks in the

four-factor model contains those three factors and MOM in positive amounts. In our sample,

real estate funds offer exposures to all four factors, and that feature makes them attractive

to investors who believe in that model. When prior beliefs admit the possibility of skill,

funds enter the optimal portfolio due to their average realized returns as well as their risk

characteristics. This doesn’t help the hot-hand portfolio, since the posterior mean of its δA

is only 1 basis point.18

16See, for example, Grinblatt and Titman (1992), Hendricks, Patel, and Zeckhauser (1993), and Brown
and Goetzmann (1995)
17This is consistent with the evidence in Sanders (1997), who reports significantly positive SMB, HML,

and MKT betas for real estate investment trust indices between 1978 and 1996.
18The hot-hand porfolio has a positive alpha with respect to the Fama-French benchmarks and receives a

substantial positive allocation when the investment universe contains only those three benchmarks and the
hot-hand portfolio. See Knox (1999) for a treatment of this case in a Bayesian portfolio-choice setting.
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4. Conclusions

This study develops and applies a framework in which beliefs about pricing models and

managerial skill play roles in both performance evaluation and investment decisions. Non-

benchmark passive assets provide additional information about mutual funds’ performance

measures and expected returns, and they allow us to specify prior beliefs that distinguish

mispricing from skill. In addition, non-benchmark assets help account for common variation

in fund returns, making the investment problem feasible with a large universe of funds.

A mutual fund’s performance measure, alpha, is defined relative to a set of passive bench-

marks. The typically reported OLS estimate of alpha ignores information provided by returns

on non-benchmark assets. The non-benchmark assets help estimate alpha if they are priced

to some extent by the benchmarks or if their return histories are longer than the fund’s.

Using a sample of 2,069 U.S. equity mutual funds, we demonstrate that the returns on

non-benchmark assets contain substantial information about fund performance. For most

funds, the estimates of alpha that incorporate this information are more precise than the

standard estimates. In the case of small-company growth funds, for example, the non-

benchmark assets allow alphas defined with respect to the market benchmark to be estimated

with only one third of the variance associated with the usual OLS estimates of those alphas.

Compared to the usual estimates, the estimates of alpha that incorporate the information

in the non-benchmark assets tend to exhibit less variation across different specifications of

the benchmarks. At the extreme, if one believes that some subset of the passive assets used in

the estimation prices the other passive assets exactly, then the estimate of alpha is the same

regardless of which subset is designated as the benchmarks that define alpha. In other words,

if one believes dogmatically in a pricing model, it does not matter which model that is when

estimating alpha. For most funds, we find that including information in non-benchmark

assets is more important than specifying the degree to which the non-benchmark assets are

priced by the benchmarks. We also find that, across different beliefs about pricing, most

funds have underperformed the CAPM and Fama-French benchmarks.

An important practical motivation for mutual-fund performance evaluation is to help an

investor decide in which funds to invest. This study constructs portfolios with maximum

Sharpe ratios from a universe of 505 no-load equity mutual funds. We find that the optimal

portfolios are substantially affected by prior beliefs about pricing and skill as well as by

including the information in non-benchmark assets. A pricing model is useful to an investor
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seeking a high Sharpe ratio, even if the investor has less than complete confidence in the

model’s pricing accuracy and cannot invest directly in the benchmarks. With investment

in the benchmarks precluded, even investors who believe completely in a pricing model and

rule out the possibility of manager skill can include active funds in their portfolios. The fund

universe offers no close substitutes for the Fama-French and momentum benchmarks, and

active funds can be better substitutes for the benchmarks than passive funds. We also find

that the “hot-hand” portfolio of the previous year’s best-performing funds does not appear

in the portfolio of funds with the highest Sharpe ratio, even when momentum is believed to

be priced. An investor who holds that belief and is skeptical about managerial skill instead

invests heavily in real estate funds, which have higher exposures to the momentum factor

and the Fama-French factors.

Maximizing the Sharpe ratio is only one of many investment objectives. With a mul-

tiperiod investment objective, for example, beliefs about pricing and skill could exhibit

different effects. A multiperiod setting could also allow a meaningful consideration of the

funds that charge load fees. Such extensions offer challenges for future research.
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Appendix

This Appendix derives the posterior moments of αA used in Section 2 as well as the predictive

moments of the fund returns used in Section 3. The prior for the parameters of the regression

in (4) is independent of the prior for the parameters of the regression in (3). In addition,

both of those priors are assumed to be independent of the (diffuse) prior for EB and VBB,

the mean and covariance matrix of the normal distribution for rB,t. The independence of

the priors and the independence of uA,t and ²N,t imply that the posterior distribution for

the parameters of the regression in (3) and the predictive distribution for rN,T+1 and rB,T+1

depend only on the sample of passive asset returns, not the fund returns. We first provide the

moments of those distributions, relying on the derivations in Pástor and Stambaugh (2000),

henceforth referred to as PS. Those moments are then combined with the posterior moments

of δA and cA to obtain the the posterior moments of αA and the predictive moments of the

fund returns.

A.1. Posterior distribution for the parameters of (3)

Define Y = (rN,1, . . . , rN,T )
0, X = (rB,1, . . . , rB,T )

0, and Z = (ιT X), where ιT denotes a

T -vector of ones. Also define the (k + 1) ×m matrix G = (αN BN)
0, and let g = vec (G).

For the T observations t = 1, . . . , T , the regression model in (3) can be written as

Y = ZG+ U, vec (U) ∼ N(0,Σ⊗ IT ), (A.1)

where U = (²N,t, . . . , ²N,T )
0. Define the statistics Ĝ = (Z 0Z)−1Z 0Y , ĝ = vec (Ĝ), Σ̂ =

(Y − ZĜ)0(Y − ZĜ)/T , ÊB = X 0ιT/T , and V̂BB = (X − ιT Ê
0
B)
0(X − ιT Ê

0
B)/T . Let θP

denote the parameters of the joint distribution of the passive asset returns (G, Σ, EB, and

VBB), and define the T × p sample matrix of passive returns, RP = (X Y ). The likelihood

function for the passive returns can be factored as

p(RP |θP ) = p(Y |θP , X) p(X|θP ), (A.2)

where

p(Y |θP , X) ∝ |Σ|−T
2 exp

½
−1
2
tr (Y − ZG)0(Y − ZG)Σ−1

¾
(A.3)

p(X|θP ) ∝ |VBB|−T2 exp
½
−1
2
tr (X − ιTE

0
B)
0(X − ιTE

0
B)V

−1
BB

¾
. (A.4)

The joint prior distribution of all passive-return parameters is

p(θP ) = p(αN |Σ) p(Σ) p(BN) p(EB) p(VBB), (A.5)
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where

p(αN |Σ) ∝ |Σ|− 1
2 exp

(
−1
2
α0N(

σ2αN
s2
Σ)−1αN

)
(A.6)

p(Σ) ∝ |Σ|− ν+m+1
2 exp

½
−1
2
trHΣ−1

¾
(A.7)

p(BN ) ∝ 1 (A.8)

p(EB) ∝ 1 (A.9)

p(VBB) ∝ |VBB|−k+1
2 . (A.10)

The priors of BN , EB, and VBB are diffuse. The prior of Σ is inverted Wishart with a small

number of degrees of freedom, so that it is essentially noninformative. The prior on αN

given Σ is normal and centered at the pricing restriction. Let D denote a (k + 1)× (k + 1)
matrix whose (1, 1) element is s2

σ2αN
and all other elements are zero. Also let F = D + Z 0Z

and Q = Z 0(IT − ZF−1Z 0)Z. Applying the analysis in PS, the likelihood and the prior are
combined to obtain the following moments of the posterior distribution:

g̃ = E(g|RP ) = (Im ⊗ F−1Z 0Z)ĝ (A.11)

Σ̃ = E(Σ|RP ) = 1

T + ν −m− k − 1(H + T Σ̂+ Ĝ
0QĜ) (A.12)

Var(g|RP ) = Σ̃⊗ F−1 (A.13)

ẼB = E(EB|RP ) = ÊB (A.14)

ṼBB = E(VBB|RP ) = T

T − k − 2 V̂BB (A.15)

Var(EB|RP ) =
1

T − k − 2 V̂BB. (A.16)

Posterior means are denoted using tildes for the remainder of the Appendix.

A.2. Predictive moments of the passive returns

These predictive moments are derived in PS. Define rP,T+1 = (r
0
N,T+1 r

0
B,T+1)

0. Its predictive

mean is

E∗P = E(rP,T+1|RP ) =
Ã
α̃N + B̃NẼB

ẼB

!
, (A.17)

where α̃N and B̃N are obtained from Eq. (A.11) using g̃ = vec ((α̃N B̃N)
0).

Partition the predictive covariance matrix as

V ∗P = Var(rP,T+1|RP ) =
"
V ∗NN V ∗NB
V ∗BN V ∗BB

#
. (A.18)
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Denote the i-th row of BN as b
0
i, the i-th column of G as gi, and the (i, j) element of Σ as

σi,j . The first submatrix, V
∗
NN , can be represented in terms of its (i, j) element:

(V ∗NN)(i,j) = b̃
0
iV
∗
BB b̃j + tr [V

∗
BBCov(bi, b

0
j|RP )] + σ̃i,j + [1 Ẽ 0B]Cov(gi, g

0
j|RP )[1 Ẽ0B]

0. (A.19)

Note that Cov(bi, b
0
j|RP ) and Cov(gi, g0j|RP ) are submatrices of Var(g|RP ) in (A.13). The

remaining submatrices in (A.18) can be shown to be equal to

V ∗BB = ṼBB +Var(EB|RP )
V ∗NB = V

∗0
BN = B̃N ṼBB + B̃NVar(EB|RP ).

A.3. Posterior distribution for the parameters of (4)

Let rA (S×1) contain S observations of rA,t, the return on a given fund A. We assume S ≤ T
and that the (consecutive) months in which rA,t is observed form a subset of those in which

rN,t and rB,t are observed. The assumption that the disturbances in (4) are independent

across funds, coupled with the assumption that the priors of that regression’s parameters

are independent across funds, implies that the posterior distribution for a given fund’s pa-

rameters of the regression in (4) does not depend on the observed returns of the other funds

(conditional on the passive return sample RP ). Let θA denote the set of parameters δA, cA,

and σ2u. Our various modeling assumptions give

p(θA, θP |RP , rA) ∝ p(θA, θP )p(RP , rA|θA, θP )
= p(θA)p(θP )p(rA|RP , θA, θP )p(RP |θA, θP )
= p(θA)p(rA|RP , θA)p(θP )p(RP |θP )
∝ p(θA|RP , rA)p(θP |RP ). (A.20)

The second factor in (A.20) is the posterior derived previously. The first factor, the posterior

for θA, combines the priors given in (14) through (16) with the likelihood,

p(rA|RP , θA) ∝ 1

σTu
exp

(
− 1

2σ2u
(rA − ZAφA)0(rA − ZAφA)

)
, (A.21)

where RP,A denotes the S rows of RP corresponding to the months in which rA,t is observed,

ZA = (ιS RP,A), and φA = (δA c
0
A)
0. The prior densities corresponding to (14) through (16)

are given by

p(σu) ∝ 1

σν0+1u

exp

(
−ν0s

2
0

2σ2u

)
(A.22)
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and

p(φA|σu) ∝ 1

σp+1u

exp

(
− 1

2σ2u
(φA − φ0)

0Λ0(φA − φ0)

)
, (A.23)

where φ0 = (δ0 c
0
0)
0 and

Λ0 =

Ã
ν0s

2
0

ν0 − 2
!"

σ2δ 0
0 Φc

#−1
. (A.24)

The product of (A.21), (A.22), and (A.23) gives, after simplifying,19

p(φA, σu|RP , rA) ∝ 1

σp+1u

exp

(
− 1

2σ2u
(φA − φ̃A)

0(Λ0 + Z 0AZA)(φA − φ̃A)

)

× 1

σT+ν0+1u

exp

(
− hA
2σ2u

)
, (A.25)

where

φ̃A = (Λ0 + Z
0
AZA)

−1(Λ0φ0 + Z 0ArA) (A.26)

hA = ν0s
2
0 + r

0
ArA + φ00Λ0φ0 − φ̃0A(Λ0 + Z

0
AZA)φ̃A. (A.27)

It follows from (A.25) that

φA|RP , rA,σu ∼ N(φ̃A, σ
2
u(Λ0 + Z

0
AZA)

−1) (A.28)

σ2u|RP , rA ∼ hA
χ2T+ν0

, (A.29)

and hence

σ̃2u = E(σ
2
u|RP , rA) =

hA
T + ν0 − 2 (A.30)

Var(φA|RP , rA) = σ̃2u(Λ0 + Z
0
AZA)

−1, (A.31)

where the last equation follows from variance decomposition.

A.4. Posterior moments of a fund’s alpha

Let α̃N and VαN denote the posterior mean and covariance matrix of αN , given by the ap-

propriate submatrices of the moments in (A.11) and (A.13), and let VφA denote the posterior

covariance matrix of φA given in (A.31). From the previous discussion recall that the pos-

teriors of φA and αN are independent. Thus, from equation (5), the posterior mean of the

fund’s alpha is given by

α̃A = δ̃A + c̃
0
AN α̃N , (A.32)

19See Zellner (1971, pp. 75-76) for a similar derivation.
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where δ̃A and c̃AN are subvectors of the posterior mean of φA given in (A.26).

To obtain the posterior variance of αA, rewrite (5) as

αA = φ0Ad, (A.33)

where d = (1 α0N 0)
0, and the posterior mean and covariance matrix of d are given by

d̃ =

 1
α̃N
0

 , Vd =

 0 0 0
0 VαN 0
0 0 0

 . (A.34)

Let D denote the data, RP and rA, and note that by the variance-decomposition rule,

Var(αA|D) = E[Var(φ0Ad|D, d)|D] + Var[E(φ0Ad|D, d)|D]. (A.35)

Using the independence of φA and d, the first term in (A.35) can expressed as

E[Var(φ0Ad|D, d)|D] = E[d0VφAd|D]
= E[tr (VφAdd

0)|D]
= tr [VφAE(dd

0|D)]
= tr (VφAVd) + d̃

0VφA d̃, (A.36)

and the second term can be expressed as

Var[E(φ0Ad|D, d)|D] = Var[φ̃Ad|D]
= φ̃0AVdφ̃A. (A.37)

A.5. Predictive moments of fund returns

The derivation of the predictive moments of fund returns closely parallels the derivation in

PS of the predictive moments of the non-benchmark returns, rN,T+1. Let R denote all of the

sample returns data on funds and passive assets through period T . Since cA and EP (the

mean of rP,t) are independent in the prior, the predictive mean of rA,T+1 is

E(rA,T+1|R) = E(δA + c0AEP |R) = δ̃A + c̃
0
AẼP . (A.38)

The predictive variance of rA,T+1 can be written as

Var(rA,T+1|R) = E(Var(rA,T+1|R,φA)|R) + Var(E(rA,T+1|R,φA)|R). (A.39)
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To evaluate both terms on the right-hand side, first note that the regression in (4) implies

rA,T+1 = δA + c
0
ArP,T+1 + uT+1 (A.40)

= [1 r0P,T+1]φA + uT+1. (A.41)

To compute the first term on the right-hand side of (A.39), observe using (A.40) that

Var(rA,T+1|R,φA) = c0AV ∗P cA + σ̃2u, (A.42)

and taking expectations gives

E(Var(rA,T+1|R,φA)|R) = c̃0AV ∗P c̃A + tr [V ∗PCov(cA, c0A|R)] + σ̃2u. (A.43)

To compute the second term on the right-hand side of (A.39), observe using (A.41) that

E(rA,T+1|R,φA) = [1 Ẽ0P ]φA, (A.44)

so

Var(E(rA,T+1|R,φA)|R) = [1 Ẽ0P ]Cov(φA,φ0A|R)[1 Ẽ0P ]0. (A.45)

Note that the posterior covariance matrix Cov(φA,φ
0
A|R) and its submatrix Cov(cA, c0A|R)

are given in (A.31).

Computing the predictive covariance of rA,T+1 with the return on another fund J , rJ,T+1,

is simplified by the independence across funds of (i) the disturbances in (A.40) and (ii) the

posteriors for the coefficient vectors φA and φJ . Applying the same approach as used above

for the predictive variance gives

Cov(rA,T+1, rJ,T+1|R) = c̃0AV ∗P c̃J . (A.46)

Computing the predictive covariance of rA,T+1 with the vector of returns on the passive

assets, rP,T+1, is simplified by the independence of the posterior for φA from that of EP and

VP . Let θ denote the union of θP and θA. Using the law of iterated expectations and the

variance decomposition rule gives

Cov(rA,T+1, rP,T+1|R) = E(Cov(rA,T+1, rP,T+1|R, θ)|R) + Cov(E(rA,T+1|R, θ),E(rP,T+1|R, θ)|R)
= E(VP cA|R) + Cov(δA + c0AEP , EP |R)
= ṼP c̃A +Cov(EP , E

0
P |R)c̃A

= V ∗P c̃A. (A.47)
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Table 1

Number of Equity Mutual Funds Classified by
History Length and Investment Objective

The sample contains domestic equity mutual funds in the CRSP database with continuous return histories
longer than one year. Multiple share classes for the same fund are excluded. Funds are assigned to one of
seven broad investment objectives using information that the CRSP database provides about classifications
by Wiesenberger, ICDI, and Strategic Insight.

Length of fund’s return history (months)
Investment objective 13—23 24—35 36—59 60—119 120—239 ≥ 240 All

Small-company growth 128 60 95 109 21 0 413
Other aggressive growth 40 30 41 32 10 0 153
Growth 213 130 226 251 92 60 972
Income 36 35 38 47 14 4 174
Growth and income 154 80 119 153 36 34 576
Maximum capital gains 9 10 17 16 13 41 106
Sector funds 61 37 45 68 4 0 215

All funds 641 382 581 676 190 139 2609
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Table 2
Estimates of Alpha for Equity Mutual Funds

Each value in the table is the median across the set of designated funds, expressed in percent per annum.
Fund performance, denoted by αA, is defined as the intercept in the regression of the fund’s excess return,
rA,t, on either the market benchmark index, MKTt, (Panel A) or that benchmark index plus the size and
value benchmark indexes, SMBt and HMLt (Panel B). The OLS estimate of αA, denoted by α̂A, is based on
the fund’s available history and the corresponding history of the benchmarks. The posterior mean of αA,
denoted by α̃A, is based on the fund’s available history as well as the returns from January 1963 through
December 1998 on the benchmarks and additional non-benchmark indexes. The quantity σαN , expressed
in percent per annum, denotes the prior standard deviation of the intercept αN in a regression of a non-
benchmark return on the benchmark indexes. The prior for αA is diffuse.

History length or α̃A for σαN of |α̂A − α̃A| for σαN of
investment objective α̂A 0 2% ∞ 0 2% ∞

A. rA,t = αA + βAMKTt + ²A,t
13—23 months -4.81 -2.07 -1.87 -1.34 3.27 3.29 3.33
24—35 months -2.85 -1.64 -1.53 -1.17 2.53 2.47 2.72
36—59 months -2.87 -1.61 -1.35 -1.13 2.44 2.24 2.10
60—119 months -1.49 -0.97 -0.91 -0.56 1.35 1.29 1.42
120—239 months -0.84 -0.09 -0.08 0.03 1.29 1.04 0.96
240 months and greater -0.53 -0.17 -0.26 -0.14 0.70 0.53 0.17

Small-company growth -8.45 -1.59 -0.97 -0.05 7.20 7.66 8.30
Other aggressive growth -5.41 -0.97 -0.74 -1.06 4.80 4.65 4.58
Growth -2.17 -0.97 -1.01 -1.17 1.64 1.48 1.52
Income -0.39 -1.84 -1.40 -0.45 1.27 1.07 0.83
Growth and income -0.51 -0.97 -0.87 -0.59 0.93 0.89 1.02
Maximum capital gains -2.29 -1.47 -1.53 -1.95 2.16 1.75 1.34
Sector funds -1.06 -3.96 -2.70 0.09 4.95 3.48 2.95

All funds -2.13 -1.25 -1.07 -0.74 2.05 1.87 1.90

B. rA,t = αA + bA,1MKTt + bA,2SMBt + bA,3HMLt + ηA,t
13—23 months -1.68 -2.07 -1.96 -1.43 1.66 1.55 1.59
24—35 months -1.63 -1.64 -1.52 -1.38 1.40 1.25 1.01
36—59 months -1.29 -1.61 -1.46 -1.14 1.05 0.95 0.78
60—119 months -0.92 -0.97 -0.94 -0.66 0.76 0.57 0.39
120—239 months 0.07 -0.09 -0.06 0.08 0.64 0.42 0.24
240 months and greater 0.12 -0.17 -0.13 0.17 0.76 0.50 0.05

Small-company growth -0.41 -1.59 -1.16 -0.08 1.45 1.15 0.92
Other aggressive growth -0.37 -0.97 -0.45 0.08 1.76 1.34 0.96
Growth -0.88 -0.97 -0.86 -0.72 0.90 0.78 0.59
Income -2.03 -1.84 -1.90 -1.74 0.74 0.61 0.47
Growth and income -1.19 -0.97 -1.00 -1.11 0.79 0.68 0.44
Maximum capital gains -0.28 -1.47 -1.32 -0.34 1.40 1.03 0.45
Sector funds -1.84 -3.96 -3.51 -2.48 3.18 2.44 1.35

All funds -1.07 -1.25 -1.14 -0.86 1.09 0.91 0.65
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Table 3
Average Equity-Fund Alphas

The table reports the posterior mean of ᾱA, the average αA across the set of designated funds, expressed in
percent per annum. Also reported is the posterior probability (expressed in percent) that ᾱA is negative.
Fund performance, denoted by αA, is defined as the intercept in the regression of the fund’s excess return,
rA,t, on either the market benchmark index, MKTt, (Panel A) or that benchmark index plus the size and
value benchmark indexes, SMBt and HMLt (Panel B). The OLS estimate of αA, denoted by α̂A, is based on
the fund’s available history and the corresponding history of the benchmarks. The posterior mean of αA,
denoted by α̃A, is based on the fund’s available history as well as the returns from January 1963 through
December 1998 on the benchmarks and additional non-benchmark indexes. The quantity σαN , expressed
in percent per annum, denotes the prior standard deviation of the intercept αN in a regression of a non-
benchmark return on the benchmark indexes. The prior for αA is diffuse.

Posterior mean of ᾱA Prob( ᾱA < 0)
History length or α̃A for σαN of α̃A for σαN of
investment objective α̂A 0 ∞ α̂A 0 ∞

A. rA,t = αA + βAMKTt + ²A,t
13—23 months -6.31 -1.67 -1.19 100 100 98
24—35 months -4.77 -1.67 -1.29 100 100 98
36—59 months -4.12 -1.78 -1.39 100 100 100
60—119 months -2.13 -0.99 -0.66 100 100 94
120—239 months -1.07 -0.08 0.11 100 72 42
240 months and greater -0.50 -0.27 -0.26 100 99 70

Small-company growth -9.29 -1.28 0.01 100 100 50
Other aggressive growth -6.79 -0.99 -1.39 100 98 89
Growth -3.06 -1.00 -1.27 100 100 100
Income -0.84 -1.56 -0.36 100 100 80
Growth and income -1.02 -1.25 -1.01 100 100 100
Maximum capital gains -4.74 -2.85 -3.01 100 100 100
Sector funds -4.14 -2.45 -0.54 100 100 78

All funds -3.83 -1.33 -0.97 100 100 98

B. rA,t = αA + bA,1MKTt + bA,2SMBt + bA,3HMLt + ηA,t
13—23 months -1.54 -1.67 -1.06 100 100 100
24—35 months -1.22 -1.67 -1.02 100 100 100
36—59 months -1.32 -1.78 -1.10 100 100 100
60—119 months -0.66 -0.99 -0.44 100 100 99
120—239 months 0.38 -0.08 0.46 0 72 1
240 months and greater 0.15 -0.27 0.21 10 99 17

Small-company growth -0.00 -1.28 0.50 50 100 9
Other aggressive growth 0.27 -0.99 0.29 30 98 30
Growth -0.78 -1.00 -0.61 100 100 99
Income -2.04 -1.56 -1.64 100 100 100
Growth and income -1.76 -1.25 -1.43 100 100 100
Maximum capital gains -1.67 -2.85 -1.64 100 100 100
Sector funds -1.43 -2.45 -1.25 99 100 99

All funds -0.99 -1.33 -0.72 100 100 100
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Table 4
Relative Precision of Estimates of Alpha for Equity Mutual Funds

The table reports statistics for the ratio of variances, var(α̃A)/var(α̂A). Fund performance, denoted by αA,
is defined as the intercept in the regression of the fund’s excess return, rA,t, on either the market benchmark
index, MKTt, (Panel A) or that benchmark index plus the size and value benchmark indexes, SMBt and
HMLt (Panel B). The OLS estimate of αA, denoted by α̂A, is based on the fund’s available history and the
corresponding history of the benchmarks. The posterior mean of αA, denoted by α̃A, is based on the fund’s
available history as well as the returns from January 1963 through December 1998 on the benchmarks and
additional non-benchmark indexes. The quantity σαN , expressed in percent per annum, denotes the prior
standard deviation of the intercept αN in a regression of a non-benchmark return on the benchmark indexes.
The prior for αA is diffuse.

History length or σαN = 0 σαN = 2% σαN =∞
investment objective median % < 1 median % < 1 median % < 1

A. rA,t = αA + βAMKTt + ²A,t
13—23 months 0.62 83 0.62 83 0.63 82
24—35 months 0.63 88 0.62 88 0.63 89
36—59 months 0.65 90 0.65 92 0.68 91
60—119 months 0.70 93 0.69 97 0.73 96
120—239 months 0.76 93 0.77 97 0.84 98
240 months and greater 0.84 88 0.87 92 0.98 74

Small-company growth 0.33 100 0.34 100 0.39 100
Other aggressive growth 0.54 90 0.55 90 0.59 90
Growth 0.76 87 0.76 89 0.80 87
Income 0.75 84 0.75 89 0.77 89
Growth and income 0.77 83 0.77 85 0.80 85
Maximum capital gains 0.70 92 0.73 95 0.85 88
Sector funds 0.62 96 0.63 96 0.66 95

All funds 0.68 89 0.68 91 0.72 89

B. rA,t = αA + bA,1MKTt + bA,2SMBt + bA,3HMLt + ηA,t
13—23 months 0.70 81 0.69 81 0.69 81
24—35 months 0.79 76 0.78 79 0.78 77
36—59 months 0.85 80 0.84 83 0.83 82
60—119 months 0.89 80 0.88 84 0.89 83
120—239 months 0.95 75 0.93 88 0.94 91
240 months and greater 1.00 53 0.98 71 0.99 83

Small-company growth 0.80 84 0.79 86 0.80 86
Other aggressive growth 0.81 86 0.79 88 0.78 88
Growth 0.88 78 0.86 82 0.88 82
Income 0.88 79 0.87 83 0.86 82
Growth and income 0.91 67 0.89 72 0.90 73
Maximum capital gains 0.96 66 0.94 75 0.96 83
Sector funds 0.74 95 0.74 95 0.76 95

All funds 0.86 78 0.84 82 0.85 82
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Table 5

Comparison of Estimated CAPM and Fama-French Alphas under
Alternative Roles for Non-Benchmark Assets

Each entry in Panels A and B is the median across funds of the absolute difference between posterior means
of a fund’s CAPM alpha and its Fama-French alpha, in percent per annum, under alternative prior beliefs
about the degree to which each model prices the non-benchmark assets. Each entry in Panel C is the median
absolute difference of the OLS alpha estimates. Fund performance, denoted by αA, is defined as the intercept
in the regression of the fund’s excess return, rA,t, on either the market benchmark index, MKTt, (CAPM)
or that benchmark index plus the size and value benchmark indexes, SMBt and HMLt (Fama-French). The
OLS estimate of αA, denoted by α̂A, is based on the fund’s available history and the corresponding history of
the benchmarks. The posterior mean of αA, denoted by α̃A, is based on the fund’s available history as well
as the returns from January 1963 through December 1998 on the benchmark and additional non-benchmark
indexes. The quantity σαN denotes the prior standard deviation of the intercept αN in a regression of
a non-benchmark return on the benchmark returns, and the table compares α̃A under a given non-zero
σαN but different specifications of the set of benchmark indexes. (The posterior means of the CAPM and
Fama-French alphas are identical under σαN = 0.) The prior for αA is diffuse.

Length of fund’s return history (months)
Investment objective 13—23 24—35 36—59 60—119 120—239 ≥ 240 All

A. Mispricing uncertainty for the non-benchmark assets (σαN ) equal to 2% per annum
Small-company growth 0.58 1.01 0.74 0.67 0.70 na 0.69
Other aggressive growth 0.69 0.43 0.74 0.60 0.69 na 0.67
Growth 0.43 0.38 0.41 0.41 0.40 0.35 0.40
Income 0.48 0.38 0.47 0.49 0.57 0.41 0.47
Growth and income 0.18 0.20 0.26 0.19 0.33 0.23 0.20
Maximum capital gains 0.64 0.35 0.43 0.66 0.46 0.37 0.45
Sector funds 0.96 0.85 1.36 0.93 1.11 na 0.98

All funds 0.42 0.41 0.47 0.43 0.40 0.32 0.42

B. No reliance on the model to price the non-benchmark assets (σαN =∞)
Small-company growth 1.69 2.72 2.11 1.89 2.02 na 2.03
Other aggressive growth 2.10 1.29 2.38 1.75 2.20 na 1.89
Growth 1.25 1.11 1.18 1.13 1.13 1.02 1.14
Income 1.31 1.07 1.29 1.27 1.52 1.17 1.27
Growth and income 0.53 0.63 0.74 0.54 0.89 0.61 0.59
Maximum capital gains 2.00 1.16 1.64 2.15 1.30 1.12 1.34
Sector funds 2.43 2.41 3.40 2.37 2.91 na 2.47

All funds 1.18 1.18 1.38 1.26 1.20 0.99 1.24

C. No use of non-benchmark assets (OLS estimates)
Small-company growth 11.21 11.33 7.98 4.72 3.96 na 8.07
Other aggressive growth 8.97 6.79 6.43 4.47 3.52 na 6.35
Growth 3.60 1.97 1.91 1.28 1.33 1.13 1.81
Income 1.80 1.43 1.30 1.44 1.62 0.93 1.44
Growth and income 1.79 1.73 1.54 1.01 0.85 0.68 1.25
Maximum capital gains 5.45 5.67 3.04 3.61 2.30 1.46 2.60
Sector funds 5.08 5.08 1.51 2.90 3.60 na 3.29

All funds 3.88 2.93 2.47 1.67 1.53 1.07 2.28
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Table 6

Comparison of Estimated Alphas With and Without the Pricing-Model
Restriction Applied to the Non-benchmark Assets

Each entry in the table is the median across funds of the absolute difference between posterior means
of a fund’s alpha, in percent per annum, under alternative prior beliefs about whether the pricing-model
restriction applies to the non-benchmark assets. Fund performance, denoted by αA, is defined as the intercept
in the regression of the fund’s excess return, rA,t, on either the market benchmark index, MKTt, (Panel A) or
that benchmark index plus the size and value benchmark indexes, SMBt and HMLt (Panel B). The posterior
mean of αA, denoted by α̃A, is based on the fund’s available history as well as the returns from January
1963 through December 1998 on the benchmarks and additional non-benchmark indexes. The quantity σαN
denotes the prior standard deviation of the intercept αN in a regression of a non-benchmark return on the
benchmark indexes, and the table compares α̃A under σαN = 0 versus σαN =∞. The prior for αA is diffuse.

Length of fund’s return history (months)
Investment objective 13—23 24—35 36—59 60—119 120—239 ≥ 240 All

A. rA,t = αA + βAMKTt + ²A,t
Small-company growth 1.69 1.40 1.46 1.57 1.08 na 1.55
Other aggressive growth 0.72 0.67 0.88 0.82 0.92 na 0.77
Growth 0.78 0.75 0.85 0.84 0.91 0.83 0.83
Income 1.32 1.00 1.30 1.23 1.56 1.19 1.28
Growth and income 0.48 0.56 0.69 0.52 0.64 0.48 0.54
Maximum capital gains 0.85 0.93 1.36 1.35 1.45 0.95 1.07
Sector funds 3.31 2.94 6.22 3.61 4.78 na 4.31

All funds 0.90 0.89 1.01 1.00 0.99 0.80 0.94

B. rA,t = αA + bA,1MKTt + bA,2SMBt + bA,3HMLt + ηA,t
Small-company growth 1.58 2.05 1.39 1.62 1.76 na 1.62
Other aggressive growth 1.88 1.20 1.90 1.78 1.19 na 1.63
Growth 0.56 0.63 0.55 0.57 0.65 0.67 0.59
Income 0.33 0.40 0.51 0.41 0.84 0.67 0.40
Growth and income 0.34 0.37 0.41 0.36 0.46 0.36 0.37
Maximum capital gains 1.49 1.33 1.91 1.41 0.89 1.30 1.29
Sector funds 1.25 1.30 2.85 2.16 2.01 na 1.93

All funds 0.66 0.66 0.68 0.66 0.73 0.74 0.68
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Table 7

Portfolios with the Highest Sharpe Ratio Under Priors for CAPM
Mispricing and Skill of Fund Managers

The investment universe consists of 505 no-load equity mutual funds with at least three years of return history through
December 1998. The benchmark factors are MKT, the excess return on the value-weighted stock market, SMB, the
difference between returns on small and large stocks, HML, the difference between returns on high and low book-
to-market stocks, and MOM, the difference between returns on stocks with high and low returns over the previous
year (excluding the most recent month). The correlations and Sharpe ratios in Panels B and C are computed with
respect to the same predictive distribution used to obtain the optimal fund portfolio in the same column. The weights
in the combination of a given set of benchmarks with the highest Sharpe ratio are computed using the marginal
predictive distribution of those benchmarks under diffuse priors (which is equivalent to using sample moments of the
those benchmarks).

Mispricing uncertainty (σαN ) in percent per year: 0 0 0 0 1 1 1 1 2 2 2 2
Skill uncertainty (σδ) in percent per year: 0 1 3 ∞ 0 1 3 ∞ 0 1 3 ∞

A. Portfolio Weights (×100)
Ameristock Mutual Fund - - 22 - - - 22 - - - 20 -
BT Institutional:Equity 500 Index Fund 23 41 - - 16 23 - - - - - -
California Investment S&P 500 Index Fund 53 - - - 44 - - - 8 - - -
Cohen & Steers Realty Shares - - - - - - - - 3 5 - -
Century Shares Trust - - - - - - - - 11 - - -
DFA AEW Real Estate Securities Portfolio - - - - - - - - 18 4 - -
Elfun Trusts - - - - - 5 - - - - - -
First American Investment:Real Est Sec/Y - - - - - - - - 11 5 - -
First Funds:Growth and Income Portfolio/I - 6 - - - 5 - - - - - -
Gabelli Asset Fund - - - - - - - - - - 5 -
Galaxy Funds II:Utility Index Fund - - - - 8 - - - 32 18 - -
IDS Utilities Income Fund/Y - - - - - - - - - 2 - -
Legg Mason Eq Tr:Value Fund/Navigator - - 23 71 - - 17 67 - - 4 59
MassMutual Instl Funds:Small Cap Value Eqty/S - - - - - - - - 5 - - -
Oakmark Fund - - 1 - - - 4 - - - 8 -
Robertson Stephens Inv Tr:Information Age/A - - - 15 - - - 11 - - - 5
T. Rowe Price Dividend Growth Fund - - - - - - - - - 4 - -
T. Rowe Price Equity Income Fund - 30 - - - 59 - - - 57 - -
UAM Fds Tr:Heitman Real Estate Portfolio/Inst - - - - - - - - - 3 - -
Vanguard Index Tr:Extended Market Port/Inv 24 - - - 32 - - - 12 - - -
Vanguard PrimeCap Fund - 23 4 - - 9 - - - - - -
Weitz Series Fund:Hickory Portfolio - - - - - - 3 2 - - 6 8
Weitz Series Fund:Value Portfolio - - 51 14 - - 54 20 - 1 57 28

B. Correlation (×100) with the portfolio having the highest Sharpe ratio
among all portfolios that combine the benchmark factors shown

MKT 100 99 95 93 100 98 94 94 89 92 93 94
MKT, SMB, HML 48 49 51 34 49 56 53 37 64 68 55 43
MKT, SMB, HML, MOM 32 31 31 21 35 35 33 23 53 49 34 26

C. Sharpe ratio of the portfolio in Panel A divided by the highest Sharpe
ratio for a portfolio that combines the benchmark factors shown (×100)

MKT 96 104 152 234 96 104 153 230 107 114 156 224
MKT, SMB, HML 197 214 314 482 141 154 226 339 102 109 148 213
MKT, SMB, HML, MOM 292 318 466 716 144 157 230 346 81 86 118 169
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Table 8

Portfolios with the Highest Sharpe Ratio Under Priors for Fama-French-Model
Mispricing and Skill of Fund Managers

The investment universe consists of 505 no-load equity mutual funds with at least three years of return history through
December 1998. The benchmark factors are MKT, the excess return on the value-weighted stock market, SMB, the
difference between returns on small and large stocks, HML, the difference between returns on high and low book-
to-market stocks, and MOM, the difference between returns on stocks with high and low returns over the previous
year (excluding the most recent month). The correlations and Sharpe ratios in Panels B and C are computed with
respect to the same predictive distribution used to obtain the optimal fund portfolio in the same column. The weights
in the combination of a given set of benchmarks with the highest Sharpe ratio are computed using the marginal
predictive distribution of those benchmarks under diffuse priors (which is equivalent to using sample moments of the
those benchmarks).

Mispricing uncertainty (σαN ) in percent per year: 0 0 0 0 1 1 1 1 2 2 2 2
Skill uncertainty (σδ) in percent per year: 0 1 3 ∞ 0 1 3 ∞ 0 1 3 ∞

A. Portfolio Weights (×100)
Ameristock Mutual Fund - - 10 - - - 9 - - - 6 -
CGM Realty Fund - 3 - - - 4 - - - 4 - -
Cohen & Steers Realty Shares - - - - - - - - 6 5 - -
Columbia Real Estate Equity Fund - - - - - - - - 3 3 - -
DFA AEW Real Estate Securities Portfolio 13 1 - - 17 4 - - 21 8 - -
DFA Invest Grp:US Large Cap Value Port 2 - - - - - - - - - - -
First American Investment:Real Est Sec/Y 19 13 - - 20 15 - - 21 15 - -
Galaxy Funds II:Utility Index Fund 8 5 - - 13 11 - - 22 18 - -
Legg Mason Eq Tr:Total Return Fund/Navigator 40 10 - - 34 6 - - 21 - - -
Legg Mason Eq Tr:Value Fund/Navigator - - - 44 - - - 43 - - - 41
Mutual Discovery Fund/Z 18 39 37 26 15 35 34 24 6 25 28 18
Oakmark Fund - - 2 - - - 3 - - - 4 -
T. Rowe Price Equity Income Fund - 29 7 - - 25 8 - - 17 12 -
UAM Fds Tr:Heitman Real Estate Portfolio/Inst - - - - - - - - - 3 - -
Weitz Series Fund:Hickory Portfolio - - - 1 - - - 3 - - - 6
Weitz Series Fund:Value Portfolio - - 45 29 - - 47 31 - - 50 35

B. Correlation (×100) with the portfolio having the highest Sharpe ratio
among all portfolios that combine the benchmark factors shown

MKT 88 89 89 94 87 89 89 94 83 86 90 94
MKT, SMB, HML 75 74 66 55 75 75 65 55 73 74 64 54
MKT, SMB, HML, MOM 52 47 38 32 54 50 38 32 57 55 37 32

C. Sharpe ratio of the portfolio in Panel A divided by the highest Sharpe
ratio for a portfolio that combines the benchmark factors shown (×100)

MKT 137 147 180 234 139 147 179 232 146 151 176 229
MKT, SMB, HML 66 70 86 112 66 70 85 111 70 72 84 109
MKT, SMB, HML, MOM 99 106 130 169 89 94 114 149 75 78 91 118
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Table 9

Portfolios with the Highest Sharpe Ratio Under Priors for Four-Factor-Model
Mispricing and Skill of Fund Managers

The investment universe consists of 505 no-load equity mutual funds with at least three years of return history through
December 1998. The benchmark factors are MKT, the excess return on the value-weighted stock market, SMB, the
difference between returns on small and large stocks, HML, the difference between returns on high and low book-
to-market stocks, and MOM, the difference between returns on stocks with high and low returns over the previous
year (excluding the most recent month). The correlations and Sharpe ratios in Panels B and C are computed with
respect to the same predictive distribution used to obtain the optimal fund portfolio in the same column. The weights
in the combination of a given set of benchmarks with the highest Sharpe ratio are computed using the marginal
predictive distribution of those benchmarks under diffuse priors (which is equivalent to using sample moments of the
those benchmarks).

Mispricing uncertainty (σαN ) in percent per year: 0 0 0 0 1 1 1 1 2 2 2 2
Skill uncertainty (σδ) in percent per year: 0 1 3 ∞ 0 1 3 ∞ 0 1 3 ∞

A. Portfolio Weights (×100)
Alpine US Real Estate Equity Fund/Y - 1 - - - 1 - - - 1 - -
CGM Realty Fund 1 10 6 - - 9 6 - - 8 5 -
Cohen & Steers Realty Shares 14 14 9 - 14 14 9 - 14 14 10 -
Columbia Real Estate Equity Fund 11 12 6 - 10 12 6 - 9 11 7 -
DFA AEW Real Estate Securities Portfolio 28 19 - - 27 19 - - 26 18 - -
First American Investment:Real Est Sec/Y 20 16 4 - 19 16 5 - 18 15 5 -
Gabelli Asset Fund - - 8 - - - 6 - - - 1 -
Galaxy Funds II:Utility Index Fund 14 11 - - 17 13 - - 21 18 - -
Legg Mason Eq Tr:Value Fund/Navigator - - - 48 - - - 46 - - - 44
Lindner/Ryback Small Cap Fund/Investor - - - 2 - - - 2 - - - 1
Morgan Stanley Dean Witter Ist:US Real Est/A - - 2 - - - 2 - - - 3 -
Mutual Discovery Fund/Z - - 4 7 - - 3 6 - - 2 5
T. Rowe Price Dividend Growth Fund - - 14 - - - 15 - - - 16 -
UAM Fds Tr:Heitman Real Estate Portfolio/Inst 13 16 9 - 12 16 9 - 11 15 9 -
Weitz Series Fund:Hickory Portfolio - - - 10 - - - 11 - - 1 12
Weitz Series Fund:Value Portfolio - - 38 34 - - 39 35 - - 40 37

B. Correlation (×100) with the portfolio having the highest sample Sharpe
ratio among all portfolios that combine the benchmark factors shown

MKT 75 75 89 94 75 75 89 94 75 75 89 94
MKT, SMB, HML 67 68 66 51 67 68 65 51 67 68 65 51
MKT, SMB, HML, MOM 61 62 50 30 61 62 50 30 61 62 50 30

C. Sharpe ratio of the portfolio in Panel A divided by the highest Sharpe
ratio for a portfolio that combines the benchmark factors shown (×100)

MKT 175 178 177 222 176 179 178 222 179 181 179 221
MKT, SMB, HML 84 85 85 106 84 85 85 106 85 86 86 106
MKT, SMB, HML, MOM 54 55 55 69 54 55 55 69 55 56 55 68
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Table 10

Portfolios with the Highest Sharpe Ratio Under Priors for Skill
of Fund Managers and No Use of a Pricing Model (σαN =∞)

The investment universe consists of 505 no-load equity mutual funds with at least three years of return history
through December 1998. The benchmark factors are MKT, the excess return on the value-weighted stock market,
SMB, the difference between returns on small and large stocks, HML, the difference between returns on high and
low book-to-market stocks, and MOM, the difference between returns on stocks with high and low returns over the
previous year (excluding the most recent month). The correlations, Sharpe ratios, and certainty-equivalent differences
in Panels B through E are computed with respect to the same predictive distribution used to obtain the optimal fund
portfolio in the same column. The weights in the combination of a given set of benchmarks with the highest Sharpe
ratio are computed using the marginal predictive distribution of those benchmarks under diffuse priors (which is
equivalent to using sample moments of the those benchmarks). The certainty-equivalent difference is computed with
relative risk aversion equal to 2.75.

Skill uncertainty (σδ) in percent per year: 0 1 2 3 ∞
A. Portfolio Weights (×100)

CGM Realty Fund - 2 2 1 -
Cohen & Steers Realty Shares 13 14 13 11 -
Cappiello-Rushmore Trust:Utility Income Fund - 1 - - -
Columbia Real Estate Equity Fund 7 9 9 7 -
DFA AEW Real Estate Securities Portfolio 20 14 2 - -
First American Investment:Real Est Sec/Y 14 12 11 6 -
Galaxy Funds II:Utility Index Fund 37 32 21 8 -
IDS Utilities Income Fund/Y - 5 5 - -
Legg Mason Eq Tr:Value Fund/Navigator - - - - 32
Morgan Stanley Dean Witter Ist:US Real Est/A - - 2 5 3
Oakmark Fund - - - - 2
T. Rowe Price Dividend Growth Fund - - - 6 -
UAM Fds Tr:Heitman Real Estate Portfolio/Inst 9 12 11 8 -
Weitz Partners Value Fund - - - - 2
Weitz Series Fund:Hickory Portfolio - - - 6 18
Weitz Series Fund:Value Portfolio - - 24 42 43

B. Correlation (×100) with the portfolio having the highest Sharpe ratio
among all portfolios that combine the benchmark factors shown

MKT 74 76 82 87 94
MKT, SMB, HML 66 66 66 64 51
MKT, SMB, HML, MOM 59 60 57 50 31

C. Sharpe ratio of the portfolio in Panel A divided by the highest Sharpe
ratio for a portfolio that combines the benchmark factors shown (×100)

MKT 190 191 184 185 221
MKT, SMB, HML 91 92 88 89 106
MKT, SMB, HML, MOM 59 59 57 57 69

D. Comparison to the portfolio that is optimal under σδ = 0
Certainty-equivalent difference (basis pts. per mo.) 0 1 6 23 133
Correlation (×100) 100 100 97 89 71

E. Comparison to the portfolio that is optimal
when expected returns equal sample means

Certainty-equivalent difference (basis pts. per mo.) 477 440 367 310 187
Correlation (×100) 68 69 75 80 91
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Table 11

Comparisons of Portfolios of No-Load Funds Formed Under Various
Prior Beliefs About Manager Skill and Pricing Models

All portfolios being compared are formed from an investment universe of 505 no-load equity mutual funds with at
least three years of return history through December 1998. The pricing models considered are the Capital Asset
Pricing Model of Sharpe (1964) and Lintner (1965), the three-factor Fama-French (1993) model, and the four-factor
model of Carhart (1997), which adds a momentum factor to the Fama-French model. All of the reported correlations
and certainty-equivalent differences are computed using the predictive distribution formed under the prior mispricing
uncertainty (σαN ) and skill uncertainty (σδ) in the column heading. The certainty-equivalent difference is computed
with relative risk aversion equal to 2.75.

Mispricing uncertainty (σαN ) in percent per year: 0 0 0 0 1 1 1 1 2 2 2 2
Skill uncertainty (σδ) in percent per year: 0 1 3 ∞ 0 1 3 ∞ 0 1 3 ∞

A. Comparison of the portfolios formed with the same σαN and σδ under
different pricing models

Certainty-equivalent difference (basis points per month)
CAPM versus Fama-French 26 25 19 28 23 19 14 21 9 8 8 10
CAPM versus four-factor 59 61 34 18 50 51 28 13 24 27 19 5
Fama-French versus four-factor 24 29 19 3 19 23 17 2 10 13 13 1

Correlation (×100)
CAPM versus Fama-French 87 89 93 94 87 91 95 96 97 96 97 98
CAPM versus four-factor 73 71 91 96 76 75 92 97 94 89 93 99
Fama-French versus four-factor 89 84 94 99 92 88 94 99 97 94 94 100

B. Comparison of the optimal portfolio to the portfolio that is optimal under
σαN =∞ and σδ = 0

Certainty-equivalent difference (basis points per month)
CAPM 71 74 138 299 53 57 121 275 26 29 89 232
Fama-French 28 35 94 227 22 27 85 217 11 15 67 196
Four-factor 4 6 35 153 3 5 34 151 2 3 31 147

Correlation (×100)
CAPM 73 71 70 60 77 74 71 62 95 90 73 65
Fama-French 87 82 73 69 91 86 73 69 96 93 73 70
Four-factor 98 97 87 69 98 97 87 69 99 98 88 69

C. Comparison of the optimal portfolio to the portfolio that is optimal when
expected returns equal sample means

Certainty-equivalent difference (basis points per month)
CAPM 393 356 259 172 395 358 262 171 404 367 270 171
Fama-French 414 380 281 171 417 383 282 172 426 390 285 174
Four-factor 465 428 302 185 466 429 303 185 468 431 305 185

Correlation (×100)
CAPM 95 95 94 94 94 94 93 95 83 87 89 95
Fama-French 81 82 84 93 80 82 84 93 77 79 84 93
Four-factor 67 67 82 94 67 68 82 94 68 68 81 93

48



Table 12

Coefficients in Regressions of Fund Returns on the Passive Asset Returns

The table reports posterior means and “t statistics” (posterior mean divided by posterior standard) of the intercept (δA) and slope
coefficients in a regression of the fund’s return on the returns of the eight passive assets. The passive assets are CMS, a spread between
stocks with high and low HML betas but with both legs matched in terms of market capitalization (size) and book-to-market ratios,
IP1—IP3, three portfolios formed by applying principal-component analysis to a set of 20 industry portfolios, MOM, the difference between
returns on stocks with high and low returns over the previous year (excluding the most recent month), SMB, the difference between
returns on small and large stocks, HML, the difference between returns on high and low book-to-market stocks, and MKT, the excess
return on the value-weighted stock market.

δ CMS IP1 IP2 IP3 MOM SMB HML MKT

A. Posterior Mean (×100)
Ameristock Mutual Fund 0.39 0 -0 -7 6 -6 -34 8 90
BT Institutional:Equity 500 Index Fund 0.09 -1 0 1 1 -2 -25 -2 96
CGM Realty Fund -0.14 4 -14 -21 3 19 58 63 109
California Investment S&P 500 Index Fund 0.07 -1 0 1 1 -2 -24 -2 96
Century Shares Trust -0.45 -10 2 -28 6 9 8 43 132
Cohen & Steers Realty Shares -0.22 -13 -9 -41 17 28 69 53 102
Columbia Real Estate Equity Fund -0.26 16 -10 -22 8 22 46 61 94
DFA AEW Real Estate Securities Portfolio -0.59 7 -9 -24 9 23 57 64 99
First American Investment:Real Est Sec/Y -0.29 21 -12 -25 5 16 47 71 106
Galaxy Funds II:Utility Index Fund -0.57 38 -9 -48 -9 13 13 63 140
Legg Mason Eq Tr:Total Return Fund/Navigator -0.16 11 1 3 8 -6 10 67 91
Legg Mason Eq Tr:Value Fund/Navigator 0.84 -11 4 23 -2 -5 -24 -14 82
Mutual Discovery Fund/Z 0.34 -18 6 7 2 -10 39 57 64
Robertson Stephens Inv Tr:Information Age/A 1.13 55 -6 48 -21 8 32 -133 75
T. Rowe Price Dividend Growth Fund 0.21 7 -1 -1 3 4 -3 20 78
T. Rowe Price Equity Income Fund 0.16 17 1 3 3 -6 0 36 70
UAM Fds Tr:Heitman Real Estate Portfolio/Inst -0.32 -17 -10 -40 15 31 70 52 107
Vanguard Index Tr:Extended Market Port/Inv -0.08 -2 -1 2 -3 6 54 -3 103
Vanguard PrimeCap Fund 0.44 -13 5 30 -10 -3 9 -32 68
Weitz Series Fund:Hickory Portfolio 0.56 -11 7 -19 -8 0 61 18 108
Weitz Series Fund:Value Portfolio 0.41 -0 2 -7 -9 -4 19 18 72

Hot-Hand Portfolio 0.01 -7 0 9 -4 19 48 -11 89

B. “t-statistic” (posterior mean divided by posterior standard deviation)
Ameristock Mutual Fund 2.0 0.0 -0.1 -1.2 1.8 -1.6 -5.5 0.8 11.2
BT Institutional:Equity 500 Index Fund 1.9 -0.3 0.5 0.6 1.2 -1.5 -12.0 -0.9 38.9
CGM Realty Fund -0.7 0.2 -2.9 -1.2 0.3 2.3 4.0 2.9 4.8
California Investment S&P 500 Index Fund 1.4 -0.5 0.5 0.6 0.9 -1.7 -11.6 -0.6 38.1
Century Shares Trust -1.6 -0.7 0.7 -3.1 1.0 1.7 0.9 3.6 10.7
Cohen & Steers Realty Shares -0.9 -0.6 -2.2 -2.7 2.1 3.7 5.2 2.8 5.5
Columbia Real Estate Equity Fund -0.8 0.7 -2.3 -1.3 1.0 2.8 3.4 3.0 4.5
DFA AEW Real Estate Securities Portfolio -2.1 0.4 -2.7 -2.0 1.3 3.7 5.3 4.1 6.5
First American Investment:Real Est Sec/Y -1.2 1.0 -3.3 -1.7 0.6 2.5 4.2 4.0 5.9
Galaxy Funds II:Utility Index Fund -2.2 2.6 -3.2 -4.8 -1.7 2.7 1.5 5.0 11.3
Legg Mason Eq Tr:Total Return Fund/Navigator -0.2 1.0 0.6 0.4 1.8 -1.2 1.2 5.8 9.0
Legg Mason Eq Tr:Value Fund/Navigator 2.8 -0.8 1.5 2.5 -0.3 -0.7 -2.4 -1.1 6.6
Mutual Discovery Fund/Z 1.4 -1.8 3.1 1.0 0.5 -1.9 5.2 5.7 7.0
Robertson Stephens Inv Tr:Information Age/A 1.6 1.4 -0.9 1.6 -1.5 0.6 1.5 -3.9 2.1
T. Rowe Price Dividend Growth Fund 2.0 1.4 -1.6 -0.4 1.5 1.4 -0.7 3.9 17.0
T. Rowe Price Equity Income Fund 2.1 3.7 1.9 1.3 1.7 -2.9 0.1 9.0 18.5
UAM Fds Tr:Heitman Real Estate Portfolio/Inst -1.1 -0.8 -2.5 -2.6 1.8 4.0 5.3 2.8 5.8
Vanguard Index Tr:Extended Market Port/Inv -0.8 -0.5 -1.5 0.9 -2.6 3.3 21.4 -0.9 33.4
Vanguard PrimeCap Fund 2.8 -1.5 3.6 6.8 -3.4 -0.8 1.6 -4.7 10.3
Weitz Series Fund:Hickory Portfolio 1.4 -0.5 1.9 -1.4 -1.0 0.0 3.9 0.9 5.9
Weitz Series Fund:Value Portfolio 2.4 -0.0 1.3 -1.3 -2.6 -1.0 3.0 2.3 9.6

Hot-Hand Portfolio 0.2 -2.2 0.4 4.6 -3.4 13.5 22.4 -4.1 30.6
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