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Stock-Return Predictability and Model Uncertainty

Abstract

We investigate the implications of uncertainty about the return-forecasting model
for the investment opportunity set. Asset allocations are computed through various
approaches that differ in their treatment of model uncertainty. The optimal portfolio
choices can differ to economically significant degrees, especially for short-horizon high
risk-tolerance investors. We decompose the variance of predicted stock returns into sev-
eral components, including model uncertainty and parameter uncertainty. The model-
uncertainty component can be significantly higher than the parameter-uncertainty com-
ponent, especially when predictive variables, such as dividend yield and book-to-market,
are at their recently observed levels, and there is substantial prior uncertainty about

whether returns are predictable.



Introduction

Portfolio decisions in the presence of forecasting variables and parameter uncertainty have
been analyzed in several recent studies. For example, Kandel and Stambaugh (1996) show
that even when the statistical evidence of predictability seems rather weak, the optimal
equity-versus-cash allocation for a single-period investor can depend strongly on the cur-
rent value of a predictive variable, such as dividend yield. Barberis (1999) analyzes the
portfolio choice of a long-horizon investor and finds that as the length of horizon increases,
strong predictability leads to a higher investment in equities. Both studies incorporate
“estimation risk,” or the investor’s uncertainty about the parameters of a given forecasting
model. However, the studies do not incorporate the investor’s uncertainty about the appro-

priate forecasting model, and thus, their results are conditioned upon a given model.

A common practice in applied work for dealing with a set of alternative models is to
select a single model from the set and then proceed to use that model for the economic de-
cision at hand. For example, Bossaerts and Hillion (1999) and Pesaran and Timmermann
(1995) use various model-selection criteria to select a set of variables that predict stock re-
turns. Selecting a single model does not account for model uncertainty, even though the use
of a model-selection criterion implicitly recognizes the presence of such uncertainty. The
selected model is essentially viewed as having a probability of unity being the “correct”
one, thereby overstating the precision of the forecast.! One might suspect that uncertainty
about the correct model for predicting asset returns could play a role in portfolio decisions,
since expected future returns are likely to differ across distinct forecasting models. These

differences result in additional uncertainty about future stock returns and, therefore, make

Leamer (1978) p. 91 argues: “Ambiguity about model selection should dilute information about quan-

tities of interest as part of the evidence is spent to specify the model.”



equities less attractive to risk-averse investors.

This study incorporates the additional dimension of model uncertainty into an empiri-
cal investigation of stock-return predictability. The Bayesian approach used here does not
identify a single “best” model. Instead, for any portfolio whose returns are to be predicted,
we consider all possible combinations of a set of M forecasting variables that are believed
to govern the evolution of expected stock returns. Each of the 2" combinations constitutes
a unique linear data-generating process having a posterior model probability. Model uncer-
tainty is incorporated via Bayesian model averaging, which uses the posterior probabilities
as weights on the individual data-generating models to obtain one overall weighted predic-
tive distribution. The latter is used to explore the potential impact of model uncertainty

on the investment opportunity set.

Departing from the traditional focus on a single investable risky asset, we consider buy-
and-hold, long-horizon investors who incorporate estimation risk (parameter uncertainty)
in allocating funds among size-sorted portfolios and the risk-free Treasury bill.2 We decom-
pose the variance of predicted cumulative returns on these portfolios over the investment
horizon into three components: the cross-model uncertainty; the within-model parameter
uncertainty; and the uncertainty about future returns computed as though the forecasting

model and the model-specific parameters were known.

We show that if investors display substantial prior uncertainty about whether stock re-
turns are predictable and consider the events of predictability versus no predictability as

equally likely ex ante, then the model-uncertainty component can be significantly higher

2To the best of our knowledge, we are the first to analyze portfolio decisions across multiple risky assets

in the presence of both estimation risk and predictive variables.



than the parameter-uncertainty component, and the sum of these two components can ac-
count for a significant portion of the overall predictive variance. This finding is especially
prominent when predictive variables that are perceived to have been indicators of funda-
mental values — such as book-to-market, dividend yield, and earnings yield — are at their
recently observed level. To elaborate, in recent years, equity markets have been overwhelm-
ingly bullish. As a result, the current values of book-to-market, dividend yield, among other
variables, which are inversely related to a stock-price index level, have been substantially

distant from their sample means, thereby giving rise to the model-uncertainty component.

Based on the weighted model, which incorporates model uncertainty, the overall invest-
ment in equities at the end of 1998 rises with the investment horizon. This effect occurs
as a result of both an increase in conditional expected returns towards long-run means and
a reduction in the standard deviation due to predictability in stock returns. The increase
in expected returns in conjuction with the decrease in the predictive variance makes stocks
look more attractive to a long-horizon, risk-averse investor who, therefore, allocates more to
equities. We show that cross-sectional differences in predictability across size-sorted portfo-
lios produce different patterns in optimal asset allocations. For example, with a lengthening
horizon the investment in large versus either small or medium-size stocks becomes more at-

tractive.

There is not a unique way to ignore model uncertainty, and asset allocations are also
computed under specifications that differ with respect to how they ignore that uncertainty.
Investors might, among such possibilities, select one model based on a formal selection cri-
terion or simply retain all entertained predictive variables in an “all-inclusive” model. We

compare the asset allocation obtained using the weighted model to those computed based on



the highest-posterior-probability model, the all-inclusive model, and the model that drops
all entertained predictors - the #d model of stock returns. We find that optimal portfolio
allocations can differ across models to economically significant degrees, depending on in-
vestors’ risk tolerance and the investment horizon. In particular, the differences in optimal

portfolios are especially apparent for short-horizon high risk-tolerance investors.

The Bayesian approach to model uncertainty has not been widely adopted in applied
work. The two main reasons are the difficulty in computing the marginal likelihood (and
hence the posterior probability) and sensitivity to priors. Not only is computing the
marginal likelihood often analytically intractable, but it also requires the elicitation of
informative prior belief about all of the model parameters. Otherwise, the posterior model
probabilities are not determined uniquely, but instead depend on arbitrary normalizations.
Because informative priors often require subjective judgments, they need not reflect a con-

3 In this study, the prior is determined using two sources of information:

sensus view.
investors’ beliefs about the correct data-generating model, and information conveyed by a
“training” sample. The latter is merely an initial sample observed prior to the primary
counterpart. The marginal likelihood is then derived using the Gibbs sampler technique

advocated by Chib (1995). To account for prior sensitivity, we evaluate the marginal like-

lihood over a range of possible priors.

The remainder of the paper proceeds as follows. In Section 1, we establish the framework

3Kass and Raftery (1995) discuss several cases in which model probabilities can be computed with im-
proper priors. Sensitivity of model probabilities to priors is not confined to small size samples. As the sample
grows, the prior exerts less influence on the posterior of parameters within a model (and hence on model
estimation). In contrast, the influence of the prior need not vanish in computing the marginal likelihood

and, therefore, not in hypothesis testing and model selection.



for a long-horizon optimal portfolio choice in the presence of model uncertainty, multiple
investable assets, and multiple predictive variables. We also provide the preliminaries of the
Bayesian model averaging method in the context of portfolio decisions. Section 2 describes
the sample data that contains histories of returns on size-sorted portfolios and realizations
of several variables that are suspected to have been relevant in forecasting stock returns.
Section 3 contains results. Conclusions and ideas for future research are provided in Section

4. Technical issues are discussed in the appendix.

Literature related to this work follows several distinct veins, including the investigation
of parameter uncertainty and its implications for optimal portfolio choice in the context
of both #d returns® and time-varying expected returns.® Studies that explore asset-return
predictability include Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller
(1988a, 1988b), Fama and French (1988, 1989), Chen (1991), Kothari and Shanken (1997),
and Lo and MacKinlay (1997), among others. Lastly, a comprehensive treatment of model
uncertainty and variable selection can be found, for example, in Leamer (1978), Kass and

Raftery (1995), and Raftery, Madigan, and Hoeting (1997).

I Long-Horizon Portfolio Choice and Model Uncertainty

This section develops a framework for analyzing long-horizon portfolio choices in the pres-
ence of model uncertainty, parameter uncertainty within any forecasting model, multiple

investable assets, and multiple predictive variables. It constitutes the methodological part

4See, for example, Bawa, Brown, and Klein (1979), Jobson and Korkie (1980), Jorion (1985), and Frost

and Savarino (1986).
5See, for example, Kandel and Stambaugh (1996) and Barberis (1999). Studies on long-horizon portfolio

choice in the presence of time-varying expected returns that do not account for parameter uncertainty include

Brennan, Schwartz, and Lagnado (1997), Brandt (1999), and Campbell and Viceira (1999).



of the paper and is divided into four subsections. Subsection A describes the implications
of uncertainty about the return forecasting model for the probability distribution function
of future stock returns. In particular, it introduces the concept of model averaging as the
solution to portfolio decision in the presence of such uncertainty. In the Bayesian approach
used here, the a posteriori dynamics of stock returns and predictive variables are perceived
to have been governed by a combination of a prior belief about the unknown parameters
characterizing the dynamics, and the likelihood function of the data conditioning upon these
parameters. Subsection B specifies the assumptions on these dynamics and the resulting
likelihood function. In Subsection C, the variance of future cumulative stock returns is
decomposed into three components, including the cross-model uncertainty and the within-
model parameter uncertainty. The contribution of each component to the overall perceived
variance of future returns is analyzed in Section 3. Subsection D discusses the elicitation of
prior belief about the unknown parameters, the resulting posterior density, and the compu-

tation of posterior probabilities for all models under consideration.

It should be emphasized at the outset that previous studies that employ the Bayesian
model averaging technique have treated the explanatory variables in the regression model as
fixed non-stochastic.% A built-in advantage in doing so is the ability to combine various prior
specifications, such as the natural conjugate priors, with the conditional likelihood function
to produce an analytical posterior density. The posterior probability of a model can thereby
be obtained analytically. However, in that approach, the posterior probability is computed
only for a subset of the overall data points - the dependent variables in the regression model.
In time-series regressions, although the explanatory variables are pre-assigned, they evolve

stochastically, and as such, they should be treated as part of the data. Indeed, to the best of

5See, for example, Raftery, Madigan, and Hoeting (1997) and the reference therein.



our knowledge, we are the first to compute model posterior probabilities for all the sample
data containing stock returns and realizations of several variables that are believed to be

relevant in forecasting stock returns.

A The Decision-Maker’s Optimization Problem

Let us consider a long-horizon risk-averse investor who allocates funds across a risk-free
asset and N risky assets. The portfolio decision is made based upon the sample data ®
containing a finite history of returns on the risky assets and realizations of several predic-
tive variables that are believed to have been governing the evolution of asset returns. It is
assumed that the investor’s portfolio decision has no effect on the probability distribution

of asset returns. Lastly, capital markets are assumed to be frictionless.

For the above-described investor, the quantity of interest is the cumulative excess return
on the chosen portfolio over the investment horizon. The vector of cumulative excess log
returns on N investable assets is given by Rrix = 25:1 rr+k, where rpyg is an N x 1
vector of excess log returns on the N assets at time T + k, T' denotes the beginning of the
investment horizon or the end of the sample period, and K is the length of the horizon. The
investor considers an initial set of J distinct models to construct the predictive distribution

of stock returns. The model space is denoted by M, where M = {M;,... , M }.

The investor’s tradeoff between risk and return is reflected through an iso-elastic utility

function for wealth at the end of the investment horizon:

1—
ﬁT/VTJF}( for v >0 and v # 1,

UWrpig) = (1)

In(Wryg) fory=1,

where « is the decision-maker’s relative risk-aversion coefficient, and W, denotes the



terminal wealth. The latter is computed as:
Wrig = Wrp [(1 —w'iy)exp(rpK) + ' exp(reKuy + RT+K)] , (2)

where Wy is the wealth at the end of the sample period, w is an N X 1 vector denoting
portfolio weights chosen for N risky assets at time T, ¢ is an N x 1 vector of ones, and

rs is the continuously compounded risk-free rate of return.”

From the properties of the
iso-elastic utility function, the fraction of wealth invested in equities is independent of W,

which is, therefore, normalized to unity.

The predictive distribution of cumulative stock returns that depends solely upon the
sample data averages over all the conditional predictive distributions of individual models

belonging to M and is computed as:®
J
P (Ryyk|®) = P (Rppx|M;, @) P (M;]®). (3)
j=1

The first factor on the right-hand side of equation (3) is the predictive distribution for
long-horizon returns pertaining to model M; and is given by:
P (Bl My, @) = [P (Rr]6;.M;.9) P (651 M;, 9)d6, (1)
j
where ©; denotes the vector of parameters in M; and P (©;| M}, ®) is the decision-maker’s
posterior belief about these parameters. The second factor on the right-hand side is the

posterior probability of M, which is given by:

P(®|M;) P (M;)

P (M;[®) = —
> iz P(®IM;) P (M;)

; ()

"The risk-free rate of return is assumed to be constant over the investment horizon. Its monthly rate is
set equal to the rate on a one-month Treasury bill prevailing at the end of the sample period which is 4.55%

in annualized terms.

8Throughout the study, P will serve as a generic notation for probability density function.



where P(M}) is the decision-maker’s prior belief that M; is the correct model, and

P (®|M;) is the marginal likelihood of the data. The latter is computed as:
P@IM;) = [ P(816,, M) P(©,1M,)d6), O
3

where P (®]|0;, M) and P (©;|M;) denote the likelihood of the data conditioning upon the
set of parameters in M and the investor’s prior belief about these parameters, respectively.
Equation (6) indicates that the marginal likelihood is merely the normalizing constant of

the posterior density.

With a dogmatic belief about the return forecasting model, using the predictive den-
sity in (4) is the well-known Bayesian solution to deriving optimal portfolio choices in the
presence of estimation risk. The predictive density is obtained after integrating out the
parameter space ©, which explicitly takes account of the uncertainty about the model pa-
rameters. The Bayesian solution in control problems was introduced by Zellner and Chetty
(1965) and has been extensively used in portfolio decisions in the context of both iid returns

and time-varying expected returns.

What if investors encounter a set of plausible forecasting models a priori? For example,
investors might be uncertain about whether or not stock returns are predictable or, condi-
tional upon having predictability, investors might be concerned with selecting the relevant
forecasting variables. In that case, the notion of model uncertainty arises. Forecasting stock
returns conditional upon a single model selected from the feasible set, as is common practice
in econometrics, will tend to overstate the precision of the forecast by not taking account

of the uncertainty about which model is the correct one.”

9Leamer (1983) pp. 36-37 describes the nature of the common practice of selecting an econometric model

as follows: “The concepts of unbiasedness, consistency, efficiency, mazximum-likelihood estimation, in fact,



The desire to account for model uncertainty in deriving a sensible portfolio choice dic-
tates using a predictive distribution that averages out the model space - the unconditional
predictive distribution displayed in equation (3). By doing so, the investor’s problem can
be described as the maximization of the unconditional expected utility in the presence of
both uncertainty about the return forecasting model and parameter uncertainty within any

forecasting model belonging to M.

The decision-maker’s optimization problem in the presence of such uncertainty is for-
mulated as:

w*:argmax/ UWrik) | Y. P(Rryk|M;,®)P(M;|0)| dRrik,  (7)
¥ JRrix MEM

subject to the feasibility constraint displayed in equation (2). We do not truncate the tails of
the stock-return distribution. Therefore, short selling and buying on margin are precluded;
otherwise, the expected utility would be equal to —co. C(w), the feasible set of allocations,

thus satisfies:
Cw)={w : 0<w; <1Vi, andw'on <1}. (8)

The optimal portfolio choice, w*, in equation (7) cannot be obtained analytically. There-
G

fore, we approximate the integral in that equation by taking draws {Régl K} . from the
g:

unconditional (weighted) predictive distribution and using numerical optimization code to

maximize the quantity:

1=
{(1 —Win)exp(reK) + W exp(rrKuy + Rg,giK)}
L=y

G
B{U(Wrix(w)] = 5 D SO
g=1

all the concepts of traditional theory, utterly lose their meaning by the time an applied researcher pulls from
the bramble of computer output the one thorn of a model he likes best, the one he chooses to portray as a

rose.” Moulton (1991) employs this argument to motivate his Bayesian model averaging application.

10



where G denotes the number of draws.

The expectation in equation (9) is taken with respect to the weighted predictive distribu-
tion P (Ryyx|®) = ZM]-GM P (Rpyi|M;, @) P (M;|®). Sampling from that distribution
is obtained by first drawing a model M; € M with probability P (M;|®). Future long-
horizon cumulative excess log returns are then drawn from the conditional predictive distri-
bution P (Rp4x|M;,®). Computing the posterior probability and drawing stock returns

from the conditional predictive distribution will be discussed below.

B The Conditional Distribution of Stock Returns

The continuously compounded excess returns and predictive variables are modeled using a
multivariate regression framework. In particular, the N x 1 vector of excess log returns is

the dependent variable in the multivariate predictive regression:
ri =i 1Br + €, (10)

where ac;_l = (1, 21/5—1)7 and z;_1 contains M ez ante variables observed at the end of t — 1.
These may include the dividend yield, term structure slope, default spread, and book-to-
market ratio, among other variables that are believed to be relevant in forecasting asset
returns. Bpr is an (M + 1) x N matrix of the multivariate regression coefficients. The
disturbance terms, ¢, t = 1,...,T, are assumed to obey the standard assumption of a
zero expectation conditional on the set of instruments z;_1. It is also assumed that the

disturbances are serially uncorrelated and have variance equal to the N x N matrix Xrp.'°

10Stambaugh (1986 and 1999) shows that while €; has zero expectation conditional on zs for s < t, the
expectation of €; conditional on zs for s > t is nonzero. In fact, contrary to the standard regression model,
the predictive variables in a time series setting evolve stochastically. Therefore, regression equation (10)

departs from the standard Bayesian regression framework discussed, for example, by Zellner (1971) and Box

11



By letting y; = (r}, 21), it follows that the data-generating process can be characterized

by the multivariate regression (also known as a restricted VAR):

y; =z} B+ uy, (11)

where B is an (M + 1) x (N + M) matrix of regression coefficients whose partition is given

by:
agp A
B:{BR Bz}— , (12)
ar a.
and uy ~ #d N (0,3]) with:
YRR YR:
Y= . (13)
EzR Ezz

Note that ap is the N x 1 vector of intercepts in the multivariate predictive regression
displayed in equation (10), and ap is the M x N matrix of slopes in that regression. In the
same vein, o is the M x 1 vector of intercepts, a, is an M x M matrix of slopes, and ..
is the covariance matrix of the residuals in the multivariate regression of contemporaneous
on lagged predictive variables. Lastly, ¥, is the matrix of covariances of zero-mean con-

temporaneous innovations to excess returns and predictive variables.

In what follows, it will be convenient to work with the matrix form of the model:

Y =XB+U, (14)

and Tiao (1997). In the standard Bayesian regression framework, the set of variables z;—1 are assumed
to be either fixed non-stochastic or stochastic, but distributed independently of the disturbances of ¢; for

t=1,...,T, and with a probability density function not involving the parameters Br and ¥ rrg.

12



where

/ ! !
T, 2] 1, 2 uy

! / /
Topy Zp 1yzp_y Up

Under the assumptions set forth above, it follows that
vec(U) ~ N (0,X1p), (15)

where vec(U) is the column-wise vectorization of the matrix U, and I is the T'x T identity

matrix.

It is assumed throughout that zp, an M x 1 vector of initial values of the predictive
variables, is non-stochastic. Therefore, the likelihood function of the data, £(B,Y;Y, o),
is proportional to the probability density function P (Y'|B, 3], z¢) which is given by:

_ T(N+M)

P(Y|B,%,20) = (2r)" 2 |72 exp (—%tr [(Y = XB)(Y — XB)E_1]> ., (16)

_ T(N+M) T

= (2m)7 7 2z |¥| Texp (—%tr [S+ (B—B)X'X(B - B’)} g—1> ’

where

and tr(-) stands for the trace operator.

The framework set forth above and further developed below facilitates analyzing port-
folio decisions in the presence of model uncertainty, parameter uncertainty within any fore-
casting model, multiple investable assets, and multiple predictive variables. In particular,

the conditional distribution of future cumulative excess log returns, Ry, , is multivariate

13



normally distributed with mean and variance depending on B and X, which are uniquely
determined for any given model, as discussed below, and the most recent realizations of the

predictive variables, zp. Formally, it follows that
RT+K|B525(D’Mj NN()‘M]"TM]‘) ’ (17)

where ® contains Y and zp.

We show in part A of the appendix that if the stochastic processes governing the evolu-
tion of stock returns and predictive variables are both covariance-stationary, then Ar; and
YT m; are given by (the notational dependence of the right-hand side parameters on Mj is

suppressed):
A, = Kog (18)
+ dpfal ((a2) " = In) (@) — Tn) ™! = (K = DIu] (o = Tn) oy

+ ap [((ah) = In) (@ — In) ™Y 2,

K K K
Ta, = KSpr+ Y o(k)Se0(k) +> Sreo(k) + > d(k)S:ar,
k=1 k=1 k=1

where

B(k) = alg [ (1) = I)(al = L)'
Of course, no predictability corresponds to ar = 0. In that case, \;;y and ;4 are simply
equal to Kapr and KX Rrp, respectively. Obviously, without accounting for estimation risk,

the conditional mean and variance in an 4id world increase linearly with the investment

horizon.

C Decomposing the Predictive Variance of Cumulative Stock Returns

In the presence of both model uncertainty and parameter uncertainty within any forecasting

model, the variance of the K-period-ahead cumulative stock returns can be expressed as a

14



sum of three terms:!!

J

Var{Rys |0} = 3 P (M;]) [E@{TM].} + Vare{Aum, } + (X - E@{)\Mj}) (X - E@{)\Mj})/} ,
j=1

(19)
where Eg and Varg denote the expected value and variance operators taken with respect

to the parameter space and'?

J
A= 3" P (M;[0)Bo{An,}- (20)
j=1
That is, the predictive variance of cumulative stock returns can be decomposed into
three components: i) a mixture of variances from any candidate model, where each variance
is conditioned on the set of model-specific parameters; ii) a mixture of the within-model pa-

rameter uncertainty; and iii) the model-uncertainty component. The empirical section that

follows quantifies each of these three components for various investment-horizon lengths.

One might suspect that uncertainty about the correct model for predicting asset re-
turns could play a role in portfolio decisions, since expected future returns are likely to
differ across the forecasting models under consideration. The third factor in (19) reveals
that such differences produce additional uncertainty about stock returns. That uncertainty
makes stocks look less attractive to risk-averse investors, who therefore could allocate less

to equities.

"Eormal details are given in part B of the appendix.

12Using quadratic predictive loss, the predictive mean X is the optimal point prediction, and it can differ
substantially from the predictive mean of any particular model, including the highest-posterior-probability

model.
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D Prior, Posterior, Predictive Distribution, and Marginal Likelihood
1 Prior Distribution of the Predictive-Regression Parameters

Inherent in the Bayesian decision-making process is an individual who establishes a prior
belief about model parameters. If several plausible models are entertained a priori, then
the notion of unconditional prior density emerges. The unconditional prior averages over
conditional priors, which, in turn, are denoted by Py (B, Y| M;) for j =1,...,J, weighted
by the prior probability in favor of the model:
J
Py(B,%) =Y P(M;)Py(B,%IM;). (21)
j=1
At this point, we must specify informative prior beliefs about parameters belonging to
each of the models under consideration. It is known that non-informative improper priors
do not work in hypothesis testing and model selection problems. Because in most cases,
the arbitrary constants appearing in the improper prior specification do not vanish, the
resulting marginal likelihood and posterior probabilities are not determined uniquely, but

instead depend upon arbitrary normalizations.'?

The literature proposes two common approaches to specify a prior density for the regres-
sion parameters. In one approach, as discussed, for example, by Chib and Greenberg (1996),
B and ¥ are independent and obey the multivariate normal and inverted Wishart densities,
respectively. In the other approach, the so-called natural conjugate prior, the marginal
prior probability density function (henceforth “pdf”) for ¥ is still inverted Wishart, but the

marginal distribution of B obeys the Matric-Student t pdf.'*

Let us employ the first approach and use a multivariate normal density as the marginal

13Gee, for example, Poirier, 1995, pp. 544-545.

1See, for example, Box and Tiao (1997).

16



prior pdf for the matrix B.'® In so doing, we pay a price, for the joint posterior pdf does not
obey an analytical form. That is, the general prior normal pdf does not combine so neatly
with the likelihood function, as the natural conjugate counterpart. However, we show that
applying a Markov chain Monte Carlo procedure facilitates drawing from the joint posterior

in a straightforward manner.

The prior pdf of parameters belonging to M obeys the form (the notational dependence
of the right-hand-side parameters on M, is suppressed):

Py (B,%|M;) = N(B,C)x W (Hy,w), (22)

(vg+N+M+1)

1 ~ ~ _ (gt N+M+1) 1 _
o exp (508 BYCT 8= B) x 5 oxp (—gulrs ).
where § = vec(B). The regression parameters B and Y. are independent in the prior and
vec(B) is normally distributed with mean and variance equal to B and C, respectively. The

marginal distribution of ¥ obeys the form of the inverted Wishart pdf with parameter ma-

trix Hyp and vg degrees of freedom.

With as many as M instrumental variables, there are J = 2M distinct linear com-

positions of predictive variables, each of which retains some of the variables as valuable

5There is a non-trivial caveat in implementing the natural conjugate prior distribution in applied work.

This caveat is discussed by Zellner (1971) pp. 238-240, who, in turn, refers to Rothenberg (1963). Rothenberg
(1963) notes that using the natural conjugate prior involves placing restrictions on the parameters due to
the fact that the matrix (X'X) ™" enters the covariance structure in the following way ¥ ® (X’X)™". Such a
covariance matrix imposes equality upon the ratios of variances of corresponding coefficients for any pair of
equations. In our setting, that restriction is particularly severe since, as shown below, within any forecasting
model, a few entries in the covariance matrix of B are zeroed out to reflect a dogmatic belief about the
uselessness of some variables in predicting asset returns. If we were to use the natural conjugate prior, we
would be forced to zero out additional entries in the covariance matrix, which might result in a contradiction

to those beliefs.
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stock-return predictors and treats the others as useless. Following Box (1980), the combi-
nation of a prior pdf Py(B, ¥|M;) and the common likelihood function £(B, ¥;Y, zg) in (16)
is defined a statistical model M. Although all the entertained forecasting models share a
common likelihood function, their uniqueness stems from unique prior pdfs, as described

below.

Values for the prior parameters 3, C, Hy, and v are determined uniquely for each model
and are obtained using two sources of information: the unique data-generating process im-
plied by each forecasting model; and a training sample. Specifically, for any forecasting
model, the prior belief about slopes in the regression of current stock returns on lagged use-
less variables are centered around zero or, more formally, for these slopes, there are discrete
spikes of probability at zero. In doing so, we elicit prior values for a few entries in the mean

vector 3 and the variance matrix C.'6

Computing the marginal likelihood also necessitates the elicitation of prior beliefs about

the remaining parameters.!” This task can be pursued by splitting the sample into two

16Centering a slope coefficient around zero, we explicitly treat that coefficient as a fixed non-random
quantity, meaning that its variance and covariances with other parameters are zeroed out as well. Of course,
zeroing out the variances of such slope coefficients causing their posterior distributions to be concentrated

at zero.

1"Leaving the prior as non-informative but still proper by specifying large prior variances is hopeless.
For example, Pastor and Stambaugh (1999) note that doubling an already large variance keeps the prior
non informative, hence having a minor effect on the posterior distribution; but the marginal likelihood
might display a non-trivial sensitivity to that change. One way to avoid the difficulties arising from using a
Bayesian technique in model selection is to employ the Schwarz criterion instead, which leads to appropriate
conclusions in sufficiently large samples. However, the notion “sufficiently large” is rather obscure, and its
operational meaning lacks any intuitive appeal. Another way of handling improper priors is the “imaginary

training sample device.” This consists of imagining that an additional data set is available. See Kass and
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parts, the so-called training sample and the remaining observations constituting the pri-
mary sample.'® The training sample is often combined with the improper prior distribution
to produce a proper prior distribution. In particular, when a flat prior on regression pa-
rameters is combined with a normal likelihood function of data from the training sample,

the natural conjugate prior emerges. (See, for example, Zellner, 1971.)

Our study undertakes an approach similar in spirit to the one described above, in that
we set aside part of the data to be used as a training sample. However, we depart in two
ways from the above-described methodology, which implicitly employs the natural-conjugate
prior specification. First, the regression parameters B and Y are kept independent in the
prior, as noted above. Second, the training sample is used to establish only the remaining
prior parameters, or those that have not been determined by beliefs about the correct return
forecasting model. (For any forecasting model, such prior parameters include the intercepts
and slope coefficients in the regression of current stock returns on lagged ‘useful’ predictive

variables, their variances and covariances.)

Prior sensitivity will be investigated by entertaining three splitting points correspond-
ing to Ty = 45, Ty = 60, and Ty = 75 time series observations. The length of the training
sample is mapped into our prior value for the inverted Wishart parameter vy which, in turn,
is equal to Ty — N — M — 1. The choice of various splitting points was applied in other
studies undertaking Bayesian approach for hypothesis testing and model selection, including
McCulloch and Rossi (1991), who advocate a Bayesian approach to testing the arbitrage

pricing theory. McCulloch and Rossi (1991) emphasize that vy need not take too small or

Raftery (1995) and the reference therein.
183ee, for example, Berger and Pericchi (1996), McCulloch and Rossi (1991), and Moreno, Bertolino, and

Racugno (1998).
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too high values; otherwise the prior would be extremely diffuse or too tight, respectively.

As noted earlier, each information variable does appear in the likelihood function (16)
as part of the data whether or not it is believed to be useful in forecasting stock returns.
The rationale is that in multi-period asset-allocation decisions, the stochastic evolution of a
predictive variable plays a role in determining the distribution of future stock returns. (The
first two moments of the cumulative excess log returns displayed in equation 18 serve as an
illustrative example.) In particular, it might be the case that a variable is treated as useless
in forecasting stock returns at the same time that it is treated as useful in forecasting other

variables that are believed to be useful stock-return predictors.

2 Prior Probabilities of Return-Forecasting Models

Implementing Baysian model averaging, the decision-maker has to assign prior probabil-
ities for the 2M forecasting models. A conceivable way of dealing with the concern that
“apparent predictability” is due to data mining is to associate higher prior probabilities to
theoretically motivated predictive variables. (Section 3 discusses the choice of predictive
variables in this study.) However, there are some practical difficulties with judging the
relative strength of the theoretical arguments and, in particular, the plausibility of the un-
derlying assumptions used to derive them. After all, theories are not formed in a vacuum.
The theory-maker has already learned about many of the relationships among variables in
the data. Furthermore, if a decision-maker suspects that some predictive variables are more
likely to generate the evolution of expected stock returns than other predictors, or perhaps
that a combination of more predictive variables is more favorable than combinations with
fewer predictors, then assigning a higher prior probability to the more favorable model en-

tails subjective judgment, which need not reflect a consensus view.
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Obviously, we prefer not to get involved in determining which of the 2™ combinations
is more favorable a priori. However, if we were to assign an equal prior probability to each
candidate model being the “correct” one ez ante, as it is the implicit common practice
using classical model-selection criteria, such as the adjusted R?, we would weight the prior
belief in favor of predictability by assigning a prior mass of only 1/2M to the iid model.'?

Of course, that prior mass approaches zero with an increasing number of predictive variables.

Assuming that (i) investors consider predictability or lack thereof as equally likely ex
ante, and (ii) conditional on having predictability, investors exhibit non-informative beliefs
about the form that it takes, we associate a prior probability of 50% to the #d model and
assign the remaining 50% equally across all other models. This specification reflects a sub-
stantial prior uncertainty about whether stock returns are predictable, and will be referred
throughout as the “non-equal-prior-probability scenario.” We also assign prior probabilities
equally across models. This specification will be referred throughout as the “equal-prior-
probability scenario.” The latter scenario restricts potential implications of model uncer-
tainty in stock-return predictability for optimal portfolio rules, because as noted earlier,
in that scenario, investors exhibit an almost complete faith that stock returns are indeed

predictable, and are only uncertain about the relevant variables that forecast these returns.

A convenient argument to combat the methodology developed here is the somewhat
arbitrary fashion that prior probabilities are assigned to models. Taking this to the extreme,
had the prior probability of a single model been unity, then the notion of model uncertainty

would have completely disappeared. However, it is the nature of applied work that the

191t is common practice in Bayesian model averaging to take the prior probability of each model as equal.

See, for example, Moulton (1991).
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researcher reveals a prior with respect to the choice of model. For instance, Barberis (1999)
implicitly assumes that the prior probability of the dividend yield model is unity. Employing
a flat prior for the slope coefficient in the regression of excess returns on lagged dividend
yield, Barberis assigns a zero probability to the event that the slope is equal to zero, thereby
weighting his prior belief against no predictability. Bawa, Brown, and Klein (1979), among
others, treat the iid model of stock returns as the “correct” one. Moreover, using model
selection criteria, such as AIC (Akaike, 1974), SIC (Schwarz, 1978), or adjusted R?, the
researcher expresses her belief that one among several models fairly describes the state of
the world. She implicitly assigns equal prior probabilities to all models under consideration

and eventually chooses a single one to predict quantities of interest.

3 Posterior Distribution of the Predictive-Regression Parameters

Part C of the appendix details the derivation of the joint posterior pdf for the regression
parameters. It is shown that the joint posterior does not resemble any well-known distri-
bution. Nonetheless, each of the full conditional distributions obeys an analytical form.
Naturally, we apply the Gibbs sampler technique to draw from the joint posterior.?? The
aforementioned posterior density is conditioned on a selected model and is denoted by
P (B,X|®, M;). An unconditional posterior distribution for B and ¥ is obtained by com-
bining the likelihood function (16) and the unconditional prior density (21). The resulting
posterior averages over the conditional posterior pdfs, weighted by the posterior probability

in favor of the model:

J
P(B,%[®) =) P(M;|®)P (B,X[®, M;). (23)
j=1

20The Gibbs sampler is an iterative Monte Carlo method designed to extract marginal distributions from
intractable joint distributions. The Gibbs sampler was introduced by Geman and Geman (1984). Chib and

Greenberg (1996) present examples applying the Gibbs sampler to a variety of econometric models.
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Part D of the appendix provides a three-step algorithm for drawing cumulative excess re-
turns from the weighted predictive distribution. Details on computing marginal likelihoods

and posterior probabilities are given in part E of the appendix.

II The Data

For each of several return forecasting models, we compute the optimal portfolio choice as
weights assigned to three size portfolios and the risk-free Treasury bill. Size portfolios are
constructed from CRSP’s capitalization file as equal averages of small, medium, and large
capitalization firms belonging to decile portfolios 1-3, 4-7, and 8-10, respectively. We con-
sider six information variables: the dividend yield (Div) on the value weighted NYSE index;
the book-to-market (BM) on the Standard & Poor’s Industrials; the default spread (Def);
the term structure slope (Term); the trend-deviation-in-wealth (TDW) advocated by Lettau

and Ludvigson (1999); and the relative bill rate (Tbill).?!

The dividend yield is constructed as in Fama and French (1988, 1989) and others. Specif-
ically, dividend yield is the total payment of dividends on the value-weighted NYSE portfolio
over the recent twelve months divided by the contemporaneous level of the index. Inputs for
calculating book-to-market is obtained from the Standard & Poor’s publication: “Security
Price Index Record - Statistical Service.” Book-to-market is calculated for all firms in the

Standard & Poors’ Industrials. Year-end book value on Standard & Poor’s Industrials is

2In previous versions of the paper Earnings yield on the Standard & Poor’s Industrials was included
as an additional predictive variable. Earnings yield possesses very high contemporaneous correlations with

dividend yield and book-to-market and was, therefore, omitted.
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available starting from December 1946. A quarterly book-to-market ratio is constructed by
dividing the most recent year’s book value by the contemporaneous level of the Standard &
Poors’ Industrials. For example, the book-to-market ratio in March 1990 is the book value

for December 1989, divided by the level of the Standard & Poors’ Industrials in March 1990.

The default spread is the difference in annualized yields of Moody’s Baa and Aaa rated
bonds. The term structure slope is the difference in annualized yields of ten-year and one-
year Treasury bills. The relative bill rate is the difference between an annual yield on a
three-month Treasury bill and its one year backward moving average. All the Treasury-bill

yields are available at the Federal Reserve Board’s web-site.

Trend-deviation-in-wealth is computed as ¢; — wa; — (1 — w)y;, where ¢, ay, and y;
denote log consumption, non-human wealth, and labor income, respectively.?? The weight
w equals the average share of non-human wealth in total wealth. TDW is in per-capita
terms, measured in 1992 dollars. It is available quarterly starting from the first quarter of
1953. Inputs for computing TDW are released by the Federal Reserve Board. The data is
published within two months of the end of the quarter. Therefore, the TDW realization at

quarter t is made known to capital market participants at quarter £+ 1 and, therefore, used

22Data on TDW were generously provided by Martin Lettau. Lettau and Ludvigson (1999) have shown
that trend deviations in wealth are strong predictors of future returns at short and intermediate horizons.
They consider a forward-looking model whose theoretical motivation goes back to Campbell and Mankiw
(1989) and Campbell (1993). This model implies that the log consumption, labor income, and non-human
wealth share a common trend. The deviations from this trend summarize investors’ expectations about
future returns on the market portfolio. In particular, when consumption is above its long-term trend with
respect to labor income and non-human wealth, asset returns are expected to rise and vice versa. To learn
about the variables used to compute TDW, its theoretical motivation, and econometric methodology used

to estimate the unobserved parameter w, readers are referred to Lettau and Ludvigson (1999).
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to predict stock returns to be realized at quarter t + 2.

Theoretical motivations have been advanced in the financial economics literature for
each of the predictive variables used in this study. For example, the textbook treatment
of Campbell, Lo, and MacKinlay (1997) describes a framework in which the dividend yield
reflects investors’ expectations about future returns on the market portfolio. Building on a
similar framework, Lettau and Ludvigson (1999) argue that the trend-deviation-in-wealth
summarizes such expectations. Furthermore, Pontiff and Schall (1998) advocate using the
book-to-market as a predictor of equity market returns. In particular, they assert that book
value proxies for future cash flows. Dividing such proxy by the contemporaneous level of the
stock index produces a variable which is correlated with future stock returns. Bossaerts and
Green (1989) describe a general equilibrium model in which conditional expected returns
are inversely related to the price of an asset. Lastly, Boudoukh, Richardson, and Whitelaw
(1997) exploit the pricing kernel representation to uncover a (non-linear) relationship be-

tween the conditional expected equity premium and the term structure slope.

Following the availability of data, as described above, our sample contains quarterly
observations spanning the first quarter of 1953 to the fourth quarter of 1998. Table I presents
summary statistics for the predictive variables for all the sample data, and Figure 1 plots
the evolution of the predictive variables over the sample period. It is shown that book-to-
market, dividend yield, and default spread display a fairly high persistency suggesting a
long-term mean-reversion, whereas TDW, Thill, and Term exhibit a lower auto-correlation
and hence a faster mean-reversion. We also report slope coefficients and standard deviations
obtained from running separately three multiple regressions of each of the size portfolios on

lagged predictive variables.

25



III Results

A Posterior Probabilities of Return Forecasting Models

Consideration of all linear data-generating processes in the presence of six predictive vari-
ables necessitates the comparison of 26 = 64 models. Tables Il and I1I display posterior
probabilities for several compositions of predictive variables, and each constitutes a linear
forecasting model. Tables II and 111 correspond to the non-equal and equal prior-probability
scenarios, respectively. Posterior probabilities of other forecasting models are fairly small

and are, therefore, not displayed in the tables.

The compositions are uniquely identified by a combination of zeros and ones designating
exclusions and inclusions of predictors, respectively. Posterior probabilities are computed
with Ty taking three distinct values representing three splitting points, as described above.
The last column in both tables reports average posterior probabilities across the three val-

ues of Ty within each forecasting model.?

Several features of the results displayed in Tables II and III merit closer attention. Fo-
cusing on the non-equal-prior-probability scenario, we observe that across the three prior
specifications, posterior probabilities of the #d model (composition number 3 in Table II)
are smaller than the pre-assigned prior probability of 50%, suggesting that, to some extent,

the data favors predictability in stock returns.

Interestingly, the TDW is the most prominent predictor of returns on size-sorted port-

folios. The model retaining that variable as a single predictor receives the highest-posterior

23The weighted model used to explore the implications of model uncertainty for optimal portfolio rules

employs the average probabilities as weights on the corresponding individual compositions.
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probability. Moreover, the last two rows in Tables II and III indicate that TDW appears
as a valuable predictor for more combinations than its counterparts. In the same vein, the
cumulative average posterior probability of models including the trend-deviation as a valu-
able predictor is 73% under the non-equal-prior-probability scenario, and is 87.2% under

the equal-prior scenario.

Among the traditional market multipliers, the book-to-market and dividend yield, the
latter seems to outperform the former. Dividend yield appears in two of the non-zero-
probability models with a cumulative average probability of either 27.03% or 28.55%, de-
pending on the prior scenario. At the same time, book-to-market does not appear as a
valuable predictor in any of the non-zero-probability compositions. Following the same
logic, the relative bill rate is proved to be especially dismal as stock-return predictor — it
does not emerge in any of the non-zero probability models. The term structure slope ap-
pears in two compositions with cumulative posterior probabilities of either 24.8% or 27.88%),
depending on the prior-probability scenario. Lastly, the default spread appears only once
as a valuable predictor with low posterior mass, suggesting that default spread has, at best,

only weak forecasting power.

The notion of selecting among models poses the question “which of the models under
consideration is the most likely to have generated the data?” Having posterior probabilities
at hand, the search for the “correct” model can be addressed by computing posterior-odds

ratios or Bayes factors for each pair of models under consideration. The Bayes factor of M

against M is defined as the ratio of the marginal likelihoods of these models: Bj; = Ilzg‘lﬁj ; .

Multiplying the Bayes factor by the prior-odds ratio, 1;5/\/\;13 , yields the posterior odds in

favor of M or against M;: % = Bji%. If M; and M; are equally likely a priori,
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then the posterior-odds ratio is equal to the Bayes factor.2

Using Bayes factors, the null and alternative hypotheses can be postulated in a non-

nested structure as:

Hoi: P(B,Y|®) = P(B,Y|®, M,)

Hy;: P(B,X|®) = P(B,X|®,M;) for j#i, andi,j=1,...,64.

Simplistically, the data is said to favor Ho; relative to Hy; if the Bayes factor of M; against
M exceeds one. That is, the observed data is more likely to be generated under hypothesis
Hg; than under Hy;. Following this logic, if the posterior probability of M; is greater than
that of Mj, then M; is superior in hypothesis testing. Insofar as we do not consider the
itd model, the Bayes factor for M; against M; is computed as the posterior-odds ratio
for the corresponding models. We assert that there is only a single sensible hypothesis
test for the iid model, to wit: the #id against all other models (i.e., predictability versus
no-predictability in stock returns). Under the non-equal-prior scenario, the prior odds for
such hypothesis is unity, and the corresponding Bayes factor, which is equal to the poste-
rior odds, takes either of the values 55.50, 14.70, or 1.75, depending on the training-sample

length.

24The Bayes factor has the appealing feature of allowing hypothesis testing in a non-nested structure.

Applying such structure in the classical approach in overly complicated, if not hopeless (see Leamer, 1978 p.
90). Jeffreys (1961) and Kass and Raftery (1995), among others, advocate the superiority of the Bayes factors
in hypotheses testing versus resorting to the conventional P-values. Some practical difficulties with P-values
are apparent in large samples, where P-values tend to reject null hypotheses even when the null model seems
appealing theoretically, and close inspection of the data does not reveal any striking discrepancies. Poirier
(1995), p. 614 describes the Bayesian moral in the following manner: “Never make anything more than
relative probability statement about the models explicitly entertained. Be suspicious of those who promise

more!”
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What can we learn from the above-computed figures? Jeffreys (1961) suggests a qualita-

tive interpretation for evidence in favor of the null or against the alternative hypotheses:??

log;0(Bi.5) B; ; Evidence against H;

0 to % 1 to 3.2 | Does not justify more than a bare mention
% to 1 3.2 to 10 Substantial

1to2 10 to 100 Strong

> 2 > 100 Decisive

Following Jeffreys, in two of three cases the Bayes factors/posterior odds provide strong
statistical evidence in favor of predictability in asset returns. Economic implications of

ignoring predictability while forming portfolio rules will be analyzed below.

For the sake of comparison, we also report the compositions selected by the AIC and

SIC criteria:26

25 Jeffreys is known as a philosopher and pioneer in Bayesian methods whose book on probability is

considered to be of great importance for the philosophy of science.
26We compute the AIC and SIC criteria for all the 64 combinations. AIC and SIC are defined as:

AIC = —2(log maximized likelihood) + 2(N),

SIC = —2(log maximized likelihood) 4 (logT)(N),

where T denotes the sample size and N is the number of parameters within any model. Akaike (1974)
and Schwarz (1978) suggest that given a set of rival models, the one that should be selected minimizes the
corresponding quantity. The first factors on the right-hand side of the equations are identical and measure
the goodness of fit, whereas the second penalize for the complexity of the model. Notice that SIC penalizes

more heavily for higher dimensional models and hence tends to select compositions with fewer predictors.
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Predictor | BM  Div Def TDW Thbill Term

AlC 1 1 0 1 0 1

SIC 0 1 0 0 0 1

It is known that SIC leads to the same conclusion as the Bayes factor in sufficiently large
samples, if equal prior probabilities are assigned. The posterior probabilities displayed in
Table 3, suggest that the SIC criterion does indeed provide a reasonable indication of the
evidence as the model selected by SIC is ranked as either the second, or third, or forth
highest-posterior model, depending on the splitting point, whereas the model selected by

AIC is among the zero-probability models.

B Model Uncertainty - The Variance Effect

As a first step in exploring the potential importance of differences across models, we mea-
sure the three components included in the variance of future stock returns as it emerges
in equation (19). This step is pursued by drawing future returns from both the weighted
predictive distribution, as explained in part D of the appendix, and from a hypothetical
model that is similar to the weighted model, except that it does not account for the cross-
model uncertainty. Future returns for that model are drawn using an algorithm described
in the next paragraph. That algorithm is implemented separately for both prior-probability

scenarios.

For any of the six (five) highest-probability models, displayed in Table 2 (Table 3),
we draw cumulative future stock returns from their predictive distributions for investment
horizons ranging from one to ten years. We then compute predictive means and variances
of the returns using equation (18). Lastly, we draw a vector of future excess returns from a

multivariate normal distribution whose mean and variance are obtained by averaging over
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means and variances computed for each of the six (five) models, weighted by their posterior

probabilities.

Repeating the above-described algorithm, we obtain a random sample from the exact
predictive distribution of the hypothetical model. Next, we take the difference between the
variance based on the weighted model and the variance based on the hypothetical model to

obtain the model-uncertainty component, as described in equation (19):

EJjP (M;19) (A= BoAn,}) (A= Eo{rug}) (24)
j=1

That algorithm enables us to compute the parameter-uncertainty component of model 7,
Var(An; ), for each of the non-zero probability forecasting models. The mixture of parame-
ter uncertainty is straightforwardly obtained by averaging across the parameter-uncertainty

components associated with each model, using posterior probabilities as weights.

The three plots on the left in Figure 2 exhibit the decomposition of annualized vari-
ances of returns on small, medium, and large stock portfolios into the three components.
The plots correspond to the non-equal-prior-probability scenario, in which investors display
substantial prior uncertainty about whether stock returns are predictable. The predictive
variance for each portfolio is annualized and equal to 4/K times the variance of Ry k.

(Recall that our sample contains quarterly observations.)

The solid lines show annualized variances for three size portfolios based on the weighted
model. The dashed lines correspond to variances that include the within-model parameter
uncertainty, but not the cross-model uncertainty. Those variances are the three diagonal
entries in the 3 x 3 matrix Z;-’ZIP(MJ'MJ) [Var(Ang,) + E(Taq,)]. The dash/dot lines

display mixtures of variances from any candidate model computed as though the model-
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specific parameters were known. These are the three diagonal elements in the 3 x 3 matrix

S P (M;]@) (T ug,)-

The difference between the solid and dashed lines constitutes the model-uncertainty
component, and the difference between the dashed and dash/dot lines constitutes the mix-
ture of parameter uncertainty component. The three plots on the right in Figure 2 display
ratios of variances for each size portfolio obtained by dividing the cross-model uncertainty
by the mixture of within-model parameter uncertainty for investment horizons ranging from

one to ten years.

Figure 2 conveys an important insight into the role of model uncertainty in determining
the perceived variance of future stock returns. In particular, we show that the fraction
of ex ante variance attributable to model uncertainty can be significantly higher than the
parameter-uncertainty component, especially for short and medium investment horizons
and for large capitalization firms. For small stock portfolios the cross-model component
ranges between 1.6% and 2.4%, whereas the within-model component ranges between 1.4%
and 2.3%. Similarly, for large stocks the cross-model component ranges between 1.0% and
1.5%, whereas the within-model component ranges between 0.4% and 0.7%. Notice that
the cross-model component accounts for 14.3% to 19.6% of the total predictive variance
of small stock returns, for 19.2% to 26.7% for medium, and for 20.1% to 29.3% for large,

depending on the investment horizon.

We repeat the analysis described above for the equal-prior-probability scenario, in which
investors reveal a high prior confidence that stock returns are indeed predictable. Figure 3

contains the corresponding plots. We observe that under the equal-prior scenario, the cross-
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model component is fairly small for short and medium investment horizons and completely
disappears for horizons exceeding five years. In contrast, the mixture of within-model pa-
rameter uncertainty is still prominent. That component increases with the horizon, displays
a low sensitivity to the change in prior probabilities, and its magnitude ranges between
1.37% and 2.64% for small stocks, between 0.91% and 1.52% for medium, and between
0.54% and 0.60% for large stocks, depending on the investment horizon. An almost non-
existent cross-model component implies that the primary source of variance attributable
to model uncertainty emerges as investors exhibit a substantial prior uncertainty about
whether returns are predictable. The realized data appear to have resolved the ez ante
model uncertainty associated with the selection of instruments, which, in turn, becomes

marginal.

Inspecting the right-hand-side plots in Figures 2 and 3, one can observe that both pa-
rameter uncertainty and model uncertainty display sensitivity to varying horizons. While
the former increases with a lengthening horizon, the latter tends to decrease. Furthermore,
for both prior-probability scenarios, the ratio obtained by dividing the cross-model com-
ponent by the mixture of the within-model parameter uncertainty counterpart decreases

almost monotonically with an increasing holding period.

The intuition behind the above-described phenomenon is as follows. Consider the case
in which stock returns are #id and the prior belief about the parameters is non-informative.
Part F of the appendix shows that in that case, the predictive distribution of stock returns,
which accounts for parameter uncertainty, obeys the Student t pdf, and the correspond-
ing predictive annualized variance increases linearly with the horizon length. (Obviously,

without incorporating parameter uncertainty, future returns are normally distributed, and
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conditional variances remain constant with increasing horizons.) Note that with longer
horizons there are simply more parameters to estimate, enhancing the role of estimation

risk.

What is the horizon role in determining the variance attributable to model uncertainty?
In longer horizons the predictive variables tend to revert to their long-term means, making
conditional expected stock returns look similar across the various forecasting models. As a
result, it is expected that the total predictive variance attributed to model uncertainty will
converge to a fixed quantity and, subsequently, the annualized predictive variance, obtained
by dividing that fixed quantity by the horizon length, will diminish with an increasing hori-

zon.

Stock-return variances are computed under an additional scenario, in which the recent
values of the predictive variables are set equal to their sample means. Figure 4 exhibits
the decomposition of annualized variances of returns on small, medium, and large stock
portfolios into the three components, noted earlier, as investors treat predictability or lack

thereof as equally likely ez ante.

It emerges that the importance of both the cross-model uncertainty and within-model
parameter uncertainty crucially depends on the most recent values of the predictive vari-
ables. To elaborate, centering the current values around their sample means virtually
eliminates the differences in conditional means across models (and along the investment
horizon within any given model), thus eliminating the cross-model component, even if there
is a substantial prior uncertainty about whether returns are predictable, let alone in the

absence of such uncertainty. Interestingly, Figure 4 shows that for recent values equal to
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the sample means, the within-model parameter uncertainty substantially diminishes as well.

In recent years, equity markets have been overwhelmingly bullish. Hence, the current
values of variables that are perceived to have been indicators of fundamental values — such
as book-to-market, dividend yield, and trend-deviation-in-wealth — have been substantially

distant from their sample means. Some figures are presented below:

Predictive Level as of Sample Moments

Variable | December 31, 1998 | Mean StDev

Div 0.0155 0.0363  0.0094
BM 0.1178 0.5078  0.1790
TDW -0.0376 -0.0004  0.0112

The departures from long-term means suggest that perhaps it is not too surprising that
model uncertainty has a relatively large impact on the distribution of future returns at
the end of the sample period. Investors are uncertain about whether or not stock returns
are predictable. Obviously, that uncertainty is more meaningful at the recent period com-
pared to other periods when measures of perceived fundamental values were closer to their

historical means.

C Model Uncertainty - Implications for the Optimal Portfolio Choice

Encompassing implications of model uncertainty for the investment opportunity set are as-
sessed by comparing the portfolio selection based on the weighted model, which incorporates
model uncertainty, with the same quantities based on single models that might have been
selected otherwise by investors. The single models include the highest-posterior-probability
model, displayed as the first composition in Tables 2 and 3, the all-inclusive model, and the

model that drops all entertained predictors - the iid model of stock returns.
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Figure 5 exhibits total allocations to equities across the above-mentioned models when
the recent values of the predictive variables are equal to the actual realizations, as docu-
mented at the end-of-sample period. Asset allocations are derived for investment horizons
ranging from one to ten years and relative risk-aversion coefficients of two, six, and ten.
The solid and dotted lines denote allocations based on the weighted model - the equal
and non-equal prior scenarios, respectively. The dashed lines correspond to the highest-
posterior-probability model, the dash/dot lines correspond to the all-inclusive model, and

ko

the lines denoted by the symbol ‘*’ correspond to the iid model.

The reader may note that leaving the most recent values of the predictive variables equal
to actual realizations results in corner solutions, in which optimal allocations to equities are
zero across short and medium horizons. Corner solutions emerge since the predicted equity
premiums across models that include predictive variables are negative over such investment
horizons. As noted earlier, the current values of predictive variables that are perceived to
have been indicators of fundamental values are substantially smaller than their long-term
means, suggesting that the equity market was believed to have been overvalued around the

end of the sample period.

Figure 5 shows that the overall allocation to equities based on the weighted model,
which accounts for both model uncertainty and parameter uncertainty within any non-zero
posterior-probability model, increases with the investment horizon under both prior scenar-
ios. This effect is due to both an increase in conditional expected returns towards long-run
means and a reduction in the standard deviation due to such mean reversion. It is shown

that asset allocations based on either of the single models and particularly on the #d model
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can considerably depart from those computed based on the weighted model. In particular,
the differences display sensitivities to the investment horizon and the relative risk aversion

coefficient.

Focusing on the equal-prior scenario (the non-equal-prior scenario), we show that an in-
vestor who is forced to ignore predictability and select instead the iid model over-allocates
to equities by a fraction of wealth ranging from 70% to 99% (63% to 99%) for v = 2, from
24% to 37% (23% to 37%) for v = 6, and from 14% to 22% (13% to 22%) for v = 10, de-
pending on the holding period. Comparing asset allocations based on the weighted model
with asset allocations based on the highest-posterior-probability model, we find that for
~ = 2 the differences range between zero and 11% for the equal-prior scenario and between
zero and 7% for the non-equal-prior scenario, depending, again, on the holding period. A
similar comparison with the all-inclusive model reveals that for the equal-prior scenario the
differences range between 3% and 21% for v = 2, 1% and 8% for v = 6, and 1% and 5%
for v = 10. For the non-equal-prior scenario, the differences range between 3% and 28% for

v =2,1% and 10% for v = 6, and 1% and 6% for v = 10.

Investors’ risk tolerance displays an important role in determining the impact of model
uncertainty in equity markets. It should be noted that such impact substantially dimin-
ishes as investors become less risk tolerant. That phenomenon is best explained through
two polar examples. First, let us consider an infinitely risk-averse investor who does not
allocate funds to equities or who prefers to hold all his wealth in a risk-free cash account.
That investor is completely indifferent to the appearance of model uncertainty in equity

markets since he does not approach these markets.
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Let us consider now the opposite extreme — a risk-neutral investor who makes port-
folio decisions based only upon the first moment of stock returns. Although a risk-neutral
investor ignores the higher predictive variance in equity markets attributable to the uncer-
tainty about the return forecasting model, he is not indifferent to model uncertainty, since
expected stock returns do differ across the forecasting models. As a result, one would expect
that the impact of model uncertainty will diminish as investors display a stronger aversion

towards bearing risk.

The impact of model uncertainty is sensitive to the investment horizon as well. A close
inspection at Figure 4 suggests that differences in portfolio allocations across the various
models tend to decrease with a lengthening horizon. To understand that phenomenon
we shall recall that expected returns display mean reversion and revert towards long-term
means as the investment horizon increases. As a result, differences in expected returns
across various models diminish. We would, therefore, expect that the impact of model un-
certainty on equity markets will decrease with a lengthening horizon, as it is documented

in Figure 5.

In several related studies, such as Barberis (1999), portfolio rules are derived when
the current values of predictive variables are set equal to their sample means. We compute
asset allocations based on the weighted model, the all-inclusive model, the highest-posterior-
probability model, and the #d model under that scenario as well. The optimal portfolio
choices are displayed in Figure 6. Asset allocations are derived for investment horizons
ranging from one to ten years and relative risk-aversion coefficients of two, six, and ten.
The solid lines denote allocations based on the weighted model, the dashed lines correspond

to the highest-posterior-probability model, the dash/dot lines correspond to the all-inclusive
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model, and the lines denoted by the symbol “*’ correspond to the iid mode

Figure 6 shows that differences in optimal portfolios across models are still prominent.
The differences are entirely attributed to conditional variances that differ across the forecast-
ing models under consideration. Not surprisingly, allocations to equities based on models
that include forecasting variables are very sensitive to the current values of these variables,

and substantially increase when such values are set equal to their sample means.

As documented in Figure 5 — when the current values of predictive variables were equal
to actual realizations — Figure 6 also shows that higher values of the relative risk aver-
sion coefficient derive optimal portfolios to behave similarly across models. However, the
horizon length appears to carry opposite implications for the role of model uncertainty on
optimal portfolios. In particular, differences in portfolio allocations between the weighted

and highest-posterior-probability models substantially increase with the horizon.

To explain such differences in optimal asset allocations, we essentially need to focus on
predictive variances associated with each of the corresponding models. For this purpose,
we take a step backward and look into equation (18). It should be noted that the 3 x 3
predictive variance covariance matrix of one- and two-period-ahead excess returns can be

computed as:

Var{RTH\(D} = ERR; (25)

Var{Ry12|®} = 2Xgrg + dpX..ar + Yr.ar + ard k.

The 3 x 1 vector of differences between the two-period variance and two times the one-period

27Optimal allocations based on the weighted model across both prior-probability specifications are virtually

identical.
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variance of cumulative excess returns is given by:

Diagonal {Var{Rp2|®} — 2 x Var{Rp4+1|®}} = Diagonal {a}%ZzzaR + Y R.ar + a}%EzR} ,
(26)
where the notation ‘Diagonal’ stands for the three diagonal entries corresponding to the

three size-sorted portfolios.

The first factor on the right hand side of equation (26) is a positive definite matrix, and
hence its diagonal elements are positive. The diagonal elements of the remaining two fac-
tors depend on X ., the correlation between contemporaneous shocks to predictive variables
and stock returns. Such a correlation for the predictive variable trend-deviation-in-wealth,
which governs the highest-posterior-probability model, is positive, suggesting that the an-
nualized variance corresponding to the highest-posterior-probability model increases with
the investment horizon. In contrast, the correlations for the other predictors are nega-
tive and, furthermore, the absolute values of the negative diagonal elements in the matrix
Y r.aRr + ayY¥ R exceed the positive diagonal elements in a’,Y;.ar. As a result, the predic-
tive variance associated with the weighted model slightly decrease with the horizon for each
size portfolio, as displayed in Figure 4. The contradicting patterns in the evolution of pre-
dictive variances corresponding to the weighted model and the highest-posterior-probability
model account for the great divergence in portfolio allocations derived based on these mod-

els.

In a related study, Pastor and Stambaugh (1999) analyze optimal portfolios of investors
whose prior beliefs are centered on either risk-based or characteristic-based asset pricing
models. The authors show that the differences in the optimal portfolios across models are

dramatically reduced by incorporating realistic margin requirements and modest uncertainty
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about the models’ pricing abilities. In our study, investment constraints are also imposed in
that short selling and buying on margin are precluded, since otherwise the expected utility
would be equal to —oco. As a result, the optimal portfolio choices, as shown in Figures 4
and 5, are often obtained as corner solutions in which the overall investment in equities is
either zero or 99% of the wealth. If it were possible to eliminate those constraints and yet
avoid the “explosion” of the expected utility, the role of model uncertainty in determining

asset allocation decisions would probably be enhanced.

D Asset Allocations Across Size Portfolios

Portfolio allocations across size-sorted portfolios are computed for both prior-probability
scenarios and for current values of predictive variables equal to their both sample means
and actual realizations. Interestingly, with the actual recent levels, the allocation to equities
is entirely attributed to small stocks, whereas investment in medium and large-size stocks
is zero. Figure 7 displays asset allocations across size-sorted portfolios computed when the

current values are set equal to their sample means.

The three plots on the left display total allocations to each of the size portfolios. The
three plots on the middle and right display portfolio allocations to small and large capital-
ization firms, respectively. The optimal allocation to medium size stocks is not displayed
simply because the overall investment in these stocks is zero. Within each graph, each line
shows the percentage of wealth allocated to equity plotted against the investment horizon
which ranges from one to ten years. The solid lines correspond to the weighted model. The
dashed lines correspond to the #d model. Since portfolio allocations based on the weighted
model are virtually identical across the two prior-probability scenarios, we plot optimal

allocations to equities only for the non-equal-prior scenario.
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We observe cross-sectional differences in asset allocations. First, investors avoid medium
size stocks and invest instead in the risk-free Treasury bill and the other two size portfolios.
Second, the allocation to large stocks increases with the horizon, whereas allocation to small
stocks decreases. Conditioning on information variables, the annualized predictive standard
deviation of the large stock portfolio exhibits a higher reduction in intermediate and long
horizons due to predictability, making investment in large (small) stocks seem less (more)

risky for risk-averse investors with an increasing horizon.

It is interesting to examine the asset allocations for the #d model in the presence of
multiple investable risky assets. The overall investment in equities decreases with the hori-
zon due to parameter uncertainty.”?® However, for v = 2 the investment in large stocks
displays an opposite pattern and increases. To understand this pattern, recall that in the
presence of multiple risky assets, the contribution of each asset to the overall variation of
the chosen portfolio is not restricted to its own variance. Rather, the covariation with the
other investable assets should be accounted for. Put another way, investors care about

portfolio returns, not about the behavior of any single included asset.

Moving from v = 2 to v = 6, we observe an interesting phenomena: The proportion
of investment in large versus small stock portfolios, based on the weighted model, does
not remain fixed. One might expect similar proportions due to the portfolio separation
property, at least at short horizons in which the skewness and other higher-moment effect
is relatively low. However, recall that portfolio weights are constrained to the unit interval.

The constraints are binding since in their absence investors will sell short the portfolio of

28Gee part F of the appendix which explains the evolution of predictive variance along the horizon.
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medium stocks. In turn, portfolio constraints break the separation property.

IV  Conclusion

The primary objective of this study is to investigate the potential impact of model un-
certainty in predictability on the investment opportunity set as perceived by a risk-averse
long-horizon investor who allocates fund across three size-sorted portfolios and the risk-free
Treasury bill. We have shown that model uncertainty accounts for a significant portion of
the perceived variance of future stock-return, in some cases considerably larger than that
attributed to parameter uncertainty or estimation risk. We have documented that with a
lengthening investment horizon, the estimation risk becomes more prominent, whereas the
impact of model uncertainty on the predictive variance of stock returns diminishes. The
dominate fraction of the overall model uncertainty arises because investors are uncertain ex
ante about whether asset returns are predictable. The remaining uncertainty — conditional
on having predictability, which are the relevant forecasting variables — is almost entirely

resolved by the realized data.

We find that model uncertainty can have a significant impact on optimal portfolio choices
as well. For example, we have shown that investors who ignore the weighted model obtained
by averaging over all entertained models, and consider instead a single model selected by
a formal criterion perceive investment opportunities that can differ to economically signifi-
cant degrees. However, differences across models are substantially reduced for long-horizon

investors as well as for investors with high coefficients of relative risk-aversion.

With the calls emerging from both academics and practitioners to search for valuable

predictors, we embrace the challenge by computing posterior probabilities for various data-
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generating processes. We measure the relative performance of predictors by Bayes factors
and other model-selection criteria which are robust to some practical difficulties with in-
terpreting the conventional P-values. We show that the posterior probability in favor of
predictability exceeds the pre-assigned prior probability, suggesting that, to some extent,

the data favors stock-return predictability.

Furthermore, we shed additional light on the predictive power of some ez ante variables.
In particular, it is shown that the trend-deviation-in-wealth has a reliable power in fore-
casting returns on size portfolios. In contrast, the aggregate measure of book-to-market as
well as the relative bill rate is found to be poor predictors of equity market returns. Lastly,
the predictive power of an aggregate measure of the dividend yield, term structure slope,

and default spread is found to be questionable.

Uncertainty about the model for predicting returns can be explored along several other
dimensions that are not addressed in this study but present opportunities for future in-
vestigation. For example, a decision-maker who attempts to incorporate the restriction on
predictability implied by rational asset pricing models might be concerned with choosing the
“correct” pricing model or extracting factors that best explain the cross-sectional variation

in expected stock returns.?? Of course, having incorporated the asset pricing restriction,

29 Asset pricing-based models include consumption models, models such as the CAPM in which the single
factor is the excess return on the market portfolio, or the model proposed by Fama and French (1993), in
which there are two additional factors along with the market portfolio: the difference in returns between small
and large firms; and firms with high and low ratios of book-to-market. Factors can also be derived by the
asymptotic principal components of Connor and Korajczyk (1986), or via factor analysis (see, for example,
Chapter 6 in Campbell, Lo, and MacKinlay, 1997). Ferson and Harvey (1991), Ferson and Korajczyk (1995),
and Kirby (1998) examine whether predictability in stock returns is consistent with rational asset pricing

models.
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investors still encounter the uncertainty in selecting the information set.

The research conducted here was confined to a relatively simple setting. The objective is
to convey the basic concept of combining and selecting among models in financial economics
using a Bayesian model-selection based criterion with application to predictability in asset
returns. A straightforward extension is to focus on predictability in asset returns without
taking into account the multi-period portfolio decisions. In that case, posterior probabilities
of various models can be obtained analytically, and therefore, one does not have to resort
to simulation techniques which substantially restrict the number of pre-assigned variables

that can be included in the predictive regression.

The above-described extension is of great interest since the current evidence on the im-
portance of several variables in forecasting asset returns does not reflect a concensus view.
Building on our setting, one can include in a predictive regression a large number of informa-
tion variables such as macroeconomic variables, liquidity variables, several lagged returns,
etc. Computing posterior probabilities for all feasible linear forecasting models might shed
significant light on the ability of various variables to track time variation in expected stock

returns.

The analysis can also be extended by including returns on portfolios sorted on other
equity characteristics or by incorporating conditional heteroscedasticity for stock returns.
The nature of the underlying data-generating process might change over time, and hence,
regression parameters might be treated as time-varying rather than fixed. The linearity
of forecasting models can also be questioned. A challenging task would, therefore, be to

compute posterior probabilities for forecasting models that depart from normality, linearity,
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constant variance, and constant predictive-regression parameters. Finally, the methodol-
ogy developed here can be applied to other domains in financial economics where model

uncertainty is suspected of playing role in deriving quantities of interest.
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A Predictive Moments of the K-Period Excess Log Returns

Part A of the appendix derives the first two moments of the distribution of the K-period-

ahead cumulative excess log returns conditional on the regression parameters B and ¥ and

the investor’s data set ®.

Partitioning equation (11) yields

/ /
ap o« Urt
(rty2) = (1,2-1) e ,
ar Qg Uz,t
where
Ur,t YRR XR:
~N |0,
Uz,t EzR Ezz

It follows from equation (A.1) that:

/
rr4+1 = ar +apzr + Ug 41,

!
2ry1 = oz +azzr + U,y

R7.4 Kk, the cumulative excess return over the investment horizon, is computed as

K K

K
/
Rrix =) ripp = Kar+ap [ Y zrej |+ Urrigs
k=1 =1 =1

where zpy s is obtained by iterating equation (A.4):
J .
aryg = (@) = Iul(al = In) te + (al) 20 + D (al) U1y
j=1

Substituting equation (A.6) into equation (A.5) for J =1,... , K — 1 yields:

(A.2)

(A.3)

(A.4)

RT+K = Kap+ a'R [a; ((a;)K_l — IM) (a; — IM)_l — (K — I)IM] (a'z — IM)_IQ(ZA.'?)

K j—-1

K
+ dp (@) = In) () = In) 'or + D> ak(aly Ui+ Y Urrss

j=2 i=1 j=1

for K > 2. The results follow immediately.
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B The Decomposition of the Predictive Variance of Cumu-

lative Stock Returns

Decomposing the predictive variance Var{Rp;x|®} with respect to the model space and

using the law of iterated expectation, we obtain
J
Var{Ry. |0} = 37 P (M;[®) [Var (Br i Mj, @) + (3~ Bo{Aug, DA ~ Bo{Aug, 1| (B.1)
j=1
where \ = Z}'I:1 P (M;|®)Eo{Am,} and Eg is the expected value operator taken with
respect to the parameter space.

The total uncertainty about future returns is composed of the within-model (the first
factor on the right-hand side of equation B.1) and cross-model (the second factor) uncer-
tainty. The former is merely a mixture of variances from each candidate model. The latter
reflects the model uncertainty in forecasting stock returns, in that it measures the overall
variance of future returns attributable to the uncertainty about which of the forecasting
models investors should use.

Estimation risk or parameter uncertainty is an additional source of the ex ante stock-

return variance. The within-model parameter uncertainty can be obtained by decomposing

the within-model variance as follows:

Var{ Ry x| M;, o} (B.2)
- E@{Var [RT+K‘M.77 61)7 B7 Z]} + Var@{E [RT-&-K’Mja (I), Ba E]}7

= E@{TMj}+VaI‘@{)\Mj}.

The result follows immediately by substituting equation (B.2) into the first factor on the

right-hand side of equation (B.1).
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C The Posterior Distribution of Regression Parameters

This part of the appendix derives the full conditional pdfs of the regression parameters
P (B]E,B, c, cb) and P (3| B, Ho, vo, ®).

Multiplying the joint prior density (22) by the likelihood function (16) yields:

P (B,2|B, c, Ho,uo,c;b> (C.1)
% 1 ~ o
o BT exp (—§tr [S +(B-BYX'X(B—B)+ HO} 2—1>

< exp(-3(0- 5075 5).

The conditional posterior pdf for ¥ is easily obtained as:

Y|B, Hy, vp,® ~ W L[, 1], (C.2)
where
¥ = Hy+ (Y —-XB)(Y-XB), (C.3)
v = py+1T.

Following Zellner (1971) p. 227, equation (C.1) can be rewritten as:

P (B,2|[§, C, Ho, vo, q>) (C.4)
o [ e (g (s s ] - g [0 s e xx (- )
< e (5555 5).
where 8 = vec(B).

By completing the square on § it follows that the conditional posterior pdf for 3 given

> is multivariate normal with mean F and variance F' which are given by
E = 'ex'x+ch) [(2—1 ® X'X)8+ 03], (C.5)
F = O'ex'Xx+c) .
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At this stage we can apply the Gibbs sampler technique. A Gibbs sampling chain is

formed as follows (the notational dependence on prior parameters is suppressed):
1. Specify starting values B(?) ¥(9) and set i = 1.
2. Draw from the full conditional distributions:

e Draw B® from the conditional pdf P(B|X(~1 &)

e Draw X from the conditional pdf P(%|B®, ®)
3. Set t =i+ 1 and go to step 2.

After m iterations the sample B(™) (™) is obtained. Under mild regularity con-
ditions (see, for example, Tierney ,1994), the pairs (B(m),E(m)) converges in distribu-
tion to the relevant marginal and joint distributions. That is, P(B(™)|®) — P(B|®),
P(X(M)|®) — P(X|®), and P(B™),%(™)|®) — P(B,¥|®). When m is large enough, the G
values (B\), E(g))ng , are a sample from the joint posterior.

m+

D Drawing from the Predictive Distribution of Long-Horizon

Cumulative Excess Log Returns

The predictive density of the K-period cumulative excess log returns that incorporates
model uncertainty and parameter uncertainty within any forecasting model belonging to

M is given by (the prior-specific parameters are suppressed):
J
P(Rraxi®) =3 [ [ POUIOP (Rrsx|B. 2. M;, @) P (B.5]M;, 0)dSdB.

The joint posterior pdf, P (B,Y|M; , ®), has been analyzed in part C of the appendix.
The distribution of future excess returns given the regression parameters and the data
P (Rr4k|B, X, M;, ®) has been shown to obey the multivariate normal distribution whose

mean and variance are displayed in equation (18).
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Sampling from the predictive distribution of excess cumulative future returns is obtained
by first drawing a model belonging to the set M. Conditional upon the selected model, B
and Y are drawn from the joint posterior distribution using the Gibbs sampler algorithm, as
explained in part C of the appendix. Given B and X, we generate an N x 1 random vector
from the conditional distribution P (Rr4x|B,Y,®). Repeating this three-stage algorithm

yields a random sample from the exact weighted predictive distribution.

E Computing Marginal Likelihood and Posterior Probabili-
ties

In deriving the marginal likelihood, we closely follow the approach advocated by Chib
(1995). First, according to Bayes rule, the marginal likelihood function can be expressed as

(the notational dependence on prior parameters is suppressed):

P(szO‘Z7B)P(E7B)

P(Y. =
(¥>20) P (%, BJY, z0)

(E.1)

In our setting, the initial observation is assumed to be fixed and therefore P (Y, zo|%, B) =
P (Y%, B,zo). Note that P(Y,zg) does not depend on model parameters. Therefore, for
any (3, B) belonging to the parameter space, O, (take without loss of generality >*, B* €

©), the proposed estimate of the marginal likelihood, P(Y, zg), satisfies:
In{P(Y,29)} = InP (Y|¥*, B*,z0) + In P (X*, B*) — In P (X*, B*|Y, o). (E.2)

where P (Y |¥*, B*, z¢), P (X*,B*), and P (X*, B*|Y,xzg) are the likelihood function, the
joint prior, and the joint posterior estimated at ¥X* and B*, respectively.

At this stage most of the quantities needed to derive the marginal likelihood can be
evaluated. In particular, equations (22) and (16) specify the joint prior distribution and

likelihood function, respectively. The conditional posterior pdf for § given X is multivariate
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normal with mean E and variance F. It remains to evaluate the marginal pdf for > at »*.
We elaborate on this step below.
We denote the output from the Gibbs algorithm, as discussed in part C of the appendix,

by {B), Z(g)}’;jﬂ? .1+ Integrating out B from the joint posterior pdf yields

P(XlY) = /BP (3]Y,B) P (B|Y)dB. (E.3)
A Monte Carlo estimate of P (X|Y") at >* is obtained by
G
Pry) =Y (z*yY, B(g>) . (E.4)
g=1
This technique is known in the literature as the Rao-Blackwellization.?Y Under mild regu-
larity conditions P (X*]Y) %3 P (¥*]Y) as G — oo. (The notation a.s. denotes an almost
sure convergence. )
The marginal likelihood of the data will be utilized in computing Bayes factors for
hypotheses testing and calculating posterior probabilities, according to which models are
weighted. In the following, we provide all the quantities used in calculating the marginal

likelihood. The column-wise vectorization of B* is denoted by (*. For notational conve-

nience, the sum N + M is denoted by N.

A The Prior Pdfs for the Regression Parameters:

_ N(M+1)

P(8718,C) = 2m)=" = [CI R exp (—4(5" - BYC (8" - B) .

P (3*|Ho, v0) = (ﬁﬁwJ—M e

_ T\ -L 3 o
v, r [%HD | Ho|#[5~*2 exp (—LtrHox* 1) |
B The Likelihood Function of the Matrix Y:

¥ 1
P (Y|B*, X%, z0) = (21)"2 |2 7T exp (—§tr(Y — XB*Y(Y — XB*)E*—l) :

308ee, for example, Gelfand and Smith (1990).
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C The Full Conditional Posterior Pdfs for the Regression Parameters:

(2m) EH e (<38 - BYET (8 - B).

P (ﬁ*\E*,B, c, q>)

Z|
Z|

(N=1)

I

— _ -1 —
P (3*|BW, Hy, vy, ) = (2%7r [y, r [%]) (W@[5 |52 exp (= Ltrw @y 1)

where
EY — (z*—l ®X'X + O*l)_l [(2*—1 ® X'X)3 + C’”B} ,
F*o— (z**l ®X'X + 0—1)71 ,
w0 = Hy+ (Y — XBYY(Y — XBWY),

Recall that g denotes the output from the Gibbs algorithm. The estimate of the marginal

likelihood is obtained as:
I {P(Y,z0)} = W{P (Y[, B"x0)} +n{P(65,C)} +m{P('|Ho,v0)}

— {P (ﬂ*]E*, C.3,Y, xo)} —In {é EG: P (z*yB(g>,Ho, w,Y, xo)} .
g=1

An estimate for the Bayes factor of any two models M; and M, is obtained by

~

Bi; = exp {m(P(Y, 2ol M) — In(P(Y, xoyMj)} , (E.5)

and the posterior probability of M; is estimated as:

PM,j0) = —LLTIMIPM) PO 6
Sl P(Y 2o Mj)P(M;) 37 B, .

g
>
%
s

F The Predictive Distribution Associated with Independently

and Identically Distributed Stock Returns

Part F of the appendix derives the predictive distribution associated with the #d model of

stock returns taking the form r; = p+¢;, where prior beliefs about the regression parameters
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are non-informative:

P(u,02) o< (02)7, (F.1)

€

and the likelihood function of excess returns is proportional to

@) Fexp (~507 [0 = w6 = )] ) (r2)

T 952
20
with ¢ a T x 1 vector of ones and r = [r1,79,... ,7p].

The posterior distribution is obtained by multiplying the non-informative prior (F.1) by

the likelihood function (F.2) which results in the normal-inverted gamma posterior:

o 02
d~N g == F.3
e~ (1.5, (k.3

v 2
;’(D ~ X

e
where i = %Z;‘le re, Y = Zthl r?+Tp? and o =T — 1.

The predictive distribution integrates the conditional distribution of future cumulative
stock returns over the joint posterior density of the parameters p and o, which, in turn,
summarizes all the uncertainty about those parameters after observing the data. Specifi-

cally, the predictive distribution is obtained as:

P(Rrsxt®) = [ P(Rraxluo?.®) P (n.o?[®) do¥dn
Hy0¢

1 Ryyx — Kp)?
o(/ QUG_(T—H)GXP (_202 [¢+( T+KK 1) +T(u—ﬂ)2})d02du,
H,0¢ €
T
2
<
I
<,
W

d
K M

[1/) n (Rrix — Kp)? +T(M—ﬂ)2}

Sl

_ Rj _
(=T +K) + — 2 o - B°K| dp,

where

fi=(T+K) " [Rrix +AT).
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To integrate out o2, we used the properties of the inverted gamma probability density
function.
Integrating with respect to p and completing the square on Rpix, we show that the

predictive distribution under the id model obeys the form of a Student-t distribution:

v+1
[ T ] F [ F - 2172
B \V = |1+ = (Bryx — Ry ) (F.4)
rerg Ve v ( )
where
Rrix = Kf,
po_ v
K(K+T)yy

Using the properties of the Student-t probability density function, it can be shown that the
first two moments of the cumulative excess future return given the available data at time

T are:

E{Rryk|®} = Ry, (F.5)

v K(K+T)
-2 T

Var{RT+K|<1>} =

The reader may note that the annualized variance of cumulative returns is simply equal
to the sample variance scaled by the factor % That factor includes a component at
the magnitude of % corresponding to parameter uncertainty. That is, in the presence

of parameter uncertainty, the annualized predictive variance increases linearly with the

investment horizon.
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Table I
Descriptive Statistics of Predictive Variables and Excess Returns

The table shows descriptive statistics for the predictive variables. The statistics are computed based on
184 quarterly observations spanning the first quarter of 1953 to the last quarter of 1998. The book-to-
market (BM) is computed as the sum of fiscal year-end per share book-values of all stocks included in
the S&P Industrials divided by the contemporaneous level of the S&P Industrials price index. Dividend
yield (Div) is the total payments of dividends on the value-weighted NYSE portfolio over the recent twelve
months divided by the contemporaneous level of the index. The default spread (Def) is the difference in
annualized yields of Moody’s Baa and Aaa rated bonds. The trend-deviation-in-wealth (TDW) is computed
as ¢ —wag — (1 —w)ys, where ¢, at, and y; denote log of consumption, non-human wealth, and labor income,
respectively. The weight w equals the average share of non-human wealth in total wealth. TDW is in per-
capita terms, measured in 1992 dollars. The relative bill rate (Thill) is the difference between an annual
yield on a three-month Treasury bill and its one-year backward-moving average. Lastly, the term structure
slope (Term) is the difference in annualized yield of ten-year and one-year Treasury bills. The parameter p;
is the sample autocorrelation at lag ¢ months. The bottom part of the table exhibits the slope coefficients
in the multivariate regression of size portfolios on lagged instruments. We report slope coefficients of those
regressions. Standard deviations are displayed in parenthesis below the slopes.

Predictive Variables

Statistic BM Div Def TDW Thill Term

Means 0.5078 0.0363 0.9488 -0.0040 0.0012 0.0073

Standard Deviations 0.1790 0.0094 0.4436 0.0112 0.0203 0.0098

Contemporaneous Correlation with

BM 1

Div 0.9075 1

Def 0.4800 0.5089 1

TDW 0.2293 0.2864 0.1500 1

Thill 0.0143 0.0196  -0.2115  -0.1575 1

Term -0.2118  -0.0115 0.1309 0.3309  -0.4262 1

Autocorrelations:

03 0.9683 0.9474 0.9098 0.8325 0.4402 0.8549

06 0.9261 0.8715 0.8386 0.6554  -0.0295 0.7458

09 0.8853 0.8056 0.7763 0.4879  -0.0742 0.6455

P12 0.8545 0.7467 0.7077 0.3494  -0.0935 0.5370

060 0.5293 0.3260 0.3904 0.0159 0.0638 0.0151

Regression Coefficients and their Standard Deviations

Small 0.0369 0.8348 0.0060 1.6391 -0.4459 1.5019
(0.1393) (2.6546) (0.0276) (1.0239) (0.5556) (1.2761)

Mid 0.0182 1.6970 -0.0065 1.4721 -0.3170 1.6226
(0.1162)  (2.2146) (0.0230) (0.8542) (0.4635) (1.0646)

Large -0.0301 2.2122 -0.0051 0.9996 -0.0956 1.6289
(0.0899) (1.7125) (0.0178) (0.6605) (0.3584) (0.8232)



Table I1

The Highest-Posterior-Probability Models when Investors Consider the Events of
Predictability versus no Predictability as Equally Likely

The table shows estimated posterior probabilities for six non-zero-probability return forecasting models
computed for three prior specifications corresponding to training samples that include 45, 60, and 75 quar-
terly observations. (The training-sample length is denoted by the notation Tp.) A posterior probability is
estimated as:

P (Y, zo| Mi) P(M:)
7 P (Y, 20| M) P(M;)

where P (Y, zo| M) denotes the estimated marginal likelihood of the data conditioning upon Mj;, and P(M;)
denotes the pre-assigned prior probability. Assuming that (i) investors consider predictability or lack thereof
as equally likely ez ante, and (ii) conditional on having predictability, investors exhibit non-informative be-
liefs about the form that it takes, we associate a prior probability of 50% to the #id model and assign equally
the remaining 50% to all other models.

P (M;]®) =

The forecasting models presented below are distinguished by a unique combination of zeros and ones
designating exclusions and inclusions of predictive variables from the model, respectively. For example, the
first row corresponds to a model that retains only the trend-deviation-in-wealth and discards the remaining
predictors. The last column displays posterior probabilities obtained as simple averages of posterior proba-
bilities computed for the three training-sample lengths. Total' counts the appearance and Total? computes
the cumulative average probability for each predictive variable. To illustrate, Div appears in 2 combinations
whose cumulative average posterior probability is 27.03%.

Predictive Variables Probability (%)

Model BM Div Def TDW Thill Term To=45 To=60 7Tp =75 Average
1 0 0 0 1 0 0 11.03 65.23 46.64 42.25

2 0 1 0 1 0 0 47.04 1.67 0.03 15.13

3 0 0 0 0 0 0 1.77 6.37 36.56 15.10

4 0 0 0 1 0 1 13.81 16.12 8.67 12.90

5 0 1 0 0 0 1 26.22 9.09 1.73 11.90

6 0 0 1 1 0 0 0.13 1.52 6.37 2.72
Total' 0 2 i 1 0 2 100,00 100.00 100.00 _ 100.00

Total? 0% 27.03% 2.72% 73.00% 0.00% 24.80%
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Table III

The Highest-Posterior-Probability Models when Investors Allocate Prior Probabilities
Equally Across Models

The table shows estimated posterior probabilities for five non-zero-probability return forecasting models
computed for three prior specifications corresponding to training samples that include 45, 60, and 75 quar-
terly observations. (The training-sample length is denoted by the notation Tp.) A posterior probability is
estimated as:

P (Y, 20| Mi) P(M;)
71 P (Y 2ol My) P(My)]
where P (Y, 20| M;) denotes the estimated marginal likelihood of the data conditioning upon M; and P(M;)

denotes the pre-assigned prior probability. Assuming that investors consider the various return-forecasting
models as equally likely ex ante, we allocate prior probabilities equally across models.

P (M;]®) =

The forecasting models presented below are distinguished by a unique combination of zeros and ones
designating exclusions and inclusions of predictive variables from the model, respectively. For example, the
first row corresponds to a model that retains only the trend-deviation-in-wealth and discards the remaining
predictors. The last column displays posterior probabilities obtained as simple averages of posterior proba-
bilities computed for the three training-sample lengths. Total' counts the appearance and Total? computes
the cumulative average probability for each predictive variable. To illustrate, Div appears in 2 combinations
whose cumulative average posterior probability is 28.55%.

Predictive Variables Probability (%)

Model BM Div Def TDW Thill Term To=45 To=60 7Tp =75 Average
1 0 0 0 1 0 0 11.23 69.67 73.52 52.50

2 0 1 0 1 0 0 47.89 1.78 0.05 15.75

3 0 0 0 1 0 1 14.05 17.22 13.67 15.08

4 0 1 0 0 0 1 26.70 9.70 2.72 12.80

5 0 0 1 1 0 0 0.13 1.63 10.04 3.87
Total' 0 2 i 1 0 2 100,00 100.00 100.00 _ 100.00

Total? 0% 28.55% 3.87T% 87.20% 0.00% 27.88%
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Plot A: z=Book-to-market
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Plot C: z=Default Spread
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Figure 1 - The Evolution of the Predictive Variables Over the 1953-1998 Sample Pe-

riod.

Figure 1 plots book-to-market, dividend yield, default spread, trend-deviation-in-wealth, relative
Treasury bill, and term structure slope for quarterly observations spanning the first quarter of 1953

through the fourth quarter of 1998.
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Figure 2 - The Decomposition of Future Stock-Return Variances Plotted against the
Investment Horizon in Years when Investors Consider the Events of Predictability ver-
sus no Predictability as Equally Likely.

The three plots on the left display the decompositions of annualized variances of small, medium,
and large capitalization firms into three components, including the cross-model uncertainty and
the mixture of within-model parameter uncertainty. The solid lines show the annualized variances
computed based on the weighted model. The dashed lines correspond to the variances that include
the within-model parameter uncertainty, but not the cross-model uncertainty. The dash/dot lines
display a mixture of variances from any candidate model such that within each model, the variances
are computed as though the model-specific parameters were known. The difference between the
solid and dashed lines constitutes the model-uncertainty component, and the difference between the
dashed and dash/dot lines constitutes the mixture of parameter uncertainty component. The three
plots on the right exhibit ratios of variances obtained by dividing the model-uncertainty component
by the parameter-uncertainty counterpart for each of the three capitalization firms.
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Figure 3 - The Decomposition of Future Stock-Return Variances Plotted against the In-
vestment Horizon in Years when Investors Allocate Prior Probabilities Equally Across
Models.

The three plots on the left display the decompositions of annualized variances of small, medium,
and large capitalization firms into three components, including the cross-model uncertainty and
the mixture of within-model parameter uncertainty. The solid lines show the annualized variances
computed based on the weighted model. The dashed lines correspond to the variances that include
the within-model parameter uncertainty, but not the cross-model uncertainty. The dash/dot lines
display a mixture of variances from any candidate model such that within each model, the variances
are computed as though the model-specific parameters were known. The difference between the
solid and dashed lines constitutes the model-uncertainty component, and the difference between the
dashed and dash/dot lines constitutes the mixture of parameter uncertainty component. The three
plots on the right exhibit ratios of variances obtained by dividing the model-uncertainty component
by the parameter-uncertainty counterpart for each of the three capitalization firms.
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Figure 4 - The Decomposition of Future Stock-Return Variances Plotted against the
Investment Horizon in Years when the Current Values of the Predictive Variables are
Set Equal to their Sample Means.

The plots display the decompositions of annualized variances of small, medium, and large capi-
talization firms into three components, including the cross-model uncertainty and the mixture of
within-model parameter uncertainty. The predictive annualized variance is computed when the cur-
rent values of the predictive variables are set equal to their sample means. The solid lines show the
annualized variances computed based on the weighted model. The dashed lines correspond to the
variances that include the within-model parameter uncertainty, but not the cross-model uncertainty.
The dash/dot lines display a mixture of variances from any candidate model such that within each
model, the variances are computed as though the model-specific parameters were known. The dif-
ference between the solid and dashed lines constitutes the model-uncertainty component, and the
difference between the dashed and dash/dot lines constitutes the mixture of parameter uncertainty
component.
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Figure 5 - Total Asset Allocations to Equities Based on Different Models Plotted against
the Investment Horizon in Years for an Investor Following a Buy-and-Hold Strategy
with a Power Utility Function and a Relative Risk-Aversion Coefficient Equal to ~.
The Current Values of the Predictive Variables are Equal to Actual Realizations.
Figure 5 displays total allocations to equities based on the weighted model, for the equal-prior-
probability scenario (solid lines) and the non-equal-prior scenario (dotted lines), the all-inclusive
model (dash/dot lines), the highest-posterior-probability model (dashed lines), and the iid model
(the lines denoted by the symbol ‘*’). Asset allocations are computed for investment horizons ranging
from one to ten years and relative risk-aversion coefficients of two, six, and ten.
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Figure 6 - Total Asset Allocations to Equities Based on Different Models Plotted against
the Investment Horizon in Years for an Investor Following a Buy-and-Hold Strategy
with a Power Utility Function and a Relative Risk-Aversion Coefficient Equal to ~.
The Current Values of the Predictive Variables are Equal to their Sample Means.
Figure 6 displays total allocations to equities based on the weighted model (solid lines), the all-
inclusive model (dash/dot lines), the highest-posterior-probability model (dashed lines), and the ¢id
model (the lines denoted by the symbol ‘*’). Asset allocations are computed for investment horizons
ranging from one to ten years and relative risk-aversion coefficients of two, six, and ten.
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Figure 7 - Optimal Allocations to Size-Sorted Portfolios Plotted against the Investment
Horizon in Years for an Investor Following a Buy-and-Hold Strategy, with a Power Util-
ity Function and a Relative Risk-Aversion Coefficient Equal to 7.

Figure 7 displays the optimal allocations to stocks for the weighted model (solid lines) and the iid
(dashed lines) model. Asset allocations associated with the weighted model are computed when the
current values of the predictive variables are set equal to their sample means. The plots on the
left display total allocations to equities. The decomposition of the total allocations is given by the
allocation to small and large capitalization stocks: the three plots on the center and right, respec-
tively. The investment in medium size stocks for every length of horizon and relative risk aversion
coefficient is zero.

65



References

Akaike, H., 1974, “A New Look at the Statistical Model Identification,” IEEE Transactions
on Automatic Control AC-19, 716-723.

Barberis, N., 1999, “Investing for the Long Run when Returns are Predictable,” Journal
of Finance, forthcoming.

Bawa Vijay, Stephen Brown, and Roger Klein, 1979. Estimation Risk and Optimal Port-
folio Choice (North Holland, Amsterdam.).

Berger, J.O., and L.R. Pericchi, 1996, “The Intrinsic Bayes Factor for Model Selection and
Prediction,” Journal of the American Statistical Association 91, 109-122.

Bossaerts, P., and P. Hillion, 1999, “Implementing Statistical Criteria to Select Return
Forecasting Models: What Do We Learn?”, The Review of Financial Studies 12, 405-
428.

Bossaerts, P., and R. Green, 1989, “A General Equilibrium Model of Changing Risk Pre-
mia: Theory and Tests,” The Review of Financial Studies 2, 231-263.

Boudoukh, J., M. Richardson, and R. Whitelaw, 1997, “Nonlinearities in the Relation
Between the Equity Risk Premium and the Term Structure,” Management Science 3,
371-385.

Box, G.E.P., 1980, “Sampling and Bayes’ Inference in Scientific Modeling,” Journal of the
Royal Statistical Society [A] 143, 383-430.

Box, G.E.P., and G.C. Tiao, 1997. Bayesian Inference in Statistical Analysis (Addison-
Wesely, Reading, MA.).

Brandt, M., 1999, “Estimating Portfolio and Consumption Choice: A Conditional Euler
Equations Approach,” Journal of Finance, forthcoming.

Brennan, M., E. Schwartz, and R. Lagnado, 1997, “Strategic Asset Allocation,” Journal
of Economic Dynamic and Control 21, 1377-1403.

Campbell, J., 1987, “Stock Returns and the Term Structure,” Journal of Financial Eco-
nomics 18, 373-399.

Campbell, J., 1993, “Intertemporal Asset Pricing without Consumption Data,” American
Economic Review 83, 487-512.

Campbell, J., and R., Shiller, 1988a, “The Dividend-Price Ratio and Expectations of
Future Dividends and Discount Factors,” The Review of Financial Studies 1, 195-227.

Campbell, J., and R., Shiller, 1988b, “Stock Prices, Earnings, and Expected Dividends,”
Journal of Finance 43, 661-676.

Campbell, J., and G., Mankiw, 1989, “Consumption, Income and Interest Rates: Rein-
terpreting the Time Series Evidence,” in Olivier J. Blanchard and Stanley Fischer
(Eds.), NBER Macroeconomics Annual Cambridge, Mass, MIT Press, 185-216.

Campbell, J., A. Lo, and A.C. MacKinlay, 1997. The Econometrics of Financial Markets
(Princeton.).

Campbell, J., and L. Viceira, 1999, “Consumption and Portfolio Decisions when Expected
Returns are Time Varying,” Working paper, Harvard University.

66



Chen, N., 1991, “Financial Investment Opportunities and the Macroeconomy,” Journal of
Finance 46, 529-554.

Chib, S., 1995, “Marginal Likelihood From the Gibbs Output,” Journal of the American
Statistical Association 90, 1313-1321.

Chib, S., and E. Greenberg, 1996, “Markov Chain Monte Carlo Simulation Methods in
Econometrics,” Econometric Theory 12, 409-431.

Connor, G., and R. Korajczyk, 1986, “Performance Measurement with the Arbitrage Pric-
ing Theory: A new Framework for Analysis,” Journal of Financial Economics 15,
373-394.

Fama, E., and K. French, 1988, “Permanent and Temporary Components of Stock Prices,”
Journal of Political FEconomy 96, 246-273.

Fama, E., and K. French, 1989, “Business Conditions and Expected Returns on Stocks
and Bonds,” Journal of Financial Economics 19, 3-29.

Fama, E., and K. French, 1993, “Common Risk Factors in the Returns on Stock and
Bonds,” Journal of Financial Economics 33, 3-56.

Ferson, W., and C. Harvey, 1991, “The Variation in Economic Risk Premiums,” Journal
of Political Economy 99, 385-415.

Ferson, W., and R. Korajczyk, 1995, “Do Arbitrage Pricing Models Explain the Pre-
dictability of Stock Returns?,” Journal of Business 68, 309-349.

Frost, P., and J. Savarino, 1986, “An Empirical Bayes Approach to Efficient Portfolio
Selection,” Journal of Financial and Quantitative Analysis 21, 293-305.

Gelfand, A.E., and A.F.M., Smith, 1990, “Sampling-Based approaches to Calculating
Marginal Densities,” Journal of the American Statistical Association 85, 398-409.

Geman, S., and D. Geman, 1984, “Stochastic Relaxation, Gibbs Distribution and the
Bayesian Restoration of Images,” IEEE Transaction on Pattern Analysis and Machine
Intelligence 12, 609-628.

Jeffreys, H., 1961. Theory of Probability (Oxford University Press.).

Jobson, J.D., and R. Korkie, 1980, “Estimation for Markowitz Efficient Portfolios,” Journal
of the American Statistical Association 75, 544-554.

Kandel, S., and R. Stambaugh, 1996, “On the Predictability of Stock Returns: An Asset
Allocation perspective,” Journal of Finance 51, 385-424.

Kass, R., and A.E. Raftery, 1995, “Bayes Factors,” Journal of the American Statistical
Association 90, 773-795.

Keim, D., and R. Stambaugh, 1986, “Predicting Returns in the Stock and the Bond
Markets,” Journal of Financial Economics 17, 357-390.

Kirby, C., 1998, “The Restriction on Predictability Implied by Rational Asset Pricing
Models”, The Review of Financial Studies 11, 343-382.

Kothari, S.P., and J. Shanken, 1997, “Book-to-Market, Dividend Yield, and Expected
Market Returns: A Time Series Analysis,” Journal of Financial Economics 44, 169-
203.

67



Lettau, M., and S., Ludvigson, 1999, “Consumption, Aggregate Wealth and Expected
Stock Returns”, Federal Reserve Bank of New York, Staff Report No. 77.

Leamer, E.E., 1978. Specification Searches: Ad Hoc Inference with Non-Experimental Data
(John Wiley, New York, NY.).

Leamer, E.E., 1983, “Let’s Take the Con out of Econometrics,” American Economic Review
73, 31-43.

Lo, A., and A.C. MacKinalay, 1997, “Maximizing Predictability in the Stock and Bond
Markets,” Macroeconomic Dynamics 1, 131-170.

McCulloch R., and P.E. Rossi, 1991, “A Bayesian Approach to Testing the Arbitrage
Pricing Theory,” Journal of Econometrics 49, 141-168.

Moreno, E., F. Bertolino, and W. Racugno, 1998, “An Intrinsic Limiting Procedure for
Model Selection and Hypotheses Testing,” Journal of the American Statistical Asso-
ctation 93, 1451-1460.

Moulton, B.R., 1991, “A Bayesian Approach to Regression Selection and Estimation, with
Application to a Price Index for Ratio Services,” Journal of Econometrics 49, 169-193.

Pastor, L., and R. Stambaugh, 1999, “Comparing Asset Pricing Models: An Investment
Perspective,” Journal of Financial Economics, forthcoming.

Pesaran, M.H., and A. Timmermann, 1995, “Predictability of Stock Returns: Robustness
and Economic Significance,” Journal of Finance, 50, 1201-1228.

Poirier, D.J., 1995. Intermediate Statistics and Econometrics (MIT Press, Cambridge,
MA.).

Pontiff, J., and L.D. Schall, 1998, “Book-to-Market Rations as Predictors of Market Re-
turns,” Journal of Financial Economics 49, 141-160.

Raftery, A.E., D. Madigan, and J. Hoeting, 1997, “Bayesian Model Averaging for Linear
Regression Models,” Journal of the American Statistical Association 92, 179-191.

Rothenberg, T.J., 1963, “A Bayesian Analysis of Simultaneous Equation Systems,” Report
6315, Econometric Institute, Netherlands School of Economics, Rotterdam.

Schwarz, G., 1978, “Estimating the Dimension of Model,” emAnnals of Statistics 6, 416-
464.

Stambaugh, R., 1986, “Bias in Regressions with Lagged Stochastic Regressors,” working
paper, University of Chicago, Chicago, 1L.

Stambaugh, R., 1999, “Predictive Regressions,” Journal of Financial Economics, forth-
coming.

Tierney, L., 1994, “Markov Chains for Exploring Posterior Distributions,” Annals of Statis-
tics 22, 1701-1762.

Zellner, A., 1971. An Introduction to Bayesian Inference in Econometrics (John Wiley
and Sons, New-York.).

Zellner, A., and V.K. Chetty, “Prediction and Decision Problem in Regression Models from
the Bayesian Point of View,” 1965, Journal of the American Statistical Association
60, 608-615.

68



