
The Rodney L. White Center for Financial Research

Equilibrium Mispricing in a Capital Market
with Portfolio Constraints

Suleyman Basak
Benjamin Croitoru

017-99

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6773555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Rodney L. White Center for Financial Research
The Wharton School

University of Pennsylvania
3254 Steinberg Hall-Dietrich Hall

3620 Locust Walk
Philadelphia, PA  19104-6367

(215) 898-7616
(215) 573-8084 Fax

http://finance.wharton.upenn.edu/~rlwctr

The Rodney L. White Center for Financial Research is one of the oldest financial research centers in the
country.  It was founded in 1969 through a grant from Oppenheimer & Company in honor of its late
partner, Rodney L. White.  The Center receives support from its endowment and from annual
contributions from its Members.

The Center sponsors a wide range of financial research.  It publishes a working paper series and a reprint
series.  It holds an annual seminar, which for the last several years has focused on household financial
decision making.

The Members of the Center gain the opportunity to participate in innovative research to break new ground
in the field of finance.  Through their membership, they also gain access to the Wharton School’s faculty
and enjoy other special benefits.

Members of the Center
1999 – 2000

Directing Members

Ford Motor Company Fund
Geewax, Terker & Company
Miller, Anderson & Sherrerd

The New York Stock Exchange, Inc.
Twin Capital Management, Inc.

Members

Aronson + Partners
Credit Suisse Asset Management

EXXON
Goldman, Sachs & Co.

Merck & Co., Inc.
The Nasdaq Stock Market Educational Foundation, Inc.

Spear, Leeds & Kellogg

Founding Members

Ford Motor Company Fund
Merrill Lynch, Pierce, Fenner & Smith, Inc.

Oppenheimer & Company
Philadelphia National Bank

Salomon Brothers
Weiss, Peck and Greer

http://finance.wharton.upenn.edu/~rlwctr


Equilibrium Mispricing in a Capital Market
¤with Portfolio Constraints

Suleyman Basak Benjamin Croitoru
Finance Department Finance Department
The Wharton School The Wharton School

University of Pennsylvania University of Pennsylvania
Philadelphia, PA 19104-6367 Philadelphia, PA 19104-6367

Tel: (215) 898-6087 Tel: (215) 557-9426
Fax: (215) 898-6200 Fax: (215) 557-9426

basaks@wharton.upenn.edu croito32@wharton.upenn.edu

This revision: October 12, 1998

¤We are grateful to Bernard Dumas (the editor), two anonymous referees, Domenico Cuoco, J¶erôme Detemple,
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Equilibrium Mispricing in a Capital Market
with Portfolio Constraints

Abstract

This paper develops a general equilibrium, continuous time model where portfolio constraints gen-

erate mispricing between redundant securities. Constrained consumption-portfolio optimization

techniques are adapted to incorporate redundant, possibly mispriced, securities. Under loga-

rithmic preferences, we provide explicit conditions for mispricing and closed-form expressions

for all economic quantities. Existence of an equilibrium where mispricing occurs with positive

probability is veri¯ed in a speci¯c case. In a more general setting, we demonstrate the necessity

of mispricing for equilibrium when agents are heterogeneous enough. The construction of a rep-

resentative agent with stochastic weights allows us to characterize prices and allocations, given

mispricing occurs.

Journal of Economic Literature Classi¯cation Numbers: C60, D52, D90, G12.



1. Introduction

The paradigm of no-arbitrage is central in modern ¯nance, yet the violation of \textbook" no-

arbitrage implications is a common feature of actual ¯nancial markets. For example, most empir-

ical studies (Canina and Figlewski (1995)) have found stock index futures to exhibit \mispricing"

(deviations from the cost of carry model); Neal (1993) reported the resulting index arbitrage to

constitute 47.5 % of the observed program trading (itself estimated by the NYSE (1992) to make

up 11.5 % of total volume). Other examples of frequently mispriced securities include primes and

scores (Jarrow and O'Hara (1989)), closed-end funds (Ponti® (1996)), etc.. Financial economics

has surprisingly little to say about such phenomena. Some literature exists on optimal behavior

in the presence of mispricing (Brennan and Schwartz (1990), Tuckman and Vila (1992)), but

there the mispricing is taken as exogenous. Not much is known on how arbitrage opportunities

arise; Brennan and Schwartz (1990) conclude: \the real challenge remains to endogenize [the

arbitrage opportunity]." Indeed, in perfect markets arbitrage opportunities are inconsistent with

equilibrium. In the more realistic context of imperfect markets, however, mispricing (in the

sense of discrepancies between the prices of ostensibly equivalent securities) may be consistent

with equilibrium, so more can be said about its source. While some price discrepancies typically

disappear quickly, others tend to exhibit a systematic and persistent character that suggests

an economic rationale for the mispricing. Our objective is to explore this idea by developing a

general equilibrium model in which \mispricing" is generated endogenously and agents indulge

in limited arbitrage activity.

We work in a pure-exchange, continuous-time framework with two heterogeneous agents. For

the most part, we assume logarithmic preferences for both agents, diverging beliefs being used

to generate trade. However, much in our analysis is valid for more general preferences, and we

highlight the extension to this case. The imperfection we introduce is constrained portfolio hold-

ings in the risky securities: a positive net supply dividend-paying \stock", and a zero net supply

\derivative", with perfectly correlated prices. The mispricing then arises as an integral part of

the equilibrium, in that it is required to clear markets. We mainly assume the simplest, bare

minimum of constraints required to illustrate our point: a strictly positive upper bound on the

proportion of wealth invested in the derivative and a no-short sales constraint on the stock. We

show, however, that most of the analysis is equally valid for more general constraints. Mispric-

ing between the risky securities is captured by their exhibiting distinct market prices of risk or,

equivalently, distinct de°ator processes (implying, for example, that securities paying identical

dividend processes would trade at di®erent prices), generating a riskless arbitrage opportunity.

We show, however, that prices of such \mispriced" securities in fact accurately re°ect shadow

costs faced by rational agents.

Our agents' optimization problem is non-standard in three respects: (i) the constraints on

portfolio holdings; (ii) redundancy in the risky securities; (iii) the mispricing. This adds two extra

layers to the standard optimization methodology. First we exploit agents' monotonic preferences
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to convert the constrained problem into an unconstrained, but policy-dependent problem with a

single, composite risky asset. Under mispricing, an agent always adds to his portfolio as much of

a (riskless, costless) arbitrage position as allowed by the constraints, hence uniquely determining

the allocation between derivative and stock. Our second additional step is to adapt the convex

duality approach of Cvitanic and Karatzas (1992) to deal with the policy-dependent drift of

the composite asset. This approach involves embedding the original non-linear problem into a

family of perfect (linear, unconstrained, non-redundant) \¯ctitious" markets, designed so that

the optimal policy in one of the ¯ctitious markets coincides with that in the original market. An

agent e®ectively faces an individual-speci¯c state-price density, and a market price of risk lying

between those of the mispriced risky securities and coinciding with any security in which he is in

the interior. The problem bears some resemblance to those of costly short sales and of diverging

borrowing and lending rates, as studied by Jouini and Kallal (1995) (in determining no-arbitrage

prices) and Cvitanic and Karatzas (1992), Tepla (1997) (in portfolio optimization).

The construction of equilibrium is achieved by introducing a representative agent with stochas-

tic weights for the two agents (Cuoco and He (1994), Detemple and Serrat (1998)). The weights

act as a proxy for the possibly di®erential constraints binding on the two agents (in addition

to re°ecting any divergence in beliefs). The weighting process is explicitly characterized, and

shown to limit risk redistribution, as should the constraints. Unlike comparable models such as

Karatzas, Lehoczky and Shreve (1990), clearing in the good market alone does not guarantee

clearing in the ¯nancial markets. In the presence of redundant securities, it is also necessary to

verify that one of the risky securities markets clears, and it is this that determines the mispricing.

A major result is that mispricing must occur in equilibrium unless the equilibrium, in an

otherwise identical economy without portfolio constraints, would never have deviated outside

our portfolio constraints. Accordingly, mispricing must occur whenever agents are heterogeneous

enough in their risk-taking, and its magnitude increases in agents' heterogeneity. For our simplest

case of one-sided constraints, mispricing arises with only one sign: a higher market price of risk

for the security having the upper bound.

Under logarithmic preferences, explicit expressions are provided for all quantities, and exis-

tence of an equilibrium where mispricing occurs with positive probability is veri¯ed under some

speci¯c conditions. The mispricing manifests itself in an increase in the market price of risk of

the derivative. We show the region and magnitude of mispricing to be larger when the derivative

is more tightly constrained. It is also larger when wealth is shared more evenly across agents.

Rather surprisingly, the result that mispricing takes on only one sign is shown to extend to the

two-sided constraints case. Heterogeneous (across agents) or stochastic constraints break this

implication.

Intuition is provided for the role of mispricing in clearing markets. When the agents di®er

highly, the more optimistic agent (or, more generally, the less risk-averse) desires a very high level

of risk-taking, while the more pessimistic desires a very low level. Due to the constraints, only the

stock may be used for high levels of risk-taking, while only the derivative can be shorted to reach
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low levels. Thus, there will be excess demand in the stock and too low a demand in the derivative,

so, to clear markets, the stock's market price of risk must go down, and the derivative's must go

up. Hence the mispricing and, since under logarithmic preferences the stock price is independent

of constraints, a concurrent increase in the interest rate. In short, the role of the mispricing

is to limit agents' heterogeneity in portfolio demands, notwithstanding their heterogeneity in

beliefs or risk aversion. The agents' market prices of risk, and hence consumption volatilities are,

accordingly, seen to diverge less than in the unconstrained economy.

The mispricing entices the more optimistic agent to perform a riskless arbitrage trade (bounded

by the constraint on derivative holdings) by substituting the more favorable security for the less

favorable, cashing in a pro¯t proportional to the mispricing. The mispricing per se bene¯ts him

since he is the agent long in the favorable derivative. However, he is also the net borrower (via

the bond), so the increase in interest rate hurts him while bene¯ting the other agent. The welfare

e®ects of the constraints are, thus, ambiguous.

Our work sheds some light on the controversy surrounding the alleged destabilizing e®ects of

arbitrage activity. A common perception is that stock index arbitrage aggravated the 1987 crash,

which led to the introduction of trading curbs on the NYSE in 1988 (to limit program trading).

Our results, however, suggest that some types of arbitrage may play a valuable role, improving

risk-sharing by allowing market-clearing notwithstanding large investor diversity. Our work also

complements the literature on the e®ects of ¯nancial innovation (e.g., Zapatero (1998)), in that

we study the e®ect of adding a derivative security to a constrained economy. We show that for a

given wealth distribution, most quantities (interest rate, market prices of risk, agents' portfolio

holdings and consumption volatilities) of our economy lie between those of the unconstrained

economy and that with only a constrained stock. Hence, the derivative alleviates the constraints,

but only partially. The higher the volatility of the derivative, the more it relieves the constraints.

The closest papers to ours are Chen (1995) and Detemple and Murthy (1997). Chen (1995),

in a one-period setting, models the discrepancy between the \equilibrium price function" and the

\natural" no-arbitrage price (minimum hedging cost) of a derivative security, due to portfolio

constraints on the primary securities. His equilibrium price function is de¯ned as the maximum

cost that some rational agent will pay to an innovator, to hold a small quantity of the derivative.

Since he assumes the equilibrium allocations (and hence state prices) are una®ected by the

derivative, the trading volume therein is limited to be in¯nitesimal; hence he obtains a mispricing

without explicit constraint on the derivative. In contrast, we account for the allocational role of

the derivative.

Detemple and Murthy's (1997) setting is closer to ours and, even though our objectives are

somewhat di®erent, our results extend and complement theirs. Their main object of interest is

equilibrium with a constrained stock, but in the absence of a derivative security. The standard

MRS-based valuation fails, but it remains possible to use a state-price density to value the (single)

risky security, apparently ruling out mispricing. We show that caution should be exercised in

extending this result to the case where a constrained, redundant derivative is present: our notion
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of mispricing implies that there does not exist a single de°ator that prices all risky securities

(each has its own de°ator). In addition, Detemple and Murthy (1997) demonstrate that under

constraints \no-arbitrage may fail to price [attainable] payo®s", and provide a condition for this

failure, namely when the presence of an (attainable) derivative enables one agent to circumvent

the constraints. The valuation of the stock and the derivative then becomes a joint problem,

because the derivative plays an allocational role. (The one-period model of Detemple and Selden

(1991), where the introduction of a stock option modi¯es the marketed space, makes a similar

point.) The authors, however, do not go that step further to investigate the joint problem.

Equilibrium mispricing is not exhibited, because it is not shown whether no-arbitrage pricing

still fails in the subsequent equilibrium with the derivative (taking into account the allocational

consequences of its introduction). We extend their analysis by constructing an economy where

mispricing between redundant securities subsists in equilibrium, which is a novelty.

A somewhat related paper is Dumas (1992), who generates \mispricing", but in the good

market (as purchasing-power-parity deviations) via transaction costs rather than constraints.

Delgado and Dumas (1994) also use transaction costs, but specify the mispricing exogenously and

show it may persist in equilibrium. The mispricing is not shown to be necessary for equilibrium.

In the one-period model of Zigrand (1997), strategic arbitrageurs exploit mispricing between

assets trading on several exchanges. He focuses on the e®ect of competition among arbitrageurs

rather than on the mispricing as here. The \risky arbitrage" literature, including De Long,

Shleifer, Summers and Waldmann (1990), Dow and Gorton (1994) and Shleifer and Vishny (1997),

employs highly specialized models (with overlapping generations, irrational noise traders and/or

asymmetric information) leading to mispricing that is exploited via risky arbitrage strategies.

Our paper derives mispricing under a more standard environment, requiring only constraints on

heterogeneous rational agents.

Section 2 of the paper describes our model, and Section 3 presents our technique for consumption-

portfolio optimization. Section 4, under logarithmic preferences, demonstrates the necessity of

mispricing for equilibrium, and characterizes the equilibrium. Section 5 highlights the exten-

sion to general preferences, while Section 6 examines the modi¯cation to two-sided constraints.

Section 7 concludes and the Appendix provides all proofs.

2. The Economy

We consider a continuous-time, pure-exchange economy with a ¯nite horizon [0; T ]. There is a

single consumption good which serves as the numeraire.

2.1. Information Structure and Agents' Perceptions

The uncertainty is represented by the ¯ltered probability space (­;F ; fF g;P) on which is de¯nedt

Wa one-dimensional Brownian motionW . Letting fF g denote the augmented ¯ltration generatedt
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Wby W , and H a ¾-¯eld independent of F , the complete information ¯ltration fF g is thetT
Waugmentation of the ¯ltration H£ fF g.t

Two agents (i = 1; 2) commonly observe the exogenous dividend ± > 0, which follows

d±(t) = ±(t)[¹ (t) dt+ ¾ (t)dW (t)]: (2.1)± ±

2 1The mean growth ¹ is assumed to be fF g-progressively measurable and in L (P); ¹ (0) ist± ±

H-measurable. We restrict ¾ to be bounded above and below away from zero and, to keep±

± ±the agents' ¯ltering tractable, fF g-progressively measurable, where fF g denotes the ¯ltrationt t

generated by ±.

±The agents observe ±, having the incomplete information ¯ltration F ½ F ; t 2 [0; T ]. Theytt

deduce ¾ from the quadratic variation of ±, but can only draw inferences about ¹ . Agents have± ±

iequivalent probability measures P ; i = 1; 2, also equivalent to P, which may disagree on H, so

that agents have heterogeneous prior beliefs. Agents update their beliefs about ¹ in a Bayesian±

i i ± i ifashion, via ¹ (t) = E [¹ (t)jF ], where E [¢] denotes the expectation relative to P . Due to their± t±
2heterogeneous priors, agents may draw di®erent inferences about ¹ at all times.±

iThe innovation process W induced by agent i's beliefs and ¯ltration is

· ¸ i1 d±(t) ¹ (t)¡ ¹ (t)±i i ±dW (t) ´ ¡ ¹ (t)dt = dW (t) + dt ; i = 1; 2: (2.2)±¾ (t) ±(t) ¾ (t)± ±

iThe innovation process of each agent is such that given his perceived growth of the dividend, ¹ ,±
the observed dividend obeys

i id±(t) = ±(t)[¹ (t) dt+ ¾ (t) dW (t)]; i = 1; 2: (2.3)±±

i± W iThe agents' information and innovation ¯ltrations coincide, fF g = fF g ´ fF g, assum-t t t

ing (2.3) has a strong solution. E®ectively, each agent is endowed with the probability space
i i i i(­;F ; fF g;P ); by Girsanov's theorem, W is a Brownian motion on that space. Equationt

(2.2) implies that the agents' innovations are related by

1 2¹ (t)¡ ¹ (t)2 1 ± ±dW (t) = dW (t) + ¹¹(t)dt ; ¹¹(t) ´ : (2.4)
¾ (t)±

±The fF g-progressively measurable process ¹¹ parametrizes agents' disagreement on the meant

dividend growth rate, normalized by its risk. ¹¹(t) is positive when agent 1 is more optimistic,

and conversely. ¹¹ follows directly from the exogenous agents' priors and dividend process, with

no equilibrium restrictions imposed on it, so we may treat it as exogenous (Basak (1998)).

Heterogeneity in beliefs is not a central feature of our model, but is required to generate trade

when both agents exhibit identical constant relative risk aversion (e.g., logarithmic) preferences.
h iR T1 2 2A process ® is in L (P) if E ®(t) dt <1, where the expectation is taken with respect to P.

0
2 WThe only role of H is to allow for heterogeneity in agents' priors; F must then be non-trivial (unlike F ).0 0
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2.2. Securities Market

Trading may take place continuously in three securities. There is a stock in constant net supply

of 1, paying a continuous dividend at rate ±. Its price S has dynamics

dS(t) + ±(t)dt = S(t)[¹ (t) dt+ ¾ (t)dW (t)] (2.5)S S

i i= S(t)[¹ (t) dt+ ¾ (t)dW (t)]; i = 1; 2: (2.6)SS

There exists a riskless bond in zero net supply, paying no dividends, with price dynamics

dB(t) = B(t)r(t)dt:

There also exists a zero net supply \derivative", paying no dividends, with price process

dP (t) = P (t)[¹ (t)dt+ ¾ (t)dW (t)] (2.7)P P

i i= P (t)[¹ (t)dt+ ¾ (t)dW (t)]; i = 1; 2: (2.8)PP

i iThe interest rate r, the perceived drifts ¹ , ¹ , and the volatilities ¾ , ¾ are posited to beS PS P
± i i 2 ifF g-progressively measurable, with r, ¹ , ¹ in L (P ) and ¾ , ¾ bounded above and belowS Pt S P

3 2away from zero. ¹ , ¹ are in L (P) and fF g-progressively measurable. All price coe±cientsS P t

are to be determined endogenously in equilibrium, except ¾ , taken as exogenous; ¾ de¯nes theP P

¯nancial contract P since this security does not pay dividends. For a zero net supply security

there is no substantial di®erence between dividends and price changes; both are transfers between

agents, so for tractability we assume P pays no dividends. Any zero net supply security whose

price is continuously resettled (e.g., a futures contract) is an example of this \idealized" derivative.

Agents observe the risky security prices, but do not observe the mean returns and so draw
i itheir own inferences, ¹ and ¹ . Equation (2.2) and price-agreement across agents imply theS P

following \consistency" relationships between the perceived security price drifts:

1 2 1 2¹ (t)¡ ¹ (t) = ¾ (t)¹¹(t) ; ¹ (t)¡ ¹ (t) = ¾ (t)¹¹(t) : (2.9)S PS S P P

Since the underlying Brownian motion is one-dimensional, the three securities are one more

than needed to complete the market with respect to the agents' information ¯ltration, making

P redundant. However, by imposing portfolio constraints on the agents, we generate a role

for P . More speci¯cally, the agents are constrained in the shares of their wealth they may
±allocate to each risky security. Letting the 3-dimensional fF g-progressively measurable processt

i i i i > i i i i¼ ´ (¼ ; ¼ ; ¼ ) , with ¼ = 1 ¡ ¼ ¡ ¼ , denote the proportions of agent i's wealth X (t)B S P B S P

invested in B, S and P respectively, we assume that at all times t 2 [0; T ], short sales of the
istock are precluded and ¼ is bounded from above:P

i i¼ (t) ¸ 0 ; ¼ (t) · ° ; ° > 0 : (2.10)S P

3Our subsequent assumptions prevent a negative ¾ in the mispriced equilibrium; symmetric cases with ¾S S

negative could be generated by reversing the constraints and/or the sign of ¾ .P
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Remark 2.1. It may be more realistic to also bound the derivative investment from below,
i¼ (t) ¸ ¡° (° > 0), and for symmetry we could impose a more general constraint on the stockP
i(¼ 2 [¯; ¯]). However, the one-sided constraints are su±cient to illustrate our point. TheS

two-sided constraints (and constraints on the bond) are relegated to Remark 5.1 and Section 6.

We now present our notion of mispricing. With one factor of risk, as soon as two assets'

market prices of risk di®er, it is possible to make arbitrage pro¯ts that require neither investment

of capital nor risk-taking. Hence, it is natural to parametrize mispricing , perceived by agent i,

by the di®erence between the assets' instantaneous market prices of risk,

i i¹ (t)¡ r(t) ¹ (t)¡ r(t)i P S¢ (t) ´ ¡ :P;S ¾ (t) ¾ (t)P S

iWe say that P is favorable if ¢ (t) > 0, and conversely. Given the direction of the constraintsP;S
i(2.10), for agent i's problem to have a solution we must have ¢ (t) ¸ 0, because otherwise heP;S

would take on an unbounded arbitrage position (long in S and short in P ). The consistency of

security prices across agents enforces agreement on the mispricing.

Lemma 2.1. Agents agree on the mispricing, and their common perception of it equals its actual

value, i.e.,
¹ (t)¡ r(t) ¹ (t)¡ r(t)P S1 2¢ (t) = ¢ (t) = ¡ ´ ¢ (t) :P;SP;S P;S ¾ (t) ¾ (t)P S

iFor each agent, we de¯ne security-speci¯c de°ator processes » byj

Ã !
i¹ (t)¡ r(t)ji i i id» (t) = ¡r(t)» (t)dt¡ » (t)dW (t) ; j 2 fS;Pg ; (2.11)j j j¾ (t)j

isuch that (under standard regularity conditions) each de°ated security gains process (» S +SR
i i i» ± dt, » P ) is a P -martingale, leading to the familiar present value formulaS P

" #Z T1 i i iS(t) = E » (s)±(s)dsjF ; i 2 f1; 2g : (2.12)S ti» (t) tS

An analogous expression would hold for the derivative if it were assumed to pay dividends. (This

change in our model would not substantially a®ect our conclusions: all the results of the paper

would remain valid, but ¾ would be endogenous.) Thus, our notion of mispricing (¢ 6= 0)P P;S

i iis tantamount to each security having its own distinct de°ator, because » (t) and » (t) di®erS P

as soon as non-zero mispricing has occurred (for a period of positive length) at any time s · t.

This implies that, if mispricing occurs with positive probability, securities with identical dividend

processes will command distinct prices (but not necessary concurrently).
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2.3. Agents' Endowments and Preferences

i i 1 2Agent i is endowed at time 0 with e share of the stock (e > 0, e + e = 1), providing him
i i iwith initial wealth X (0) = e S(0). He then chooses a nonnegative consumption process c and
i ±a portfolio process ¼ (in terms of fractions of i's wealth) from the set of fF g-progressivelytR R ¡ ¢T Ti i i i imeasurable processes satisfying c (t) dt <1 and j X (t) ¹ (t); ¹ (t); r(t) ¼ (t) j dt+S P0 0R T i i 2 i ik ¼ (t)X (t) k dt < 1 a.s.. An admissible consumption-portfolio pair (c ; ¼ ) is de¯ned0

as one for which the portfolio process satis¯es the constraints (2.10) and the associated wealth
i iprocess, X , is bounded from below, obeys X (T ) ¸ 0 a.s. and satis¯es the dynamic budget

constraint,
n o

i i i i i i i idX (t) = [X (t)r(t)¡ c (t)]dt+X (t) ¼ (t)[¹ (t)¡ r(t)] + ¼ (t)[¹ (t)¡ r(t)] dtS S P P

i i i i+X (t)[¼ (t)¾ (t) + ¼ (t)¾ (t)]dW (t): (2.13)S PS P

iEach agent is assumed to derive time-additive, state-independent logarithmic utility u (c (t)) =i¡ ¢
ilog c (t) from intertemporal consumption in [0; T ]. Agent i's optimization problem is to max-h i¡ ¢R Ti i i iimize E log c (t) dt over all admissible (c ; ¼ ) pairs for which the expected integral is0

i i iwell-de¯ned, given his information structure (­;F ; fF g;P ).t

2.4. Equilibrium

1 2 1 2 4De¯nition 2.1. An equilibrium is a price system (r; ¹ ; ¹ ; ¹ ; ¹ ; ¾ ) and admissible consumption-SS S P P
i iportfolio processes (c ; ¼ ) such that: (i) agents choose their optimal consumption-portfolio strate-

i i igies given their perceived price processes in (­;F ; fF g;P ); (ii) security prices are consistentt

across agents, i.e.,

1 2 1 2¹ (t)¡ ¹ (t) = ¾ (t)¹¹(t); ¹ (t)¡ ¹ (t) = ¾ (t)¹¹(t); (2.14)S PS S P P

and (iii) good and security markets clear, i.e.,

1 2c (t) + c (t) = ±(t) ; (2.15)

1 1 2 2 1 1 2 2 1 2¼ (t)X (t) + ¼ (t)X (t) = S(t) ; ¼ (t)X (t) + ¼ (t)X (t) = 0 ; X (t) +X (t) = S(t) :S S P P

(2.16)

3. Agents' Optimization in the Presence of Mispricing

The redundancy in the risky securities adds an extra layer to the solution for optimality, namely,

once the agent has chosen his risk exposure he must further decide how to allocate that risk

between the two securities. The problem is simpli¯ed by solving \in reverse", ¯rst for the optimal
5allocation between S and P (Section 3.1), second for the optimal risk exposure (Section 3.2).

4¹ and ¹ are not incorporated into the de¯nition because they do not determine agents' policies. They areS P
¾ (t)i j iobtained from the de¯nitions in Section 2 (¹ (t) = ¹ (t) + (¹ (t)¡ ¹ (t)), i = 1; 2, j 2 fS;Pg).j ±j ±¾ (t)±

5This subsection, requiring strict monotonicity only, is otherwise independent of the agent's preferences.
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3.1. Optimal Risk Allocation between Risky Securities

Given the potential redundancy in the risky securities, we introduce the risk-weighted sum of

holdings therein,
¾ (t)Pi i i© (t) ´ ¼ (t) + ¼ (t) : (3.1)S P¾ (t)S

i iIndependent of the individual holdings, the volatility of i's wealth from (2.13) is X (t)© (t)¾ (t),S

iso we may also interpret © as agent i's \composite" risk exposure, strictly de¯ned as his wealth

volatility per unit of stock volatility. Lemma 3.1 shows that, since S and P are perfect substitutes

for achieving risk exposure, to solve an agent's portfolio problem it is su±cient to determine
i i ihis choice of © , after which his choice of ¼ and ¼ is either irrelevant or straightforward toS P

determine.

iLemma 3.1. Let © (t) be given. Then:
i i(i) if there is no mispricing, all admissible pairs (¼ (t); ¼ (t)) such thatS P

¾ (t)Pi i i¼ (t) = © (t)¡ ¼ (t) (3.2)S P¾ (t)S

represent optimal allocations of the risk, among all of which i is indi®erent.
i i(ii) if P is favorable, among all admissible (¼ (t),¼ (t)) verifying (3.1), i's optimal risk allocationS P

between S and P is

µ ¶ µ ¶+ ¡¾ (t) ¾ (t) ¾ (t)P S Pi i i i¼ (t) = © (t)¡ ° ; ¼ (t) = ° ¡ © (t)¡ ° : (3.3)S P¾ (t) ¾ (t) ¾ (t)S P S

When P is favorable, agent i's allocation between S and P follows immediately from strict

monotonicity of preferences: if P is favorable, unless (3.3) holds, the agent can add a riskless,

costless arbitrage position to his portfolio and so will always do so until his holdings satisfy

(3.3). Lemma 3.1 implies (via substitution into the dynamic budget constraint (2.13)) that any

non-satiated agent's optimal wealth will always follow:

(µ ¶+¾ (t)Pi i i i i idX (t) = [r(t)X (t)¡ c (t)]dt+X (t) © (t)¡ ° (¹ (t)¡ r(t))S¾ (t)S" # )µ ¶¡¾ (t) ¾ (t)S Pi i i i i+ ° ¡ © (t)¡ ° (¹ (t)¡ r(t)) dt+X (t)© (t)¾ (t)dW (t) : (3.4)SP¾ (t) ¾ (t)P S

i iNoting that © (t) can take on any real value without violating the constraints on ¼ (t) andS
i¼ (t), (3.4) shows that agents e®ectively face an unconstrained problem involving the bond andP

ia single, composite risky asset with volatility ¾ and a policy-dependent drift. © (t) can beS

viewed as agent i's weight in this composite. The rest of this section is devoted to solving for an
iagent's choice of © , after which Lemma 3.1 yields his policy in terms of the actual securities S

and P .
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3.2. Optimal Consumption-Portfolio Policies

Equation (3.4) reveals that the mispricing generates a non-linearity in the reward for risk-taking
i(i.e., di®erent price parameters in di®erent regions of © (t)). The methodology we use to tackle

this is a variation on that introduced by Cvitanic and Karatzas (1992) to deal with portfolio
6constraints, which consists in embedding the optimization problem in a family of ¯ctitious

unconstrained, perfect market problems. The ¯ctitious price dynamics are modi¯ed so that the

solution to one of the perfect market problems coincides with that of the original problem. Each

individual-speci¯c ¯ctitious market has one bond and one stock, no portfolio constraints, and is
iparametrized by ´ (described below). The ¯ctitious market price parameters are:

i ir i(t) = r(t) + g (´ (t); t) ; (3.5)´

i i i i¹ (t) = ¹ (t) + ´ (t) + g (´ (t); t) ; ¾ (t) = ¾ (t) ;i i S´ ´S

i i i iwhere ´ is a bounded, fF g-progressively measurable process and g an fF g-progressively mea-t t

surable function. Thus, the market price of risk in the ¯ctitious market is given by:

i i¹ (t)¡ r (t)i i ¹ (t)¡ r(t) ´ (t)´ ´ Sµ i(t) = = + ; (3.6)´ ¾ (t) ¾ (t) ¾ (t)S S S

and the ¯ctitious state price density process » has dynamicsi´

h i
id» (t) = ¡» (t) r (t)dt+ µ (t)dW (t) : (3.7)i i i i´ ´ ´ ´

i iInformally, ´ re°ects the policy dependence of agent i's market price of risk. g re°ects the fact

that a rational agent will always add an arbitrage position to his portfolio if allowed to. Under
i ino mispricing, both ´ and g should equal zero. When P is favorable, we would expect an agent

i¹ (t)¡r(t)Sto face a market price of risk lying between those of the two securities: · µ (t) ·i´¾ (t)S
i¹ (t)¡r(t) i iP ~. Accordingly, we shall consider ´ 's in the set K of fF g-progressively measurablet¾ (t)P

processes such that
i0 · ´ (t) · ¾ (t)¢ (t) ; 8t 2 [0; T ] : (3.8)S P;S

Coincidence of the dynamic budget constraints in the actual and the ¯ctitious market requires

¾ (t)Pi i ig (´ (t); t) ´ °¾ (t)¢ (t)¡ ° ´ (t) : (3.9)P P;S
¾ (t)S

iArguments similar to those in Cvitanic and Karatzas (1992) show that if ´ solves the dual,

\minimax" problem

( " # " # )Z ZT T
i i i i imin maxE log(c (t))dt s.t. E » (t)c (t)dt · » (0)X (0) ; (3.10)´ ´

i~ c´2K 0 0

6Speci¯cally, it is inspired by appendix B of Cvitanic and Karatzas (1992), which applies their methodology
to a model with di®erent riskless rates for borrowing and lending. We could also use the technique of Cuoco and
Cvitanic (1998), who study a more general class of portfolio choice problems with a policy-dependent drift.
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then the optimal policy in this particular ¯ctitious market (obtained via standard martingale

methods as in Cox and Huang (1989), Karatzas, Lehoczky and Shreve (1987)) solves i's original
i i i ioptimization problem. (At this minimax ´ , » , r , µ are henceforth denoted » , r , µ .)i i i´ ´ ´

Proposition 3.1. Agent i's optimal consumption and composite investment are given by

i i1 X (t) µ (t)i ic (t) = = ; © (t) = ; (3.11)
i iy » (t) T ¡ t ¾ (t)S

i i i i iwhere y = T=» (0)X (0) and the individual-speci¯c price parameters µ , r are as in Table I.

Table I: Optimal portfolio holdings and individual-speci¯c price parameters

i i i iCases Conditions ¼ (t) ¼ (t) µ (t) r (t)P S

i i i¹ (t)¡r(t) ¹ (t)¡r(t) ¹ (t)¡r(t)S P S(a) = · ° ¸ 0 r(t)¾ (t) ¾ (t) ¾ (t)S P S

i i i i¹ (t)¡r(t) ¹ (t)¡r(t) ¹ (t)¡r(t) ¹ (t)¡r(t)¾ (t)PP S S S(b) > ¸ °¾ (t) ° ¡ ° r(t) + °¾ (t)¢ (t)P 2 P P;S¾ (t) ¾ (t) ¾ (t) ¾ (t) ¾ (t)P S S SS

i i¹ (t)¡r(t) ¹ (t)¡r(t)S P(c) < °¾ (t) < ° 0 °¾ (t) r(t)P P¾ (t) ¾ (t)S P

i i i i¹ (t)¡r(t) ¹ (t)¡r(t) ¹ (t)¡r(t) ¹ (t)¡r(t)S P P P(d) < · °¾ (t) 0 r(t)P 2¾ (t) ¾ (t) ¾ (t)¾ (t)S P PP

Table I summarizes the situations that agent i may face. (a) is the case of no mispricing, whereas
i(b)-(d) arise when P is favorable. Under mispricing, the market price of risk faced by i (µ ) is

that of the security on which he does not bind (the one he would use for marginal adjustments in

risk exposure); when he binds in both securities (case (c)) his market price of risk lies in between
ithose of the two securities. In case (b), agent i desires high enough a risk exposure (© ) for him

to bind on the favorable security (P ) and also have to use the less desirable one (S), so that he
ifaces the lower market price of risk. However, part of his risky investment (°X ), done using

iP , is rewarded at a higher rate, captured by the addition of g to both his individual-speci¯c

interest rate and risky asset returns. He can be thought of as performing arbitrage, reducing
i ihis position in S to purchase P , the resulting pro¯t being g X . This \pro¯t" is independent

iof © and appears in the dynamic budget constraint exactly as would an exogenously speci¯ed

stochastic endowment, and so can be interpreted as a \¯ctitious endowment". For low values of
i© (case (d)), the agent uses only the more favorable P , his marginal market price of risk is that

ion P , and so the whole of his risk exposure is rewarded at the same rate, hence g (t) = 0 and
ir (t) = r(t).
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4. Equilibrium under Logarithmic Preferences

4.1. Construction and Existence of Equilibrium with Mispricing

We now use the portfolio choice results to characterize equilibrium. Table I distinguished cases

(a)-(d) for an agent. Accordingly, we denote by (a,b) the equilibrium case where agent 1 is in (a)

and agent 2 is in (b), etc.. From Lemma 2.1 (agents' agreement on the mispricing), stock market
1 2clearing (implying ¼ and ¼ cannot equal zero simultaneously) and derivative market clearingS S

1 2(implying ¼ and ¼ cannot both be strictly positive), the only possible cases are (a,a), (b,d),P P

(d,b). In case (a,a), there is no mispricing and the equilibrium is similar to an unconstrained

model; conversely, all equilibrium quantities in the unconstrained economy are as we provide

for this region (a,a). Equilibrium with mispricing ((b,d) and (d,b)) requires both agents to be

binding, but each on a di®erent constraint.

For analytical convenience, we introduce a representative agent with utility

µ ¶ µ ¶³ ´ ³ ´ c ¸c1 2U(c; ¸) ´ max log c + ¸ log c = log + ¸ log ; (4.1)
1 2 1 + ¸ 1 + ¸c +c =c

where ¸ 2 (0;1) may be stochastic. As in the unconstrained case, optimality and consumption

good clearing imply that the representative agent consumes the aggregate dividend, and that

his marginal utility equates to agent 1's state price density. We immediately deduce (4.2)-(4.3).

Moreover, the equilibrium allocation must solve the problem in (4.1), implying

2 1 1c (t) y » (t)
¸(t) = = ;

1 2 2c (t) y » (t)

where the second equality follows from (3.11). In an unconstrained, homogeneous beliefs economy

(Karatzas, Lehoczky and Shreve (1990)), agents face the same state price density, so ¸ is a

constant, determined from agents' budget constraints. Substitution into (4.2)-(4.3) fully solves

for equilibrium. When agents face di®erent state price densities, though, an extra step is required
1 2to independently identify » =» using (3.7). In an unconstrained, heterogeneous beliefs economy

(and under no mispricing (a,a)), agents' individual-speci¯c price parameters di®er only due to
1 2heterogeneity in beliefs (µ (t) ¡ µ (t) = ¹¹(t)) and accordingly the dynamics of ¸ are obtained

directly ((4.7)) in terms of the disagreement process ¹¹, as in Basak (1998). Under mispricing

(regions (b,d) and (d,b)), each agent faces the market price of risk on a di®erent security, so ¸

is also dependent on the mispricing, as reported in (4.10) and (4.13). Hence, to close our model,

an extra restriction is required to (jointly) determine the mispricing. This extra restriction is

obtained by imposing clearing in one of the risky securities, yielding (4.9) and (4.12). In a

non-redundant economy, ¯nancial market clearing is guaranteed by good clearing and so yields

no further restriction. With redundant assets, however, given consumption streams that clear

the good market, there is a continuum of pairs of portfolio strategies ¯nancing them, not all of

which clear the ¯nancial markets. In short, the presence of redundancy and constraints adds an

additional \layer" to the equilibrium solution and enforces a possibly non-zero mispricing.
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Proposition 4.1 formalizes the above discussion and provides explicit conditions for the oc-

currence of regions (a,a), (b,d) and (d,b).

Proposition 4.1. Assume that there exists a strictly positive process ¸ satisfying (4.7), (4.10),
2 1(4.13), in the corresponding states, with initial condition ¸(0) = e =e . Then, if the associated

optimal policies and prices satisfy the technical conditions of Section 2, equilibrium exists, and

the equilibrium state price densities, consumption allocations and stock price are given by

1 + ¸(t) 1 + ¸(t)1 1 2 2» (t) = e ±(0) ; » (t) = e ±(0) ; (4.2)
±(t) ¸(t)±(t)

±(t) ¸(t)1 2c (t) = ; c (t) = ±(t) ; (4.3)
1 + ¸(t) 1 + ¸(t)

S(t) = (T ¡ t) ±(t) ; (4.4)

i iimplying ¹ (t) = ¹ (t), i = 1; 2, and ¾ (t) = ¾ (t). Depending on agents' disagreement ¹¹(t), theS ±S ±

agents' situations (in terms of portfolio holdings), mispricing, and stochastic weighting dynamics

are as follows.
1 + ¸(t) 1 + ¸(t)¡ (¸(t)°¾ (t) + ¾ (t)) · ¹¹(t) · (°¾ (t) + ¸(t)¾ (t)) ; (4.5)P ± P ±When ¸(t) ¸(t)

¢ (t) = 0 ; (4.6)agents are in (a,a) and P;S

d¸(t) 1= ¡¹¹(t)dW (t) : (4.7)
¸(t)

1 + ¸(t)
¹¹(t) > (°¾ (t) + ¸(t)¾ (t)) ; (4.8)P ±When ¸(t)

1 + ¸(t)
agents are in (b,d) and ¢ (t) = ¹¹(t)¡ (°¾ (t) + ¸(t)¾ (t)) > 0 ; (4.9)P;S P ±

¸(t)

d¸(t) 1 + ¸(t) 1= ¡ °¾ (t)¢ (t)dt+ [¢ (t)¡ ¹¹(t)] dW (t) : (4.10)P P;S P;S
¸(t) ¸(t)

1 + ¸(t)
¹¹(t) < ¡ (¸(t)°¾ (t) + ¾ (t)) ; (4.11)P ±When ¸(t)

1 + ¸(t)
agents are in (d,b) and ¢ (t) = ¡¹¹(t)¡ (¸(t)°¾ (t) + ¾ (t)) > 0 ; (4.12)P;S P ±

¸(t)

d¸(t) 1 + ¸(t) 1= ¡ ¾ (t)¢ (t)dt¡ [¢ (t) + ¹¹(t)] dW (t) : (4.13)± P;S P;S
¸(t) ¸(t)

Existence of equilibrium relies on the existence of the process ¸ (as well as satisfaction of

a set of technical conditions). Proposition 4.2 provides an example of existence, the case of

agents knowing that ± follows a geometric Brownian motion, and with heterogeneous, normally

distributed priors on its drift. Proposition 4.2 also identi¯es, within this example, the parameter

subspace which ensures that mispricing arises with positive probability.
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Proposition 4.2. Assume that ¹ (t), ¾ (t), ¾ (t) are constant, and that agents have normallyP± ±

1 2distributed priors on ¹ , with means ¹ (0)6= ¹ (0) and variance v(0). Then, a unique equilibrium± ± ±
7exists. Furthermore, mispricing arises with positive probability at time t if and only if j¹¹(0)j >p2 ¾±[v(0)t=¾ + 1] (¾ + °¾ + 2 °¾ ¾ ).P P± ±±

We now return to the general characterization in Proposition 4.1. Note that, under logarith-

mic utility, a convenient interpretation for the stochastic weighting is as the ratio of the agents'

wealths (which equals that of their consumptions). Figure 1 plots regions (a,a), (b,d) and (d,b) as

a function of ¹¹ and ¸=(1+¸) (agent 2's fraction of aggregate wealth), for a given ¾ . MispricingP

occurs as soon as heterogeneity (¹¹) across agents is large enough. Its value (bounded above by

¹¹(t)) increases as the parameters move further into the interior of the mispricing region.

INSERT FIGURE 1

Figure 1: Equilibrium regions of mispricing and no-mispricing plotted for

¾ (t) = ¾ (t) = 1, ° = 0:5. (The qualitative features are without loss of generality.)± P

The simplicity of the logarithmic case allows us to provide clear intuition for the role of

mispricing. From Propositions 3.1 and 4.1, mispricing occurs for

j ji i¹ (t)¡ r(t) ¹ (t)¡ r(t) ¹ (t)¡ r(t) ¹ (t)¡ r(t)P S P S> > °¾ (t) > > :P
¾ (t) ¾ (t) ¾ (t) ¾ (t)P S P S

Both agents \prefer" P to S, but agent i is optimistic about both S and P relative to the bond,

while j is pessimistic about both S and P relative to the bond. Hence, agent i will be driven

to his upper bound in P and still want a large positive holding in S, while j will be driven to

his lower bound in S and still want a large negative holding in P . But these desires are not

compatible with market clearing, as each agent faces implicit constraints that stem from clearing

and the other agent's explicit constraints. In particular, since P is in zero net supply and is

the only security that can be sold short, the total dollar amount of j's short sales is limited by
j j ii's upper constraint on P (¼ X ¸ ¡°X ). So, prices must adjust to make P more favorableP

(hence, short-selling it more costly) and S less favorable. Hence the mispricing.

To help quantify this, we temporarily drop time indices and assume ¾ = ¾ ´ ¾. SupposeP ±
S Sagent 1 is su±ciently optimistic relative to agent 2 so that (b,d) should prevail: ¹¹ > ¾°+ ¾2 1X X

((4.8)). Let us try to solve for an equilibrium without mispricing and exhibit what \goes wrong".

By substituting the region (a,a) expression for r ((4.14)) into 2's portfolio choice, we obtainµ ¶ ³ ´2 1¹ ¡r ¹¹X2 2 2 2 1±© X = X = 1 + X < ¡°X , by (4.8). Since short sales on S are not allowed,2 S ¾¾

12 needs to short-sell an amount of P strictly greater than °X . By market clearing 1 then has
1 1to hold (long) more than °X dollars of P , which is impossible since ¼ · °. From the otherP

1 1 1agent's perspective, similar computations yield © X > S + °X , again not feasible, since the

7 i iup to the indeterminacy in ¼ and ¼ in case (a,a). Prices and allocations are uniquely determined.S P
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right-hand side equals the maximum dollar amount that 1 can invest in the risky assets. Hence,

prices must adjust to make both short-selling P and going long in S less attractive, which can

only be achieved by raising r to decrease the risk premium on S, and raising ¹ (by more)P

to increase the premium on P . (The stock price, and hence ¹ and ¾ , remains una®ectedS S

by the constraints, a property typical of logarithmic models with one stock and no stochastic

endowment, e.g., Basak and Cuoco (1998), Detemple and Murthy (1997).) Hence, equilibrium

requires ¢ to be strictly positive.P;S

From agent 1's individual viewpoint, the mispricing entices him, while keeping his risk ex-

posure constant, to substitute the favorably mispriced security P for the unfavorable S, in an

amount limited by the upper constraint on P . He can be thought of as performing the risk-

less arbitrage trade consisting in ¯nancing purchases of P by a (risk-o®setting) reduction of his

position in S and purchases or sales of the bond. This leads him to reduce his holding in S

and ensures clearing therein; hence a valuable economic role for his arbitrage activity. From 2's

viewpoint, the mispricing means he has to pay a fee to short sell, since P must be used to do so.

This induces 2 to reduce his negative position and ensures he abides by his implicit constraint

(short-selling no more of P than agent 1 can hold long). The details of the agents' arbitrage

activity are elaborated upon in Basak and Croitoru (1998). In short, the role of the mispricing

is to allow the agents to reach their individual optimum, while limiting their heterogeneity in

portfolio demand in keeping with the constraints and market clearing.

From this intuition, it becomes clear why the region of no-mispricing grows and the mispricing

itself shrinks for higher values of ° or ¾ ; the constraints are looser so less mispricing is needed.P

Raising ¾ e®ectively relaxes the ¼ constraint; for a given dollar investment in P , a higherP P

¾ means a higher transfer between agents in response to an unexpected event. Hence theP

de¯nition of the \contract" P has economic e®ects. We can also explain Figure 1. When agents'

wealths are very close, each agent's explicit constraints readily impact the other agent implicitly,

whereas if an agent is much wealthier, the poorer agent has a lot of freedom to trade before the

much richer agent becomes unable to provide a counterparty because of his explicit constraints.

Since mispricing occurs when both agents' explicit constraints impact the other agent (otherwise,

adjusting r is su±cient to clear markets), mispricing occurs less readily (and is smaller) if one

agent is much wealthier.

The role of the stochastic weighting can also be made more precise. In (a,a), ¸ makes the

wealth of the more optimistic agent more positively correlated with the dividend, and its volatility

grows with ¹¹ accordingly. Under mispricing, however, the di®usion of ¸ remains \stuck" at the

value it had (as a function of ¸) when ¹¹ entered the corresponding region, enforcing inter-agent

transfers to remain essentially \stuck" even though heterogeneity grows. In (b,d) and (d,b),

the volatility of ¸ lies between 0 and the value it would take on with no constraints; hence

transfers are allowed, but only to a limited extent. Finally, recalling our discussion in Section

2.2, by establishing that a non-zero mispricing can arise, we have also established that di®erent

securities will be priced using di®erent de°ator processes. This is at odds with the standard
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practice of pricing all attainable contingent claims via a common de°ator process.

4.2. Characterization of Agents' Behavior and Prices in Equilibrium

For comparison with our economy, we introduce benchmark economies I and II:

Economy I : One stock S, no derivative P , no constraints;

Economy II : One stock S, no derivative P , ¼ ¸ 0.S

Comparing with Economy I clari¯es the impact of the constraints and of the associated mis-

pricing, while comparing with Economy II highlights the role of the derivative. The results for

Economies I and II are stated without proof since they are special cases of our economy (° !1
and ° ! 0, respectively). In our equilibrium, agents' holdings in the composite asset are:

¸(t)1 1 11 2© (t) = 1 + ¹¹(t) ; © (t) = 1¡ ¹¹(t) in (a,a),¾ (t) 1+¸(t) ¾ (t) 1+¸(t)± ±
¾ (t) ¾ (t)°1 P 2 P© (t) = 1 + ¸(t) + ° ; © (t) = ¡ in (b,d),¾ (t) ¸(t) ¾ (t)± ±

¾ (t) ¾ (t)1P P1 2© (t) = ¡°¸(t) ; © (t) = 1 + + ° in (d,b).¾ (t) ¸(t) ¾ (t)± ±

In Economy I (always in (a,a)), the optimistic agent's holding in the composite risky asset grows

as j¹¹(t)j grows, without bound. In our economy, however, once j¹¹(t)j has grown enough to cross-

over into region (b,d) or (d,b), the composite holding gets \stuck" at the value it had at the

boundary (for a given ¸(t)); the constraints limit trade. In Economy II, the holdings also get

stuck once the constraint binds on one agent and this occurs at a lower level of heterogeneity
(1+¸(t))than in our economy, ¹¹(t) > (1 + ¸(t))¾ (t) or ¹¹(t) < ¡ ¾ (t). We deduce, for given ¸(t),± ±¸(t)

1 1 1 2 2 2that in (b,d), © (t) > © (t) > © (t) and © (t) < © (t) < © (t) (and vice-versa in (d,b)). TheI II I II

presence of P alleviates the constraints, but in equilibrium, the circumvention of the constraints

is only partial.

Proposition 4.3 reports the remaining price parameters in our equilibrium. (Expressions for

(d,b) are omitted as this region is a mirror image of (b,d), where expressions obtain by swapping

agents and substituting 1=¸ for ¸ in the (b,d) expressions.)

Proposition 4.3. The equilibrium individual-speci¯c market prices of risk, interest rate and

di®erence in agents' ¯ctitious interest rates are as follows.
¸(t) 11 2In case (a,a): µ (t) = ¾ (t) + ¹¹(t) ; µ (t) = ¾ (t)¡ ¹¹(t) ;± ±1 + ¸(t) 1 + ¸(t)

1 ¸(t)1 2 2 1 2r(t) = ¹ (t) + ¹ (t)¡ ¾ (t) ; r (t)¡ r (t) = 0 ; (4.14)±± ±1 + ¸(t) 1 + ¸(t)

11 2In case (b,d): µ (t) = (1 + ¸(t))¾ (t) + °¾ (t) ; µ (t) = ¡ °¾ (t) ;± P P
¸(t)

1 2 2r(t) = ¹ (t)¡ (1 + ¸(t))¾ (t) ¡ °¾ (t)¾ (t) = r (t) ; (4.15)± P ±± · ¸
1 + ¸(t)1 2r (t)¡ r (t) = °¾ (t)¢ (t) = °¾ (t) ¹¹(t)¡ (°¾ (t)¡ ¸(t)¾ (t)) > 0 ;P P;S P P ±
¸(t)
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where ¸ is the stochastic weighting satisfying, in the respective regions, the stochastic di®eren-
itial equation (4.7) or (4.10). The equilibrium individual consumption dynamics are: dc (t) =

i i i i ic (t)¹ (t)dt+ c (t)¾ (t)dW (t), where the consumption volatilities are: ¾ (t) = µ (t); i = 1; 2.i ii c cc

The individual market prices of risk and consumption volatilities in (a,a) show that the two

agents price and absorb risk \equally", but then adjust their pricing to transfer consumption risk

from the more pessimistic to the more optimistic agent. This transfer is essentially proportional

to the di®erence in beliefs, ¹¹(t) and, in the unconstrained Economy I would grow without limit

with j¹¹(t)j. However, in our economy, as j¹¹(t)j grows we eventually cross into regions (b,d)

and (d,b), where transfers of risk are limited. Again, equilibrium quantities in our economy lie

in between those in the two benchmarks I and II, showing how the derivative allows the more

optimistic agent to take on more risk, but not as much as if no constraints were applied.

The expressions for the market prices of risk and consumption volatilities look asymmetric

in region (b,d). The more optimistic agent (1) holds all of the stock, so his market price of risk

becomes more sensitive to the aggregate risk, ¾ (t), while the more pessimistic agent (2)'s has no±

direct sensitivity to the aggregate risk. The market prices of risk also become independent of the

disagreement ¹¹(t), because inter-agents transfers are \stuck" at the maximum level permitted

by the constraints.

Under no mispricing, the interest rate is the wealth-weighted average of agents' perceived

mean aggregate consumption growth minus the aggregate consumption risk. This type of repre-

sentation is familiar with heterogeneous beliefs (Detemple and Murthy (1994)). Under mispricing,

however, when expressed in terms of the aggregate consumption growth and risk, the interest

rate appears to be driven by the more optimistic agent. This is because (from Table IV) he

is the agent in the interior in his stock holding and so the interest rate must adjust to make

him indi®erent between marginal changes in bond holdings versus extra dividends: this task is

performed by the interest rate because ¹ is pinned at ¹ . Under mispricing, the interest rateS ±

exhibits an increased sensitivity to the aggregate risk: since the constraints limit risk-sharing,

the interest rate is more impacted by precautionary savings.

In our discussion of the role of mispricing, we anticipated that the \implicit" constraints

on agents should also require the interest rate to be increased under mispricing. From (4.15),

we indeed deduce that, under mispricing, for ¯xed ¸(t), r (t) > r(t) > r (t): the constraintsII I

increase the interest rate, but not as much as if the zero net supply security were not present.

Under mispricing, the more optimistic agent has a higher ¯ctitious interest rate than the pes-

simistic, the di®erence being proportional to the mispricing. The ¯ctitious interest rate captures

the actual interest rate plus any type of e®ective riskless \endowment" to an agent. In a sense,

the mispricing acts as a \gift" to the optimistic agent because he is the one holding the zero net

supply security long, and its expected return is raised when mispricing occurs.

Another point to observe about Proposition 5.4 is that no economic quantities jump discon-

tinuously as ¹¹(t) crosses the border from one region to another. The mispricing ¢ (t) growsP;S
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continuously away from zero as we move further into regions (b,d) or (d,b), and accordingly the

interest rate and other quantities change continuously. In all regions no agent is ever explicitly
ibound in his holding © of the composite risky asset. Hence there is no discontinuity in bond

demand and so no discontinuity in the interest rate. This situation changes when more general
iconstraints are imposed, causing © itself to be constrained, as elaborated upon in Section 6.

Finally, we have not been able to make unambiguous comparisons of agents' welfare across

economies. The mispricing itself bene¯ts the optimistic agent, who is holding P long, at the

expense of the pessimistic. However, since the pessimistic agent is long in the bond and the

optimistic agent short, the increase in r tends to counteract this.

5. Equilibrium under General Preferences

We now extend the analysis of equilibrium with mispricing to the case of general, possibly hetero-

geneous utility functions u , u , that are only assumed to be three times continuously di®eren-1 2

0 0tiable, strictly increasing, strictly concave, and to satisfy lim u (c) =1 and lim u (c) = 0.c!0 c!1i i

We ¯rst provide a motivation for doing so, by stating a general condition under which mispricing

is necessary for equilibrium (Section 5.1). We then construct equilibrium (Section 5.2).

5.1. General Necessity of Mispricing

Proposition 5.1 establishes conditions under which mispricing is necessary for equilibrium to exist
i¹in our constrained economy. © denotes agent i's optimal composite weight, in an economy where

portfolio weights are unconstrained but with otherwise identical primitives (beliefs, preferences

and endowments, dividends, available securities and volatility of the derivative (¾ )).P

Proposition 5.1. Assume that equilibrium exists in an unconstrained economy with otherwise

identical primitives. If agent 1's optimal investment is such that either

¾ (t) ¾ (t)P P1 1 2 2 1 2 2 1 1 2 2 2¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹© (t)X (t)¡© (t)X (t) < ¡X (t)¡X (t)¡2X (t) ° or © (t)X (t)¡© (t)X (t) > 2X (t) °
¹¾ (t) ¹¾ (t)S S

(5.1)

on a space of positive measure, then mispricing on a space of positive measure is necessary for
8equilibrium in the constrained economy.

Proposition 5.1 shows that, without mispricing, only limited heterogeneity in composite risk

exposure is compatible with market-clearing in the constrained economy. Mispricing is required

whenever there is su±cient heterogeneity in agents' risk-taking, originating from heterogeneity in

either beliefs or risk-aversion, strongly suggesting that, under heterogeneous preferences, diverg-

ing beliefs are not needed for mispricing. The proof establishes that mispricing is needed when

8The mispricing may occur in states and times other than those in which (5.1) holds.
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agents violate their \implicit" constraints, as in the logarithmic case. (Indeed, the conditions in

(5.1) are equivalent to the conditions for mispricing in Proposition 4.1.)

Remark 5.1 (More general constraints). When a lower bound (¡°) is imposed on agents'
i¹weight in the derivative, there are two insubstantial changes: (i) © is now the composite weight
i¹in an otherwise identical economy where the only constraint is © (t) ¸ ¡°¹¾ (t)=¹¾ (t); (ii) theP S

1 1 2 2¹ ¹ ¹ ¹following condition should be added to those in the proposition: © (t)X (t) ¡ © (t)X (t) <
¾ (t)1 2 2 P¹ ¹ ¹X (t) +X (t) + 2X (t) °. We could similarly incorporate a two-sided constraint on S.¹¾ (t)S

5.2. Determination of Equilibrium

Proposition 5.2 extends Proposition 3.1 to general preferences. (The ¯ctitious markets are as

de¯ned in Section 3.2.)

iProposition 5.2. Assume that there exists a solution ´ to the problem

( " # " # )Z ZT T
i i i i imin maxE u (c (t))dt s.t. E » (t)c (t)dt · » (0)X (0) : (5.2)i ´ ´

i~ c 0 0´2K

Then, there exists a solution to i's optimization problem and his optimal consumption policy is

i i ic (t) = I (y » (t)) ; (5.3)i´

i 0 iwhere I (¢) is the inverse of u (¢) and y satis¯esi

" #Z T
i i i iE » (t)I (y » (t))dt = » (0)X (0): (5.4)i i i´ ´ ´

0

The optimal holding in the composite asset is given by

iµ (t)i · (t)´i© (t) = + ; (5.5)
i i¾ (t) X (t)¾ (t)» (t)S S

R R ¡ ¢t ti i i i i i i i i i iwhere · (t) satis¯es » (t)X (t) + » (s)c (s)ds = » (0)X (0) + · (s)dW (s). ¼ ; ¼ are asS P0 0

provided by Lemma 3.1.

As under logarithmic preferences, agent i can be in four cases. (a) is the case of no mispricing,

while (b), (c) and (d), distinguished by which constraint(s) is (are) binding, occur when P is

favorable. Table II summarizes these situations. Table II is similar to its logarithmic case
ianalogue (Table I), but explicit expressions for © (t) cannot be obtained (and, hence, nor can

explicit price conditions for cases (b)-(d)). The interpretation of the individual-speci¯c ¯ctitious

price parameters is similar to the logarithmic case.
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Table II: Summary of agents' portfolio holdings and ¯ctitious market parameters

i i i i i© (t) ¼ (t) ¼ (t) µ (t) r (t)P S

i i¹ (t)¡r(t) ¹ (t)¡r(t)S P(a) 2 < · ° ¸ 0 = r(t)¾ (t) ¾ (t)S P

i¹ (t)¡r(t)¾ (t)P S(b) > ° ° > 0 r(t) + °¾ (t)¢ (t)P P;S¾ (t) ¾ (t)S S

· ¸
i i¹ (t)¡r(t) ¹ (t)¡r(t)¾ (t)P S P(c) ° ° 0 2 ; 2 [r(t); r(t) + °¾ (t)¢ (t)]P P;S¾ (t) ¾ (t) ¾ (t)S S P

i¹ (t)¡r(t)¾ (t)P P(d) < ° < ° 0 r(t)¾ (t) ¾ (t)S P

As in the logarithmic case, the only possible equilibrium cases are (a,a), (b,d) and (d,b). We
1introduce a representative agent with (state-dependent) utility U(c;¸) ´ max 1 2 u (c ) +1c +c =c¡ ¢ ¡ ¢

2 0 1 0 2 1 1 2 2¸u (c ). Identifying ¸(t) ´ u c (t) =u c (t) = y » (t)=y » (t), Proposition 5.3 characterizes2 1 2

the equilibrium.

Proposition 5.3. If equilibrium exists, the agents' equilibrium state price densities are

0 0U (±(t); ¸(t)) ¸(0) U (±(t);¸(t))1 2» (t) = ; » (t) = ; (5.6)0 0U (±(0); ¸(0)) ¸(t) U (±(0);¸(0))

9where ¸(0) solves either agent's static budget constraint, i.e.,

" # " #Z ZT T¡ ¢1 0 1 0 1 1 0E U (±(t);¸(t))I U (±(t);¸(t)) dt = e E U (±(t); ¸(t))±(t)dt ; (5.7)
0 0

and the mispricing ¢ and the stochastic weighting ¸ satisfyP;S

in case (a,a): ¢ (t) = 0; (5.8)P;S

d¸(t) 1= ¡¹¹(t)dW (t); (5.9)
¸(t)

2 1 2· (t) X (t) ¹ (t)¡ r(t)Sin case (b,d): ¢ (t) = ¡ ¡ °¾ (t) ¡ > 0; (5.10)P;S P2 2 2» (t)X (t) X (t) ¾ (t)SÃ !
2d¸(t) ¹ (t)¡ r(t)P 1= ¡ °¾ (t) ¢ (t)dt+ (¢ (t)¡ ¹¹(t))dW (t); (5.11)P P;S P;S

¸(t) ¾ (t)P

1 2 1· (t) X (t) ¹ (t)¡ r(t)Sin case (d,b): ¢ (t) = ¡ ¡ °¾ (t) ¡ > 0; (5.12)P;S P1 1 1» (t)X (t) X (t) ¾ (t)SÃ !
2d¸(t) ¹ (t)¡ r(t) 1S= °¾ (t)¡ ¢ (t)dt¡ (¢ (t) + ¹¹(t))dW (t): (5.13)P P;S P;S

¸(t) ¾ (t)S

9 1 2 1The two agents' budget constraints are equivalent, and only determine the ratio y =y . We set y =
0 1 2U (±(0);¸(0)) without loss of generality so that » (0) = » (0) = 1.
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The equilibrium consumption allocations are
µ ¶0¡ ¢ U (±(t);¸(t))1 1 0 2 2c (t) = I U (±(t);¸(t)) ; c (t) = I : (5.14)

¸(t)

iConversely, if there exist » , ¸, ¢ satisfying (5.6)-(5.13), the associated optimal policies (ofP;S

equations (5.3), (5.5) and Lemma 3.1) satisfy all market clearing conditions.

As in the logarithmic case, it does not su±ce to solve for the weighting ¸ (by clearing the good

market) to pin down the equilibrium, it is also necessary to jointly determine the mispricing by

clearing one of the risky security markets. The redundancy and constraints yield an extra layer

in the equilibrium solution. Additional characterization of equilibrium prices and allocations can

be found in Basak and Croitoru (1998).

6. The Case of Two-Sided Portfolio Constraints on Both Risky
Securities

¡ ¢ ¡ ¢
i iWe now revert to logarithmic preferences (u c (t) ´ log c (t) , i = 1; 2) and assume two-sidedi

portfolio constraints on both risky assets

i i 10¡¯ · ¼ (t) · ¯ ; ¡° · ¼ (t) · ° ; i = 1; 2 ; where °; ° > 0; ¯ > ¡1; ¯ > 1 :S P

The analysis of agents' optimization is modi¯ed in two ways: (i) agents face a constrained
¾ (t) ¾ (t)i P i Pproblem in © : ¡¯¡ ° · © (t) · ¯+ °; (ii) solutions may also exist when S is favorable¾ (t) ¾ (t)S S

i isince the lower constraint on ¼ and the upper constraint on ¼ bound arbitrage trades. (i) isP S

taken care of by combining our technique with the results in Cvitanic and Karatzas (1992)

for rectangular constraints, leading to optimal policies that again exhibit properties typical of

logarithmic preferences (deterministic marginal propensity to consume, mean-variance portfolio

holdings in terms of the instantaneous price parameters). Eleven additional cases are added to

Table I: two extra cases under no mispricing, where the agent is bound on either both lower or

both upper constraints; three extra cases under P favorable, where the agent is bound on both

lower or both upper constraints, or is bound on the lower in S and the upper in P ; and six new

analogous cases for S favorable.

In equilibrium, as in Section 4, the combinations of cases consistent with market clearing are

reduced. Somewhat unexpectedly, in equilibrium only one of S or P can ever become favorable

in any given economy.

Proposition 6.1. Assume logarithmic preferences for both agents. When °(¯ + 1) < °(¯ ¡ 1),
11¢ (t) ¸ 0, 8t. When °(¯ + 1) > °(¯ ¡ 1), ¢ (t) · 0, 8t.P;S P;S

10This case e®ectively embeds the case of restricted borowing, as these constraints imply that the weight invested¡ ¢
iin the bond satis¯es ¼ ¸ 1¡ ¯ + ° .B

11When °(¯ + 1) = °(¯ ¡ 1), mispricing can go in both directions but is of \measure zero", requiring ¸(t) to

take on a particular, deterministic value.
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Mispricing is necessary only if agents' implicit constraints are not automatically taken care of

by the explicit constraints. The former inequality in Proposition 6.1 corresponds to the implicit

lower (upper) bound on P (S) being tighter than the explicit one, thus requiring P to be favorable

in some states. It turns out that this condition is the negation of the necessary condition for

the implicit upper (lower) bound on P (S) to be looser than the explicit one, requiring S to

be favorable. The latter inequality corresponds to the reverse situation. We conjecture that

Proposition 6.1 should also be valid for general preferences. The somewhat counter-intuitive

implication that only one of the two securities will ever be favorable can be broken by making
12the constraints heterogeneous across agents (or stochastic). Figure 2 illustrates the equilibrium

regions when ° = ° and °(¯ + 1) > °(¯ ¡ 1), i.e., only S can be favorable. The situation for

°(¯ + 1) < °(¯ ¡ 1) and for °6= ° would be analogous.

INSERT FIGURE 2

Figure 2: Equilibrium regions of mispricing and no-mispricing in the case of

2-sided constraints. Binding portfolio constraints are also identi¯ed. The ¯gure is plotted for

¾ (t) = ¾ (t) = 1, ° = ° = 0:5, ¯ = 0:5, ¯ = 1:25.± P

The main di®erence with Figure 1 is that large heterogeneity in beliefs no longer alone guarantees

mispricing. Additional conditions are needed on the ratio of the agents' wealths. If agents are

heterogeneous enough in their wealths, an agent's implicit constraint may be taken care of by the

new explicit constraint, so mispricing will not be needed. We then get extra equilibrium cases

where there is no mispricing and only one agent binds (on either both his lower or both his upper

constraints).

The equilibria with mispricing are very similar to the ones described previously. When P is
13favorable, new terms involving ¯ (previously zero) simply appear in the pricing results. When

S is favorable, agents bind on the opposite constraints, and the expressions are symmetric (with
14constraints and agents being swapped).

With two-sided constraints, discontinuous jumps in ¢ and r may occur in equilibrium.P;S

They occur only on moving from a region where an agent is bound in both securities to a

mispriced region. We are then moving from a region where only one agent is in his interior in ©

(and so alone sets the prices) to a region where both agents are in their interior in © (and both

set the prices); hence the discontinuity. With one-sided constraints of opposite directions on both

risky securities as in the previous sections, agents are always in their interior in ©. Similar interest

rate discontinuities are derived in Detemple and Murthy (1996), where one-sided constraints are

imposed on both stock and bond holdings, and no derivative security is modeled. This is because

12The extension to this case can be performed easily and only leads to (besides the mispricing taking on both
signs) insubstantial changes in the equilibrium expressions.

13For example, when P is favorable and agent 1 more optimistic, the equilibrium interest rate is given by
1 2 2r(t) = ¹ (t)¡ (1 + ¸(t))¾ (t) ¡ °¾ (t)¾ (t)¡ ¯¸(t)¾ (t) rather than (4.15).± P ± ±±

14For example, when S is favorable and 1 is more pessimistic the equilibrium interest rate is given by r(t) =
2 1 2 1 2¹ (t)¡ (1 + )¾ (t) + °¾ (t)¾ (t) + ¯ ¾ (t) .± P ± ±± ¸(t) ¸(t)
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agents face a constrained problem in their composite risk-taking, as in this two-sided constrained

version of our model.

7. Conclusion

This paper develops a general equilibrium, pure exchange, continuous time model where, as a

result of heterogeneous agents facing portfolio constraints, mispricing occurs between a positive

net supply \stock" and a zero net supply \derivative" with perfectly correlated price processes.

Hence, in some states mispricing is generated as an integral part of the equilibrium, and the agents

engage in (bounded) arbitrage trading. With logarithmic preferences, the model is fully solved,

and existence of an equilibrium where mispricing occurs with a positive probability is shown in a

speci¯c context. We also provide characterization of equilibrium. Under more general preferences,

we demonstrate the necessity of mispricing for equilibrium when agents are heterogeneous enough

in their optimal exposure to risk. Natural extensions of the model would include increasing the

number of securities, or the number of agents, possibly distinguishing between \consumption

traders" (who maximize expected utility of consumption), and \arbitrageurs" (who only take

on riskless arbitrage positions). We foresee potential applications in international ¯nance, to

account for deviations from purchasing power parity, and in capital market equilibrium in the

presence of tax arbitrage.
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Appendix: Proofs

Proof of Lemma 2.1: The ¯rst equality follows from (2.9). (2.5)-(2.8), and (2.2) imply

i i i¹ (t)¡ ¹ (t) ¹ (t)¡ ¹ (t) ¹ (t)¡ ¹ (t)S ± PiS ± Pdt = dW (t)¡ dW (t) = dt = dt :
¾ (t) ¾ (t) ¾ (t)S ± P

The second equality immediately follows. Q.E.D.

Proof of Lemma 3.1: (i) By substituting ¢ (t) = 0 into (2.13), rearranging and substitutingP;S
i i(3.2), all pairs (¼ (t),¼ (t)) satisfying (3.2) yield the same wealth dynamics.S P

¾ (t)i P i(ii) Consider © (t) ¸ °. Assume ¢ (t) > 0, but (3.3) does not hold, implying ¼ (t) < °.P;S P¾ (t)S ¡ ¢
i iAdding the following \incremental" arbitrage position: X (t) ° ¡ ¼ (t) x > 0 dollars in P ,P³ ´¡ ¢ ¡ ¢¾ (t) ¾ (t)i P i i i PX (t) ¼ (t)¡ ° x < 0 dollars in S, and ¡X (t) ° ¡ ¼ (t) 1¡ x dollars in theP P¾ (t) ¾ (t)S S

bond (0 < x · 1), is feasible for agent i (without violating his constraints). Furthermore, it¡ ¢
i ihas zero cost, zero volatility and a positive drift, X (t) ° ¡ ¼ (t) x¢ (t). Similarly whenP;SP

¾ (t)i P i© (t) < °: i could add an arbitrage position, increasing his drift by ¼ (t)x¢ (t) > 0.P;SS¾ (t)S

Hence, whenever there is mispricing but (3.3) fails on a subset of f! 2 ­ : ¢ (t) > 0g £ [0; T ]P;S

with positive measure, from i's monotonic preferences there exists a portfolio strategy that is¡ ¢
i istrictly prefered to ¼ (t); ¼ (t) . Q.E.D.S P

Proof of Proposition 3.1: The maximization problem in brackets in (3.10) is solved easily
i i i i i iusing Lagrangean theory, revealing that c (t) = 1=y » (t), where y = T=» (0)X (0). Substitution

2iinto (3.10) shows that ´ solves the pointwise minimization problem min r (t) + [µ (t)] =2,´ ´´(t)
ihence the values for the individual-speci¯c prices in Table I. The optimal wealth is X (t) =h iR Ti i i i i i i i i iE » (s)c (s)dsjF =» (t) = (T ¡ t)X (0)» (0)=T» (t), hence c (t) = X (t)=(T ¡ t). Applyingtt

i i iItô's lemma to X (t) and equating di®usion terms shows that © (t) = µ (t)=¾ (t). Q.E.D.S

Proof of Proposition 4.1: The proof involves: (i) assuming that equilibrium exists and

deducing (4.2)-(4.13); (ii) verifying that De¯nition 2.1 is satis¯ed and establishing conditions for

the cases; (iii) verifying that all states fall under one of these.

Assume that equilibrium exists. Substituting the representative agent's utility in (5.6) and
i i i iusing y = T=X (0) = T=e S(0) yields (4.2). This and good clearing (2.15), given that c (t) =

i i1=y » (t), yield (4.3). (2.15), bond clearing (last equality in (2.16)) and agents' consumption
i i(3.11) yield (4.4). Itô's lemma then implies ¹ (t) = ¹ (t), i = 1; 2, and ¾ (t) = ¾ (t). ConsiderS ±S ± ¡ ¢

2case (b,d). Agents' optimization (Table I) and derivative clearing imply ¹ (t)¡ r(t) =¾ (t) =PP

¡°¾ (t)=¸(t), while agents' optimization, stock clearing and price consistency (2.14) implyP¡ ¢ ¡ ¢
2 1¹ (t)¡ r(t) =¾ (t) = ¹ (t)¡ r(t) =¾ (t) ¡ ¹¹(t) = (1 + ¸(t))¾ (t) + °¾ (t) ¡ ¹¹(t), henceS S ± PS S

(4.9). Substitution into (5.11) yields (4.10). Agents being in (b,d) requires: (i) ¢ (t) > 0,P;S¡ ¢ ¡ ¢
1 2which is (4.8); (ii) ¹ (t)¡ r(t) =¾ (t) ¸ °¾ (t); (iii) ¹ (t)¡ r(t) =¾ (t) · °¾ (t). (ii) andS P P PS P

(iii) are implied by the strict positivity of ¸(t), which the proposition assumes. Hence, when

(4.8) holds, the agents are in (b,d). (4.2)-(4.3) show optimal consumptions which clear the good

24



market. (4.9)-(4.10) ensure (5.11)-(5.10) are satis¯ed, so by Proposition 5.3 all markets clear.
1 2 2Since market clearing puts restrictions on ¹ (t) and ¹ (t) only, it is possible to determine ¹ (t)S P S

1and ¹ (t) so that (2.14) holds. Therefore, the economy is in equilibrium. (d,b) is symmetric.P

For (a,a), we use the proof of Proposition 5.1 to show that (4.5) is necessary and su±cient for¡ ¢
i i 2equilibrium without mispricing. Here, without mispricing, © (t) = ¹ (t)¡ r(t) =¾ (t) . Fi-±±

1 2nancial market clearing then implies r(t) = ¹ (t) ¡ (¸(t))=(1 + ¸(t))¹¹(t)¾ (t) ¡ ¾ (t) , so that± ±±
1© (t) = 1 + ¸(t)¹¹(t)=[(1 + ¸(t))¾ (t)]. The proof of Proposition 5.3 can be replicated to estab-±

lish (4.5) (by substituting the last equation in (A.3)) as necessary and su±cient for equilibrium

without mispricing. (Necessity follows from the proof of Proposition 5.3, su±ciency from our

determination of r(t).) This contradicts the conditions for equilibrium with mispricing. Hence,

there indeed exists an equilibrium in all states. Q.E.D.

Proof of Proposition 4.2: Agents' beliefs have dynamics (Liptser and Shiryayev (1977),
i i 2 2Chapter 12) d¹ (t) = (v(t)=¾ )dW (t), where v(t) ´ v(0)¾ =(v(0)t + ¾ ), implying d¹¹(t) =±± ± ±£ ¡ ¢¤¾±2 2¡(v(t)=¾ )¹¹(t)dt, so that ¹¹(t) = ¹¹(0) ¾ = v(0)t+ ¾ . Assume ¹¹(0) > 0, so that ¹¹(t) >± ± ±

0, 8t. Then, if ¸(t) > 0, 8t (veri¯ed later), (d,b) is impossible, so only (4.8) is relevant, or
2¾ ¸(t) + (¾ °+ ¾ ¡ ¹¹(t))¸(t) +¾ ° · 0. For (b,d) to arise, we need the left-hand side to haveP P± ±

distinct positive roots. This and an analogous argument for ¹¹ < 0 and (d,b) yield the necessary

condition for mispricing. (Su±ciency will be veri¯ed later.) Assuming that it holds, (4.8) is

equivalent to ¸(t) · ¸(t) · ¸(t), where· ¸q
2¸(t); ¸(t) = ¹¹(t)¡ ¾ ° ¡ ¾ § (¾ ° + ¾ ¡ ¹¹(t)) ¡ 4°¾ ¾ =2¾ . Note that, for any t, 0 <P P P± ± ± ±

1¸(t) < ¸(t). Now, consider the SDE: d¸(t) = b(¸(t); t)dt+ ¾(¸(t); t)dW (t), where

h i
1+xb(x; t) = (1 + x)°¾ (°¾ + x¾ )¡ ¹¹(t) if ¸(t) · x · ¸(t) ; b(x; t) = 0 otherwise;P P ±x

¾(x; t) = ¡(1 + x)(°¾ + x¾ ) if ¸(t) · x · ¸(t) ; ¾(x; t) = ¡¹¹(t)x otherwise.P ±

If there exists a strictly positive solution, it satis¯es all the conditions in Proposition 4.1. For

any t, b and ¾ are continuous in x and bounded as are their ¯rst derivatives with respect to x

(when these exist; when they do not (at ¸(t) and ¸(t)), they have ¯nite left and right limits).

Hence, they satisfy Lipschitz and growth conditions in x. Therefore, from Theorems 5.2.5 and

5.2.9 in Karatzas and Shreve (1991), there exists a unique, continuous, strong solution to the

SDE. To show that it is strictly positive, observe that, in any state and time, either the economy

is in (b,d) and 0 < ¸(t) < ¸(t) < ¸(t), or the economy is in (a,a) and ¸ follows d¸(t)=¸(t) =n oR Rt 2 t11 1¡¹¹(t)dW (t), implying ¸(t) = ¸(¿(t)) exp ¡ [¹¹(s)] ds¡ ¹¹(s) dW (s) , where ¿(t) ´¿(t) ¿(t)2

sup(fs 2 [0; t] : (4:5) does not holdg[f0g) (the last \entry time" in (a,a)). Since ¸ is continuous,
2 1¸(¿(t)) equals either ¸(¿(t)) > 0 or ¸(¿(t)) > 0 or ¸(0) = e =e > 0. Hence, ¸ > 0 in (a,a)

and (b,d). Su±ciency of the condition for mispricing to occur with positive probability is now

apparent for this case of ¹¹ > 0, because ¸ will cross ¸ or ¸ before any future time with positive

probability. The case where ¹¹ < 0 and (a,a) and (d,b) only arise is symmetric (so that, in

particular, ¸ > 0 in all regions (a,a), (b,d), (d,b)). The technical conditions of Section 2 can be

checked easily. Q.E.D.
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i iProof of Proposition 4.3: Applying Itô's lemma to (4.2) yields µ (t), r (t), using (4.7),
1 2(4.10), (4.13). From Table I, r(t) = r (t) in (a,a) and (d,b), r(t) = r (t) in (b,d). Consumption

volatilities follow from applying Itô's lemma to agents' ¯rst order condition. Q.E.D.

Proof of Proposition 5.1: The proof is by counterpositive. Assume mispricing never occurs
iin the constrained economy. Given the composite weight © (t) can take on any real value,

agents make the same choices as in the unconstrained economy and, if equilibrium exists in the
i i¹constrained economy, it is identical to the unconstrained one, and © (t) = © (t). For equilibrium

i ito exist in the constrained economy, there must exist (¼ (t); ¼ (t)) that (i) obey the constraintsS P
i i¹(2.10), (ii) implement agents' risk exposure © = © ((3.2)), and (iii) clear markets ((2.16)).

1Given the redundancy of S and P , ¯x ¼ (t) and use (2.10), (3.2) and (2.16) to rewrite the otherS

holdings (and constraints) as a function thereof:

1 1¹ ¹X (t) X (t)1 2 1¼ (t) ¸ 0 ; ¼ (t) = 1 + ¡ ¼ (t) ¸ 0 ; (A.1)S S S2 2¹ ¹X (t) X (t)

1¹¹¾ (t) X (t) ¹¾ (t)S S1 1 1 2 1 1¹ ¹¼ (t) = (© (t)¡ ¼ (t)) · ° ; ¼ (t) = (¼ (t)¡ © (t)) · ° : (A.2)P S P S2¹¾ (t) ¾ (t)X (t)P P

2¹X (t) 0 i¹(A.1)-(A.2) require 1 + ¸ 0 (implied by lim u (c) =1, which ensures X (t) > 0) andc!01¹ iX (t)

2 2¹ ¹X (t) ¾ (t) X (t) ¾ (t)P P1¹¡ ° · © (t) · 1 + + ° ; (A.3)
1 1¹ ¹¹¾ (t) ¹¾ (t)X (t) X (t)S S

1 1 2 2 1 2¹ ¹ ¹ ¹ ¹ ¹the negation of (5.1) (after substituting © (t)X (t) + © (t)X (t) = X (t) + X (t), implied by

clearing). Q.E.D.

Proof of Proposition 5.2: The proof, though lengthy and involved, is an adaptation of

Cvitanic and Karatzas (1992). Details can be found in Basak and Croitoru (1998). Q.E.D.

Proof of Proposition 5.3: (5.3), (5.4) and (2.15) imply (5.6)-(5.7). Applying Itô's lemma to

the de¯nition of ¸ and using (3.5)-(3.6) and Table II yields (5.9), (5.11), (5.13). Market clearing

in P (the second condition in (2.16)), (5.5) and Table II imply (5.8), (5.10) and (5.12).

To prove the converse: (5.3) and (5.4) together with (5.6)-(5.7) imply (2.15). From agent 1's

perspective, making use of (2.4), (3.5) and (3.6):
h i h i h i

1 2 1 1 2 2 1 2d X (t) +X (t) = X (t)r (t) +X (t)r (t) dt¡ c (t) + c (t) dt
h i

1 1 1 2 2 2+ X (t)© (t)¾ (t)µ (t) +X (t)© (t)¾ (t)µ (t) dtS S
h i

2 2 1 1 2 2 1+X (t)© (t)¾ (t)¹¹(t)dt+ X (t)© (t) +X (t)© (t) ¾ (t)dW (t)S S
h i h i h i

1 2 2 1 2 1 1 2 2 1= X (t) +X (t) r (t)dt¡ c (t) + c (t) dt+ X (t)© (t) +X (t)© (t) ¾ (t)µ (t)dtS
h i

1 1 2 2 1+ X (t)© (t) +X (t)© (t) ¾ (t)dW (t)S
n h i h io

1 1 2 2 2 2 1+ X (t) r (t)¡ r (t) +X (t)© (t)¾ (t) µ (t)¡ µ (t) + ¹¹(t) dt :S
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1 2 1 2In region (a,a), the ¯nal dt term is zero, since r = r and µ = µ + ¹¹. In (b,d), Table II, (5.5)
2and (5.10) imply the ¯nal dt term is zero, as well as r (t) = r(t). Similarly, in (d,b),

h i h i h i
1 2 1 2 1 2d X (t) +X (t) = X (t) +X (t) r(t)dt¡ c (t) + c (t) dt

h i h i h i
1 1 2 2 2 1 1 2 2 1+ X (t)© (t) +X (t)© (t) ¾ (t) µ (t) + ¹¹(t) dt+ X (t)© (t) +X (t)© (t) ¾ (t)dW (t) :S S

¡ ¢ ¡ ¢
1 1 2 1Since, in (a,a) and (b,d), µ (t) = ¹ (t)¡ r(t) =¾ (t), and in (d,b), µ (t)+¹¹(t) = ¹ (t)¡ r(t) =¾ (t),S SS S

we deduce:
"h ³ ´i ³ ´ ³ ´

1 1 2 1 1 2 1 1 1 2 2d » (t) X (t) +X (t) = ¡» (t) c (t) + c (t) dt+ » (t) X (t)© (t) +X (t)© (t) ¾ (t)SS S S

Ã !#³ ´ 1¹ (t)¡ r(t)1 2 1 1S¡ X (t) +X (t) » (t) dW (t) : (A.4)S ¾ (t)S

¡ ¢ R ¡ ¢t1 1 2 1 1 2 1Hence, » (t) X (t) +X (t) + » (s) c (s) + c (s) ds is a P -martingale satisfyingS S0

" #Z ³ ´T11 2 1 1 1 2 1X (t) +X (t) = E » (s) c (s) + c (s) dsjF : (A.5)S t1» (t) tS

Moreover, from (2.11) and (2.5)

" Ã !#
1h i ¹ (t)¡ r(t)1 1 1 1Sd » (t)S(t) = ¡» (t)±(t)dt+ » (t)S(t) ¾ (t)¡ dW (t) ; (A.6)SS S S ¾ (t)S

" #Z T1 11 1S(t) = E » (s)±(s)dsjF : (A.7)timplying 1
t» (t)

Using good market clearing, (2.15), from (A.5) and (A.7) we deduce bond clearing, the last

equality in (2.16). Then, using good and bond clearing, and equating terms of (A.4) and (A.6),

we deduce clearing in the composite, i.e.,

³ ´¾ (t)P1 1 2 2 1 1 2 2 1 1 2 2X (t)© (t)+X (t)© (t) = ¼ (t)X (t)+¼ (t)X (t)+ ¼ (t)X (t) + ¼ (t)X (t) = S(t) :S S P P¾ (t)S

(A.8)
i iIn region (a,a), since agents are indi®erent between admissible pairs (¼ ; ¼ ), we can alwaysS P

1 1 2 2choose pairs so that ¼ (t)X (t)+¼ (t)X (t) = 0 (clearing in P ), and then (A.8) implies clearingP P

in the stock. In regions (b,d) and (d,b), using Table II and (5.5), (5.10) and (5.12) imply clearing

in the derivative, from which (A.8) implies clearing in the stock. Q.E.D.

Proof of Proposition 6.1: The determination of the agents' policies and equilibrium prices
iis similar to Section 4, but it is now necessary to take into account the constraint on © , and

new cases become possible. Neglecting \measure zero" cases, P being favorable requires, besides
° ¯+1 ° ¯+11 1conditions on ¹¹(t), either ¸(t) · and ¸(t) ¸ , or · and ¸ , possible only if° ¸(t) ° ¸(t)¯¡1 ¯¡1

°
°(¯ + 1) < °(¯ ¡ 1). S being favorable requires, besides conditions on ¹¹(t), either ¸(t) ¸ and°

¯+1 ° ¯+11 1¸(t) · , or ¸ and · , possible only if °(¯ + 1) > °(¯ ¡ 1). Q.E.D.¸(t) ° ¸(t)¯¡1 ¯¡1
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