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Frozen Region Formed around a Circular Cylinder Immersed in a

                            Flow at Low Peclet Number

                                         Takao SANo'

                                  (Received November 30, 1995)

          The frozen region formed around a cold circular cylinder in a Darcy flow is investigated. The
        Peclet number is assumed to be small and the method of matched asymptotic expansions is used to
        obtain the asymptotic solution of the energy equation. The equation which predicts the diameter of
        the frozen region at the steady state is obtained.
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               1. Introduction

  The present paper is concerned with a frozen region

formed around a cold circular cylinder immersed in a

porous medium through which a liquid is flowing

according to Darcy's law. Yosinobu'} already inves-

tigated the similar problem. He considers a frozen

region formed around a constant line heat sink, instead

of a freezing tube of finite radius, immersed in a Darcy

flow and obtained the diameter and the geometrical

shape of the frozen region at small Peclet number in

the ultimate steady state that the system will reach.

His theory is valid only when the diameter of the

frozen region is much larger than that of the freezing

tube.

  The purpose of the present paper is to extend the

problem considered by Yosinobu to the case of a freez-

ing tube of finite radius. The Peclet number is

assumed to be small and the method of matched

asymptotic expansions2) is used to obtain the tempera-

ture field outside the frozen region. Although the

analysis is developed for the case when the cylinder is

immersed in a porous medium, it is shown in the

discussion that the results obtained are valid also for

the case of pure fluids up to the order e, 6 being a

perturbation parameter defined later.

        2. Formulation of the Problem

  Consider a circular cylinder of radius 7h(= D/2) im-

mersed in a porous medeum through which a liquid is
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flowing according to Darcy's law. If we cool the

surface of the cylinder below the freezing temperature

7} of the liquid, a frozen region will be formed around

it. We shall restrict our interest only to the ultimate

steady state that the system will reach. The govern-

ing equations for the superficial velocity and the

locally averaged temperature can be written, in non-

dimensional form, as

     AIPp =O, (1)
     Re(ur ,a.' +!9' ,ae` )-A4 (2)

     A=a2/ar2+(1/r)a/ar+(1/r2)a2/ae2, (3)
where radial coordinate r is referred to L/2, L being

the length of the diameter of the frozen region between

the front and the rear stagnation points, the velocities

ur and ue to ca and

        t" 1;o              , (4)     t=        7}-7N

t' being the dimensional temperature outside the fro-

zen region. The stream function th is defined as

     ur= -il- grt,ue= --I31tf- (5)

The governing equation for the temperature

         t" - 7;o                , (6)     t"=         7}-7"

in the frozen region, t" ' being the dimensional temper-

ature in the frozen region, is

  The boundary conditions are

     t'= eto at r=1/m, (8a)
                       at*                at                           th=O at r=S(0),     t*=t=1, le                   ==k*
                On                       On '
                                          (8b)

     t.O, th.rsine as r.oo, (8c)
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where e.=(7;,- 71.)1(7} - 7;.).

     3. Asymptotic Solutions for Small Ple

 We now assume that the Peclet number Pe is small

and shall obtain solutions of the above equations in

forms of expansions in terms of Re. For obtaining

solutions outside the frozen region, we use the method

of matched asymptotic expansions. In the inner

region near the surface of the frozen region, we assume

expansionsfor th and t of the forms,

     th= leb+eth,+e21ele+･･･+O(Pti), (9)

     t==4+Et,+E2a,+･･･+O(Re), aO)
where

   E=(-lnRe+ln4-7)-i=(-lnPe'+ln i-7)-' aD

These assumptions are similar to those for other two-

dimensional flow problems at low Peclet number. In

the outer region far from the frozen region, we intro-

duce the following outer variables, .
  R=Pe ･ ny fiij(R, e) =feth(nye), T(R, e)=t(ag e)/6(Pe),

                                           a2)

where 6(fe) is the still unknown order of the tempera-

ture in the outer region. In terms of these variables,

Eq. (2) can be written as

      u)r9aZ-RT+ li:! {llTe =ART a3)

where AR is the same differential operator as A but

with r replaced by R and

           1 aap                        agx      UR=R ae, Uh=- aR, a4
The expansion for T is assumed to be of the form

     T=7}+ETI+e27>+･･･+O(fe), a5)
This expansion is required to satisfy Eq. (13) with the

boundary condition at infinity and to match the inner

expansions (10). The matching condition can be writ-

ten as

                1                   lim T(R, e). aol    lim t(ag e)=
    r-oo (5`(Re) R-.o

The expansion for fP is obtained by rewriting Eq. (9) in

the variable R instead of r.

  The temperature in the frozen region t", the temper-

ature on the surface of the frozen region ew and the

function denoting the boundary of the frozen region

S(e) are also expanded as

     t*=4*+et,*+£26*+･･･+O(Pte), a7)
     e.= e, +Eo, +E2&+･･･+ o(fe), as)
     s(o)==&(e)+es,(e)+E2&(e)+･･･+o(pe). ag)

respectively.

 Differential equation for G is the heat conduction

equatlon

Since the thermal convection term is neglected in Eq.

(20), it is reasonable to assume that, to the order

smaller than Re, the shape of the frozen region remains

a circle with the center at the origin, so that we have

     s;,(e)-{"gi :=.=O',. (2D

Hence the stream function thn is given by

     ab.={8r-r-i) sine f.f,or.n>:g: ua)

From this, the stream function in the outer region ftU

may be expressed as

     Nlr :R sine+O(Re), os)
and the equation for 7;i becomes

     ,.,eaa7Rh-siR'eiaili-A.7> tz4

The solutions of Eqs. (20) and (24) satisfying the bound-

ary conditions and the matching condition (16) can be

obtained after a straightforward manner as

     t=1-Eln r+O(Pe), tz5)
     T =(t/e)=exp (÷ll-R cose) Kb Cll'R)+O(fe), (26)

where K6 denotes the modified Bessel function.

  The solution for t" and the still unknown parameter

m can be determined by applying the boundary condi-

tions, (to")tsi=1, (t'n)r.i=O for n ) 1, (t;)r=i== en and

k" tat:/ar),.r=k (aG/ar),.i. The final results are

             le                lnr+O(1 le), on)     t'=1-e             le *

             k                lnm+O(Pig). (28)     e. =1+E             k*

Equation (28) predicts m for a given value of e..

  In the analysis presented so far, the thermal convec-

tion is taken into account only in the outer region and

it does not contribute to deformation of the frozen

region from a circle with the center at the origin. It is

clear that the deformation appears when the analysis is

continued up to the term of O(Re). The calculation

obtaining the term is, however, difficult and is beyond

the scope of the present paper.
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4. Discussions

  wnen the diameter and the surface temperature of

the freezing tube, the velocity and the temperature of

the uniform stream and some necessary physical con-

stants of the saturated porous medium and the frozen

region are given, Eq. (28) predicts the diameter L of the

frozen region. Fig. 1 shows the curves of (k'/fe)(1-

e.) =(k"/k)(7L,- 7))/( I;.- 7i) plotted as a function of

m. From Eq. (27), the heat flux at the surface of the

freezing tube is obtained, in non-dimensional form, as

     Q = ibQ'/k*( 7i - CT;.)=(lelk*) £+O(Pla). oo)

It is seen that, to the order E, the heat fiux is uniform

over the surface of the freezing tube. Therefore,

when constant heat flux Q' is given as a boundary

condition at the surface of the tube inatead of a con-

stant temperature, Eq. (29) is valid to predict L.

Figure 2 shows the curves of (h'/k) Q plotted as a

function of mPler'. It is to be noted that, for a given

value of (le"/fe)Q, m is in inverse proportion to Pe'.

  Finally, it should be noted that, in the present analy-

sis, we have used, as the velocity in the energy equa-

tion, only the leading term in Eq. (23), namely, uniform

stream. If we consider the flow of pure fluid instead
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                m
Variation in (le'1le)(1- e.) as a function of m

of the flow in porous medium, the velocity in the outer

region can be written as (Proudman and Pearson2))

     ,U=R sine+O(E)+O(R2). (30)
This suggests that Eqs. (25)-(28) are valid up to O(E)

for pure fluids also; namely, we have for pure fluids

     t=1-elnr+O(E2)+O(Ple), (3D
     T==exp (t}R cose) Kb(-il-R)+O(E)+O(Re), (32)

     t"=1-E (k/le') lnr+O(e2)+O(Re), (sa)

     e.==1+e (k/k") lnm+O(E2)+O(Re). (34
The deformation of the frozen region from a circle is,

of course, of the order Pla Similarly to the case of Darcy

fl'ow.

c

D
l
e

k*

L

m
,l]IEi

Re'

Q
r

4
s(e)

t

Fig. 1

"AE.tsc
.N,,:

¥o

O.3

O.2

O.1

o

                   N               mPe

 Variation in (k'1le) Q as a function of mPle'

t'

%
4
%
Ur

ue

ca

Nomenclature

Fig. 2

specific heat of liquid

diameter of the cylinder

effective thermal conductivity

thermal conductivity of the frozen region

diameter of the frozen region

ratio L/D

Peclet number based on the radius of the frozen

region (=pcLU. 12k= mRe")

Peclet number based on the radius of the cylin-

der

heat flux at the surface of the cylinder

radial coordinate

radius of the cylinder (==Dl2)

function denotlng the shape of the boundary of

the frozen region

non-dimensional temperature outside the frozen

   .reglon

non-dimensional temperature in the frozen

   .reglon

freezing temperature of liquid

temperature on the surface of the cylinder

temperature at infinity

non-dimensional velocity in r-direction

non-dimensional velocity in e-direction

velocity at infinity

Greek symbols

s

e

e.

p
t
h

small parameter defined by Eq. (11)

tangential coordinate

non-dimensional temperature on the

the cylinder

density of liquid

stream function

surface of
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