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Generalized Energy-Type Lyapunov Functions for the
    Transient Stability Analysis of Power Systems

Shunji KAwAMoTo', Atsushi IsHiGAME', Takahiro IMoTo""

                and Tsuneo TANIGuCHI"

(Received June 16, 1990)

  This paper attempts to generate energy-type Lyapunov functions for the
single-machine power system taking into account saliency and variable damp-
ing, on the basis of the concept of generalized momentum and potential force.

The generated Lyapunov functions give better estimations of the stability

region than those obtained by the other methods.

1. Introduction

  For the transient stability analysis of a power system, many methods have been

proposed and studied such as (a) direct simulation method, (b) eigenvalue method,

and (c) the second method of Lyapunov. Especially, it is necessary to generate the

so-called Lyapunov function for applying (c) to the analysis. For example, the Zubov

method'), the Lur6-Popov method2'3) and the method based on energy concept`'-7)

seem to be the most general ones to construct Lyapunov functions.

  The authors have presented that a Lyapunov function for a power system can be

generated through the generalized energy-type state function consisting of general-

ized momentum and potential force8'ii}. In this paper, we propose a more general

procedure to construct Lyapunov functions by introducing arbitrary functions a(x)

and P(x). Also, estimations of the stability region are numerically calculated, and

they are compared with those obtained by the other methodsi･4･5･iO･i2-i4).

2. A Generalized Energy-Type State Function

  From the physical viewpoint, it is well-known that the total energy of a mechani-

cal system is given by the sum of the kinetic energy T(a I ) and the potential energy
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U(x)'), that is,

       T(x, I)= f,X' p(x; 1)d2, (1)

       U(x)= f,Xf(x)dx, (2)
where P(x, fa ) denotes the generalized momentum, f(x) the generalized potential

force, x the position, and I the velocity with . = dldt.

Based on this concept, we define

       P(x, ±)2di =PO), (3)and compose modified energy-type state function V(agb as

       V(x, I)= f g:Ndab + f ,X f(x)dx

                                                                  (4)
                1 .x             = 2 P2(g x)+f,                            f(x)dx.

Since p(x, fa) is the generalized momentum, N can be interpreted to be a momentum

on the y-axis. Here, it should be emphasized that the definition Eq.(3) of Y is, as a

matter of convenience, introduced for the construction of the state function V(ag ab)

given by Eq. (4).

3. Generalized Energy-Type Lyapunov Functions

  Under the usual assumptions of (i) consant input, (ii) constant field flux linkage,

and (iii) constant angular momentum'2), we treat the following swing equation of a

single-machine power system with saliency and variable damping;

       iv' +D(x)fa +g(x)=O, (5)
where

D(x)=a+bcos2(x+of)>O, a>b>O;
       the generalized damping coefficient

(7)

       g(x)==Kr {sin(x+of)-sinof}

            -Ki {sin2(x+of)-sin2of} , Kl>2Kh>O;

              the generalized nonlinear restoring force

       of; the stable equilibrium value of 6

       a, b, Ki, K2; constants.

Letting tk be the unstable equilibrium point of x near the

limited range

origin

(8)

(x=I=O), in a
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       r= {xlxc-2rr5xSxc}, (9)
we find that this system has properties

       ng(x))O, g(O) == O, (11)
and

with

           '       R(x)Sf,"D(x)dx. (13)
It is important to notice how we can reflect the damping term D(x)fo of Eq.(5) into

the kinetic energy Eq.(1) and the potential energy Eq.(2) for constructlng a energy-

type state function Eq.(4). Introducing arbitrary functions･a(x) and P(x), and rewrit-

ing Eq.(5) yield

        ddt {I+ev(x)R(x)}+ dd. {(1-a(x))R(x)}i a4)

                  + {P(x)+g(x)}=B(x).

Since the first and the third terms of the left hand side of Eq.(14) are corresponding

to the generalized momentum P(t fa) and the generalized potential forcef(x) respec-

tively, Eq.(4) enables us to construct a generalized energy-type state function li(k ab)

as

       V(a I)= ; {I+a(x)R(x)}2+f,X {P(x)+g(x)} dx. (15)

                                        '
The time derivative along a trajectory of Eq.(5) becomes

       .       V(`g I)=-di(x)I2- {a(x)R(x)ip(x)-B(x)} i
                                                                  <16)
               -a(x)R(x)g(x),

where

             d                 {(1-a(x))R(x)}. (17)       di (X) ,A,.
             dx

Using Eqs.(10)-(13), and choosing P(x) to make a squared form of Eq.(16) such as

       P(x) :a(x)R(x)¢(x)+2 {a(x)R(x)g(x)¢(x)}"2 ･ (18)
with a(x)di(x) l O, we find that Eqs.(15)-(18) give

       v(ag I)== ; '{fa+cr(x)R(x)}2+f,X {a(X)R(X)di(X)+g(X)} dr ag)

            '
               +2 f,` {a(x)R(x)di(x)g(x)}ii2dw

and
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       .       V<c fa)==- ({di(x)}i'2I- {a(x)R(x)g(x)}i'2) 2, (20)

which is non-positive in r with

       a(x))O and di(x)kO. (21)
Moreover, it follows

       ve(x)- {XE{.a((f.){18()-di.(X?.})ijdi2 1.)gesXl} '(212', X(.i}O;i2) 2, .<o. [iil

                                                            '
This guarantees that V(x I) is positive definite in r. Thus, it is found that the state

function V(i4I) given by Eq.(19) is a generalized energy-type Lyapunov function for

Eq.(5).

  On the other hand, since the condition Eq.(21) is

       di(x)= dd. {(1-a(x))R(x)}4dd. F(x)lo, (24)

where

       a(x)=1-F(x)/R(x))O, (25)
F(r) must be a monotone increasing function. Then, as examples of a(x), F(x)

satisfying Eq.(25) gives

  1) a(x)=exp(-le,x2)

  2) a(x)=sech(kix)

  3) cr(x)=cos(k,x)

  4) cr(x) :1-kix2

  5) a(x)=1-leiR2(x)-k2G2(x),

where

       G(x)2fig(x)drIO, (26)
and ki and k2 are constants chosen to satisfy the condition Eq.(25) in the region r. For

example, the case 5) gives

       O$ m.a,x{kiR2(x)+le2G2(x).}$1･ (27)

However, the problem to obtain theoretically optimal values of ki and la seems to

be interesting.

In Fig. 1,

               4. Numerical Results

the true stabillty region and other cases are numerically calculated. The
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Comparison of stability regions;

(a) true region, (b) a<x) =O.5, (c) a(x) ==O, (d) a(x)=1-R2(x), (e) a(x)=1-O.8R2(x)-

O.03G2(x), (fi cr(x)= sech(O.6x), ig) a(x)=1-O.05x2, and Ki == 1.0, Ki =O.2, a=O.3, b =

O.1, of =O.6325.

case (c) corresponds to the simplest one constructed by setting a(x) == O in Eq.(19), and

the effect of the damping term in Eq.(5) is not included. Cases (b), (d), (e), (f) and (g)

give better estimations than that of the case (c). The case (b) has been represented

based on the energy concept',`'5"O･i2), and the case (g) has been developed recently by

using the operational transform technique'3･i4).

5. Conclusions

  Introducing arbitrary functions a(x) and P(x) into the generalized momentum and

potential force for considering the effect of the damping term in Eq.(5), we have

proposed the method to generate generalized energy-type Lyapunov functions for the

power system, and have numerically shown better estimations of the stability region

than those obtained by the other methods. Hence, we can conclude that the proposed

method is more generalized than the other ones, the procedure to construct the

Lyapunov function Eq.(19) is systematic, and the choice of arbitrary functions a(x)

and P(x) is quite simple. As we pointed out in Section 3, it is interesting to find an

optimal function a(x) theoretically. Also, an application of the proposed method to

multi-machine power systems is under investigation.
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