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A Nonlinear Process Generating Tollmien-Schlichting Waves

Masahito AsAI" and Michio NIsHIoKA'

(Received November 15, 1989)

 Our ability to predict laminar-turbulent transition in boundary layer heavily

depends on our understanding of the so-called receptivity, namely the process
by which external disturbances are internalized as eigenmodes, i.e. Tollmien-

Schlichting waves. In this paper, a nonlinear process generating Tollmien-
Schlichting waves, found in our recent experiment of the ribbon-induced
transition in plane Poiseuille flow, is reported and discussed.

1. Introduction

  Recently there has been a great progress in the study of laminar to turbulent

transition, in particular for the case of boundary layers and plane Poiseuille flow

initially controlled by the spatial growth of Tollmien-Schlichting (T-S) waves.

Indeed, we are pow able to predict the threshold amplitude of T-S waves, which is

required for the secondary instability to operate to lead to the transition through the

process of wall turbulence generation;see reviews by Nishiokai) and Asai and

Nishioka2). The progress has crucially been dependent on experimental observations

obtained by introducing well-controlled T-S waves by means of the so-called vibrat-

ing ribbon. The present note is concerned with the important ribbon-induced T-S

wave and an observed nonlinear process for its generation. The reason why we take

up the present problem is due to the fact that it is c!osely related to the problem of

receptivity3)`), a process by which external disturbances are internalized as eigen-

modes, namely T-S waves.

2. Vibrating Ribbon Technique

  First of all the vibrating ribbon technique is explained briefly. Originally the

ribbon technique is due to Schubauer and Skramstad5). In our experimenti)2) on the

transition in plane Poiseuille flow (realized in a rectangular channel whose width

 (span), depth and length are respectively 400 mm, 14.6 mm and 6000 mm), a

phospher bronze ribbon (of O.05 mm in thickness and 4 mm in width) is placed near

the channel lower wall (at a height near the critical layer) and stretched across the

full span, under tension by means of weights. The segment inside the channel is free

' Department of Aeronautical Engineering, College of Engineering.
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to vibrate normal to the wall, when driven by a sinusoidal electric current in a steady

magnetic field produced by permanent magnets attached to the opposite side of the

wall. The exciting current is supplied by a sine-wave generator through a power

amplifier.

  Throughout our experience of transition experiments made thus far by using the

ribbon technique, we always check and confirm that the T-S wave introduced has the

same frequency as that of the driving ribbon current, without any appreciable

harmonic content. Of course, the wave amplitude is proportional to that of the

ribbon current. This means that the vibrating ribbon is a linear system.

  In spite of the linear character, we quite recently found that the flow forced by the

vibrating ribbon can generate two systems of T-S waves. One is of course the wave

with the forcing frequency f, and the other with 2lf. It is rather surprising that the

latter is not of the second harmonic of the T-S mode with f but itself of the T-S

mode with ZIC. This finding is quite important and will be described in more detail

as follows.

3. Nonlinear Process Generating T-S waves

  The observations described here are made in an effort of investigation into the

secondary instability6)'-8) at a subcritical Reynolds number (based on the channel

half depth h=7.3 mm and the centre-line velocity U}=9.8 m/s) R=5000: The critical

Reynolds number for the linear instability is 5772.

  Figs. 1(a) to (d) demonstrate ribbon-induced za-fluctuations at a fixed excitation

(a) {b)

                     (c) {d)
Fig. 1 Wave-forms of u-fluctuation at various excitation intensities (y/h=O.18, z=6.5cm).

     Upper trace;u-fluctuation (vertical scale;O.02Ul:/div), lower trace;ribbon current

      (36.5Hz).
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frequency f =36.5 Hz, and at various excitation intensities;non-dimensional fre-

quency 2cb/ Ul =O.17. They are observed at a distance y from the lower wall, O.18h,

at a streamwise distance, 48h downstream of the ribbon. It is clear that each

oscilloscope trace of u-fluctuation contains not only the fundamental V) but also

the component with the second harmonic (2f) frequency together with a high-

frequency ripple due to the fan noise (700 Hz). It should be stressed that in all the

cases, the excitation is so weak that we do not usually expect nonlinear behaviour

of fluctuations. In fact, the maximum in the y-distribution of the r. m. s. value of

the fundamental u-fluctuation is O.24, O.40, O.52 and O.84 % of Ul, in Figs. 1(a), (b),

 (c) and (d) respectively. Nevertheless, even in the case of the lowest intensity,

Fig. (a), we see a clear evidence for the presence of the component with the second

harmonic frequency. This feature is observed at various y and 2 (spanwise)

positions. It is also noted that the phenomenon is observed only for a range of the

frequency below 40 Hz. Beyond 40 Hz, what is observed at these excitation levels

is the T-S wave of the forcing frequencyf alone. The most unstable (actually, the

least damping) frequency at R= 5000 is 62Hz (2cb/U}==O.30) under the present

experimental conditions, that is, the frequency range for the peculiar phenomenon to

occur is much lower than the most unstable frequency. The reason why this has

never been observed is that no one has ever worked in such a low frequency range.
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Fig. 2 Spanwise distributions of r.m.s. amplitude and phase of u-fluctuation at y/h =O.18.

     O, A, [];fundamental frequency (36.5Hz), e, A, -;second harmonic frequency

      (73Hz) .
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  Fig. 2 shows the spanwise distributions of the r. m. s. amplitude and the pha$e

of the components with the fundamental and second harmonic frequencies, that are

singled out from the total u-fluctuation at y/h =O.18. Comparisons are made

between the results for three different excitation intensities corresponding to Figs.

I(a), (c) and (d) observed at z :6.5 cm. Both the amplitude and phase distributions

show no large spanwise variations. Indeed, variations are within 20 % and 30

degrees in relative amplitude and phase respectively. Furthermore, we see no

tendency of increases in their spanwise variations with increasing the forcing. These

facts indicate that the wave system is essentially two-dimensional.

  Now we have to describe the structure of each wave component;the fundamental

f-component and the 2f-component. It is first noted that the u-fluctuation of the

f-component (T-S mode) is anti-symmetric with respect to the channel centre line.

Then, the Zle-component should be symmetric if it is of the second harmonic mode

of the f-component as usually expected. Actually, however, the Zlr-component is

anti-symmetric, suggesting that it is also of T-S mode just like as the f-component.

This is unexpected and really interesting. To clarify the 2f-component, we have to

obtain the normal-to-wall (y-) distributions of the amplitude and phase of its

u-fluctuation. To single out two-dimensional waves off- and 2f-frequencies with a

good accuracy, we made double Fourier analysis with respect to the frequency and

the spanwise wavenumber, which was used in our previous study8) on the secondary

instability. This analysis was done for the case (c). The u-fluctuations thus singled

out are expressed as

    u.=A.(y)cos(27rnLf7r+Il,(y)),

where A. denotes the amplitude and Ph the phase, and n==1 and 2 stand for the f-

and ZX'-components respectively.
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  Figs. 3(a) and (b) plot the amplitude and phase distributions of ui and ap

respectively. They are compared with the results calculated from the linear stability

theory, i.e. those of the eigenmodes (i.e. T-S waves) off- and :of-frequencies. The

comparisons show that u2 is really of the eigenmode as well as ui. In other words,

zfp is not the second harmonic mode of ui, but itself T-S wave. To clarify the result

further, we measured the phase speed of ui and z(2. The measurement was made at

y/h=O.5, O.6 and O.7 at 2 =7.0 cm, where three-dimensional components are all weak

and have little effect on the measurement. The phase speed is found to be O.22"vO.

23 U} for ui and O.28evO.29q for ze2. Note that both of these values are in agreement

with the corresponding eigenvalues calculated from the linear stability theory. Also

note that if ze2 were the second harmonic of ui, their phase speed would be equal to

each other. As described thus far, it is verified that u2 is a fundamental T-S wave

and by no means the second harmonic mode of ui. Then, is there no relation between

the ui and u2 ? This is the question we address in the following.

O.5xlo-2

 'U2mlUc

o

              <U;mlUc)2

  Fig. 4 Relationship between u'im andu'2m･

  Fig. 4 shows the maximum in the y-distribution of r.m.s. u2, namely u'2. plotted

against the square of the y-maximum u'i., both rneasured at 48h downstream of the

ribbon. It is clear from Fig･. 4 that u'2. is proportional to the square of u'im. This

clearly indicates a possibility that a certain nonlinear process is involved in generat-

ing te2, considering the fact that the sinusoidal current through the ribbon is free of

the second harmonic. Then, we took a close look at the ribbon vibration whether it

exhibits nonlinear behaviour, but we could not find any such evidence. The only

possibility of nonlinear process that we can imagin now is the flow itself. There is

little doubt that the vibrating ribbon generates its own unsteady wake, which may

contain not only the f-component but also 2f-component. The latter may be

produced as the second harmonic of the former in the wake. For the case of
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boundary layer, its receptivity to unsteady wake, that is, the possibility that an

unsteady wake in the freestream can excite T-S waves has been observed by

Nishioka and Morkovin`}. In the present case, the wake develops at a height near

the critical layer and the 2f-component no doubt contains the necessary spatial scale

for the T-S wave as the velocity in the wake is close to the phase speed of T-S waves.

This is indeed a nonlinear process generating T-S waves, even though the process by

which the Zf-component in the ribbon wake generates them is linear. Another

possible region where a periodic vorticity field of frequency Zle and of proper scale

might appear is close to the wall below the ribbon. For instance, if the periodic wake

of the ribbon develops the :ij-component, it surely generates such a vorticity field

close to the wall. However, it is reasonable to suppose that the periodic wake behind

the ribbon itself is more efficient in generating the proper scale for the T-S wave.

  As discussed above, the non-linearity seems to be involved in the flow near the

ribbon. Thus it should be checked whether or not the f- and Zle-components have

such an amplitude relationship as to be judged as a combination of the fundamental

and the second harmonic modes near the ribbon. This is rather easily examined as

we know the damping rate ai for the T-S waves of f-and :ij-frequencies from the

stability calculation. Namely, the calculation shows that ai=O.04 and O.Ol for the

f-and :ij-waves respectively. Therefore, the wave amplitude near the ribbon is about

6.8 and 1.6 times the amplitude at the present observation position (48h downstream

the ribbon) for the f-and ilf-waves respectively. This fact and the data in Fig. 4

clearly indicate that the two components have a harmonic relationship;the Zle-

component is an order of magnitude smaller than the f-component.

4. Concluding Remarks

  We have described a nonlinear process generating T-S waves. In fact, the present

observation shows that the flow forced by a vibrating ribbon can excite two systems

of T-S waves with the forcing frequency f and the second harmonic frequency :lf.

Importantly, both are of fundamental eigenmode. It is pointed out that the periodic

wake behind the ribbon may introduce vorticity fields of f-and :ij-components

through its nonlinear development. When the frequency f is inside the amplification

zone in the stability diagram, the :ij-component usually damps rapidly. However,

when f is below the neutral curve and 21e is inside it, the vibratig ribbon might induce

growing T-S wave of 2f-frequency as well as the decaying T-S wave off-frequency.

This possibility may be extended to the cases of freestream turbulence and sound

unless they are of sufficiently low intensity. In other words, in the receptivity region,

the nonlinear response of the flow to external disturbances can excite T-S waves of

the second (or still higher) harmonic frequency if it is inside the amplification zone.

We should not forget the possibility in transition prediction.



19

A IVbnlinetzr Pbrocess Generatiirg 7blimien-Sthlichting VV?zves

References

1) M. Nishioka, Recent Studies on Turbulent Phenomena (eds. T.Tatsumi, H. Maruo and H.

   Takami), Association for Science Documents Information, 193-203 (1985).

2 ) M. Asai and M. Nishioka, J. Fluid Mech. 208, 1-23 (1989).

3) M. V. Morkovin, Air Force Flight Dyn. Lab. Rep. AFFDL-TR-68-149 (1969).

4 ) M. Nishioka and M. V. Morkovin, J. Fluid Mech. 171, 219-261 (1986).

5 ) G. B. Schubauer and H. K. Skramstad, NACA Rep. 909 (1947).

6) S. A. Orszag and A. T. Patera, J. Fluid Mech. 128, 347-385 (1983).

7) Th. Herbert, Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi), North-Holland,

   117-122 (1984).

8 > M. Nishioka and M. Asai, Laminar-Turbulent Transition (ed. V. V. Kozlov), Springer, 173-i82

    (1985).

,


