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A Study of Branching Phenomena in the Nonautonomous Piecewise Linear
Dissipative Systems with Unsymmetrical Restoring Force in the Case
of the External Force with a Sum of Several Harmonics

Yoshiaki SHIRAO*, Masao Kipo*, Toshikuni NAGAHARA"" and
Nobuyuki Kan**

(Received June 15, 1982)

This is a study of branching phenomena in the nonautonomous second order
differential equation with piecewise linear restoring force having unsymmetrical char-
acteristics in the damping system when the excitation is a sum of several harmonics.

In this report the periodic conditions in which the first variational equation has
periodic solutions of periods T and 2T (T: least common period of external force) and
the branching behavior of the trajectories are obtained.

1. Introduction

We have already reported some results as to periodic solutions both a single
harmonic excitation and a sum of several harmonics excitation in the preceding
articles? ®>¥ in the case of no damping. ' ‘

In this paper we discuss the branching phenomena in the nonautonomous
piecewise linear systems with unsymmetrical restoring force when damping is present
and the external force is a sum of several harmonics. '

It is well known that if damping is present, the displacement and the impressed
force can be expected to be out of phase,® just as in the case of the corresponding
linear problem. Thus the difficulty of treating dissipative systems qualitatively is
that this difference in phase must be taken into account. So qualitative analysis of
bifurcation problems of damping case in piecewise linear systems has been studied
very little.

This paper considers piecewise linear dissipative system with unsymmetrical
restoring force in the case of several harmonics excitation, and uses Loud’s method”
to consider the symmetric restoring force situation and clarifies branching phenomena
in connection with the boundary between the stable and unstable harmonic solutions.
The procedure for the clarification is as follows:

(i) The method of obtaining the periodicity conditions with its initial values included
in order to obtain the periodic solution is given.

(i) To obtain the stability of periodic solutions, Hill’s equation is examined and
the conditions for the stable and unstable region boundary are clarified.

(iii) The branching phenomena which occur at the boundary mentioned above are
divided into two situations and then analyzed; the behavior of the solutions in the
neighborhood of branching point is explained.

* Department of Electrical Engineering, College of Engineering.
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Once this is understood, the numerical analysis follows from the periodicity
conditions and its appropriateness will be clarified.

2. Periodicity Conditions

In this section the system with restoring force (see Fig. 1) expressed in equation
(1) will be considered.

X+ 2ax+f(x)=e(t) )
_(Px—K?x, (x=x0)
foy={a P @

where 2=k?+K? (.denotes derivative with respect to time 7). And we assume the
external force e(t) and initial conditions as follows:

e(t)=§ E; cos int
3

e(t)=e(t+%r-)

x(O)=M
. | @
x(0)=N
In this paper the periodic solutions are classified according to the number of
times the solution reaches the corner point during the period. For 2n times the
solution is designated as ,4 type solution.
Here we derive the periodicity conditions for ;4 type harmonic solution in case
M > x, (see Fig. 2) because we shall treat the bifurcation phenomena from ;A type
harmonic solution. From Fig. 2 we have following equations.

x1(t)=x,
Xats)=2%o
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Fig. 1 Restoring force characteristics. Fig. 2 Periodic solution of type ;A
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where x;(f) means the solution for the interval 1,_, <t=1t; (i=1, 2, 3, and #,=0,
t;=—=T=2r/w) and the solution x,(z) which reaches the corner point x, at t=¢; (i=1, 2)
is connecting the solution x;,,(¢) smoothly at every corner point.

Given the system, that is, for given /, £, K, and x,, equations (5) are the periodicity
conditions for obtaining {4 type harmonic solution and mean the relation among
the variables: initial value M and N, loss factor «, transition time #,, £;, basic frequency
o of the external force, and amplitude E; (i=1, 2, ..., m) of external force. Then if
M,N,ea,and E; (i=1, 2, ..., j—1, j+1, ..., m) are known, the remaining elements are
obtained, that is to say, o, E;, t1, and £, which lead to periodic solution will be found.
We assume that the amplitude E; (i=1, 2, ..., j—1, j-+1, ..., m) of the external force
is held constant, while the amplitude E;(js=) is slowly varied and the relations among
M, N, and E; of the periodic solutions mentioned above are observed in what follows.

Finally, we write down the concrete solutions of equations (5) under the con-
ditions (4). In the following solutions, we set

wi=iv  wy=vVE—a® and wp=vki—a? (6)

Thus,
—a . i E;
xl(tl)ze ll(Al CcOsS wO1t1+Bl sin wOltl)—'—E (12—_‘01:2)2—'_4“20)12 {
. K?
(I*—w?) cos w;ty+2aw; sin witl} -1,—72_x0=x0 )
where
m 2 02
pmMf EC—0d) K

S (P=w?f o I

1 2z aE(lP40f)  ak? }
By e M N =3 e e

®)

g1+a(xo—py)

Wog

x2(t2)=e—“(t'_m{(-xo—Pl) €os woa(fy—11)+ iz sin C002("2"’1)}

+¢ZE (= 2;2’_'_4“20} - {2 —0?) cos w;ty+2aw; sin ot}
= — W i
=X, )
where
m E .
p1=?_,‘1 (kz—-wiz);~|- A {(k*—w,?) cos o+ 2w, sin ot}
= i
m (10)
qz=§ (kz——w:g;f—il— VR {—(k*—w?) sin o;t;+2a0; COS 0t}
yi=e *{(—ad,+wyB;) cos woli— (oA +aBy) sin weif;}
m E .
——#21 (12__0)::;2_;_4“%.2 {(I?—w;?) sin o;t,—2aw; cOS v;t} (11
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Ye=x3(t2)
_ Y
=e“”(’*""{()’1—ql) cos wo(le—1)— s ql)jk(x" P in 0)02(12_[1)}
02
S ik K —wd) si 2 12
_E ‘(/;2:2012-)2‘;[:1&?@-127 {( —0; ) SIN w;ly—Zaw; COS witg} ( )

Xa(T)ZC"“(T—'”){(xo.“Pz) cos wo(T—1,) _'_)ng‘f;)a({o:Pz} sin U’on(T—fz)}
. 01

- E; 22 _ :
—|-t§ 7(7""?(1)7)“’74%;2”{([ w?) cos w; T+ 2aw, sin wiT}
2
+ A x=m (13)

)‘cs(T)ze'“(""z){(yz——qg) cos wo(T—1ts)— Aye— ) +Exo—pa) wm(T—tz’)}

Wo1
- w;E; 2, 2Y o _ .
i=21 P—opY + dca? {(F—w?) sin 0;T—2aw,; cos o, T}
=N (14)
where

Pzzi o E {(F—w;?) cos w;t,+2aw, sin vt}

i=1 (lz_wiz)z_'_ 4ato? ’ .

2

+—lK2— Xo (15)

qzzi —oiky {(FP—ow?) sin w,t;—2aw; COS vt}

S (P=0dP+4ato?

3. Stability

The problem of the infinitesimal stability of the periodic solutions of our
nonlinear systems always leads to the equation of Hill’s type. The Hill’s type
equation in these cases is a variational equation characterizing small variations from
the given periodic motion whose stability is to be investigated.

A given periodic motion is stable if all solutions of the variational equation
associated it are bounded for all positive values of ¢ and unstable if the variational

at)
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Fig. 3 Coefficient a(t) of periodic solution type ;A
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equation has an unbounded solution. :

Let the A4 type fundamental solution obtained from the periodicity conditions
given in section 2 be denoted by x°(¢). The stability of x°(¢) can be determined by
the first variational equation of the solution of equation (1). Let the variation be y.
The first variational equation is given by

4 2ap+a(t)y=0 | | (16)
where
_of
a(®) T ox |x=x(1) (17

Also, a(t) is understood to have the following properties:
a(t)=a(t+T) ' 5
B (x(t)>x0) (18)
a(r)={
K (x%(1)<xo)
Let the independent solutions of equation (16) be denoted by ¢(f) and ¢(t)

where ¢(0)=4(0)=1, $(0)=y(0)=0. ;
Let the two characteristic roots of equation (16) be p; and p;. Then

(19)

alpz_;e—zaT’ }
o1+ 0:=¢(T)+¢(T)

From equations (19) it is clear that the conditions for the stable and unstable region
boundary are followed:

(i) AT)+HT)=—1—e" (20)
(i) (T)+¢(T)=1+e" ‘ @n

Equations (20) and (21) become complicated in comparison with those of no damping
case.

Finally, we give the concrete form of equations (20) and (21) in terms of a, 1, -
tz, and o when the periodic solution is the fundamental solution type ;4 as shown in
Fig. 2 (or Fig. 3). '

AT)+d(T)=e=T {2 c0s wuafa—1,) €08 wor(T—(t3—1,))

_(292_ +ﬂ1.> $in wga(fz—1y) sin wm(T—(tz—rl))} 2)

Wo1  Wog

4. Branching Phenomena

The essential aim of this section is the identification of the branching behavior
near bifurcation point of equation (1). In the neighborhood of the ;4 type harmonic
solution obtained by satisfying the initial conditions (4) of equation (1) in section 2,
there exist two situations for the periodic solutions of the variational equation as
shown in section 3. [Each of the two situations presents a different phenomena.
Therefore each is investigated individually.
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The solution of equation (1) with x=M and x=N at t=0 is written by x(¢; M,
N, E;) and the functions F and G are defined as follows:

FM, N, Ey=x(nT; M, N, E)—x(0; M, N, E,) } @3)
G(M, N, Ey=x(nT; M, N, E)—%0; M, N, E,)

where n=1 and 2.

It is now clear that solution x(t; M, N, E,) has a period nT if and only if
F(M, N, E)=G(M, N, E;)=0 (24)

The point of the (M, N, E;) space satisfying F=G=0 are in general located on a
curve and its differential equation are as follows:

aM _ dN _ _ dE 25)
Fy Fs,| |Fs, Fu| |Fu Fx
Gy Gs,

GEj GM GM GN

where Fy, Gy etc. denote the partial derivatives of the functions F and G with respect
to M, N, and E;. Any point (M, N, E;) for which denominators of equation (25)
vanish simultaneously is called a singular point with respect to equation (25). A
point (M, N, E,) for which denominators do not vanish simultaneously is called an
ordinary point.

4.1 Situation (I) p=—1 (n=2).
When the equation (20) is satisfied, let the point satisfying equations (5) be
denoted by (M,, N,, E;) and then we have following results.

F(Mo, No, Ejo)=G(Mo, No, E/o)=0 (26)

Fy(M,, Ny, Ejo)=¢(2T)_1
FN(M09 N,, Ejo):‘l'(zT) } (27)

FEj(M09 No, Ejo)szj(2T)
Gu(M,, N,, Ejo)=¢(2T)
GN(MO’ No, Ejo)=(/;(2T)—l
GE](M% N, Ej0)=xEj(2T)

(28)

where ¢(t) and (1) are solutions of equation (16), xg,(t) is the partial derivatives of
x(t; M, N, E;) with respect to E, and is the evaluation at the point (My, Ny, Ej),
which is the solution of equation (29).

J+2ay+a(t)y=cos jot } 29)
O)=5(0)=0
Then, .
X (0)= [} (O =40 cos jor de
; 30)

2= IO~ (0 cos jos ds

In this case we may assume the next relations
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FM.FN.FEjio G}('GN‘GEj#:O (31)

Here we may evaluate the denominators of equation (25) at the point (M,, Ny, Ej).
using the relationships

ATY+HT)=—1—e*T  o()g(t)—p(t)p(t)=e"
o(t+T)=o(T)e(t)+HT)¢(t) and
@(t+T)=¢T)e(t)+¢(T)¢(t)

Omitting the somewhat long calculations, we write down only the results.

FN . GEj—FEj' GN=0
FE,'GM"'FN’GE_;:O (32)
FM-GN~—FN-GM=0

These indicate that the point (M,, N,, E;) is a geometric singularity of the locus
F=G=0.

4.1.1 M-E; Plane Analysis ,

We investigate the two-dimensional sections of the three dimensional space
(M, N, E;) which are (M, Ej), (N, E;), and (M, N). Analysis of branching at an
endpoint of an unstable arc of the curve F=G=0 involves the computations of
several partial derivatives of the function F(M, N, E;) and G(M, N, E) at the point.
Since these computations are long and tedious, we shall omit most of them in what
follows. .In the analysis of (M-E;) plane, some details will be given to illustrate the
procedure. Since Gy=#0, the equation G(M, N, E;)=0 can be solved for N as a
function of M and E, near (M,, E;). If the result is N=H(M, E;), we define the
function J(M, E;) by

J(M, E)=F(M, H(M, E)), E)) 33)

It is clear that J=0 is seen to satisfy F=G=0 in the neighborhood of (M,, N,, Ej).
Then we have
J(Mo; Ejo)=0 NozH(Mo, Ejo)

_ GM(M09 N09 E]O)
GN(MOJ No, EjO)

JM(MO’ E!0)=JEj(MOa Ej0)=0

GEj(Mm NOa EjO)
GN(MM NO’ EjO)

HM(MOa Ejo)= HE](MO’ Ejo)= - (34)

The second derivatives computed using the values of the second partial derivatives
of F at (M,, Ny, Ej;). Tt is found that at (M,, Ej)

Jyy':o JEJEJ7EO JMEJ?EO (35)
v J(M, E)=Juz,My, Ez) (M—My) (Ey—Eyz)+ % Te 5 Mos Ex) (Ey—Eglt+ ..
(36)

Thus J(M, E,)==0 has two branches in the neighborhood of the point (M,, Ej).
One is connected at E;=E; (37) and the other to
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Ji8 (Mo, Ejo)
M—M,=— 250 0 N (F.—F 38
O T 3 Tyn (Mo En) (Es;—Ep) (38)
On the second branch, the solution curve satisfies x°(t)=x°(¢r+ T) which corresponds

to the harmonic solution obtained from equations (5). The first branch tangent to
E;=Ej; can be investigated correctly by necessarily evaluating the third-order

partial derivatives,

ie.
J(M, E)=3T5,5,(Mo, Exw) (Ey— Eyo)*+ s (Mo, Eye) (M—Mo) (E,—Ex)
+%.JM (Mo, Eyo) (M—Mo)+... (39)
In the neighborhood of the point (M,, E,), J=0 becomes
— S Mo, Ex)) (pr_ e | (40)

—Ejyz= — Juun(Mo, Ey)
B B G T a (Mo, En)

The first branch becomes the solution of period 2T existing only on one side E;=E},.

150F [
— stable [ —— stable
A
! L unstable Egp - unstabte
%, 5
2:3 K Sre-o
00 w=28 £
-100 20=01 =100
e
m=2 lJ!K
| 1 =2
100
— stable
<120 - unstable 10.5
N . ) i L
. 10 ™ 1.4
s

s
HES
9

1.0 M
En

(@) a+0, n=0, j=1 (b) a+0, n=0, j=2 (©) a=0, n=0, j=1

Fig. 4 Branching phenomena of solutions of order 2"2—'_ I (n=0, 1, 2, ...) from harmonic

solutions in M-Ej plane in case m=2

~—— stoble 1A .
w =27 m=1

- unstabte :
i i
L ¥e3

¥ =1
~—— stable

wles

r 7 -5.0
----- unstable

S

— stable
-- unstable )=

10 M X .
X X,

(©) a=0, n=0, j=1

L
1.0 M
e

(@) a+0, n=0, j=1 ) a=0, n=1, j=1

Fig. 5 Branching phenomena of solutions of order 2";_ ! (n=0, 1, 2, ...) from harmonic

solutions in M-E; plane in case m=1
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(Although it is difficult to determine the sign of Jyxu(Mo, Ej), in general we take
Junu(Mo, Ep)#0.)

The qualitative analysis has been given above. Numerical results in the branch-
ing point neighborhood using the periodicity conditions from equations (5) are shown
in Fig. 4 (a), (b), (@=0), (c) (@=0) in case m=2, and Fig. 5 (a), (b), (¢+0), (c) («=0)
in case m=1 and are very much in agreement with analysis given above.

4.1.2 N-E, Plane Analysis

Since Gy #0, the equation G(M, N, E;)=0 can be solved for M as a function of N
and E, near (Ny, E;0). For M the solution can be given as M=H(N, E,). Then we
define the function

J(N, E))=F(H(N, E)), N, E;) (41)
In the same manner as in section 4.1.1 we have
Ej—EN:O (42)
1
JNEj(NO’ E/o) (N—No)+7JEjEj(No, Ejo) (EJ—E/0)=0 (43)

150+
—  stable 1A — stable

-- unstabie

----- unstable

=

-100-

ape|

=3
# =t
w=28
2%=01

100

-120

-on

iz

(@) a=0, n=0, j=1 , (b) a=0, n=0, j=2

2”;] (n=0, 1, 2, ...) from harmonic

Fig. 6 ' Branching phenomena of solutions of order
solutions in N-E; plane in case m=2

07
— stable

- unstable

3
2

-85 / 05k
/

j =1 — stavle

-~ unstable

1 ) L . s
-020 N “amn 00 N 0z
x

(@) a=0, n=0,j=1 (b) a=0, n=1, j=1

Fig. 7 Branching phenomena of solutions of order ZL;—I (n=0, 1, 2, ...) from harmonic

solutions in N-E; plane in case m=1
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The first branch tangent to E,=FE;, means the solution of period 27 and further
investigation gives
. Jyww(No, Ejz)
E,—Ej=— 2800 0, (N—N,)? 44
e 6Jw e (No, Ej) ¢ ° @
The second branch is the fundamental solution obtained from equations (5).

Numerical results are shown in Fig. 6 (a), (b) in case m=2 and Fig. 7 (a), (b) when
m=1 and give the exact explanation of qualitative analysis.

4.1.3 M-N Plane Analysis

Similar investigations as to (M —N) plane can be used in connection with the
other sections (M—E;) and (N—E,) of the three-dimensional space of parameters.
We define the function

J(M, NY=F(M, N, HM, N)) (45)

where E,= H(M, N) is the solution of equation G(M N, E;)=0 in the neighborhood
(M,, Ny, Ej), _]ust asin 4.1.1.

-a1 A — stabte
----- unstabie o-on ! — stable

1?3
Ko

-- unstable

Z[

=100 Corshk
-C.2f
ms
1 w=28
2u=01 oo
TS ﬁ 15 160 M ’ leo
(a) a=0, n=0, j=1 (b) a=0, n=0, j=2

Fig. 8 Branching phenomena of solutions of order 2n;—] (n=0, 1, 2, ...) from harmonic

solutions in M-N plane in case m=2

1 — stable ° 03F — stable
- unstable

-- unstable

2

00

@ =0, n=0, j=1 (b) a=0, n=1, j=1

Fig. 9 Branching phenomena of solutions of order 2 ;- 1 (n=0, 1, 2, ...) from harmonic

solutions in M-N plane in case m=1
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After long and tedious calculations, we have two branches;

Tuw(Mo, No) (M— Mo)~+(Jyw(Mo, No)+V4) (N—Ny)=0 (46)
Juu(Mo, No) (M—Mo)+(Jwn(M,, No)—\/z) (N—Ny)=0

where
4=J (Mo, No)—Juu(Mo, No)Jyw(Mo, No)>0 47

Numerical results are shown in Fig. 8 (a), (b) (m=2) and Fig. 9 (a), (b) (m=1).

4.2 Situation (II) po=1 (n=1)
When the equation (21) is satisfied, let the point satisfying equations (5) be
denoted by (M,, N,, Ej;) and then we have
F(Mo, No, Ej)=G(M0, No, E;o)=0 (48)

Fu(Mo, No, Es)=¢(T)—1
Fy(M,, N,, E10)=‘/’(T)

) FEj(M05 No, EJO):xEj(T)
Gu(Mo, Ny, Ejo)=¢(T)
GN(M09 N,, Ejo)=¢’(T)“1
G M,, Ny, Ejo))=5%g(T)

In the denominators of equation (25) we say in this case
Fy+Gg,—Fg;+Gy#0 |
Fp;eGy—Fy+Gg;#0 (50)
FyeGy—Fy+Gy=0

(49

This indicates that the point (M,, N,, E;) is not a geometric singularity of the
locus F=G=0. In a similar manner we have
E,=E, and
1=Lj 51y

where

— FN-GEj—FEj’GN
FEI'GM_FM'GE]' | (M()a NO’ Elo)

C (52)
If we vary E; as to increase through E, there will be two periodic solutions for E;
immediately less than E, and none for E, immediately greater than E, if E; is
maximum at the (M,, Ny, E;) point. As E; increases through E;, the two solutions
coalesce and disappear. If E, has a minimum at the situation (I) point, there are
two solutions for E; immediately greater than E,, and none for E; immediately less
than E,, the two solutions coalescing and disappearing as E; decreases through Ej,.
When there are two solutions, one is stable and the other is unstable. The branching

- which occur at a situation (II) point is thus the well known jump phenomenon for
which a stable periodic solution coalesces with an unstable solution and disappears.
Numerical results are shown in Fig. 10 (a)-(d) (m=1).
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(a) M-E;j plane analysis (b) N-Ej plane analysis
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(¢) M-N plane analysis (d) VvMZFN? -E; characteristics

Fig. 10 Jump phenomena in case m=1

5. Conclusions

In the previous sections, analyses of the phenomena for the simplest piecewise
linear system with unsymmetrical restoring force are present when the excitation is
a sum of several harmonics in the damping case, in the same manner as in a single
harmonic excitation.

These are given as follows:

(i) For the piecewise linear system, the periodicity conditions are clarified, just as
in no damping.

(ii) For the piecewise linear system, the condition that the solutions of the first
variational equation become periodic solutions are given in two types (cf. four types
in no damping). ;

(iii) The branching behavior of (2n-1)/2- harmonics (n=0, 1, 2, 3, ...) is the same
as that of dissipationless systems.

(iv) As to the jump phenomena the same results are given as that of system without
damping.

The future work includes investigation on the dlﬁ”erence of the analysis 1/4-fraction
subharmonics between the dissipative and dissipationless systems. The next report
will deal with the bifurcation of the solutions of period 4T from the 2T-periodic
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solutions of equation (1). ‘
Finally, it is noted that numerical calculations were performed by using ACOS-

700 at the computer center, University of Osaka Prefecture.
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