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  Dissipative Systems with Unsymmetrical Restoring Force in the'Case

       of the External Force with a Sum of Several Harinonics

Yoshiaki SHiRAO", Masao KiDo*, Toshikuni NAGAHARA" and

  Nobuyuki KAJi*"

(Received June I5, 1982)

   This is a study of branching phenomena ln the nonautonomous second order
differential equation with piecewise linear restoring foroe having unsymmetrical char-

acteristics in the damping system when the excitation is a.sum of several harmbnics.

   In this report the periodic conditions in which the first variational equation has

periodic solutions of periods T and 2T (T: least comfnon period of external'force> and

the branching behavior of the trajectories are obtained.

                          1. IntroGuction

   We have already reported some results as to periodic solutions both a single

harmonic excitation and a sum of several harmonics excitation in the preceding

                                               '                                                    'articles')･2),3) in the case of no damping. ' '
                       '   In this paper we discuss the branching phenomena in the nonautonomous
piecewise linear systems with unsymmetrical restoring force when damping is present

                                                             'and the exter'nal force isasum of several harmonics.' ' '
   It is well known that if damping is present, the displacement and the impressed

force can be expected to be out of phase,`' just as in the case of the correspohding

linear problem. Thus the diMculty of treating dissipative systems qualitatively is

that this difference in phase must be taken into account. So qualitative analysis of

bifurcation problems of damping case in piecewise linear systems has been studied

very little.

   This paper considers piecewise linear dissipative system with unsymmetrical

restoring force in the case of several harmonics excitation, and uses Loud's method5'

to consider the symmetric restoring force situation and clarifies branching phenomena

in connection with the boundary between the stable and unstable harmonic solutions.

The procedure fbr the clarification is as follows:

(i) The method of obtaining the periodicity conditions with its initial values included

in order to obtain the periodic soiution is given.

(ii) To obtain the stability of periodic solutions, Hill's equation is examined and

the conditions for the stable and unstable region boundary are clarified.

(iii) The branching phenomena which occur at the boundary mentioned above are

divided into two situations and then analyzed; the behavior of the solutions in the

neighborhood of branching point is explained.
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   Once this is understood, the

conditions and its appropriateness

numerical analysis fbllows from

will be clarified.

the periodicity

                       2. PeriodicityConditions

    ln this section the system with restoring force (see 'Fig. 1) expressed in equation

(l) will be considered.

          X+2aab +Lf<x)=e(t) (1)
             rtx)..{12,xx-K2xe ((XxtLiol (2)

where l2== k2+K2 (.denotes derivative with respect to time t). And we assume the

external force e(t) and initial conditions as fo11ows:

               m         e(t)=Z Ei cos itot
              i=1                                                             (3)
          e(t)=:e(t+-lilZ;.)

         l[O,l':-Y l ,4,
   In this paper the periodic solutions are classified acgording to the number of

times the solution reaches the corner point during the period.. For 2n times the

solution is designated as .A type solution.

   Here we derive the periodicity conditions for iA type harmonic solution in case

M>xo (see Fig. 2) because we shall treat the bifurcation phenomena from iA type

harmonic solution. From Fig. 2 we have fo11owing equations.

         Xl(tl)=XO

         X2(t2)=XO
                                                             (5)
         x,(T)=:M
         ab,(T)==N
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Fig. 1 Restoring force characteristics. Fig. 2 Periodic solution of type iA
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 where xi(t) means the solution for the interval ti-i:S.;t:i{ti (i=l, 2, 3, and to==O,

 t3== T=2nltu) and the solution xi(t). which reaches the corner point x, at t=t, (i-- l, 2)

 is connecting the solution xi+i(t) smoothly at every corner point.

    Given the system, that is, for given l, k, K, and xo, equations (5) are the periodicity

 conditions for obtaining iA type harmonic solution and mean the relation among

 the variables: initial value Mand N, loss factor a, transition time ti, t2, basic frequency

 tu of the external force, and amplitude Ei (i=1, 2, ..., m) of external force. Then if

 M, N, a, and Ei (i=l, 2, ...,JL 1,j+1, ..., m) are known, the remaining elements are

 obtained, that is to say, to, Ef, ti, and t2 which lead to periodic solution will be found.

 We assume that the amplitude Ei (i=1, 2, ...,1'-1,J'+1, ..., m) ofthe external force

 is held constant, while the amplitude Ef(j# i) is slowly varied and the relations among

 M, N, and Ej ofthe periodic solutions mentioned above are observed in what follows.

    Finally, we write down the concrete solutions of equations (5) under the con-

 ditions (4). In the fo11owing solutions, we set

     tui=:ica cooi==Vl2･-a2 and tuo2==Vkr'2:a2 (6)

 Thus,

     xi(ti)==e-ati(Ai cos tooiti+Bi sin tuoiti)+i2M..]i u2-toi2)Ett+' 4ct2tui2 (

                  '          (l2-tui2) cos tuiti+2atui sin tuitil -" 5,2 xo=:xo (7)

 where

     Zl:-#6,-inf-is`iliY,kSil',;l.q'i.21.l,-as2x,} l`s'

     x2(t2)==e"a(t2-ti)I(xo-pl) cos tue2(t2-tl)+ Yl-ql+tuao2(XO-Pl) sin tuo2(t2-tl)]

                                                       '
         +iXM=, (k2-tu,2iliti+4cu2to,2 {(k2-tui2) cos toit2+2atui sin tuit2}

 where

     P' =S., (k2-di,2E) 22-lm4ct2tu,2 {(k2-tui2) cos tuiti+2adii sin toiti}

     q2== :M=, (k2-toIl,lifilli 4c}f2to,2 {-(k2-g)i2) sin tuiti+2cutui cos toiti}

yi :e-ati{(-aAi+tuoiBi) cos tueitt-(tooiAi+aBi) Sin tooiti}

    -.tve., (l2-toi9)i2E+' 4a2tui2 {(l2-tui2) sin diiti-2atui cos tuiti}
(ll)
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   jV2=ck2(t2)

     =e'a('2-'i)((yi-q,) cos too2(t2-ti)--a(Y'T9-i)ttu..,k>-K-puO-: Pi) sin tu,2(t2-t,)}

                         '                             '                                                              '                                                    '        - tll., (k2-to,9)i2E+i 4a2tu,2 {(k2-(oi2) sin tuit2T2crtoi cos toit2} (12)

                          tt                            '    x3(T)=e-a(T-t2)I(xo-p2) cos tuoi(T- t2) +.Y-g-q2+tu (X9T-..lm2Tm). sin tuoi(T-t2)l

        +,]ME..], (l2-tu,2)E,¥4a2tu,2 {(l2-toi2) cos tuiT+2atui sin to,T}

        +-5,2 xo-M' '' (13)
                                         tt    ab3(T)=e-a('J'a)I(y2-q2) cos tuei(T-t2)- a(Y2-q2)tu+,,l2(XO-P2) sin tu,,(T-ti)}

                                             '        -tf.il, (t2mto,?)i2E414a2tu,2 {(l2mtui2) sin tuiT-2atui cos tu,T}

    p2= te., -(-z-,-=-.-,,)E,21-4zEtttt-}-,- {(l2-tu,2) cos to,t,+2atu, sin tu,t,}

                                           '
          K2

                   '                                            '    q2==,E:, (p-dii.2)tut`+Ei4a2tu,2 {(l2-toi2) sin toit2-2atui cos toit2}

                                     '

                            3. Stability

       '                     '
    The problem of the infinitesimal stability of the periodic solutions of our

nonlinear systems always leads to the equation of Hill's type. The Hill's type

equation in these cases is a variational equation characterizing small variations from

the given periodic motion whose stability is to be investigated. '

    A given periodic motion is stable if all solutions of the yariational equation

associated it are bounded for all positive values of t and unstable if the variational

                                       t ttt                        a(t)
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Fig. 3 Coethcient a(t) of periodic solution type iA
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 equation has an unbounded solution.

    Let the iA type fundamental solution obtained from the periodicity conditions

 given in section 2 be denoted by xO(t). The stability of xO(t) can be determined by

 the first variational equation of the solution of equation (1). Let the variation be y.

 The first variational equation is given by

           y+2op+a(t)y==O (16)
 where

               of
         a(t) =' ox
                  x=xO(t)

Also, a(t) is understood to have the fo11owing properties:

          a(t)==a(t+T)

         a(t)-(12, [:::l','.X.:l

   Let the independent solutions of equation (16) be denoted

where q(O)=- di(O)-- 1, ¢(O) == ip(O)-=O.

    Let the two characteristic roots of equation (l6) be pi and p2.

          PiP2==e-2aT,

          pi+p2==q(T)+ip(T)

N

(17)

(18)

by q(t) and O(t)

                                                     Then

                                                        ) (19)

From equations (19) it is clear that the conditions for the stable and unstable region

boundary are fo11owed:

          (i) q(T)+di(T)=-1-e-'2"' (20)
          (ii) q(T)+di(T)=1+e"2"T (21)
Equations (20) and (21) become complicated in comparison with those of no damping

case.
    Finally, we give the concrete form of equations (20) and (21) in terms of a, ti, .

t2, and to when the periodic solution is the fundamental solution type iA as shown in

Fig. 2 (or Fig. 3).

                                              '    q(T)+di(T)==e-cr' {2 cos tuo2(t2-ti) COS tuoi(T'(t2-ti))

                                                   '            -(:li +:II) Sin tuo2(t2-ti) Sin tuoi(T-(t2-ti))] (22)

                     4. ' Branching Phenomena

   The essential aim of this section is the identification of the branching behavior

near bifurcation point ofequation (1). In the neighborhood ofthe iA type harmonic

solutipn obtained by satisfying the initial conditions (4) of equation (1) in section 2,

there exist two situations for the periodic solutions of the variational equation as

shown in section 3. Each of the two situations presents a different phenomena.

Therefore each is investigated individually.
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   The solution of equation (1) with x=:M and ab=N at t=:O is written by x(t; M,

N, Ej) and the functions Fand G are defined as fo11ows:

         gl".:".;E.t',tL:.1".;'1.".',".;Z'3z:.10,i.".',".',Z'3 } (23)

                          '
where n=1 and 2.

It is now clear that solution x(t; M, N, Ej) has a period nT if and only if

         F(M, N, E,)-=G(M, N, ED==O (24)
The point of the (M, N, Ei) space satisfying F=G=O are in general located on a

curve and its differential equation are as fo11ows:

            dM m alfV . dEj           Ev "FIEj - FeJ FM - EMr L, (25)
           G. G.j GEj GM GM GN
where ]Flif, GM etc. denote the partial derivatives of the functions F and G with respect

to M, N, and Ed. Any point (M, N, Ed) for which denominators of equation (25)

vanish simultaneously is called a singular point with respect to equation (25). A

point (M, N, EJ) for which denominators do not vanish simultaneously is called an

ordinary point.

4.1 Situation (b p== -1 (n=2) ,

    When the equation (20) is satisfied, let the point satisfying equations (5) be

denoted by (Mo, IVb, 4o) and then we have fo11owing results.

         F(Mb, IVb, ]E,,)-G(Mb, IVb, ,E,,)-O (26)

         Ev(Mb, IVb, jEio) =q(2T)-1 )

         Lv(Mo, Nb, Efo)=¢(2T) } (27)         ]Fle,(Mb,Nb,E,o)=XEd(2T) ' J
                                          '
         GM(Mo, IVb, Eje)=ip(2T) 1
         GN(Mo, IV6, "E,e)=di(2T)ml } (28)
         Ged(Mb, AT6, Efo)=abEj(2T) J

where q(t) and ¢(4 are solutions of equation (16), xej(t) is the partial derivatives of

x(t; M, N, Ef) with respect to Ef and is the evaluation at the point (Mo, Nb, EJo),

which is the solution of equation (29).

         Y+2c,xy(,+)g(;.ly,)=..c,osjtot } (2g)

Then,

                                    '         xE,(t)==Ji e2"'(q,(r)ip(t)-gb(T)4p(t)) cos jti r dr

         abE,(t)==f, e2a'(g(r)g6(t)-sP(r)9(t)) cos J'tur dr

                                 '
In this case we may assume the next relations
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          JEif'Ev'Eej7EO GM'GN'6Ed#O (31)
 Here we may evaluate the denominators of equation (25) at the point (Mo, Nb, Edo),

 using the relationships

          q(T)+di(T) =-1-e`-2"T q(t)di(t)-¢(t)ip(t) ==e'2rt

          op(t+T)=-q(T)q(t)+¢(T)¢(t) and

          ¢(t+T)-Q(T)q(t)+di(T)¢(t)

    Omitting the somewhat long calculations, we write down only the results.

          Etv'GEj'aFlej'GN ==O ) ,
          Etej'GM-1')v'GE,==O ' 't (32)
          E.･G.-E,･G.=O ' 1
 These indicate that the point (Mo, 7V6, Edo) is a geometric singularity of the locus

 F== G=O.

 4.1.1 MLEfPlaneAnalysis
    We jnvestigate the two-dimensional sections of the three dimensional space

 (M, N, Ed) which are (M, Ef), (N, Ej), and (M, N). Analysis of branching at an

 endpoint of an unstable arc of the curve F== G==O involves the computations of

 several partial derivatives of the function F(M, N, Ef) and G(M, N, Ej) at the point.

 Since these computations are long and tedious, we shall omit most of them in what

 fbllows. In the analysis of (M-Ef) plane, some details will be given to illustrate the

 procedure. Since GN7EO, the equation G(M, IV, Ed)=O can be solved fbr N as a

 function of M and EJ near (Mo, Ejo). If the result is N==H(M, Ej), we define the

 function J(M, Ej) by

          J(M, E,)!F(M, H(M, E,), ED (33)
 It is clear that J==O is seen to satisfy F==G=O in the neighborhood of (Mo, No, EJo).

 Then we have

     J(Mo, EJe) =O Ne = H(Mo, Ejo)

     ll)lf(Mo,Ejo)=:-GGM.:MMii21:iEEIil HEj(Mo･Ejo)==-G6E.'((MM,b;NIVbbiEE;g)) (34)

                             '     ･1hr(Mb, Ejo) = Jki(Mo, Ejo)== O

 The second derivatives computed using the values of the second partial derivatives

 ofFat (Mo, IVb, 4o). It is found that at (Mo, E?o)

          Jhriup==O JkjEjizeO JhrEj7EO (35)
   ･'･ J(M, ED=tl)u'Ej(Mo, E,o) (MmMo) (Ej-Ejo)+-liJlejEj(Mo, Ejo) (EjTEjo)2+･･･

                                                           (36)

     Thus J(M, Ej)=:O has two branches in the neighborhood of the point (Mo, Ejo).

 One is connected at EJ==4o (37) and the other to
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          "-M6=-2',bl.'Eii".O;,",EEiO,))(Eli-E,o) (38)

On the second branch, the solution curve satisfies xO(t)==xO(t+ T) which corresponds

to the harmonic solution obtained from equations (5). The first branch tangent to

Ej=4o can be investigated corregtly by necessarily evaluating the third-order

partial derivatives,

i.e.

              1    J(M, Eli) ==-:2NlkjEj(Mb, Ejo) (EfmE,o)2+･IhrEj(Mb, Efo) (M- Mo) (Ei-E,o)

               +ril"･IMM4(M6, Eio) (M-Mo)3+･･･ (39)

In the neighborhood of the point (Mo, Eio), J==O becomes

                                                  i
          Ej-Ejo i=i -gl,:.".M,((llll9,i "4E':] (M-M6)F (4o)

The first branch becomes the solution of period 2.Texisting only on one side Eli==Eio.
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 (Although it is diMcult to determine the sign of .JhrMM(Mb, jEio), in general vve take

 JhrMM(Mb, Eio) ;O.)

     The qualitative analysis has been given above. Numerical results in the branch-

 ing point neighborhood using the periodicity conditions from equations (5) are shown

 in Fig. 4(a), (b), (asO), (c) (a==O) in case m=2, and Fig. 5 (a), (b), (a.O), (c) (a-O)

 in case m== 1 and are very much in agreement with analysis given above.

 4.l.2 Ar;E,PlaneAhalysis

     Since GMsO, the equation G(M, N, Ei)==O can be solved for M as a function ofN

 and Ed near (Nb, Elie). For Mthe solution can be given as M==H(N, 4). Then we

 define the function

           J(N) E,)iiii R[H(N, III,), N, IEI,) (41)
 In the same manner as in section 4.1.1 we have

           JNEj(Nb, E,e) (Nne AJb)+-iiJJlejEj(?V6, E,o) (El,-Efo)=:O (43)
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The first branch tangent to Ej==4o means the solution of period 2T and further

lnvestlgaUon glves

          Ej-Eio!=?-6'J,}J},i"."ii)(ei, IZ,IO,)) (N-No)2 (44)

                          'The second branch is the fundamental solution obtained from equations (5).

Numerical results are shown in Fig. 6 (a), (b) in case m=2 and Fig. 7 (a), (b) when

m=1 and give the exact explanation of qualitative analysis.

4.1.3 M-NPIaneAnalysis
    Similar investigations as to (M-N) plane can be used in connection with the

other sections (M-Ej) and (N-Ei) of the three-dimensional space of parameters.

We define the function

          J(M, N)i!i F<M, N, H(M, N)) (45)
                                          '
where 4=H(M, N) is the solution of equation G(M, N, Ej)=:O in the neighborhood

(Mb, Nb, Ejo),just as in 4.1.1.
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 After long and tedious calculations, we have two branches;

           Jhr.(M,,N,)(M-M,)+(J>,.(M,,No)+VA)CN-IVo)=O ) (46)

           ･LvM(Mo,JNb)(M-Mo)+(J}vN(Mo,IVb)-VZ)(N-No)-O i

 where

           d==JiN(Mo, No)-JMM(Mo, IVb)JNN(Mo, IVo)>O (47)

 Numerical results are shown in Fig. 8 (a), (b) (m=2) and Fig. 9 (a), (b) (m =1).

4.2 Situation (II) p==1 (n =1)

   When the equation (21) is satisfied, let the point satisfying

denoted by (Mo, Aib, Edo) and then we have

         F(Mb, Nb, E,)==G(Mo, IVb, Eio)==O

         I:M'(Mo, Nb, Edo) =op(T)-1

         Ev(Mo, "Nb, E,o)=ip(T)

         Ilej(Mo, AIb, Eio)==XEj(T)

          GM(Mb, Nb, Eio)=ip(T)

          GN(Mo, IVb, E,o)=¢(T)-1

         GEj(Mb, N6, Efo)=abEJ(T)

In the denominators of equation (25) we say in this case

         E,, . G.j- jFl,,j . G. 7E O

         IIej.GM-jFlitf'GEj#O

         ,Fl..G.-E,.G.=O

   This indicates that the point (Mo, Aib, Ej6

locus F==6=O. In a similar manner we have

          Ed=Edo and

          M-M,+C(N-JNb)-=O

Where

          c.,, Etv'GEj-jFlej.GN                           1
             Evj' GM-I IM' ' GEj 1 (Mb, Nb, Edo)

If we vary Ed as to increase through Ejo there will be two periodic

immediately less than Efo and none for Ej immediately greater than

maximum at the (Mo, IVb, EJe) point. As Ed increases

coalesce and disappear. If Ed

two solutions for Ej immediately greater than Ejo and none for '

than Eie, the two solutions coalescing and disappearing as Ed decreases

When there are two solutions, one is stable and the other is unstable.

equations (5) be

N

(48)

(49)

(50)

) is not a geometric singularity of the

} (51)

(52)

                                                     solutions for Ej

                                                        Eje if Ej is
                                          through Efo the two solutions
                        has a minimum at the situation (II) point, there are

                                                  Ei immediately less

                                                        through E>o.

                                                      The branching
which occur at a situation (II) point is thus the well known jump phenomenon for

which a stable periodic solution coalesces with an unstable solution and disappears.

Numerical results are shown in Fig. 10 (a)-(d) (m== 1).
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         Fig. 10 Jump phenomena in case m==1

                          5. Conclusiobs

   In the previous sections, analyses of the phenomena for the simplest piecewise

linear system with unsymmetrical restoring force are present when the excitation is

a sum of several harmonics in the damping case, in the same manner as in a single

harmonic excitation.

   These are given as fo11ows:

(i) For the piecewise linear system, the periodicity conditions are clarified, just as

in no damping:

(ii) For the piecewise linear system, the condition that the solutions of the first

variational equation become periodic solutions are given in two types (cf. four types

in no damping).

(iii) The branching behavior of (2n+1)12-harmonics (n==O, l, 2, 3, ...) is the same

as that of dissipationless systems. ･
                                                  '(iv) As to the jump phenomena the same results are given as that of system without

The future work includes investigation on the diflbrence of the analysis 1!4-fraction

subharmonics between the dissipative and dissipationless syStems. The next report

will deal with the bifurcation of the solutions of period 4T from the 2T-periodic
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 solutions of equation (1).

     Finally, it is noted that numerical calculations were performed by using ACOS-

 7oo at the computer center, University of Osaka Prefecture.
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