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Cost-Effectiveness Analysis of Material Testing in Structural Design

Hidetoshi NAKAYASU®, Yoshisada MUROTSU**, Ken’ichi MORI***¥,
and Shigeo KASE™***

(Received November 15, 1978)

This paper deals with two problems which one encounters in designing of structural
systems on a basis of reliability analysis. First is how to select the underlying distribu-
tion of data of material strengths to which the structural reliability is sensitive. Second
is the determination of the optimum sample size in material testing from economical
considerations. The present work describes the illustrative design problems which show

* the effect of selection of distributions and determination of optimum sample size in view
of the resultant costs of structure and material test.

1. Introduction

Quality control in the field of structural systems is in a dawn stage of development
compared with one in other fields. It is generally recognized, however, that safety of
structure must be statistically evaluated which depends on the behavior of material
strength and load. Hence reliability or failure probability has been proposed as a
reasonable criterion for structural safety [1—5]. Thus most traditional procedure for
analysis of data consists of choice of the underlying distribution, estimation of the
population parameters, and test of goodness of fit between theoretical and observed
distribution.

Lack of rational criterion for selection of the underlying distribution in the above
procedure has permitted the flexible choice. This flexibility yields often the disconcert-
ing aspect that none of several hypothetical distributions can be rejected in the statistical
tests on a given level of significance. The designed reliability of the structure, however,
is intrinsically very sensitive to the underlying distribution. Another problem stems from-
the fact that there is no good criterion for determining the optimum sample size in
material testing.

Concretely speaking, the following problems remain unsolved in the traditional
procedure: i) optimum selection of the underlying distribution for structural design, and
ii) determination of the optimum sample size in test of material. A related work is only
suggested by Shinozuka et al. [6] concerning the proof-load test.

The present paper provides a new methodology which is within a general framework
of reliability-based and economical analysis. Effectiveness of selecting the distribution is
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evaluated on the resultant structural cost and the weight in a reliability design, and deter-
mination of the optimum sample size is solved by relating it to the trade-off between
costs of structural system and material testing. Numerical example in tensile test of fiber
reinforced plastics (FRP) is also presented to illustrate the proposed procedure.

2. Cost-Effectiveness Analysis

2.1 Mathematical formulation

Let R be the strength of materials which is a random variable with the cumulative
distribution function (cdf) Fgr(x; 6). When population parameters 6§ are estimated
from sample of size n, the nominal strength R, corresponding to 1007 percent point
is given by '

Ry = F3' (7;0), (1)

where 8 stand for the estimates of 6.

The estimators are essentially random variables, and the true values of population
parameters remain unknown in so far as the sample size is finite. Consequently, the
n e in safety side must be adopted instead of 6 in

Eq. (1). The equation then becomes

upper or lower confidence limit @

Ry, = Fg' (73 0,:6). ?)

Introduction of Eq.(2) which supersedes Eq. (1) lies in its potentiality to make it possible
to express the effect of sample size in 8, . or R, . Which of the upper and lower con-
fidence limits should be chosen as 0,: R

the shape of distribution function. Since, on the other hand, the load acting on the

with respect to the structural safety depends on

structure L is random vairable with cdf F;(x;¢{), the nominal load L: v, can be
represented by

L:“vl = F;('ﬁf: )> 3)

where 1‘: e, are the confidence limits of parameters ¢.

1€

Now suppose that the applied load L* to a structure and the allowable stress R*
are specified in structural design. The design value of cross-sectional area A can be
calculated from

_ L*- Sg
4 = —RF “
where Sp is a factor of safety. As regards the structural weight w, Eq. (4) yields the
relation:
w=dIlA4
%
=dIlSgp- i._ ,

R*
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where ! and d denote length and specific weight of structural element, respectively.
Substitutaion of R:’ 4 and L: WY, given by Eqgs. (2) and (3) into the above R* and
L* enables us to obtain the structural weight w,, as follows:

*

L
wp =dISp+ —ale (5)
Rn,‘Y

The structural cost He which is proportional to the structural weight w, results in

: Lk
Hc=cldlSF’ﬂ“L, (6)

Ruy
where c; is a constant.

As presented previously in [7,8], the factor of safety S is closely associated with
failure probability Pp or reliability Pg of the structure, and is very sensitive to the
shapes of distributions of R and L. Eq.(6) gives a criterion for selection of the under-
lying distribution based on the resultant structural cost Hc. Hence in consideration of
the relation between Sp and Pg, effect of selecting the underlying distribution of R
and L can be discussed on

i) the resultant structural cost Ho under a constant value of Pg, and
ii) the resultant failure probability Pr under a constant value of Sp.

The larger the sample size becomes, the narrower confidence interval of the estimate

%*
n,e

given value of 7, therefore, the nominal strength R:’y obtained by Eq. (2) has larger
value while the nominal load L: W, by Eq. (3) has smaller one as the sample size
increases without loss of generality. It should be noted in connection with Egs. (5) and

gets, and the closer ¢ approaches to é,, under a generally satisfied condition. For a

(6) that the structural weight is a decreasing function of »n under a given value of Sg or
Pr and the structural cost H decreases as n increases. On the other hand, the cost
of testing material Hg is represented as a function of n. Hence

Hg = Hg(n). )
Let Cr denote the total cost of structural system defined by
Cr = Ho(Sk, Ly 4, Ry y) + Hs(n), (8

where Ho and Hg can be obtained from Eqs. (6) and (7). There are two approaches
available for evaluation of Cr with respect to sample size #, i.e., to evaluate Cr under
given values of Pr and Sp. The determination of the optimum sample size n,,, can
be formulated as either of the following two mathematical programming problems:

P1: Determine n,,; to minimize Cr for a given value of Pp, or
P2: Minimize Cr with respect to n for a given value of Sg,
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where cdf’s of the load and strength F; (x; ) and Fg(x;0) are assumed to be
specified. The relation among Cr, He, Hg, and n under a given value of Pp is
schematically illustrated in Fig. 1 with the value of n,,, which minimizes Cy. Inthe
figure, the cost of testing material Hg is drawn as a linear function of ». A uni-dimen-
sional search technique is applied to the determination of the optimum sample size.

Cr
-__v S

COST

' He
]

)
Mopt  SAMPLE SIZE

Fig. 1. Schematic representation of Cp, He, HS; and sample size.

2.2 Determination of nominal strength

The determination of R:y., in Eq. (2) necessitates the procedure of constructing
0:, ¢ from data of material testing. Among many estimators of the population para-
meters, MLE (maximum likelihood estimator) is adopted in this paper because of its
analytical reasonability and BAN (best asymptotic normal) property. In what follows,
:, e and R,’: v by MLE are derived for three types of
distribution, i.e., normal, doubly exponential, and Weibull distributions.

the procedures to determine 6

2.2.1 Normal distribution
For a normal variate R with mean u and variance o2, ML-estimates of u and o2
are

M=

:,i—ﬂ

B= 2 Ris

and 1 )
2 _ 1 a2

o = n igl(Ri “) s

respectively. From Eq. (9), confidence limits for {1 and ¢ are determined by

- tep(n—1 -
#;l;e:M_ 6[2( )'0

2

and (10)
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which depend on sample size n and confidence level €. fop(n—1) and Xy_¢p (n—1)
in Eq. (10) designate the 100(e/2) percent point of the Student’s z-distribution with
(n—1) degrees of freedom and the 100(1—e/2) percent point of the X-distribution with
(n—1) degrees of freedom, respectively. Use of un . and an in Eq. (10) aids one in

€
evaluating the nominal strength Rn,,, by means of

* - *
Rn,’Y - #n,e + u70n € (11)

where u, is 1007 percent point of the standard normal distribution. Concretely sub-
stituting Eq. (10) into (11), we have

. tesp(n—1) Vn :
Ry, =nll-(—=£2 - cuy)CV ], 12
ny = &l n—1 X1—¢2(n—1) 7 12
where CV is an estimate of coefficient of variation. The value calculated by Eq. (12) is
recommendable for an allowable stress in the structural design.

2.2.2 Doubly exponential distribution
The probability density function (pdf) of asymptotic smallest value distribution
which is typical of the doubly exponential distribution is

L
a

; (13)

7 = Lexp 1222

where a and b stand for scale and location parameters. The likelihood function of Eq.
(13) and its logarithmic form are written as

-b n x,—b
- Zexp (P2,

and

:1 exp (%—) . 14

ML-estimates of @ and b are given [9] as the solutions of the simultaneous equations:

and (15)

where
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The asymptotic information matrix of MLE becomes

’InL 9°InL
0a® daab
I =
#inL 2’InlL )
2 a=q
0bda ab bt

whose inversion gives the asymptotic variance-covariance matrix. Thus, the asymptotic
forms of Var (@) and Var (b) result in

- 1
Var (a) = = = z ,
O I D U PN SV Xizby g x _ by
’ a~2 [1 + éZ n igl (xl b) exp( & ) (1 + & é ) ]
(16)
and n b
1+ }2 . L 2 (x;—b) exp(x"?b)
Var (b) = 1 — a’: ni=1 : a_ -
n A1 Ry Xi—b\ x by
“1‘2 [1 + &2 n i§1 (xl b) exp( & ) (1 + & ’ & ) ]

For the doubly exponential variate x, or strength of a structural element, with
parameters @ and b, we have

E(X) =b-Ca, (C=0.577... : Euler’s constant)
and
V(X) = na
V6

As is well known, it is usually assumed in the standard design procedures that the
structural design must be based on a strength which is smaller than E(X), and a variance
of strength which is larger than V(X)[1]. In other words, the safety design asserts that

a¥_ must be evaluated to be larger than a, while b:,e smaller than 5. It follows

n,e

from the BAN property that the confidence limits of ML-estirnates are

ane = G tur_ep NVar@)
and a”n

by, = b+ugy Vvar(b) .

. * * :
Using 4, . and b, ., we have the nominal strength R,":’7

percentile of doubly exponential distribution and also to Eq. (2) such that

which corresponds to 100y

Ryy=by ta, ~In[-In(1-7)]. (18)

n,e
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2.2.3 Weibull distribution
The pdf of Weibull distribution is

F(x) = %(%)"‘“ exp [«(%)"‘1 :

where « and B are shape and scale parameters. The likelihood function and the result-
ing logarithmic form are '

DIV W _ 8

L= HEH T e - 5D,
and

n n s
InL = n(na~Wf)+(e=1) Z (nx—hp)- 2 D" (19)
ML-estimates of o and B are obtained as the solutions of the simultaneous equations:

—+2(1nx, mm—z("') ln( Ziy =9,

and (20)

no
-5t 3:1( =4)*

Any numerical method must be applied because Eq. (20) can not be solved explicitly. In
this situation Var (&) and Var (8) turn out to be

1

Var (&) = 1 x X x; ’
nlgr o £ GHT InGH1* - 15 56D (G
and - 1)
A 7t G mH
Var () = na? 1 12 x x;
Lt 5, GO~ [ £ G in( 2Py

Since logarithmic transformation of a Weibull variate follows the doubly exponential
probability law, the following relations hold between Weibull and doubly exponential
parameters [10] :

1
a == |,
a
and
8 =1Ib.
In line with the discussion about an e and bn . in Eq. (17), it is seen intuitively

that both ct,,,e and Bn'e should be smaller than & and j for the safety design. Hence
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of =a+ U+ VVar (@) ,

n,e

and (22)
ﬁ:’e =f+ Uep * V Var () .

With a:,e and B:’ . thus determined, the nominal strength R:’A, in the case of Weibull
distribution can be evaluated by

R, =B [-ln(1—7)]"ne . (23)

n,e

3. Illustrative Example

Tensile data of FRP (fiber reinforced plastics) whose frequency histogram is shown
in Fig. 2 are analyzed as an illustrative example. 30 specimens are prepared from a
chopped-strand-mat FRP sheet of constant thickness (8 mm). The details of test
materials and experimental procedure are described in reference [11]. The Traditional
statistical analysis of test data is performed in accordance with three steps:

1. Postulate normal, doubly exponential, and Weibull types as the underlying

distributions of FRP tensile strength.
2. Calculate the ML-estimates by Eq. (9), (15), and (20).
3. Test goodness of fit between the postulated distributions and the actual data.

10p

FREQUENCY
\%)

ol [

9 10 11 12 13
TENSILE STRENGTH (kg/mm?)

Fig. 2. Frequency histogram of tensile strengths of 30 dumbell specimens from a
Mat FRP. [Percentage of volume content of glass fiber: 20.1%]

The outcome of the statistical analysis based on the above steps is tabulated in Table 1,
which tells that none of the postulated distributions can be rejected by test of the null
hypotheses. In consequence cost-effectiveness analysis discussed in Section 2 is carried
out to investigate the effect of underlying distribution on the resultant structural cost
for the actual data of FRP. The confidence limits and nominal strengths calculated are
represented in Table 1. Fig. 3 in which the nominal load is assumed to be deterministic
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Table 1. Calculated estimates and significance test results for the tensile strength of FRP.

Normal Doubly exponential Weibull
ML-estimates: &=11.32 a= 0.63 as= 11.39
6=0.71 b=11.66 g =11.65
x?: 2.76 1.19 1.05
x?, (0.05): 9.49 9.49 9.49
TP, cannot cannot cannot
Decision: reject reject reject
Confidence limit: Ky e=10.96 ay ¢ =0.86 ap ¢ =11.02
(e=0.01) Ope=1.07 by, ¢ =11.35 B e=11.32
Nominal strength: 8.47 7.39 7.46
(r=0.01) (8.30) (7.24) (7.31)

Nominal strength: kg/cm?® (x 10? MPa)

illustrates the effect of underlying distribution on the resultant structural cost
corresponding to various values of failure probability. The discrepancies in the resultant
structural cost become eminent as the failure probability decreases. This fact calls
designer’s attention to the selection of underlying distribution because the failure
probability between Pr = 10~ and 107 is generally recommendable in the actual
design. ’

60 » Factor of safety Sp
F
Normal Doubly exp. Weibull
10-2 1.00 1.00 1.00
1078 1.11 1.50 1.24
10~ 1.21 2.98 1.52
10-% 1.32 4.98 1.87
40P

Doubly exponential

Weibull

20
N\

Sample size n = 30

STRUCTURAL COST H¢ ($)

2 N 5 3 2 ]
070-¢ 10-° 10-* 10-® 10°% 10!
FAILURE PROBABILITY Pp

Fig. 3. Effect of underlying distributions on the resultant structural cost He in
actual data of FRP. [The value of nominal load = 11.30 kgf (111.53 N),
¢,1d = 10.0 $/mm?)
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Further consider the relationship between the resultant structural cost and sample size
of testing materials. Since the true distribution of the material strength is unknown in
practice and the experiment with large sample size is generally expensive, Monte Carlo
simulation is desirable to the study. Each group of 1000 random numbers is separately
generated from normal, doubly exponential, and Weibull populations by setting para-
meters equal to ML-estimates given in Table 1. Table 2 shows the confidence limits and
nominal strengths calculated for several samples ranging between 20 and 1000. It is
immediately perceivable that confidence limits approach closely to the values of ML-
estimates shown in Table 1 and the nominal strength increases gradually as sample size
becomes large. The relationship between the resultant structural cost and sample size
for the cases of Pr =102 and 107° is shown in Fig. 4 which illustrates the fact
that the structural cost decreases as sample size increases. The tendency is remarkably
recognized when Pp = 1079, especially in the case of doubly exponential distribution.

Table 2. Confidence limits (e = 0.01), and nominal strengths R:,7 (v=0.01).

. Normal Doubly exponential Weibull
Sample size

h “:, € 0:, € :,‘y a;, € b:, € R;,‘Y a;, € B;:, € R:,’Y
20 - 10.85 1.21 8.03 094 11.30 6.99 9.37 11.26 6.89
40 11.01 1.00 868 0.86 1141 746 11.57 11.38 7.64
60 11.07 093 890 0.82 1145 17.70 12.71 1142 17.95
80 11.11 0.89 9.04 0.79 1148 17.84 13.30 1145 8.11
100 11.13 0.87 9.10 0.77 11.50 7.94 13.85 11.47 8.23
200 11.19 0.82 9.28 0.73 11.55 8.20 1496 11.52 8.47
300 11.21 099 9.37 072 11.57 8.28 15.36 11.55 8.56
500 11.24 0.77 9.45 0.70 11.59 8.38 15.82 11.57 8.65
1000 11.27 0.75 9.52 0.68 11.62 8.48 16.28 11.59 8.74

R;,,Y: kg/mm?
Finally consider the problem to determine the optimum sample size when the cost
of testing material Hg is proportional to the sample size n, ie.,

HS = C* N

where ¢, is a constant. The optimum values which are obtained by a uni-dimensional
search technique are shown in Table 3 (a) and (b) for the cases of (a) ¢,/d = 10.0 $/mm?,
¢, = 0.5 $/sample, and (b) c,Id = 20.0 $/mm?, ¢, = 0.5 $/sample. The values of
failure probability are specified in the range from 1072 to 10 6. The values of optimum
sample size minimizing total cost for Weibull distribution are smallest of the three
distributions, while those for doubly exponential distribution are larger than the others.
It should be noted that the smaller the specified failure probability becomes, the larger
the value of optimum sample size grows especially for doubly exponential distribution.
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STRUCTURAL COST H¢ (8)

50—

401

30}

20f

101 Normal
~=—=-—Doubly exponential
——-—Weibull
G I [} '] '] . A 1 1 '] l
100 200

SAMPLE SIZE n

nominal load = 11.30 kgf (111.53 N), ¢,!d = 10.0 $/mm?)

Table 3. Optimum sample size Nopt

(a) ¢,Id = 10.0 $/mm?, c, = 0.05 $/sample

Relation between structural cost Ho and sample size n. [The value of

185

®) ¢,1d = 20.0 $/mm?, ¢, = 0.05 $/sample

Normal Doubly exp. Weibull Normal  Doubly exp. Weibull

Pr Pr

nopt Cr  Nopt Cr nopr Cr nopt Cr nNopr Cr  nopr Cr
10-2 35 17.82 28 1699 36 16.79 10-? 98 33.02 53 32.28 51 31.36
10-3 35 21.27 57 2242 51 20.01 10" 99 36.72 88 41.52 62 37.08
10-* 93 22.86 98 30.70 63 2345 10°* 116 4043 137 56.13 92 43.16
10-% 104 25.06 198 45.63 78 27.42 10-5 128 44.35 269 82.07 104 50.14
10-¢ 115 27.15 384 81.36 94 31.59 10-° 167 48.95 402 142.66 122 58.21
¢,: $/kg, d: kg/mm?, I: mm, c,: $/sample, Cp:

4. Summary

The effect of selection of distribution has been discussed from the viewpoint of
reliability and cost-effectiveness analysis, and successfully proposed is the new metho-
dology of determining the optimum sample size. It was also shown that the resultant
costs associated with structural design remarkably depend on the postulated strength

distribution and sample size in the test of materials.
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