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Cost-Effectiveness Analysis of Material Testing in Structural Design

Hidetoshi NAKAyAsu*, Yoshisada MuRoTsu**, Ken'ichi MoRi***,

                   and Shigeo KAsE***

                 (Received Noyember 15, 1978)

   This paper deals with two problems which one encounters in destgning of structural

systems on a basis of reliability analysis. First is how to select the underlying distribu-

tion of data of material strengths to which the structural reliability is sensitive. Second

is the determination of the optimum sample size in material testing from economical

considerations. The present work describes the illustrative design problems which show

the effect of selection of distributions and determination of optimum sample size in view

of the resultant costs of structure and material test.

                            1. Introduction

   Quality control in the field of structural systems is in a dawn stage ofdevelopment

compared with one in other fields. It is generally recognized, however, that safety of

structure must be statistically evaluated which depends on the behavior of material

strength and load. Hence reliabthty or failure probabthty has been proposed as a

reasonable criterion for structural safety [1-5]. Thus most traditional procedure for

analysis of data consists of choice of the underlying distribution, estimation of the

population parameters, and test of goodness of fit between theoretical and observed

distribution.

   Lack of rational criterion for selection of the underlying distribution in the above

procedure has permitted the flexible choice. Ms flexibility yields often the disconcert-

ing aspect that none of several hypothetical distributions can be rejected in the statistical

tests on a given level of significance. 'IThe designed reliabthty of the structure, however,

is intrinsically very sensitive to the underlying distribution. Another problem stems from

the fact that there is no good criterion for determining the optlmum sarnple size in

material testing.

    Concretely speaking, the following problems remain unsolved in the traditional

procedure: i) optimum selection of the underlying distribution for structural design, and

li) determination of the optlmum sample size in test of rnaterial. A related work is only

suggested by Shnozuka et al. [6] concerning the proof-load test.

    The present paper provides a new methodology which is within a general framework

of reliabihty-based and economical analysis. Effbctiveness ofselecting the distribution is
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evaluated on the resultant structural cost and the weight in a reliability design, and deter-

mination of the optimum sample size is solved by relating it to the trade-off between

costs of structural system and material testing. Numerical example in tensle test of fiber

reinforced plastics (FRP) is also presented to Mustrate the proposed procedure.

                     2. Cost-Effectiveness Analysis

2.1 Mathematical formulation

   het R be the strength of materials which is a random variable with the cumulative

distribution function (cdf) jFIR(x; e). wnen population parameters e are estimated

from sarnple ofsize n, the nominal strength R7 correspondingto 1007percentpoint

is given by

                   R,=Flii (7;b), (1)
where b stand for the estimates of e.

   The estimators are essentially random variables, and the true values of population

parameters remain unknown in so far as the samp!e size is finite. Consequently, the

upper or lower confidence lmit e." ,, in safety side must be adopted instead of e"  i

Eq. (1). The equation then becomes

                   Rn",7=4Ei (7; en",e)' (2)

Introduction of Eq. (2) which supersedes Eq. (1) lies in its potentiality to make it possible

to express the effbct ofsample size in e.*,. or R.*,7. Which ofthe upper andlower con-

fidence lmits should be chosen as ei, with respect to the structural safety depends on

the shape of distribution function. Since, on the other hand, the load acting on the

structure L is random vairable with cdf FZ(x;S), the norninal load L." ,,7, can be

represented by

                   Ln",,7, == Fli'('Y;Sn",,E,), (3)

where S.*,,., aretheconfidencelimitsofparameters g.

   Now suppose that the applied load L* to a structure and the allowable stress R*

are specified in structural design. The design value of cross-sectional area A can be

calculated from

                  A= L"i.SF, (4)
where SF is a factor of safety. As regards the structural weight w, Eq. (4) yields the

relation:

                   w =dZA
                              L*                     = dlSF' R* '
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where l and d denote length and specific weight of structural element, respectively.

Substitutaion of Ri7 and L.*,,or, given by Eqs. (2) and (3) into the above R* and

L* enables us to obtain the structural weight w. as fo11ows:

                   Wn=dlSF' ill/.*',;7i' (5)

'IEhe structural cost Hc which is proportional to the structural weight wn results in

                   Hc = c'i diSF' -:j"ISIa-.* .7 , (6)

where ci isaconstant.

   As presented previously in [7,8], the factor of safety SF is closely associated with

failure probabMty RF or reliability "lls of the structure, and is very sensitive to the

shapes of distributiohs of R and L. Eq. (6) gives a criterion for selection of the under-

lying distribution based on the resultant structural cost Hc. Hence in consideration of

the relation between SF and RF, effect of selecting the underlying distribution of R

and L can be discussed on

i) the resultant structural cost Hc under a constant value of PF, and

ii) the resultant failure probability RF under a constant value of SF.

   The larger the sample size becomes, the narrower confidence interval of the estimate

gets, and the closer e.*,. approachesto b. under agenerally satisfied condition. For a

given value of 7, therefbre, the nominal strength Ri7 obtained by Eq. (2) has larger

value while the nominal load L.' ,,7, by Eq. (3) has smaller one as the sample size

increases without loss of generality. It should be noted in connection with Eqs. (5) and

(6) that the structural weight is a decreasing im'ction of n under a given value of SF or

?F and the structural cost Hc decreases as n increases. On theotherhand,the cost

of testing material Hls is represented as a function of n. Hence

                      IVS =Hs (n). (7)
   Let CT denote the total cost ofstructural system defined by

           CT = Ht (SF, Ln",,7,, Rn",7) + HS ("), (8)

where Htr and HS can be obtained from Eqs. (6) and (7). There aretwoapproaches

available for evaluation of CT with respect to sample size n, i.e.,toevaluate CT under

given values of RF and SF. The determination of theoptirnum samplesize n.pt can

be fbrmulated as either of the following two mathematical programming problems:

    Pl: Determine n.pt to minimize CT fora given value of Ri7, or

    P2: Minimize CT with respect to n foragiven value of SF,
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where cdf's of the load and strength ]F]L (x;g) and ]FIR (x;e) are assumed to be

specified. The relation among CT,Hb,IVS, and n underagiven value of RF is

schematically Mustrated in Fig. 1 with the value of n.pt which minimizes CT. In the

figure, the cost of testing material HS is drawn as a linear function of n. A uni-dimen-

sional search technique is applied to the determination of the optimum sample size.
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Schematic representation of CT, Hc, Hs, and sample size.

2.2 Determination of nominal strength

   The determination of R.",7 in Eq. (2) necessitates the procedure of constructing

e.",, from data of material testing. Among many estimators of the population para-

meters, MLE (maximum likelihood estlmator) is adopted in this paper because of its

analytical reasonability and BAN (best asymptotic normal) property. In what follows,

the procedures to determine e." ,, and R.*,7 by MLE are derived for three types of

distribution, i. e. , normal, doubly exponential, and Weibull distributions.

2.2,1 Normaldistribution

   For a normal variate R with mean u andvariance a2, ML-estimatesof pt and o2

are
                   p - -i- ,g.,R,,

                    b2 = -!- .S (Ri-P)2 ,

                         n t=1

respectively. From Eq. (9), confidence limits for P and a are determined by

                   pt:,,-n-TE'st4;l;z5EIIi-i)･b,

                     * VJi .
                   o= .                                     a,                    n,e xi-e(n-1)
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which depend on sample size n and confidence level e. t,/2(n-1) and Xi-e/2 (n-1)

in Eq. (10) designate the 100(e/2) percent point of the Student's t-distribution with

(n-1) degrees of freedom and the 100(1-e/2) percent point of the xdistribution with

(n-1) degrees of freedom, respectively. Use of pt.",, and o.",. in Eq. (10) aids one in

evaluating the nominal strength R.*,7 by means of

                   Rn*,7=Pie+ U7 0n*,e, (1 1)

where u7 is 1007 percent point of the standard normal distribution. Concretely sub-

stituting Eq. (1O) into (1 1), we have

   R.",7 = P[i -(-EtE<Siiiii:L(n i) - x,-¥I/ll, (.-i)' u7) c"v], (i2)

where C"V is an estimate of coefficient ofvariation. The value calculated by Eq. (12) is

recommendable fbr an ahowable stress in the structural design.

2.2.2 Doublyexponentialdistribution

   The probabdity density function (pdf) of asymptotic smallest value distribution

which is typical of the doubly exponential distribution is

                    '               f(x) = -2- exp [(X7b)-exp(X7b)], (i3)

where a and b stand forscale andlocation parameters. 'lhe likelihood function ofEq.

(13) and its logarithmic form are written as

      L = z}.7 exp[,Elii,Fb - ,z.",exp(Xiib)],

and

      ln L =' - n. In a + i2."i Xii b - iZ."i exp ( Xii b ). (1 4)

ML£stimates of a and b are given [9] as the solutions ofthe simultaneous equations:

                   .£ xi exp (Lt )

                            a-                   l=1               a= -x,                    S exp (L')

                    i=1                           a

                                      '                                                 '               b =a[ln iZ.",exp(St)- lnn] ,

where
               x-- -- -jll- i;IXi ･.
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The asymptotic information matrix of MLE becomes

I!!-

whose inversion

forms of Var (a

Var(a) =

)

gives

 and

   a2 lnL a2 lnL

    aa2 aaab
   a2 1n L 02 1n L

   ob aa ab2 a:4
                   b=b

the asymptotic variance-covariance' matrix

Var (S) result in

                  1
                           -

. lhus, the asymptotic

and

n
.2
a

[1 +
7･ ' -jli-,S, (xi - S)2

i+S'
   a

1

n

exp (

 n
2
i=1

xi-b
 a

(xi-b)2

)-(1 +4
       a

exp (
xi-b
  -)
 a

-4),]
  a

Var (b") =

,

(16)

!a2 [1+
1

T2'
a

l£
n i=1

(Xi- S)2 exp (
xi-S

 a
)-(1+ x

-=- r
a

4), ]

a

.

   For the doubly exponential variate x, or strength ofa structural element, with

parameters a and b, wehave

               E(X) = b- Cke , (C= O.577 ... : Euler's constant)

and

                       Ta               v(X) = V6 '

As is well known, it is usually assumed in the standard design procedures that the

structural design must be based on a strength which is smaller than E(X), and a variance

of strength which is larger than V(X) [1] . In other words, the safety design asserts that

ai, must be evaluated to be larger than a, while b.*,, smader than b. It follows

from the BAN property that the confidence limits of ML-estimates are

               an*, e = a + ui- ,/2 . Vi71iiT(hT) ,

               bn",e = S+ue/2' VVIiFT(Si) ･

Using a.* ,. and bi,, we have the nominal strength R.*,or which corresponds to 1007

percentile of doubly exponential distribution and also to Eq. (2) such that

               Rn",7 == bn",e+"n",e' ln [-ln(1-7)]･ (18)
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2.2.3 Weibul1distribution

    Ehe pdf of Weibull distribution is

               f(x) = -i}- (-li-)a-` exp {-(-f;-f] ,

where a and B are shape and scale parameters. The likelihood fLmction and the result-

ing logarithnic form are

        L = (-i]-)" ,if,(-ll,:)a-i ,.p [-,S, (-iilL, )a ] ,

and

    lnL == n(lna- ln B)+(a - 1) iZ.",(ln xi - ln B) - iZ,(Xi )". (lg)

MI.eestimates of a and B are obtained as the solutionsofthe stmultaneous equations:

      -:- ' ,g-,(ln Xi - in B) -,Z:,(-iliL' )" ln (-ill,L) ., o ,

      - n6a + "i}M,z.",(-liL,)a =o.

Any numerical method must be applied because Eq. (20) can not be solved explicitly. In

this situation Var (a) and Var (B) turn out to be

   Var (a) = .[ al, + -jli-,S,(ii.iLi )a [ln (#.i )]2- [-i,¥), (7.i)& ln(l.ILi)]2] '

   "ar(B) nBiN,2 [-6.},.-i-l.g2,iill･l)gi'liilli'lllliliIlllilil'IIi-.l],2s,(-f.}, )a.(.l.y,)],]

   Since logarithmic transformation of a Weibul1 variate follows the doubly exponential

probability law, the following relations hold between Weibull and doubly exponential

parameters [10]:

                               1
                          a==- p
                               a
and

                          B = lnb.

   In line with the discussion about a.",, and b.",, in Eq. (17), it is seen intuitively

that both a.*,, and B.*,, should be smaller than a and B for the safety design. Hence
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              a.*,, = a + ue/2 . Vi71ii-i('6IS") ,

and

              Bn",e '-- B" + ue/2'V"VEiFi('i;;B) ･

With ai, and B.*,, thusdetermined,thenominalstrength R.",7 in

distribution can be evaluated by

              Ri7 = Bn",e[-ln(1-7)]i/"ie .

(22)

the case ofWeibuH

(23)

                       3. Iilustrative Example

   Tensde data of FRP (fiber reinforced plastics) whose frequency histogram is shown

in Fig. 2 are analyzed as an maustrative example. 30 specimens are prepared from a

choppedstrand-mat FRP sheet of constant thickness (8 mm). The details of test

materials and experimental procedure are described in reference {11]. The Traditional

statistical analysis of test data is performed in accordance with three steps:

   1. Postulate normal, doubly exponential, and Weibull types as the underlying

      disuibutions of FRP tensile strength.

   2. Calculate the MI.estimates by Eq. (9), (15), and (20).

   3. Test goodness of fit between the postulated distributions and the actual data.

10

'
E

gs
8
f
f

o
9    10 11 12
TENSILE STRENGTH

13

(kg/mm2)

      Ftg. 2. Frequency histogram of tensile strengths of 30 dumbell specimens from a

           Mat FRP. [Percentage of volume content ofglass fiber: 20.1% ]

The outcome of the statistical analysis based on the above steps is tabulated in Table 1,

which tells that none of the postulated distributions can be rejected by test of the null

hypotheses. In consequence cost-effbctiveness analysis discussed in Section 2 is carried

out to investigate the effect of underlying distribution on the resultant structural cost

fbr the actual data of FRP. The confidence lmits and nominal strengths calculated are

represented in Table 1. Fig. 3 in which the nominal load is assumed to be deterministic
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1. Calculated estimates and significance test results for the tensile strength of FRP.

Normal Doubly exponential Weibul1

ML£stimates:

X2:

x2, (O.05):

Decision:

P = 11.32

O= O.71

  2.76

  9.49

 cannot
 reject

a = o.63

b=lt66

  1.19

  9.49

 cannot
  . reject

a
f
i

=IL39
= 11.65

 1.e5

 9.49

cannot
reject

Confidence limit:

  (e = O.Ol)

Nominal strength:

  (7 = O.Ol)

P:,e=le.96

o:,e = 1.07

  8.47
 (8.30)

a:,,"O･86

b:,e = 11･ 35

  7.39
 (7.24)

a:,, = 11.02

Bn", e = 11･ 32

  7.46'

 (7.31)

   Nominal strength: kg/cm2 (x 102 MPa)

Mustrates the effect of underlying distribution on the resultant structural cost

corresponding to various values of failure probabdity. Ihe discrepancies in the resultant

structural cost become eminent as the failure probabMty decreases. Ihis fact calls

designer's attention to the selection of underlying distribution because the failure

probabihty between RF = 104 and 10di is generally recommendable in the actual

design. '

                                                     Weibul1

                                                      1.00
                                                      1.24

          v                                                      1.87          tuV 40

          g

          s

          M          p Weibul1
          8 2o
          R
          X Normal

                      Sample size n = 30

             O 10-6 10-5 10-4 10-3 10-2 10-i

                   FAILURE PROBABILITY llF･

       Fig. 3. Effect of underlying distributions on the resultant structural cost Hc in

             actual data of FRP. [The value of nominal load = 11.30 kgf (111.53 N),

             c, ld = 10.0 $/mm2 ]

Factorof
PF

Normal Doubly

10-2 1.00 1.0

10-3 Lll 1.5

le" 1.21 2.9

10-s 1.32 4.9

Doublyexponential
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   Further consider the relationship between the resultant structural cost and sample size

of testing materials. Since the true distribution of the material strength is unknown in

practice and the experiment with large sample size is generaily expensive, Monte Carlo

simulation is desirable to the study. Each group of 1000 random numbers is separately

generated from normal, doubly exponential, and Weibull populations by setting para-

meters equal to MLeestimates given in Table 1. Table 2 shows the confidence limits and

nominal strengths calculated for several samples ranging between 20 and 1ooO. It is

immediately perceivable that confidence limits approach closely to the values of ML-

estimates shown in Table 1 and the nominal strength increases gradually as sample size

becomes large. The relationship between the resultant structural cost and sample size

fbr the cases of PF = 10'2 and 10'6 is shown in Fig.4 which Mustrates the fact

that the structural cost decreases as sample size increases. The tendency is remarkably

recognized when ?F = 10-6, especially in the case ofdoubly exponential distribution.

Table 2. Confidence limits (e = O.Ol), and nominal strengths R:,7 (7 = O.Ol).

Sample size

   n

Normal Doubly exponential Weibul1

":,e O:,e Rn",or a:,e bjtE Rn",7 a;,e Bn*,e R:,7

 20
 40
 60
 80
 1OO
200
300

500
1000

10.85 1.21 8.03
11.01 1.00 8.68
11.07 O.93 8.90
11.11 O.89 9.04
11.13 O.87 9.10
11.19 O.82 9.28
11.21 O.99 9.37
11.24 O.77 9.45
11.27 O.75 9.52

O.94 11.30 6.99
O.86 11.41 7.46
O.82 11.45 7.70
O.79 11.48 7.84
O.77 11.50 7.94
O.73 11.55 8.20
O.72 11.57 8.28
O.70 11.59 8.38
O.68 11.62 8.48

9.37 11.26 6.89
IL57 11.38 7.64
12.71 11.42 7.95
13.30 11.45 8.11
13.85 11.47 8.23
14.96 11.52 8.47
15.36 11.55 8.56
15.82 11.57 8.65
16.28 11.59 8.74

Rn",7: ng/mm2

   Finally consider the problem to deterrnine the optimum sample size when the cost

oftestingmaterial HS is proportional to the sample size n, i.e. ,

                            HS = c2.n

where c2 is a constant. The optlmum values which are obtained by a uni-dimensional

search technique are shown in Table 3 (a) and (b) fbr the cases of (a) ci ld = 1O.O $lmm2,

c2 = O.5 $/sample, and (b) cild = 20.0 $/mm2, c2 =O.5 $/sample. The values of

fadure probabdity are specified in the range from 10'2 to 10'6. The valuesofoptimum

sample size minlmizing total cost for Weibul1 distribution are smallest of the three

distributions, while those for doubly exponential distribution are larger tlian the others.

It should be noted that the smaller the specified failure probability becomes, the larger

the value of optirnum sample size grows especially for doubly exponential distribution.
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     Fig. 4. Relation between structural cost Hc and sample size n. [The value of
          nominal load = 11.30 ngf(111.53 N), c, ld = 10.0 $/mm2 ]

                  ･Table 3. 0ptimum sample size nopt.

(a) c, ld = 10.0 $/mm2, c, = O.05 $/sample (b) c, ld = 20.0 $/mm2, e, = O.05 $/sample

PF
Normal Doubly exp. Weibull

PF
Normal Doubly exp. Weibull

nopt CT nopt CT nopt CT nopt CT nopt CT nopt CT

10-2

10-3

10-4

lo-s

10-6

35

35

93
104

115

17.82

21.27

22.86

25.06

27.15

28

57
98
198

384

1699
22.42

30.70

45.63

8L36

36

51

63

78

94

16.79

20.01

23.45

27.42

31.59

10-2 98
10-3 99
10-4 116
10-S 128
10-6 i67

33.02 53
36.72 88
40.43 137
44.35 269
48.95 402

 32.28

41.52

56.13

82.07

142.66

51

62

92

104

122

3L36
37.08

43.16

50.14

5821

c,: $/kg, d:kglmm2, l: mm, c2:$1sample, CT: $

                            4. Summary

   [he effect of selection of distribution has been discussed from the viewpoint of

reliabihty and cost-effectiveness analYsis, and successfully proposed is the new metho-

dology of determining the optimum sample size. It was also shown that the resultant

costs associated with structural design remarkably depend on the postulated strength

distribution and sample size in the test ofmaterials.
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