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Maximum Likelihood Estimation of Location

and Scale Parameters from Multi-censored Samples

Hidetoshi NAKAYAsu*, Ken’ichi MORI** and Shigeo KASE**

(Received November 15, 1977)

This paper is concerned with the problem of maximum likelihood estimation of the
location and scale parameters in some distribution from multi-censored samples. The
estimation procedure performed here gives:

(1) general formulae of calculating maximum likelihood estimators for the location-
scale type distribution from multi-censored samples,

(2) asymptotic variance-covariance matrix of ML-estimates, and

(3) method of determining the confidence region for location and scale parameters by
the likelihood ratio test theory.

A numerical example using CFRP fatigue test data illustrates the proposed method in
case where it is applied to multi-censored samples.

\

1. Introduction

Studies on the maximum likelihood estimation prdblem from censored samples have
been made by Cohen?, Wingo2) and many other researchers. Their approaches, however,
are based on some specified distributions, i.e., normal, log-normal, Weibull and others,
and the procedures derived are of limited use. In terms of censored type, few approaches
have treated multi-censored samples.

The principal reasons why we discuss maximum likelihood estimation of location and
scale parameters from multi-censored samples are as follows:

(1) In life testing the censored sample arises frequently at various stages, and
(2) The general formulae of calculating ML-estimates for location-scale type distribution
do not prevail which appears frequently in the field of life testing.

As a numerical example for illustration of the proposed method, its application to multi-
censored sample from CFRP fatigue test data is discussed.

2. Multi-censored samples

Let N be the total number of specimens, and »n the number of failure specimens.
Suppose that censoring occurs in k stages at time I;(>Ti—1), (G=1,2,3,- -, k)
and r; surviving specimens are removed (censored) from testing at j-th stage. Then we
have ‘
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N=n+ Zr. ’ ()]

There are two types of censoring: In type I censoring, which is of primary interest here,

T;

censoring, number of survivors is fixed and 7; is random variable. r; is independent of

is fixed, and number of survivors at these times is random variable. In type II

life span x.
When failure times x; (i = 1, 2, 3, - - -, n) are observed, the likelihood function L
for type I multi-censored sample becomes
n k V
L=cMfGe; o) LI -F(Ts 017, @
i= = :
where
C : normalizing constant,
0 : parameters,
f(x) : probability density function (p.d.f.), and
F(x) : cumulative distribution function (c. d. f.).

3. Maximum likelihood estimation based on multi-censored samples

3.1 Location=scale type distribution
Location-scale type distribution which is widely used to represent the statistical
interpretation of lifetime is defined as¥

dF[(x -b)/a] = f[(x-b)a]ld[(x~-Db)la], 3)
where @ and b denote scale and location parameters, respectively. By the transforma-
tions

x—b

y=—0" g() =nfl(x-b)la],

T—b : “)

Y = R and R(Y)=I[1-F(Y)],
likelihood function, Eq. (2), is written by

C n k

L= Mexplg00)] Mexo [R(Y)]- ©)

Taking logarithm of Eq. (5) except constants, we have
n k :

nl = .Zlg(yi) —nlna + 'Elr,-h(Y,-). ©)

i= j=

Differentiation of Eq. (6) with respect to @ and b enables us to obtain likelihood equa-
tion such as
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™M

K
i lg,(yi) + ]§1 r,h'(Y]) =0, (7-3)
and

n k
RACAORERIRA RO N (7-b)

where prime means the differentiation with respect to y or Y. The solutions of

simultaneous equation (7) give ML-estimates of 4 and b.

3.2 Asymptotic variance-covariance matrix

The asymptotic variance-covariance matrix for the above ML-estimates, 4. and l;,
can be derived from Fisher’s information matrix®). The information matrix of ML-
estimates for location and scale parameters

2L 0%inL

9a? d0adb
I = —-F 8-a
il 3L (8a)
9bda ob?
may, from Eq. (6), become
n k ) n k ,
S 3 k" Sviel+ 2 rYh!
1 =18 T 5 Pt =R ; ,
I : B F n n k " d 2 " k n (8-b)
§1y'gi + J_Elr]Y]h] kiz:lyi & —n+ j‘:-:l‘rjhj 2= s
b=b
where
g = g" ()
and
‘ hjll — h”()’j) .
Hence, inversion of the matrix, Eq. (8-b) gives asymptotic variance-covariance matrix
in the form:
Y n+ R — Loy — Y hY
o i=1Yi Ei—nT o nh — 28 Pt | |
T b S B b ”
S e — Sr YR "_ h" )
i=1ytgl j=1] it i=1gt j=1r] ' a=i
b=p

3.3 Confidence region of ¢ and b based on likelihood ratio
In order to determine the confidence region of ML-estimates d and b, consider
the likelihood ratio test theory. Let Hy be the hypothesis
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Ho: 0, = 0y, (10-a)
against the alternative one

Hy: 6, #80,, (10-b)

where
8, : parameters of underlying distribution,
0,0 : given parameter values in H,, and
r : number of parameters in Hy .

Since there is no general UMP (uniformly most powerful) test in this case, it is usually
convenient to utilize the likelihood ratio.
From the value defined by

5s = [len(}ax L(6,0,04)]1, (11)
s

likelihood ratio is written as

A = L (Oro’ és) .

A0) (12)

The statistic —2 log A lies in the region (0, ) and is asymptotically distributed in X2
form with r degrees of freedom®. Therefore, (1 — €) confidence set results in

8, = [0,01 —2log\ < X7(e)], (13)

and (1 — €) asymptotic confidence region of a and b must satisfy the relation

L, b)gexp[—-)f%(—Q]'L(é, 5). (14)

4. Application to double exponential distribution

4.1 Estimation procedure

Double exponential distribution which is a type of extreme value (asymptotic
smallest value) distributions belongs to location-scale family. The estimation method
in section 3 can be applied to this distribution as an example of location-scale type.
Its p.d.f. and c.d.f. are

b x-b
) — exp (

) = 2 exp € ) (159)

x —
a
and

F(x)=1— exp[—exp(x_b

s (15-b)
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respectively, whose mean and variance are given by
u=5b-av,
and (7: Euler’s const., 0.577 - - -) (16)

y = , g(r) =y —exp(y),

a7
Y = , and h(Y) = —exp(Y).

Likelihood function and its logarithmic form can be easily derived from Eqs. (5) and (6)
as

C n n k
L= grewl Zyi- Zewbn- Zrew (], (18)
and
n n k
mL=InC-nlna+ 'Ely,‘ - .Elexp i) - _Elr]- exp (¥;) . (19)
1= 1= j=

The differentiation of Eq. (17) with respect to ¥ and Y yields

g =1 —exp(y), g = —exp(¥),
(20)

hi = —exp(Y)), and ki = —exp (Y;).

Thus, likelihood equation is reduced to the following simple simultaneous equation:

x,-—b

n
na + ‘El(x,- ~b) — Z*(x;—b)exp( )=0, (21-a)
i=
and
_8 L saep(Zizhby _ g (21-b)
n a a ’

where Z* signifies summation over the entire N observations, and

Z¥(x; — b)° exp (XL

n Pp—
) = X (x; - b)® exp(22)
i=1 a
x 5 Ti—b B
+ 21 (T; - b) exp(—La———), (=012

i=1
! (22)
and
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From Egs. (9) and (20), the asymptotic variance-covariance matrix of ML-estimates
is written in the form:

P x-b
" a
V=D, ;~ - 2 - (23)
=a =5 x-b oy 1 - x;—b
A T DAL IE e

Further the confidence region by use of likelihood ratio can be obtained by the same
procedure as described in section 3.3.

4.2 Numerical calculation method of likelihood equation
It has been shown in the previous section that maximum likelihood estimators are
given by Eq. (21). After a little reduction, this simultaneous equation can be rewritten

as the simpler form:

2 *x; exp (%)

a = ———x‘— — ; N (24'3)
I
E*exp(z)
and
b = al[ln Z*exp (?) —Inn), (24-b)
where
2*x;ex (-)—Ci) = %x-ex (ﬁ)+ gr-T-ex (—Ti) (25-a)
ieXp (5 i=1lpa ],=1]]pa"
and
Srexp () = Z exp(X1) + 2 ryexp (L) (25-b)
P a i=1 P a j=1 j €XP a )

Because Eq. (24-a) is free of parameter b, this estimation procedure may be initiated
from solving Eq. (24-a) with respect to a. Since Eq. (24-a) is non-linear in a, however,
it can not be explicitly solved but requires numerical methods to calculate the estimates.
For this purpose, the following procedures of evaluating Eq. (24-2) can be considered:

(1) Construct a recurrence equation for a,

Z *x; exp (ai‘i) _ .
Gmit = ———— — % (m=0,1,2,"") 26)
E*exp(a——'-)
m

which is derived from Eq. (24-a) and gives the ML-estimate 4 as a convergent
solution of a,,. Since successive solution of Eq. (26) shows usually oscillating
behavior, substitute a modified approximation such as



Maximum Likelihood Estimation of Location 117
and Scale Parameters from Multi-censored Samples

! = Am+1 +am ’ (27)

Am+1 2

into a,, in the right-hand side of Eq. (26).

(2) Apply Newton-Raphson’s method to
Zogep(GD
f@=a-—— —+x=0, (28)
= *exp (—al)

then we have 4.
Another estimate b is also easily obtained by substitution of 4 into Eq. (24-b). The
moment estimators for ¢ and b are

V6s'

a=—, (29-a)
and
b=x"+av, (29-b)
where k
Z Ty
¥ =X+ J;k‘—_ , (30-a)
3
=
and
’ 1 2 =1\2 k TIN2 k %
s'= [ ~ igl(xi —x') + ]Elr]- (T; - x") /i§1r]~ 1°. (30-b)

The estimate 4 in Eq. (29-a) may be used as an initial value in Eqs. (26) and (28).

5. An example in CFRP fatigue life testing

Let double exponential distribution mentioned in section 4 be assumed as a lifetime
distribution of CFRP, then the estimation procedures in section 4 give ML-estimates,
variance-covariance matrix and confidence region.

Table 1 shows observed data®, and each observed value presents the number of
cycles to fatigue failure. Total number of specimens exposed to life test is 59 (N =59),
in which r; and r, are number of specimens censored at time T, and T, (7, =1.44
and T, = 3.31), respectively. Throughout the life test, number of failure specimens
is 18 (n=18).

Table 2 stands for the calculation results of estimates of scale and location para-
meters, (a, b). In this table, (do, 50) .are the initial values used in numerical calculation
which are obtained by the moment method. (4,,5,) and (d,, b,) are ML-estimates
obtained as solutions of the likelihood equation Eq. (24). (d,, l;,) calculated by a
recurrence equation Eq. (26) coincide with (a,, 1;2) which are the results by (2) in
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Table 1. Uni-CFRP fatigue test data at stress level 90 kg/mm?
(pulsating load type)

-~

X
0.30 (x 10%)
0.44
0.63
0.70
0.93
1.02
1.03
1.28

O 00 NN R W N

— b e b e e
0 -3 N N W= O
-

RO 0OIND o = m e
D O 00,00 N ® 1 3N
O b W,W NN O N

* Censored sample

T, =144
r, =22
T, =3.31
r, =19

(N=59,n=18, k=2)

Table 2. ML-estimates

é, =4.31798 4, =3.79651 G, =3.79651
b, = 7.79750 b, =8.58636 b, =8.58636

section 4.2. However, procedure (1) prefers to (2) because calculation of estimates by
the former converges faster than by the latter. Furthermore containing the evaluation of
derivative, calculation in (2) is more complicated than that in (1). Consequently, the
processing time required for the former calculation becomes less than the latter. It is
also seen from the table that moment estimates (4o, bo) which are taken for the initial
values in numerical calculation are fairly different from ML-estimates.

The asymptotic variance-covariance matrix of ML-estimates (4,, b 1) is given in
Table 3. The confidence region by likelihood ratio is illustrated in Fig. 1. This figure
clarifies that the ML-estimates are within the narrower confidence region compared to
that from moment estimates.

Table 4 represents the comparison between observed probability and theoretical one.
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Table 3. Variance-covariance matrix

v,, = 0.00349 V,,= —0.07253
V,, = -0.07253 Vs = 2.33922

Table 4. Comparison between observed probability and

theoretical probability (N =59, n=18, k=2)

i x; Qbs. prob. Theor. (i) Theor. (ii)
1 0.30 (x 10%) 0.016667 0.106614 0.145251
2 0.44 0.033333 0.110390 0.166698
3 0.63 0.050000 0.115714 0.197848
4 0.70 0.066667 0.117735 0.209851
5 0.93 0.083333 0.124611 0.250952
6 1.02 0.100000 0.127401 0.267612
7 1.03 0.116667 0.127715 0.269480
8 1.28 0.133333 0.135790 0.317008
9 1.34 0.150000 0.137797 0.328592
10 1.66 0.179762 0.148967 0.390773
11 1.76 0.209524 0.152623 0.410157
12 1.77 0.239286 0.152993 0.412090
13 1.80 0.269047 0.154108 0.417883
14 2.22 0.298809 0.170508 0.497221
15 2.83 0.328571 0.197102 0.602893
16 8.83 0.546825 0.655713 0.979051
17 10.94 0.765079 0.844151 0.993089
18 14.50 0.983333 0.991330 0.998946
5.5T1
1-€=09
st
4.5
S ]
8
g 4
<
a
a
L
g 35
3t o ML-estimates
x Moment estimates
2.5 . . A . ]
5 6 7 8 9 10 11 12

u
location parameter u

Fig. 1. Confidence region of estimates
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The observed probability is calculated by the median rank method in [4], while there
are two selections of parameters for calculation of theoretical probability: (i) ML-
estimates 4; and b, obtained in consideration of multi-censored sample, and (i) ML-
estimates calculated only from failure times x; (i=1,2,3,---,n). Asseen in Table 4,
the theoretical probability (i) agrees better with the observed probability than (ii).

6. Conclusion

An established procedure of ML-estimator from multi-censored samples is success-
fully proposed. Furthermore a calculation method of variance-covariance matrix and a
determination procedure of confidence region for ML-estiamtes are also derived from
the likelihood theory. A feature of this present method lies in its potentiality to propose
the general formulae of estimating location and scale parameters from multi-censored
samples. A numerical example of CFRP fatigue test data as a multi-censored sample
suggests that present method is applicable to analysis of life test for other materials.
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