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On Lift of Delta Wings with Leading-Edge Vortices

                   at Low Speeds

Masahiro HAyAsH!DA", Masayoshi S2e(To** and Kenji M2e(rsuoKA**

(Received November 15, 1977)

    This paper is concerned with some aerodynamic lift'characteristics of delta wings

for supersonic aircraft.

    With increasing aircraft speed, planform of a wing must change the geometry from

the rectangular to the swept-back, further to the delta, and consequently aspect ratio of

the wing tends to decrease.

    For actual aircraft, however, aerodynamic performance of the wings at low speed is

also important problem. Especially, improvement of STOL characteristics at low speed

will much more be required. Therefore, problem of the lift augmentation of the delta

wings at low speed has become more significant for supersonic aircraft.

    In this paper, for reasonable vortex model of the delta wing, aerodynamic fbrces

with leadingedge separation are analyzed theoretically and maximum value of the lift

coefficient is also presented and discussed.

1. Introduction

    The most remarkable point for lift characteristics of the delta wing is the appearance

of the vortex lift in addition to the potential lifti). (See Fig. 1). The leading-edge

vortices introduce the vortex lift and increase in intensity for chordwise. Ifthe so£alled

vortex breakdown does not occur, these vortices will provide the stable lift, therefore, the
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Fig. 1. Illustration ofvortex lift for delta wing.
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total lift wi11 exceed the lift than the potential flow alone.

   Only one paper2) presents maximum lift of the wing with low aspect ratio. The

paper discusses the core radius and distance apart of vortices with cores rolling up at

infinitely long distance behind the wing as variations. Compared with its study which

may be short of the availability in pr.actical use, the present paper has a merit that the

variation is limited to the circulation value around the mid-span of the wing.

                           2. Nomenclature

b == wingspan.
b' = distance apart of the vortices rolling up at infinitely long distance behind the

       wing.

c = mid-wingchordlength.

S = wingarea.
X == wingaspectratio.

L = lift.
CL = li'ftcoefficient.

Di = induceddrag.

CDi = induceddragcoefficient.

x = chordwisecoordinate.

jv = spanwise coordinate or real axis of the Trefftz plane.

z = imaginary axis of the Tre fftz plane.

M == downward momentum of the two-dimensiOnal fluid on the Trefftz plane.

E = total energy ofthe two-dimensional fluid on the Trefftz plane.

V = freestreamvelocity.

w' = down-wash velocity at infinitely long distance behind the wing. (considering

       the rolling up)

7 = vortlclty.

7o == chordwisemid-spanvorticity.

ro == chordwisemid-spancirculation.

eza = down-wash angle at infinitely long distance behind the wing. (considering the

       rolling up)

p = fluidmassdensity.

g = velocitypotential.

n, E = variable constants which define the form of the vorticity distribution.

k == non-dimensionalmid-spancircUlation, rolbV.

                         3. Theoretical analyses

   Considering a Trefftz plane at infinitely long distance behind the wing, the lift and
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induced drag on the wing are approximately given

momentum theory and energy law:

       L =MV -Esin eg ,

by the following relations3)'4) by the

(1)

and

Di -- Ecos edi . (2)

In Appendix, the detailed introduction of these relations is presented.

   Attention in application of the above equations is that, in the process of the rolling

up from a fiat surface of the trailing vortex sheet into a pair ofvortices, the work which

is performed by the pressure or the energy spent on rolling up is ignored. This approxi-

mation is general and allowed to use in practical problem4)'5). The values of M and E

in Eqs. (1) and (2) are, in this discussion, presented by values of the momentum and

energy calculated on the Trefftz plane for the case where the trailingvortex sheet keeps

a fiat surface at infinitely long distance behind the wing.

   The present analysis can easily be extended for more practical case, in which the

rolling up of the trailing vortex sheet is sufficientiy considered.

3.1 Assumptionofabasicvortexmodel

   Some vortex models have been applied for the analysis of delta wings with leading-

edge vortices. The vortex model presented by Gersten6), who assumed the free vortex

sheets leave away from the upper surface of the wing with one-half the angle ofattack as

shown in Fig. 2, agrees well with experirnental measurements. To overcome the very

a

s

Y & N
x
N

)/)><

x

Fig. 2. Nonlinear vortex model by Gersten.

complex analysis by the above model, we wi11 begin with the assumption of a basic vortex

model for simplicity.

   The form of pressure distribution on the delta wing at high angle of attack shal!

first be investigated on the basis of some concrete experimental data. As shown in
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                      c) Flowpattern. (diagrammatic)

Fig. 37), the spanwise pressure distribution is ofU-shape or has the curve which is nearly

elliptical from the mid-span to the outside and takes the negative peak at the point

between about 60 and 70% semi-span. Tlie negative pressure decreases outwards from the

peak point and becomes zero at the wingtip (that is, the leading edge for the delta wing).

Ihe strongor leading-edge vortex (primary vortex) is, the greater the contributions

induced by the secondary and tertiary vortices are, and therefore, the chango in the

outside stated above wi11 not be so much. This tendency suggests that the pressure

distribution can be approximated as elliptical form from the mid-span to the peak point

and as constant from that point to the wingtip.

   The distribution of vorticity on the wing can approximately be expressed by the

fo11owing equations as shown in Fig. 4:

   ･y(.,y) ., ')to[1+n'n 1-(E2jtVi),] (oslljvls E2b,X), (3)

              7o (1 +n) ' (E2b,X ,S lylg, b2X, ). (4)
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Fig. 4. Basic yortex model and Trefftz plane at infinitely long distance

behind the wing. (considering the leading£dge separation)

3.2 Momentum on Trefftz plane

   Consider the vortex arrangement formed by the free vortices on the Trefftz plane.

Since the vortices of the strength given by

            a [ 7(x, y)dx]

                  ay

leave away from a wing element dx, it consists of vortices which are shed from the

section OS 1y l$Ebx12c andapair ofpoint vortices from the both tips (ly 1 ==

bx/2c). [he vortices shed from the section Ebx/2c < iy 1 < bx/2e do not exist.

   It is well known' that the momentum of the fluid whose flow is induced by a pair of

point vortices of the same strength but the opposite directions in the twodimensional

infinitely wide plane will have the finite value p2P8), where p is the fluid mass density,

2 is the distance between two point vortices and P is the strength of circulation ofeach

pointvortex. This relation yields

                            o                bxi2e       dM = - f, p' 2y' by [7(x,y)dxl dy

                           Tg             P7ob          =, [1+(1-4)n]xdx, (s)
                                                   '                                                        '
where dM denotes the elementary momentum depended on the wing element. Thus

the total downward (-z direction in Fig. 4) momentum M on the Trefftz plane is
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M == f.x.=,c dM = -lt [1+(1- vr4g )n]pbr,.
(6)

3.3 EnergyonTrefftzplane

   The kinetic energy for two-dimensional incompressible fluid is given by

      E=--Spsig' aO.q, ds' 9), (7)

where s' represents the length alonga boundary line and n' does the direction of the

normal line put on a boundary line.

   In the calculation of E with Eq. (7), the Trefftz plane is regarded as a y -z

complex plane and the value of E in the whole infinitely wide y - z plane is obtained

by doubling the value integrated on the halfinfinite' ly wide y - z plane. After integrat-

ing along the path A.B･C･D･E.F.A as shown in Fig. 5,the limits ofR.+oo

z

F

y=+O
R

z=+O
AB

Wing D y

z= e

-o

y=+O

E

Fig. 5. Path ofline integration.

     (B . C, D-E, F' -.A; along one ofstream 1ines)

and e.O are operated. As the velocity potential g is finite and z-axis andthepath

B->C are stream lines, we have ･

           ag      (9' an')B-c = O'
              IB :.E

which results in EB.c = ED-E : EF.A = O. Since the fluid can be regarded as

stationary at the limit of R ･ +eo about the path E.F, the formula of EIE.F=O

and otherwise

                       b      EL4.B = li-m,(- -li- Jl?,-e(g･ g,9 )..., dy),

and
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      Ec-D - eLm, (- -g- fiO-. sg･ {l÷/ )..-,･(-dy))･

   Generally, the product [9'(Og/Oz)]..±o can be rewritten as the expression

(g)z.±o'(a9/Oz)z.±o. And, considering the condition of the vortex sheet, the quantity

(g)z.+o is equal to -(g)z.-o and (OglOz)z.+o is also to -(Oglbz)..-o. These

situations disclose that the value EA.B is equal to Ec-÷D. The finite value ofenergy

on the Trefftz piane can be finally expressed by

                                    '      E' = 2 ,!;t{;i (EA -,-B + EB.c + Ec-D + ED.E + EIE-F + EF.A )

            R.+ee

        == -2p .cR/2 (g).-+o･( gf )...ody･ (s)

In the calculation of the value of E by Eq. (8), the quantity of (9)..+o and

(09/az),.+o are required which are to be calculated in what follows.

3.3.1 Calculation of (9)z.+o

   A complex potential df(g) on the Trefftz plane due to the vortices which leave

away from the wing element is

      df(g) :f-+b,c;: -g]J[72(iY)dX]i.g(s-y)dy, '(g)

where g=y+iz and
                                                     gbx                        n7e Y                            ･ dx (O SyK                                                        ),
                       (E2b,X) (g2,x)2 "y2. - 2c

    aOy [7(x,y)dx]= o (E2b,X <y< ll-/ ),

    '                                                   bx
                                                     )･                       (n+7o)dx (y)                                                   2c

Hence, the elementary velocity potential dg is

   dg = Re [df(g)]

       = - (n7Eobd.x) [[tv ne }2bcx )2 +,2]ltv+ g2b,x )2 +,2]]%,i. ei2+e2

             c
                     (n + 1) 7o dx           n7odx         +(}bx) Z+ 2. (ei'e2), (10)
             c            '

where
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   el=tan-1 y,-H {2bcx and e2=tan-1 y+ZE2bcx '

                                              '
The necessary quantity (g)..･+o is obtained by usingthe relation

   '         '             x=c   (9)z=+o = f..o d(9)z=+o'

The limiting form ofEq. (10) as z -> +O becomes

              - (ng7id.l (}2b,X )2 -y2 + ("+i)27edX (o $ys E2b,x ),

   d(g)z=+o = '(n+12) 7,dx . '(g2b,X syS ti÷/ ),

                  o , (y>{l-i)･ al)

Therefore, (q)..+o can be obtained as follows by integrating d(g)..+o with x for

each section of x :

             -(¥t7bo)[ ({t)2-y2 -y,.,-i(?/). ((ngtl))7,(g-y)]

                                      tt   (g )z -+o= (o sy$-illtL ),
                                                   , (12)
              (n(/ei) 7o (} -y) (-llbt sysg).

3.3.2 Calculationof (a9/Oz)z.+e

Similarly to the above, (ag/Oz)..+o is obtained through

              nigob,d.X)+ .("'S}7odX(y .i. b2.. - pt .it3÷/) (o s7s E2b,X),

d('gi/÷).=+o== -("7g,bOd.X) f-Y
(g2b,.

),+
fl/b,dxl

              +(n+12).70dX( lb. Ib.) (13)
                                    y+                           y-                              2c                                       2c

                                           Ebx                                               ),                                       tv >
                                            2c



            On Lpto

such that

              n7o
               gb
              (c)

 b9               n7o(T, )z-+o = ( Eb) [log (1 + 1+(

               c
                         (n + 1)7o

                          (g)a

3･3･3 Cal¢ulatedvaiue of EiO)

   The total energy E may now be

Eq. (8) as '
E = prz [ ¥Z rr + (" i.i )2 {(2 - g) iogg+

   '(i)logE+ 5Es-g il -( g2i2

3.4 Estimationofthedown-washangle edi

   The distance b' apart of the

pair of point vortices, is given by '

follows:

                       gz            1       b' = -li- [1+(1- 4                          )n]b.

Under this consideration, the

the wing is approximately

        , ro ro       M7 = 2Tb' = vr [1+(lm g4rr

   Hence, the down-wash angle e" at

approximated by

               ,   6g : sin-i W = sin-i

              V z[1+(1-
                            t tt tt

3.5

fDelta Wings wr-th Leading-cage Pbrtices at Low Speeds

iog(:ltll-)- ("(ibi)).70 iog[( Sby)2 -i] (osys

             c,
               gb

     2y

     log [(

  calculated by su

      2
      g

   )log(1

                                    tt
      at infinitely long distance behind the wing

vortices,

equatmg

                    down-wash velocity

                              )n]b

                              infinitely

                             Po
                               gz
                              T

Estimations of lift and induced drag coefficients

Since the lift on the wing is given by Eq. (1)

                               45

                         -iltt )'

)2)-log2] (14)
   ,b, )2 -i] ( g,b <y s -ll-).

               '

       bstituting Eqs. (13) and (14) into

                 5-3g
 log2] +n(n + 1) ((                       )log 2
                   4g ･
 'VT=IEi)'3>(Il:gllll2E ]]' (15)

which can approximately be regarded as a

the momentum in the case to Eq. (6) as

                            (16)

    w' at infinitely long distance behind

           '

     long distance behind the wing can

                      '        ･. ･ ''(18)
 )n]bV

  the lift coefficient is
 ,
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cZ =
L

lpv2s
2

= Ak(1 2B
7A

k2)X,

where

and

A == 1+(1

B= T n2
     16

- g4T ).,

+(n+1)2
(2 - g)logg +

.21-

g
log2

2rr

+n(n+1)[ 5-3E log2+i logg+ 5g-11

-(
E2 +2

4g

) log (1 'PE2),

     sg

3VT:7g
4g 4g

]･

Then, we obtain

q
x

Ak (1
2B
nA2

k2 ), (19)

and its maximum value is given by

(? )max
2

3
A2

v/Ii6ill'
B ' (20)

at

k=Avrl61iB ･ (21)

Similarly the induced drag coefficient being

CDi =
Di

!pv2s
2

= 2Bk2 1-
k2

T2A2
x,

we have

s.･..
 x

2Bk2 1-
k2

rr2A2 .

(22)

3.6 Estimation ofvariableconstants g and n

   The value given by Eqs. (19), (20) and (22) contain the variable constants g and n

whose values have to be estimated. With respect to g, the value of g may be between

g = O.6 and O.7 on the strength ofmany experimental data for the delta wing which have

already been published. The case of g =1.0 corresponds to suchacase as the flow on
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the wing is potential flow alone.

   With respect to n, it can be allowed that the potential flow is realized in the section

OfSllvlSgbx/2c as shown in Fig.3 (b) and (c). Thus the value of n can be

determined by equivalent substitutign of area according to Jones' theoryii) as shown in

Fig. 6. In Jones' theory, the distribution of the vorticity on the wing is given by

                                        tI
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Eq. 23.

7(x, y) =

  Ebx
- 2c
  Fig. 6.

   7o

   O tbx
            2c
Estimation ofconstant n.

y

1-
y2

 Ebx     )2(
  2c

.

(23)

   The comparison of this with the above

stitution ofarea gives the following relation:

equatlon and Eq. (3) for the equivqlent sub-

 Ebx/2cf
 -Ebx/2e

7o

1-
y2

gbx

  2c,

obtained as

)2

      gbx/2cdy =f             7o
      -tbx/2c

Hence, the value of n is

n=

(

!-1
2
       #
1-Z
    4

2.660.

[1+n-n
     72
          ] dy.1-
     Ebx        )2   (
     2e

        (24)

(25)
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                       4. Results apd conclusions

   Introducing the value n = 2.660 into Eqs. (19), (20) and (22), the final results of

the lift and induced drag coefficients, and the maximum lift coefficient for each case of

g = O.6, O.7 and 1.0 become

   C?tL = 2.4o7 k (1 - o.lo2 k2)

   CxDi :1.s4gk2 1-P.O180k2 ,at E=O.6, (26)

                                            '                                    '

   ? = 2.198 k (1 - O.0988 k2)

   CDi -- 1.4gsk2 1-o.o21ok2 at g=o.7, (27)
     x

   CILmax = 2･692X

   CZ = 1.s71 k (1 - o.lo77 k2)

    x

   CDi =o.s3sok2 1-o.o411k2 at g=1.0. (28)
     x

    CZmax = 1･842X

Eqs. (26), (27) and (28) are summerized with non-dimensional mid-span circulation

k in Fig. 7.

   In Fig. 7, the curve for g= 1.0 represents the case without the leadingedge separa-

tion, that is, the flow on the wing is the potential flow alonei2). The difference (the

shaded area) between the curve for E = 1.0 and that for g =O.6 or O.7 may be regarded

as the vortex lift which depends on the leading£dge separation. The contribution of this

vortex lift reaches about 40 N 50% of the potential lift at that maximum value.

   The total lift has the maximum value as well as the case of the potential lift, and

that value may be limited about 2.5 'v 3 times of the wing aspect ratio. In the case

that the leading-edge separation is considered, the leadingedge vortices give an effective

lift as the additional iift. Therefore, it may be expected that if the leadingedge separa-

tion is made positively and these leading-edge vortices are maintained by some methods

(such as blowing or suction, etc.), the lift coefficient will attain to the theoretical value

which is predicted in this paper.

   The results obtained here may be used as the available data for the investigation of

the lift augmentation of delta wing.
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Appendix: Estimations of lift and induced drag by Trefftz plane approach method

   Consider an infinitely large cylinder which

surface as shown in Fig. 8 (a).

   The force F on the wing can be given as

includes the wing inside as the control
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       I' =P- G,

where P is the pressure integral value over the control surface and G is the effluent

momentum out of the control surface per unit time. Now, the cylinder radius being

infinitely long, the difference of momentum between incomings and outgoings through

the surrounding surface of the cylinder wi11 be zero, and P,, z£omponent of P, wi11

be also zero. Finally, P and G will have only to be considered with respect to the

infinitely wide front and rear planes of the cylinder. The latter plane is so-called Trefftz

plane. Consequently, the following equation wi1} be obtained with respect to the force

in the z-direction :

       4 =Pz - G. =MVcos e" ,

where M is the momentum in the direction to (-z) on the Trefftz plane. While,since

       jFl, == Lcos e" + Di sin eg ,

we obtain

       Lcos eza+Di sin eg =MVcos eS. (A.1)
   On the other hand, as shown in Fig. 8 (b) the resultant velocity v at an arbitrary

point on the Trefftz plane can be expressed by

       v2 = V2 +2vwz sin eA + w2,

 (b)

     Wz
      's

  v
      1
U/./Ylii

 -NV

-
x

w
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where w is the induced velocity due to a straight free vortices row on the Trefftz plane

and w, is the z-component of it. Denoting the pressure at the front and rear (in other

words, the Trefftz's) plane ofthe cylinder by Po and P, respectively, the x£omponent

of P becomes

       4 = "(P-Po)dydz
         = ff -il P(V2 - v2)dy dz

          = V sin ess "p (- w. )cly dz - Jlf -lt pw2 dy dz .

         = MVsinedi - E.

As obviously G. = O, the following equation will secondly be obtained with respect to

the force in the x-direction:

      jFl, = Il. - G. =MVsineg -E.

On the other hand, we have

      Fbe = L sin edi - Di cos eg .

Therefore we obtain
       ,

      Lsin e" - Di cos e" == MVsin 6g -E. (A.2)

From Eqs. (A.1) and (A.2), accordingly, the lift L and the induced drag Di are given

by

      L = MV - Esin ea ,

and

      Di -- Ecos eg ,

which correspond to Eqs. (1) and (2). Moreover the latter equation can also be obtained

by the energy law only.


