saka Prafecturae Univarsity

Ope Q ARRRFI A SHHEEUN I N
[m

Education and Ressarch Archivas

Title On Lift of Delta Wings with Leading-Edge Vortices at Low Speeds
Author(s) Hayashida, Nasahiro; Sato, Masayoshi; Matsuoka, Kenji
Editor(s)

Citation BuIIeti_n of University of Osaka Prefecture. Series A, Engineering and nat
ural sciences. 1978, 26(2), p.37-51
[ssue Date | 1978-03-31
URL http://hdl.handle.net/10466/8287
Rights

http://repository.osakafu-u.ac. jp/dspace/




37

On Lift of Delta Wings with Leading-Edge Vortices
at Low Speeds

Masahiro HAYASHIDA*, Masayoshi SATO** and Kenji MATSUOKA**

(Received November 15, 1977)

This paper is concerned with some aerodynamic lift characteristics of delta wings
for supersonic aircraft.

With increasing aircraft speed, planform of a wing must change the geometry from
the rectangular to the swept-back, further to the delta, and consequently aspect ratio of
the wing tends to decrease.

For actual aircraft, however, aerodynamic performance of the wings at low speed is
also important problem. Especially, improvement of STOL characteristics at low speed
will much more be required. Therefore, problem of the lift augmentation of the delta
wings at low speed has become more significant for supersonic aircraft.

In this paper, for reasonable vortex model of the delta wing, aerodynamic forces
with leading-edge separation are analyzed theoretically and maximum value of the lift
coefficient is also presented and discussed.

1. Introduction

The most remarkable point for lift characteristics of the delta wing is the appearance
of the vortex lift in addition to the potential lift!. (See Fig. 1). The leading-edge
vortices introduce the vortex lift and increase in intensity for chordwise. If the so-called
vortex breakdown does not occur, these vortices will provide the stable lift, therefore, the
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Fig. 1. Illustration of vortex lift for delta wing.
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total lift will exceed the lift than the potential flow alone.

Only one paper?

presents maximum lift of the wing with low aspect ratio. The
paper discusses the core radius and distance apart of vortices with cores rolling up at
infinitely long distance behind the wing as variations. Compared with its study which
may be short of the availability in practical use, the present paper has a merit that the

variation is limited to the circulation value around the mid-span of the wing.

2. Nomenclature

b = wingspan.

b’ = distance apart of the vortices rolling up at infinitely long distance behind the
wing.

¢ = mid-wing chord length.

S wing area.

A wing aspect ratio.

L = lift.

C; = lift coefficient.

D; = induced drag.

Cp; = induced drag coefficient.

x = chordwise coordinate.

y =. spanwise coordinate or real axis of the Trefftz plane.

z = imaginary axis of the Trefftz plane.

M = downward momentum of the two-dimensional fluid on the Trefftz plane.

E = total energy of the two-dimensional fluid on the Trefftz plane.

V. = freestream velocity.

w' = down-wash velocity at infinitely long distance behind the wing. (considering
the rolling up)

Y = vorticity. ,

Yo = chordwise mid-span vorticity.

'y = chordwise mid-span circulation. ‘ ,

€. = down-wash angle at infinitely long distance behind the wing. (considering the
rolling up)

p = fluid mass density.

¢ = velocity potential.

n,f = variable constants which define the form of the vorticity distribution.

k = non-dimensional mid-span circhlation, To/bV.

3. Theoretical analyses

Considering a Trefftz plane at infinitely long distance behind the wing, the lift and
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induced drag on the wing are approximately given by the following relations®>® by the

momentum theory and energy law:
L =MV - Esine. , (1)

and
D; = Ecose. . )

In Appendix, the detailed introduction of these relations is presented.

Attention in application of the above equations is that, in the process of the rolling
up from a flat surface of the trailing vortex sheet into a pair of vortices, the work which
is performed by the pressure or the energy spent on rolling up is ignored. This approxi-
mation is general and allowed to use in practical problem®>%). The values of M and E
in Egs. (1) and (2) are, in this discussion, presented by values of the momentum and
energy calculated on the Trefftz plane for the case where the trailing vortex sheet keeps
a flat surface at infinitely long distance behind the wing.

The present analysis can easily be extended for more practical case, in which the
rolling up of the trailing vortex sheet is sufficiently considered.

3.1 Assumption of a basic vortex model

Some vortex models have been applied for the analysis of delta wings with leading-
edge vortices. The vortex model presented by Gersten®, who assumed the free vortex
sheets leave away from the upper surface of the wing with one-half the angle of attack as
shown in Fig. 2, agrees well with experimental measurements. To overcome the very

Fig. 2. Nonlinear vortex model by Gersten.

complex analysis by the above model, we will begin with the assumption of a basic vortex

model for simplicity.
The form of pressure distribution on the delta wing at high angle of attack shall
first be investigated on the basis of some concrete experimental data. As shown in
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Fig. 3. Experimental pressure distribution. ‘
a) Pressure distribution of difference between
upper’s Cpu and lower’s Cpl.
b) Total pressure distribution.
¢) Flow pattern. (diagrammatic)

Fig. 37, the spanwise pressure distribution is of U-shape or has the curve which is nearly

elliptical from the mid-span to the outside and takes the negative peak at the point
between about 60 and 70% semi-span. The negative pressure decreases outwards from the
peak point and becomes zero at the wingtip (that is, the leading edge for the delta wing).
The stronger leading-edge vortex (primary vortex) is, the greater the contributions
induced by the secondary and tertiary vortices are, and therefore, the change in the
outside stated above will not be so much. This tendency suggests that the pressure
distribution can be approximated as elliptical form from the mid-span to the peak point

and as constant from that point to the wingtip.

following equations as shown in Fig. 4:

Yolltn-n [, _ ¥ 1 ©glylgy,
(sz)2 2c
2¢
£bx bx
+ R ==).
Yo(1+n) (2c§lyl§20)

The distribution of vorticity on the wing can approximately be expressed by the

&)

4)
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Fig. 4. Basic vortex model and Trefftz plane at infinitely long distance
behind the wing. (considering the leading-edge separation)

3.2 Momentum on Trefftz plane
Consider the vortex arrangement formed by the free vortices on the Trefftz plane.
Since the vortices of the strength given by

o [Y(x, y)dx]
oy

leave away from a wing element dx, it consists of vortices which are shed from the
section 0 < |y | < £bx/2¢ and a pair of point vortices from the both tips (1y | =
bx/2c¢). The vortices shed from the section §bx/2c <ly |<bx/2c do not exist.

It is well known that the momentum of the fluid whose flow is induced by a pair of
point vortices of the same strength but the opposite directions in the two-dimensional
infinitely wide plane will have the finite value pRT® . where p is the fluid mass density,
2 is the distance between two point vortices and T is the strength of circulation of each
point vortex. This relation yields

o e,y 2 @y
dM = —f e 2y o [V y)dx ] dy
= 2Y 1140~ Ty xax, )

where dM denotes the elementary momentum depended on the wing element. Thus
the total downward (—z direction in Fig. 4) momentum M on the Trefftz plane is
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M=am =L 1+01="Eyn] pbr, . ©)
x=0 2 4

3.3 Energy on Trefftz plane
The kinetic energy for two-dimensional incompressible fluid is given by

B9 g5t 9, )

1
E=——pgy-
Sy P9 5,

where s’ represents the length along a boundary line and n’ does the direction of the
normal line put on a boundary line.

In the calculation of E with Eq. (7), the Trefftz plane is regarded as a y — z
complex plane and the value of E in the whole infinitely wide y — z plane is obtained
by doubling the value integrated on the half infinitely wide y — z plane. After integrat-
ing along the path A >B~>C->D—>E~F A asshown in Fig. 5, the limits of R - +o0

z

Wing

Fig. 5. Path of line integration.
(B—C, D—E, F— A, along one of stream lines)

and € -0 are operated. As the velocity potential ¢ is finite and z-axis and the path
B - C are stream lines, we have

3y _
(‘P an')B-*C - H
D—FE
F—4

which results in Ep.,o = Epg = Ep_,4 = 0. Since the fluid can be regarded as
stationary at the limit of R — +oo about the path £ - F, the formula of Egp=0
and otherwise

0 oy

2.
Eamp = Im (-5 [2 (00 =2),_,0d7),

and
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Ecop = lim (=21, (0" 500, (-a9)).
2-€ 0z
Generally, the product [y« (8¢/02)] ;=10 can be rewritten as the expression
(9)z=10"(3¥/32z);=1¢9. And, considering the condition of the vortex sheet, the quantity
(©)z=+0 isequal to —(p);=_¢ and (89/dz),=4+¢ isalsoto —(9¢/02),=_¢. These
situations disclose that the value E,_,p is equal to Ec_,p. The finite value of energy
on the Trefftz plane can be finally expressed by

E

2 lim (Ea-pt EpsctEcopt Epspt Epnpt Epsy)
6—)

R—+oo

20 17 @amvo (32,2407 ®

In the calculation of the value of E by Eq. (8), the quantity of (¥),=+¢ and
(0¥/0z),-+¢ are required which are to be calculated in what follows.

3.3.1 Calculation of (¢),=+¢
A complex potential df(¢) on the Trefftz plane due to the vortices which leave

away from the wing element is

2 [yy)dx]

ar@) = §oe 2 log (¢ — ¥)dy | ©
where { =y +iz and
([ nY . Y dx (0<y< X be
E V& 5
é%[ﬂ&ywx]=< 0 (%x<y<%§h
L (n+7y)dx 2 127_:).

Hence, the elementary velocity potential dy is

dy = Re [df($)]
n‘Yodx be 2 2 be 2 2 1/4 0 +02
- [[(p- =) +z*] [O’*‘ )y +z°]]
(sbx) 2
+ nYyodx 4 (n+1)7,dx (6, — 0,), (10)

(be 27

where
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01 = tan~ —__ZEX_ and 02 = tan"~
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_z
y+£bx'

2c

The necessary quantity (¥),=4¢ is obtained by using the relation

(P)z=+0 = f:=: d(¥)z=+0 -

The limiting form of Eq. (10) as z = +0 becomes

( nYedx £bx ., 2
- o [ S -y
. c
d(9)z=+0 = (n+1)7,dx
2
0

~

bx
c

30 )

; (1) Yedx ©O<y gzb_x ,
2 2c
(&Qs
2c
bx
(}’>E)-

(11)

Therefore, (¥),=+¢ can be obtained as follows by integrating d(¢);=+0 with x for

each section of x :

B (go [\/(%—b)z—-y2 —yCOS"(—z%)"L(n%;bl))l(%_y)]
> [ )
(¢)z=+0 =< (Ogygéll ’
@ by, Gosh
& 27 P
4

3.3.2 Calculation of (8¢/92),=4¢

Similarly to the above, (8¢/0z),=+¢ is obtained through
( nyedx . (n+1)Yedx 1 1 tbx
+ - 0 -
(e, P ~bx +£) Osy<57),
4 Y 2¢ 2¢
(‘g_:)z:+o= 3 - n’;gdx Y + n‘;‘(l,’dx
20Xy / Ebx 0%
( c ) yz—(7)2 ( ¢ )
(n+1)Yedx 1 1
+ 3
2w Tbw ) -
Y 2¢c Y 2¢c
o> 25,
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such that
('gllo) (y)_%log[(—%)hu 0gr< ),
), - B 1+, 1+ (2 7) ~10g2] (4
_%mg[(%)hl] (%<y§%)-

~

3.3.3 Calculated value of E'®
The total energy E may now be calculated by substituting Eqgs. (13) and (14) into
Eq. (8) as

(n+1)?
27

E =pr? [— [2- E)log£+—s—log2]+n(n+1)[( :5)10g2

r(Syoge+ S - (B vTo) VI ay)

3.4 Estimation of the down-wash angle €., at infinitely long distance behind the wing

The distance b’ apart of the vortices, which can approximately be regarded as a
pair of point vortices, is given by equating the momentum in the case to Eq. (6) as
follows:

’ 1 ETT
b 3 [1+Q ) n}b (16)
Under this consideration, the down-wash velocity ’w' at infinitely long distance behind

the wing is approximately

w o= Lo Lo : a7

2mb n[1+(1—57f)n]b

Hence, the down-wash angle e. at infinitely long distance behind the wing can
approximated by
= sin”! Lo . ‘ '(18)

1 W
4 n[1+(1_%”)n]bv

' s =
€. = SIn

3.5 Estimations of lift and induced drag coefficients
Since the lift on the wing is given by Eq. (1), the lift coefficient is
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= L =Ak(1—2—ﬁ—k2)>\,
—pV2S m
2
where g
™
A=1+(01-=2D)n,
( y) )n
and

(2 —-§&)logk +%log2

B=-"rn*+(n+1)?

16 27
5-3 Sg—11
+tn(n+1)] 422 log2+%log£+ 582
2 2
- sviTe) r N
Then, we obtain
% = Ak(1 - 3/"52 ), (19

and its maximum value is given by

Gy 2 [T |
(A Imax 3 4 6B (20)

at
k=4 /-2 . 21
B 2y
Similarly the induced drag coefficient being
Di 2 k2
— oV i
2
we have

Cp. TR
——i = 2BkK? 1 - ——5 . 22
A k n*A4°? (22)

3.6 Estimation of variable constants £ and n

The value given by Egs. (19), (20) and (22) contain the variable constants £ and »
whose values have to be estimated. With respect to £, the value of £ may be between
£ =0.6 and 0.7 on the strength of many experimental data for the delta wing which have
already been published. The case of £ = 1.0 corresponds to such a case as the flow on
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the wing is potential flow alone.

With respect to n, it can be allowed that the potential flow is realized in the section
0Ly £&bx/2¢ as shown in Fig. 3 (b) and (c). Thus the value of n can be
determined by equivalent substitution of area according to Jones’ theory") as shown in
Fig. 6. In Jones’ theory, the distribution of the vorticity on the wing is given by

Fig. 6. Estimation of constant n.

Yo
y?2
£bx |,
()

(%, y) = (23)

1—

The comparison of this with the above equation and Eq. (3) for the equivalent sub-
stitution of area gives the following relation:

tbx/2¢ Yo £bx/2c y?
dy = Yo[l+n—n 1- ——]dy.
f—sbx/zc 2 7 f-sbxlzc ol / Ebx 2] 7
,, 1- —2 (=)
( £bx % 2c
2¢ ” (24)
Hence, the value of » is obtained as
12’— 1
n=-—_ = 2660. (25)
1™

4
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4. Results and conclusions

Introducing the value n = 2.660 into Egs. (19), (20) and (22), the final results of
the lift and induced drag coefficients, and the maximum lift coefficient for each case of
£=0.6, 0.7 and 1.0 become

-C)_\L_ = 2407k (1 — 0.102k?)
Cp,
—{i = 1.849 k+/ 1 — 0.0180k> L at £=06, (26)
Crmax = 2906\ )
C N
TL = 2.198 k (1 —0.0988 k?) :
Cp,
il = 1.498 k2+/ 1 — 0.0210k? > at £=07, 27N
CLmax = 2692)\ J
c )

Sk = 1571k (1 -0.1077 k?)

Cp,
-%’L = 0835042+ 1_00411k2 » at £=10. (28)

Crmax = 18422

Egs. (26), (27) and (28) are summerized with non-dimensional mid-span circulation
k in Fig. 7. V

In Fig. 7, the curve for = 1.0 represents the case without the leading-edge separa-
tion, that is, the flow on the wing is the potential flow alone!?). The difference (the
shaded area) between the curve for £ = 1.0 and that for £ =0.6 or 0.7 may be regarded
as the vortex lift which depends on the leading-edge separation. The contribution of this
vortex lift reaches about 40 ~ 50% of the potential lift at that maximum value.

The total lift has the maximum value as well as the case of the potential lift, and
that value may be limited about 2.5 ~ 3 times of the wing aspect ratio. In the case
that the leading-edge separation is considered, the leading-edge vortices give an effective
1ift as the additional lift. Therefore, it may be expected that if the leading-edge separa-
tion is made positively and these leading-edge vortices are maintained by some methods
(such as blowing or suction, etc.), the lift coefficient will attain to the theoretical value
which is predicted in this paper.

The results obtained here may be used as the available data for the investigation of
the lift augmentation of delta wing.
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Appendix: Estimations of lift and induced drag by Trefftz plane approach method

Consider an infinitely large cylinder which includes the wing inside as the control

surface as shown in Fig. 8 (a).

The force F on the wing can be given as
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Control
surface

Trefftz plane.

Fig. 8. Control surface.
a) Coordinate system and forces on wing.
b) Resultant velocity at Trefftz plane.

F=P-¢G,

where P is the pressure integral value over the control surface and G is the effluent
momentum out of the control surface per unit time. Now, the cylinder radius being
infinitely long, the difference of momentum between incomings and outgoings through
the surrounding surface of the cylinder will be zero, and P,, z<component of P, will
be also zero. Finally, P and G will have only to be considered with respect to the
infinitely wide front and rear planes of the cylinder. The latter plane is so-called Trefftz
plane. Consequently, the following equation will be obtained with respect to the force

in the z-direction :
F, =P, — G, = MVcose€a, ,

where M is the momentum in the direction to (—z) on the Trefftz plane. While, since
F, = Lcose. + D;sinea ,

we obtain
Lcosen + D;sine. = MV cosed . (A1)

On the other hand, as shown in Fig. 8 (b) the resultant velocity v at an arbitrary
point on the Trefftz plane can be expressed by

V2 = V% + 2Vw,sin e + w2,
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where w is the induced velocity due to a straight free vortices row on the Trefftz plane
and w; is the z-component of it. Denoting the pressure at the front and rear (in other
words, the Trefftz’s) plane of the cylinder by P, and P, respectively, the x-component
of P becomes

Py = [ (P~ Py)dydz
[f5p(V? - v?)dyaz
Vsinea ffp(~w,)dydz — [f %szdydz
MVsine, — E.

As obviously G, = 0, the following equation will secondly be obtained with respect to

the force in the x-direction:
F, =P, — G, = MVsine. — E.
On the other hand, we have
F, = Lsine. — D;cose. .
Therefore, we obtain
Lsine. — D;cose.. = MVsine,, — E . (A2)

From Egs. (A.1) and (A.2), accordingly, the lift L and the induced drag D; are given
by
L =MV — Esine.. ,

and
’
D; = Ecose.

which correspond to Eqs. (1) and (2). Moreover the latter equation can also be obtained
by the energy law only.



