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Modal Analysis of an Anisotropic Multilayer
A - Slab Waveguide

Kiyoshi KisHIOKA*, Junji Iwa0** and Katsu ROKUSHIMA*

(Received June 4, 1977)

This paper describes a method for analyzing the wave modes of a multilayer
slab waveguide consisting of anisotropic dielectrics having arbitrary permittivity
and permeability tensors. The propagation constants, the transmission matrix
and the normal modes of the waves in the transverse direction are obtained as an
eigenvalue problem of the coupling matrix derived from Maxwell’s equations.
The characteristic field equation is expressed in terms of matrix formulation which
can be readily calculated with a computer. Furthermore, an exact expression for
the coupling characteristics between TE and TM components of guided modes are
given. Some numerical examples are also presented.

1. Introduction

Optical waveguides consisting of anisotropic materials have recently been of
considerable interest in integrated optics because of the important role they play in
applications such as mode eonvertors, modulators, isolators and circulators. The
operation of devices containing anisotropic dielectrics depends~® on the properties
of the electromagnetic waves guided by the structure. These waves appear as
characteristic solution of the boundary value problem of anisotropic multilayer slab
waveguide.® Then the problem of the wave modes in these guides have also been
investigated for several specific structures as the basic concept for the applications.

The anisotropy of the materials constructing such waveguides are characterized
by the permittivity and permeability tensors. When the values of the nondiagonal
elements of these tensors are small and consequently the coupling between TE and
TM components of the guided waves is weak, the wave-guiding properties have
approximately been analyzed by using the variational method or the ray optics and
the covenient expression have been presented.® As the values of the nondiagonal
elements become large the above approximation leads to erroneous results. In
such a case of strong coupling, rigorous treatments based on the electromagnetic
wave theory is necessary. However, the solutions of this problem have so far been
limited in special cases with permittivity tensor having some zero elements.®

The Authors have rigorously analyzed the wave modes of multilayer slab
waveguide consisting of uniaxial anisotropic dielecrics by using a transverse equivalent
circuit representation.” In this paper, we extend the method to more general
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waveguides with anisotropic materials having arbitrary permittivity and perme-
ability tensors.® Coupled equations representing the propagation of the fields in
the transverse direction are derived and the propagation constants, the normal
modes and the transmission matrix in this direction are obtained as an eigenvalue
problem of the coupling matrix. Using them, the characteristic equation is expressed
in terms of matrix formulation. Wave mode characteristics of the guide are then
obtained by simple iterative calculation of matrices which are suited for computer
analysis.

Furthermore, the coupling characteristics between TE and TM components
of the guided waves are given exactly from the mode field distributions and the
results are conveniently expressed by a quadratic form of guided mode amplitudes.
Some numerical examples are also shown to discuss the reciprocity and nonre-
ciprocity of the mode and coupling characteristics.

2. Matrix Representation of Propagation of Electromagnetic
Waves in Anisotropic Material

Two-dimensional multilayer slab waveguide consisting of anisotropic dielectrics
is shown in Fig. 1. The propagation direction of the electromagnetic fields and the
normal direction to the interface are in the z and the x axes, respectively. In this
coordinate, the permittivity tensor £ and the permeability tensor uof of the i-th
layer are expressed as follows:

K11 k21 Kis s Mz Htas
E=| Ko K22 Kz |, £=| fa1 M2z Y23 |, (Y]
K31 Kgz Kas H31 M3z MUss

where the subscript 7 is omitted for simplicity. In the each layer, the fields are

Yy
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Fig. 1. Cross-sectional geometry of the multilayer slab waveguide
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governed by Maxwell’s equations:

VX H=¢,k0E[ot
| @

P X E=—uofio Hfot.

Expressing the tangential and normal components of the fields to the interface as
follows:

a=[E,H.E.H,), b=[E.H.]' 3)

and assuming the wave mode of an f{x) exp[—j(#.z—wt)] dependence for the fields,
we can derive the following simultaneous differential equations from Eq. (2):

daj/ox=Ca, C))
b=Da, Q)
where
Bzp31 ) wﬂo(ﬂ13ﬂ31;ﬂ11ﬂss) 0 w/lo(ﬂlzﬂm —.Uuﬂsz)
2581 Hu Hag
ICuBz‘I-kgﬂu(ﬁthCm—Eulczz) B:zt1s weo(lclslﬂm—liulfzs) 3:(1611,&12—1621/111)
. WMokt Hn L35 LFIVTIN
C= ()
ﬂz(ﬁlzﬂu*—ﬁnﬂm) w/!o(/!u/lzs—ﬂm/lzl) Bzk13 kglcn(/luﬂzz—ﬂmﬂzl)‘ﬂuﬁg
Euln 2351 K11 e 11 /11
wé‘o(/culisz —16121631) 0 0)60(/5111533 —Nlaﬁsl) B:k31
F11 L3} Mt s
B —K12fk1 0 —E13/E11 Bz]0eok 1y
D= @)
-—ﬁz/a)ﬂoﬂu —ﬂxs//lu 0 —“/112/1111

and C is a coupling matrix whose 2x 2 sub-matrices on the nondiagonal contribute
to the coupling between TE and TM components.
The propagation constants Bs; in the x direction are obtained from the eigenvalue

equation of C:
4
Bt s (—1)'4:8;7*=0, ®

where 4; is the sum of the i-dimensional principal minors of €. For loss free
materials, both # and # are Hermitian, and 4, are all the real values. Therefore,
if Eq. (8) has complex roots, their complex conjugate values are also the roots of ‘
this equation. In the following discussion, it is assumed that 8., are non-degenerate.
By right-eigenvectors e; and left-eigenvectors d; corresponding to 8. (i=1~4),
the diagonalizer of € and its inverse matrix respectively are expressed in the useful
form: ' ‘
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T=[e1/\/s_u ez/\ls_zz ea/\/gs 84/\/6‘74] » (9)
and
T-1=[d*[\s1 de*[Vssz ds*/VSs di* s, ’ (10)

where S;;=d; ‘e, and *, t and+denote the complex conjugate, the transpose and
the complex-conjugate transpose, respectively.
The solution of Eq. (4) is

a=exp [jC(x—xo) axo : ayn

where a., represents the fields at a arbitrary point x,. In this equation, exp[jC
(x—x,)] represents the transmission matrix of a in the x direction. Expanding it
in the form of power series and using the following relation:

T-1CT=diag[Bx1 Bxz Bxs Bxd), (12)
we can transform the transmission matrix into
A=T diag[exp(jBsl) exp(jB!) exp(jBssl) exp(jBxD)IT -, (13)

where /=x-Xo.

~ The tangential components ¢ can be decomposed into the normal modes e,
(i=1~4), which propagate independently in the x direction with the propagation
constants 8, and the amplitude vector g of normal modes is introduced as follows:

4 .
a=>) g;e:/\/S.-i=Tg, . (14)
i=1

where g, is the i-th component of g and it can be defined by multiplying 7-* by Eq.
(14). Thatis

g=d; a)Nsu (i=1~4). 15)
The substitution of Eqgs. (12) and (13) into Eq. (11) yields the following relation for g:
g=diag[exp(jBx1) exp(jBx2l) exp(jBxsl) €xp(jBxel)] gxo. (16)

This equation characterizes the propagation of g. As g is given at xo, the field
distributions at the arbitrary point in the layer can be obtained by Egs. (14), (13)
and (5).

Generally, both 3., and e, can be obtained by solving numerically the eigenvalue
problem of . However, in the following special cases, 8 are analytically given
as the solution of Eq. (8).

(i) For the longitudinal type

iéz[{k?i(kll’fss—'611’522+16121521)—33(1311+sz)}
:I:'\/ {kg(lﬁnlcss——IC111C22+IE121621) —ﬁg(ﬁuv-l- /522)} 2 —47hiulfsa {(kil——Bﬁ) (kég—BZ) —k?zkgl} ]/21511
17
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(ii) - For the polar type
2 =[ {k2(Faz+ Ks3)— B2(K11 -+ Kas)}
VT ot Fos)— B(r - Fon)} o — Aas(K— B2) {(Kiy— B)oss— Kafiastisa} 1/ 2611 (18)

(111) For the equatorlal type
In this case, Eq. (6) becomes the followmg form

e=|¢ ° ' | 19
_{O C] | | 19)

Consequently, TE and TM 'compone‘nts are separable van\d B corresponding to
C.and Cn are also given separately as -

3= tVki,— 8, (TE) ' - - Q0

and

¢43=[ﬁz(lixs-l—liu):I:\/B”(K15+I€s1)2—4(k’ "‘Bz)(1611"333""5131631)]‘/2611 (T™). (21
In 1sotroplc medla B are obtained by putting &, ,—6,,16 in Eqs (20) and (21)

Ai— VKE—Ft, ; , 22)

where k,=kjr:; and p,;=0;; .

3. Derivation of the Characteristic Equation

The tangential components between the two interfaces at x=x,-; and x; of the
i-th layer are related to each other by the transmission matrix A,, which is given by
putting /=¢, in Eq. (13), and must be continuous across the interfaces. Therefore,
ax1 at x=x; and axy_, at x=xv-, are related by

N1, .
axN_1=([_72A1) ax=Fa: . : 23)

The substitution of Eq. (14) into Eq. (23) leads to the following similar relation for g:
ng_1=T1;1FT1gxl s (24)
where T, is T of the i-th layer; In the surrounding two layers, fields should be
vanishing at x==4-oo for guided modes. Therefore, the two normal modes, which
have two propagation constants 8,% with the condition Im (8x) <0 in the first layer

and have 8, with the condition Im (8:)>-0 in the last layer, are permltted to exist.

Considering the above condition, we put
giﬂ_o (l ¢k: l)s gixN—l'_O (l *m, n)' (25)

By using the suitable matrix 1, which is formed by exchanging the elements of
T} FT:, Eq. (24) can be transformed as follows:

[0 0 gnglstyy=Wigig: 0 0L, . | o @26)
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These are four homogeneous simultaneous linear equations for g, g1, g~ and g,.
Therefore, characteristic equation for guided modes is given by

det ([W“ W”]):o, @7

Wa1 Wae

where w;, represents the element in the i-th row, the j-th column of . From Eq.
(26), the ratio of g; to gx of the guided mode at x==x, is given by

(g:/gk)x1= —W11/W12= —-Wm/sz . (28)

As the ratio of the normal mode amplitudes is decided, the relative values of the
field components can be calculated by Eq. (14) and 4.

The characteristics of the guided modes propagating in the negative z direction
can be obtained similarly by analyzing for 8z<0.

4. Numerical Examples of the Modal Analysis

(1) We consider the waveguide with the permittivity tensor having all non-zero
elements. The permittivity tensor of each layer is given as ¢}: [e], &2: [£,: (k11=4.0,
k2e=3.0, £33=2.0, k2s=rK3¥=j), ¢p=0=rn/4], where £, is the permittivity tensor in

{b)
Fig. 2. Normalized propagation con- Fig. 3. Field distributions at the point a in Fig. 2.
stants S8./k,—tk, characteristics (a) Absolute values of the fields
of the slab waveguide with the (b) Difference of phase between Hy and the
permittivity tensor having all other components

non-zero elements
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Fig. 4. Instantaneous values of the fields
(a) Fields at z=0
(b) Fields at z=1,/4

the coordinate ¢—»—¢, ¢ is the angle made by y and 7 axes and 6 is the angle made
by x and £ axes. The thickness of the waveguide is: 2¢ and the permeability is #,
in each layer. The propagation constants 3. obtained by solving numerically Eq.
(27) are shown in Fig. 2. The absolute values of the field components of the guided
mode and the difference of phase between H, and the other field components are
shown in Figs. 3-(a) and (b).

Since the field components have complex values in the transverse plane, patterns
of the field distributions vary with time, which are shown in Fig. 4. ‘

(2) For waveguides with £ varying continuously in the x direction, the char-
acteristics can be approximately obtained by dividing the waveguide into multilayer
slabs. For this example, we consider the wavéguide whose permittivity tensors are;
&d: [eo], &e: [IC”(X)={§E} exp (—0.14x), ki2=rxu*=j] and whose thickness is 2z
When the slab is devided into eight layers, the propagation constants 8. of the
guided modes and the field distributions of a specific mode are shown in Figs. 5 and 6,
respectively. For comparison, the characteristics of the waveguide having the
constant permittivity tensor, whose elements are the values at x=0, are also shown
by dotted curves in Fig. 5.

The wave-guiding properties of the isolated waveguides dealt with in (1) and
(2). are reciprocal with the direction of the wave propagation. However, in some
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2.0
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1.2 Fig. 6. Field distributions at the point a in Fig. 5

Fig. 5. Normalized propagation con-
stants B:/ko—tk, characteris-
tics of the slab waveguide in
which the permittivity tensor
varies exponentially in the x
direction. (feal curves) '

kinds of waveguides consisting of both the gyrotropic and the anisotropic media, for
example, GL-AP, GE-AL, or GE-AP type, these properties are shown to be non-
reciprocal, therefore, these guides will have niany applications to nonreciprocal
optical-devices.

5. TE-TM Mode Conversion

In this section we consider the coupling between TE and TM components of
the fields composed of several guided modes.

By a linear combination of the guided modes, we express the total fields as
follows:

E(x, z)=;h.-Ei(x) exp(—jhuz)
H(x, Z)=Zi}h.-H:(x) exp(—jB:z) 3

(29)

where Ei(x) exp (—jB::z) and H(x) exp (—jfB::z) represent the guided mode fields and



Modal Analysis of an Anisotropic Multilayer Slab Waveguide 21

h, is the mode amplitude. The total available power propagating in the z direction is
Pi=P:(2)+ Pim(z)=Re{[>., (EX H¥*) i dx}, ; 30)
where P:.(z)=—Re{[*,, H:*E,dx}, Pin(z)=Re{[*.,H,*E.dx} and i represents the
unit vector along the z axis. By using the orthogonal relation*:
I (EsX HX*+E* X H)) i: dx=0(i#j), 3D
Eq. (30) becomes ; : , ‘ ,'
P,——-Sz_}[h,*h,Re{f"_"m(E,- X Hi*)i: dx]. « 32)

We normalize the available power of the each mode into unit and furthermore,
normalize the total available power as follows: -

Pi=h*-h=1, ' 33)
where h is the normalized mode amplitude vector with element 4,. The available
power of TE components can be expressed in terms of the quadratic form of h
that is

P.(2)= {h+ﬁ(ﬁ++ﬁ)0*h} 2

=h*Ok, (34)

where P is the matrix whose elements are defined by p,,=— JooHe* Ey,dx and
U=diag[exp(jBi2)]. :

When 4 is given at z=0, the variation of P..(z), in the other words the power
transfer from TM components, can be expressed as follows:

P(2)=h*(UQU0*—O)h
=2 57 g~ 2c05(8,—g,—gu) sint( B o)
1,1
+sin(Bzi—B:,)z sin(¢,— ¢, — .+ |hih )] (36)

where h,=|hi| exp(j¢:;) and ¢:,=|q.,| exp(j¢:;) which is the element in the i-th row,
the j-th column of Q. And note that Q is Hermitian.

Next we minimize P.. in order to obtain the maximum power transfer. When
h is the normalized eigenvector corresponding to the minimum eigenvalue of 0,
P.. has the minimum value under the condition of Eq. (33). After minimizing
P.., we can define the optimum coupling coefficient C, as the maximum value of
P and the coupling length L as the distance from z=0, at which P; becomes the
maximum value. If p;» and ps, are real values in the two-mode coupling, Eq. (36)
can be transformed into the simple form:

Po(2)=4qus]- |ue sin2<3 oz 2). 37

* This orthogonal relation can be also derived in the waveguide with Hermitian £ and 2 as well as
with real £.%
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C, and L in this case are given as

Co=4 [q12| * |h1h2] (38)
and

L= ﬂ/'ﬁzl""ﬁz2| . (37)

We can similarly define the optimum coupling coefficient and the coupling
length by P:., but the minimum value of P:» when P:. is minimized is generally
larger than that when P:, is minimized. The coupling characteristics obtained in
the two cases, are therefore not identical.

6. Numerical Examples of the Mode Conversion

(1) The variation of C, versus tk, in the two-mode coupling is shown in Fig, 7
with the parameter x.. The waveguide is surrounded by free space and the permit-
tivity tensor is given in Fig. 7. For all &z, the power of TE components transfers
perfectly into that of TM at the point tk,==1.393. This point is the degenerate
point of the TE and TM dominant modes when #;2=0.0.

(2) As an example of the multimode coupling, we consider again the waveguide
dealt with in the section 4-(1). The field distributions, composed of all the four
modes at tko,=2.0 in the condition of minimizing P:. at z=0, are shown Fig. 8-(a)
and power transfer in the z direction is shown Fig. 8-(b).

(3) As a nonreciprocal mode conversion, we consider the two-layer waveguide
consisting of the anisotropic materials having GL type of £ and AP type of £. Co
and L of the forward and backward wave modes are shown in Fig. 9. We assume
that the permittivity tensors are; el: [eo], 20 [£11==4.0, £22=3.0, £33=2.0, Kre=ren*=

1.0

0.8

0.6
S
0.4
0.2 4.0 X12 0.0
’ Ry=|x,, 3.0 0.0
0.00.0 2.0
0.0 1 1 1 1 1 1 ) 1
1.36 1.38 1.40 1.42 1.44
tko

Fig. 7. Optimum coupling coefficient-tk, characteristics of the waveguide with the AL
type of permittivity tensor
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1.0
0.5r
|
0.0 ! L 1 1
0 10t 20t : 30t 40t 50t
(b)

Fig. 8. Characteristics of multimode coupling

(a) Field distributions composed in the condition of minimizing P:. at z=0
(b) Power transfer in the z direction

1.0

a C”;
0.8 - ®

5 G2

0.6 Az % {1200t

. A %

O Ve 41000t
]
0.4} ; 4 800t
\
7 \
/ L ] 0
/ \ at-h)‘? 600t
’ N ,'Q'

0.2 ’ N . 4 400t
-—’/ \‘\\ Yo 200t
""" T backward N~ ~" -~ ssd

0.0 t w 1 1 ] 1 0

1.836 - 1.38 1.40 1.42 1.44

tko

Fig. 9. Optimum coefficient and coupling length-tk, characteristics
in the nonreciprocal waveguide
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0.03/], &: [ku=4.0, £22=3.0, £33=2.0, £23=r3:=0.03] and the thickness of the
slabs are; t,=t, t;=t.

7. Conclusion

We have analyzed the wave modes of the waveguide consisting of the materials
having arbitrary permittivity and permeability tensors in terms of matrix formulation.
Since the characteristic field equation have been derived by the eigenvalue problem
and the iterative matrix calculation, this equation have been solved conveniently
by a computer. In the case of involving lossy media, though 8. become complex
values, we can similarly analyze by devising the solution of the characteristic equation.

The optimum coupling coefficient and the coupling length in the TE and TM
mode conversion of the multimode waveguide have been given exactly from the
mode field distributions, and the nonreciprocity of them in the waveguide with both
the gyrotropic and the anisotropic type of media have been shown in the numerical
example.

We expect that this method will be similarly applied to the analysis of the
radiation modes in such an anisotropic slab waveguide.
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