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Modal Analysis of an Anisotropic Multilayer

                 Slab Waveguide

Kjyoshi ksHioKA", Juaji IwAo"" and Katsu RoKusHiMA*

(Received June 4, 1977)

   This paper describes a method for analyzing the wave modes of a mu!tilayer

slab waveguide consisting of anisotropic dielectrics having arbitrary permittivity

and permeability tensors. The propagation constants, the transmission matrix

and the normal modes of the waves in the transverse direction are obtqined as an

eigenvalue problem of the coupling matrix dedved from Maxwell's equations.

The characteristic field equation is ,expressed in terms of matrix formulation which

can be readily calculated with a computer. Furthermore, an exact expression for

the coupling characteristics between TE and TM components of guided modes are

given. Some numerical examples are also presented.

                            l. Introduction

   Optical waveguides consisting of anisotropic materials have recently been of

considerable interest in integrated optics because of the important role they play in

applications such as mode convertors, modulators, isolators and circulators. The

operation of devices containing anisotropic dielectrics depends"N3) on the propenies

of the electromagnetic waves guided by the structure. These waves appear as

characteristic solution of the boundary value problem of anisotropic multilayer slab

waveguide.`' Then the problem of the wave modes in these guides have also been

investigated for several specific structures as the basic concept for the applications.

   The anisotropy of the materials constructing such waveguides are characterized

by the permittivity and permeability tensors. When the values of the nondiagonal

elements of these tensors are small and consequently the coupling between TE and

TM components of the guided waves is weak, the wave-guiding properties have

approximately been analyzed by using the variational method or the ray optics and

the covenient expression have been presented.5) As the values of the nondiagonal

elements become large the above approximation leads to erroneous results. In

such a case of strong coupling, rigorous treatments based on the electromagnetic

wave theory is necessary. However, the solutions of this problem have so far been

limited in special cases with permittivity tensor having some zero elements.6'

    The Authors have rigorously analyzed the wave modes of multilayer slab

waveguide consisting of uniaxial anisotropic dielecrics by using a transverse equivalent

circuit representation.7) In this paper, we extend the method to more general
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waveguides with anisotropic materials having arbitrary permittivity and perme-

ability tensors.8' Coupled equations representing the propagation of the fields in

the transverse direction are derived and the propagation constants, the normal

modes and the transmission matrix in this direction are obtained as an eigenvalue

problem of the coupling matrix. Using them, the characteristic equation is expressed

in terms of matrix formulation. Wave mode characteristics of the guide are then

obtained by simple iterative calculation of matrices which are suited for computer

analysis.

    Furthermore, the coupling characteristics between TE and TM components

of the guided waves are given exactly from the mode field distributions and the

results are conveniently expressed by a quadratic fbrm of guided mode amplitudes.

Some numerical examples are also shown to discuss the reciprocity and nonre-

ciprocity of the mode and coupling characteristics.

         2. Matrix Representation of Propagation of Electromagnetic

                      Waves in Anisotropic Material

    Two-dimensional multilayer slab waveguide consisting of anisotropic dielectrics

is shown in Fig. 1. The propagation direction of the electromagnetic fields and the

normal direction to the interface are in the z and the x axes, respectively. In this

coordinate, the perrnittivity tensor eok and the permeability tensor gofi of the i-th

layer are expressed as fbllows:

                  '               rc11 rc21 rc13 I' Ltll ia12 JeelB

          fi= ::i, :ii .rc::' P=I:il ::2, ::l･ (i)

where the subscript iis omitted for simplicity. In the each layer, the fields are
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Fig. 1. Cross-sectional geometry of the multilayer slab waveguide
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govemed by Maxwell's equations:

          ;:.H.r:-S･:"i:.gO.',,,.l (2)

Expressing the tangential and normal components of the fields to the interface as

fbllows:

          a=:[EyH]iEzHy]t, b=[ExH]t]t (3)
and assuming the wave mode of anf(x) exp[-1'(B2z-tut)] dependence for the fields,

we can derive the following simultaneous differential equations from Eq. (2):

          oa/ox==6a, (4)
where

                                              tuxto(/t12,et31-pellpts2)       Bz,ee31 ' tuZte(iCt13iU31'-iCtltiCe33)
                                      o

        Ltn , ')Eell Ltlt
       rc11B;+kg,all(rc12rc21-rc11rc22) BzPt13 toeo(rci3rc21-rc11rc23) Bz(rc11iee12-rc21/tll)

       ' tuIUOJetllrc11 /tll rc11 rc111Ctll
       Bz(rc12iall-rc11Pt21) toLto(vatlLt23-pt13Lt21) Bzrc13 kgrc11(Lelliet22-Lt12Pt21)-/etllB;

           rc11#11 pt11 rc11 toeOrc11pt11
                                    tueo(rcnrc33-rc13rcsl) Bzrc31       toeO(rc11rc32-rc12rc31)
                            o

             rc11 rc11 /etl v
    '
  D,..(-rci2/rcii O ･ -rci3/rcii BZ/toeOrcii) (7)

      (-Bzltu,eteietii -/eti31ptii O -icti2!ptiiJ ' - -

and 6 is a coupling matrix whose 2×2 sub-matrices on the nondiagonal contribute

to the coupling between TE and TM components.

   The propagation constants B.i in the x direction are obtained from the eigenvalue

equation of 6:

         BS+S(-1)iztt,B2-i-O, (8)
              i=1
where Ai is the sum of the i-dimensional principal minors of 6. For loss free

materials, both fi and P are Hermitian, and Ai are all the real values. Therefbre,

if Eq. (8) has complex roots, their complex corljugate values are also the roots of

this equation. In the following discussion, it is assumed that B.i are non-degenerate.

By right-eigenvectors ei and left-eigenvectors d,' corresponding to B.i (i--ltv4),

the diagonalizer of e and its inverse matrix respectively are expressed in the usefu1



16 ''･Kiyoshi KisHioKA, Juriji･IwAo and Katsu'RoKusHrMA

          di=[ei/Vs-n e2/Vs-22 eslVs-33 e41Vs-4`] (9)'

          T-i=:[d,*IVs-. d,*/Vs-,, d,*/Vs-,, d,*/AXsil:,lt, (10)

where Sii ==d?.ei and ", t and+denote the co'mplex coajugate, the transpose and

the complex-coajugate transpose, respectively.

    The solution of Eq. (4) is

          a== exp VC" (x-xo)] axo, (1 1)
where a.o represents the fields at a arbitrary point xo. In this equation, expVc'

(x-xo)] represents the transmission matrix of a in the x direction; Expanding it

in the fbrrn of power series and using the fo11owing relation:

          i'-i6f"==diag[B.i B.2 B.3 B.4], (12)
we can transform the transmission matrix into

          A==T diag[exp(jB.il) exp(jB.21) exp(iB.31) exp(jB.41)]T'i, (13)

where 'l=x-xo.

    The tangential components a can be decomposed into the normal modes ei

(i=1---4), which propagate independently in the x direction with the propagation

constants B.i, and the amplitude vector g of normal modes is introduced as fbllows:

          a=S] giei/Vs-ii= ii lg, (1 4)
             t--1

where gi is the i-th component of g and it can be defined by multiplying T-i by Eq.

(14). Thatis

          gt=-(dt"a)IVs-ii (i-1･-4). (15)
The substitution of Eqs. (12) and (13) into Eq. (11) yields the fo11owing relation fbrg:

          g=diag[exp(jB.il) exp(jB.21) exp(jB.sl) eXp(J'B.41)] g.o. (16)

This equation characterizes the propagation of g. As g is given at xo, the field

distributions at the arbitrary point in the layer can be obtained by Eqs. (l4), (13)

    Generally, both B.i and ei can be obtained by solving numerically the eigenvalue

problem of 6. However, in the following special cases, B.i are analytically given

as the solution of Eq. (8).

(i) For the longitudinal type

B2i == [ {k2o(rcnrc33- rciirc22+ rci2rc2i) - B;(rcii+ rc22)}

±V{kg(rciirc3s-rciirc22+rci2rc2i)- B:(rcii+rc22)}2-4rciircss{(kli-B:)(k;,-B;)-kkk:,}]/2rcii

     (l7)
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(ii) For the polar type

  Bk,==[{kl,(rc22+rc33>-B:(rcii+rc33)}

17

     ±V{kl,(rc22+rc,,)-B:(rc,i+rc3,)}2-4rc,,(k:,-B:){(k:,-B:)rc,,-kgrc,,rc,,}]12rc,, (18)

(iii) For the equatorial type .
    In this case, Eq. (6) becomes the fbllowing form:

          e-[,C"e 62). .･ .',' ････ (ig)

                                                               '                                                      '9onsequ.ently, TE and TM componepts afe sepafable'apa.'k.) corresponding to

Ce and C. are also given separately as . .

      B.}=±VZil,l;=?ili, ,(TE) (2o)
and

      B.2 =[Bz(rcis+rc3i)± B;(rci3+rc3i)2-4(kk-B:)(rciirc33-rci3rc3i)]/2rcii (TM)･ (21)

    '                       tt    In isotropic media, B.t are obtained by putting rcii==6i,rc in Eqs. (20) and (21):

          B.lg===± kgrc-B:, (22)
where k?j ==kgrcij and #ij--6ib

                3. Deriyation of the Characteristic Equatien

   The tangential components between the two interfaces at x==xi-i and xi of the

i-th layer are related to each other by the transmission matrix A"i, which is given by

putting l= ti in Eq. (13), and must be continuous across the interfaces. Therefbre,

axi at Jic =xi and a.N-i at x==xN-i are related by

    ･ Ai-i '. L          axN-i= :( 17 Ai) axi iii Fa.i. (23)
                i=2
The substitution of Eq. (14) into Eq. (23) leads to the fbllowing similar relation fbr g:

          gxN-,== T fi'i7 Tig.i, ･ (24)
where Ti is r of the' i-th layer. In the surrounding two layers, fields should be

vanishing at x== ±oo fbr guided modes. Therefore, the two normal modes, which
have two prQpagation constants B.te, with the condition Im (B.) <O in the first layer

and have B.ve with the condition Im (B.)>O in the last layer, are perrnitted to exist.

Considering the above condition, we put

          g,xi==O(i#k, l), gi..-,--O (itm,n). (25)
By using the suitable matrix M, which is'formed by exchanging' the elements of

i'NifiTi, Eq. (24) can be transfbrmed as fbllows:

          [OOgmgn]xW-,==M[gkgiOO]S,. (26)
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These are fbur homogeneous simultaneous linear equations fbr gk, gt, g. and g..

Therefore, characteristic equation fbr guided modes is given by

          det ([:ll :li])=O, (27)
where wi/ represents the element in the i-th row, theJ:th column of M. From Eq.

(26), the ratio of gi to gk of the guided mode at x= xi is given by

          (giLgk)xi=-wnlwt2==-w2i/w22. (28)
As the ratio of the normal mode amplitudes is decided, the relative values of the

field components can be calculated by Eq. (14) and A".

    The characteristics of the guided modes propagating in the negative z direction

can be obtained similarly by analyzing fbr Bz<O.

   (1)

elements.

rc22==3.0,

       4. Numerical Examples of the Modal Analysis

We consider the waveguide with the permittivity tensor having all non-zero

 The permittivity tensor of each layer is given as eg: [eo], e2: [fip: (rcii==4.0,

rcs3==2･O, rc23==rc32"=i), q=e=rr/4], where 2p is the permittivity tensor in

"s,"

XN

n

1.8

1.6

1.4

1.2

LO

a

   0. 1. 2. 3. 4. 5.
             tko

Fig. 2. Nprmalized propagation con-

      stants Pz/k6-tko characteristics

      of the slab waveguide with the

      permittivity tensor having all

      non-zero elements
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Field distributions at the point a in Fig. 2.

(a) Absolute values of the fields

(b) Difference,ofphase between Hv and the

   other components
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(a) Fieldsatz==O
(b) Fields at z==2e/4

the coordinate 6-op-C, q is the angle made by y and v axes and e is the angle made

by x and e axes. The thickness of the waveguide is 2t and the permeability is pte

in each layer. The propagation constants Bz obtained by solving numerically Eq.

(27) are shown in Fig. 2. The absolute values of the field components of the guided

mode and the diffbrence of phase between th and the other field components are

shown in Figs. 3-(a) and (b).

    Since the field components have complex values in the transverse plane, patterns

of the field distributions vary with time, which are shown in Fig. 4.

   (2) For waveguides with k varying continuously in the x direction, the char-

acteristics can be approximately obtained by dividing the waveguide into multilayer

slabs. For this example, we consider the waveguide whose permittivity tensors are;

e5: [eo], e2: [rcii(x)={il} exp (-O.14x), rci2==rc2i*=j] and whose thickness is 2t.

When the slab is devided into eight layers, the propagation constants B, of the

guided modes and the field distributions of a specific mode are shown in Figs. 5 and 6,

respectively. For comparison, the characteristics of the waveguide having the

constant permiuivity tensor, whose elements are the values at x==O, are also shown

by dotted curves in Fig. 5.

   The wave-guiding properties of the isolated waveguides dealt with in (1) and

(2). are reciprocal with the direction of the wave propagation. However, in some
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Field distributions at the point a in Fig. 5

   O. 1. '2. 3. 4. 5.
              tko

Fig. 5. Normalized propagation con-

      stqnts Pe/koTtko characteris-

      tics of the slab waveguide in

      which the permittivity tensor

      varies exponentially in the x.

      direction. (real curves) .

kinds of waveguides consisting of both the gyrotropic and the anisotropic media, fbr

example, GL-AP, GE-AL, or GE-AP type, these properties are shown to be non-

reciprocal, therefore, these guides will have many applications to nonreciprocal

optical-devices.

     '
''  ' 5. TE-TMModeConversion
. In this section we consider the coupling between TE and TM components of

the fields composed of several guided modes. , -
･' By a linear combination of the guided modes, we express the total fields as

' '' Z(g.･,Z;,Z-/i.//lh[X,l,ei9,`1.,',3.]'f,),ll ' .' (2g)

where Ei(x) exp (--:1'B.iz) and Hi(x) exp (-=1'B2iz) represent the guided mode fields and
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hi is the mode amplitude. The total available power propagating in the z direction is

          Pt :Pte(z)+Ptm(z)==Re{fee.(EXH")'iz dx}, (30)

where Pt,(z)=-Re{fee. ,Hrx"E,dx}, Pt.(z)=Re{Jee.H,'E.cl)c} and i, represents the

unit vector along the z axis. By using the orthogonal relation*:

          fee.(E,xHrj*+E,*xElr,)･i,dx=:O(i#j), ' (31)

Eq. (30) becomes

          Pt == >E] [hi"hiRe {fee.(EixHi")･i. dx]. ･ (32)
              t

We normalize the available power of the each mode into unit and furthermore,

normalize the total available p'ower as folloWs: ･

          P,-h+･h=1, (33)
where h is the normalized mode amplitude vector with element hi. The available

                                                  'power of TE components can be expressed in terms of the quadratic fbrm of h,

                                           '

          Pt.(z) ={h'0(P"+P)0"h}12

              i=h+eh, (34)
where P is the matrix whose elements are defined by pij =-fee..H)ti"Ejjdx and

0== diag [exp(i Bziz)]. '
   When h is given at z==O, the variation of Pt.(z), in the other words the power

tr'ansfer from' TM components, can be expressed as follows:･

                   AA I- A          P.(z)==h+(UeU*-e)h
                                                   '
              =2,,jlli,l<j)lqjjl ' [-2cos(¢i-¢j-¢i,･) sin2( Bzi-2 3zj z)

                            + sin(B,i-l9.Dz ･ sin(dii- dij- ipij)] ･ lhihA , (36)

where hi==lhil exp(]'¢i) and gij=lqiJl exp(jQiJ) which is the element in the i-th row,

theith column of e. And note that e is Hermitian.

    Next we minimize Pt, in order to obtain the maximum power transfer. When

h is the normalized eigenvector corresponding to the minimum eigenvalue of e,

Pt, has the minimum value under the condition of Eq. (33). After minimizing

Pt,, we can define the optimum coupling coeMcient Co as the maximum value of

Pc and the coupling length L as the distance from z ==O, at which Pc becomes the

maximum value. Ifpi2 and p2i are real values in the two-mode coupling, Eq. (36)

can be transfbrmed into the simple fbrm:

          Pc(z)=41iji2i'lhih21 sin2(BZ', iiBi2 z) . (37)

" This orthogonal relation can be also derived .in the waveguide with Hermit-ian 2 and 'P, as well as

 with real D.g)
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Ce andLin this case are given as -'
          Co =41qi21'lhih21 (38)
and

         L-nllBzi-Bz21. (37)
   We can similarly define the optimum coupling coeMcient and the coupling

length by Pt., but the minimum value of Pt. when Pt, is minimized is generally

larger than that when Pt. is minimized. The coupling characteristics obtained in

the two cases, are therefbre not identical.

              6. Numerical Examples of the Mode Conyersion

   (1) The variation of Ce versus tko in the two-mode coupling is shown in Fig. 7

with the parameter rci2. The waveguide is surrounded by free space and the permit-

tivity tensor is given in Fig. 7. For all rci2, the power of TE components transfers

perfectly into that of TM at the point tko tl.393. This point is the degenerate

point of the TE and TM dominant modes when rci2=O.O.

   (2) As an example ofthe multimode coupling, we consider again the waveguide

dealt with in the section ZF(1). The field distributions, composed of all the fbur

modes at tko==2.0 in the condition of minimizing Pt, at z=O, are shown Fig. 8-(a)

and power transfer in the z direction is shown Fig. 8-(b).

   (3) As a nonreciprocal mode conversion, we consider the two-layer waveguide

consisting of the anisotropic materials having GL type of fi and AP type of fi. Co

and L of the forward and backward wave modes are shown in Fig. 9. We assume

that the permittivity tensors are; el: [eo], S2: [rcn==4.0, rc22= 3.0, rc3s=2･O, rci2=rc2i* =

vo
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Optimum coupling coeMcient-tko characteristics of the waveguide with the AL

type of permittivity tensor
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o.olij], Es

slabs are

: [rcii=4.0, rc,, =3.0, rc,,=2.0,

; t2=t, tS=t.

rc23=rc32=O.03] and the thickness of the

                            7. Conclusion

    We have analyzed the wave modes of the waveguide consisting of the materials

having arbitrary permittivity and permeability tensors in terms of matrix formulation.

Since the characteristic field equation have been derived by the eigenvalue problem

and the iterative matrix calculation, this equation have been solved conveniently

by a computer. In the case of involving lossy media, though B, become complex

values, we can similarly analyze by devising the solution ofthe characteristic equation.

   The optimum coupling coeMcient and the coupling length in the TE and TM

mode conversion of the multimode waveguide have been given exactly from the

mode field distributions, and the nonreciprocity of them in the waveguide with both

the gyrotropic and the anisotropic type of media have been shown in the numerical

example.

   We expect that this method will be similarly applied to the analysis of the

radiation modes in such an anisotropic slab waveguide.
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