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1 Introduction

In a hedonic regression, the economist attempts to consistently estimate the relationship

between prices and product attributes in a differentiated product market. The regression

coefficients are commonly referred to as implicit (or hedonic) prices, which can be interpreted

as the effect on the market price of increasing a particular product attribute while holding

the other attributes fixed. Given utility-maximizing behavior, the consumer’s marginal

willingness to pay for a small change in a particular attribute can be inferred directly from

an estimate of its implicit price; moreover, these implicit prices can be used to recover

marginal willingness to pay functions for use in valuing larger changes in attributes (Rosen,

1974).

Hedonic regressions suffer from a number of well-known problems. Foremost among

them, the economist is unlikely to directly observe all product characteristics that are relevant

to consumers, and these omitted variables may lead to biased estimates of the implicit prices

of the observed attributes. For example, in a house-price hedonic regression, the economist

may observe the house’s square-footage, lot size, and even the average education level in the

neighborhood. However, many product attributes such as curb appeal, the quality of the

landscaping and the crime rate may be unobserved by the econometrician. If these omitted

attributes are correlated with the observed attributes, ordinary least squares estimates of

the implicit prices will be biased.

When correlated unobservables are time-invariant and panel data are available, the unob-

servables can be accounted for with fixed effects. When correlated unobservables vary over

time or when panel data are not available, previous research has relied instead on instru-

mental variables, regression discontinuity, or other forms of quasi-experimental variation to

avoid this bias. Chay and Greenstone (2005), Greenstone and Gallagher (2008), and Black

(1999) have proposed quasi-experimental approaches to this problem, exploiting either a dis-

continuity in the application of a regulation or a structural break due to a boundary. If the

regulation or boundary is exogenous and generates large movements in housing attributes,

these methods may be attractive for estimating implicit prices for at least two reasons. First,

they allow the econometrician to remove the bias from omitted variables that may confound

estimates of implicit prices. Second, the identifying assumptions are transparent and the

estimators are simple to implement (often using well-known statistical packages).
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Why would anyone choose not to adopt one of these straightforward approaches? We

argue that, in many important hedonic applications, this sort of identification cannot be

achieved. First, a source of quasi-randomness that generates exogenous variation in product

characteristics may not be available in a particular application, or may be available, but

only under very strong assumptions. Such is the case, for example, in Chay and Greenstone

(2005), which exploits quasi-random variation in EPA air quality attainment status to recover

the effect of air pollution on housing prices. To use this strategy, they must impose the

assumption that the United States is comprised of a single, unified housing market.

Second, even if a natural experiment is found, implicit prices may not be precisely esti-

mated because the instruments implied by that experiment are weak. Third, a regulatory

discontinuity or structural break caused by a boundary may only identify policy impacts

over a narrow range, rather than over the full range of interest to policy-makers. It would

therefore be useful to have an alternative set of assumptions with which to identify implicit

prices. At a minimum, this alternative approach would provide a way to check the robust-

ness of the results from a quasi-experiment; in other situations, it would provide a viable

estimation strategy when quasi-random variation in the product attribute of interest cannot

be assumed.

In this paper, we propose such a method. It is based on three simple identifying as-

sumptions. The first assumption is that home price in a local market at a point in time can

be written as a function of a home’s attributes. Importantly, we assume that this includes

attributes that are observed by home buyers but not by the economist (i.e., attributes that

are omitted from the regression specification). This assumption is maintained in theoretical

models underlying hedonic regressions including Rosen (1974), Epple (1987), Ekeland, Heck-

man and Nesheim (2004), Heckman, Matzkin and Nesheim (2003) and Bajari and Benkard

(2005).

In most applications, it seems reasonable to assume that buyers have superior information

about home attributes compared to the economist. For example, it is difficult, if not

impossible, for the economist to directly measure the “curb appeal” of a home. However,

anyone who has purchased a home knows this is an important consideration for many buyers.

Our first assumption implies that curb appeal and other attributes like it are priced by the

market even if the econometrician fails to measure them. As a consequence, the residual

from a hedonic regression contains information that the researcher can use to price home

attributes that she does not directly observe.
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Our second identifying assumption is a parameterization of the process that determines

the dynamic evolution of the value of the omitted attribute. This assumption turns out

to not be terribly restrictive. In particular, the parameterization can be made increasingly

flexible with more repeat-transactions observations of the same house.

Our third and final identifying assumption is that homebuyers are rational with respect

to their predictions about how the omitted housing attribute evolves over time. Put differ-

ently, homebuyers do not make systematic errors in predicting its evolution. The practical

implication of this assumption is that the stochastic innovation in the evolution of the omit-

ted housing attribute is uncorrelated with their current information set. Along with the

first two assumptions, this allows us to construct estimating equations that yield consistent

estimates of implicit prices, even in the presence of time-varying correlated unobservable

attributes.

The intuition behind our estimator is straightforward. Suppose that we observe a home

that is sold in 1998 and again in 2003. Our first assumption allows us to use the 1998

sales price to impute a market value for the omitted housing attributes in 1998. If the

market price was abnormally positive (negative) after controlling for the covariates in the

econometrician’s data set, we would infer that the home had a large positive (negative) value

for characteristics that were not observed by the economist. Our second assumption allows

us to say how the value of omitted housing attributes evolves over time in expectation. From

this process, we can recover the stochastic innovation in the value of the omitted attribute.

Our third assumption provides us with an orthogonality condition based on this stochastic

innovation that is similar to conditions used in well-known GMM estimators in financial

econometrics.

In an appendix, we show that our strategy allows for a flexible functional form by using a

control function approach and casting our problem in the framework of Ai and Chen (2003).

In contrast, approaches that exploit quasi-randomness may frequently require a parsimonious

functional form because instrumental variables do not have adequate variation to identify

models with many parameters.

We admit that our identifying assumptions are an approximation of the way housing mar-

kets function in reality. For example, our first assumption does not hold perfectly because

home prices are often determined by negotiation and therefore cannot be explained exactly

by the home’s characteristics. We argue, however, that there are not many opportunities
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for a free lunch in a housing market with many buyers and sellers. Finding “steals”, where

the asking price significantly understates the value of a home’s attributes, is the exception

rather than the rule. Only rarely can a buyer find twice the home for half the price.

Our third assumption is also an approximation of real world housing markets. It may

fail to hold if certain types of houses earn above-market returns, even after controlling for

observable and unobservable attributes (as measured through prior prices). In that case,

home buyers might be able to predict earning excess returns given information available

today. Unlike many other identifying assumptions used in this literature, however, this is

a possibility for which we can test – our rationality assumption is a necessary (although

by no means sufficient) condition for housing market efficiency as described by Case and

Shiller (1989). While their test for housing market efficiency is therefore an overly stringent

requirement for our homebuyer rationality assumption to hold, we can use it to determine

if our assumption is valid.

As an application of our approach, we consider the value individuals place on a marginal

improvement in air quality, as revealed by their home buying decisions. In particular, we

analyze three of the EPA’s “criteria pollutants” (i.e., pollutants used by the EPA in setting

emissions regulations) – particulate matter (PM10), sulfur dioxide (SO2), and ground-level

ozone (O3) – all of which are known to have adverse health consequences and impose aesthetic

costs. Importantly, we expect there to be many more salient determinants of individual

housing choice that our data do not describe. There is, therefore, good reason to be

concerned about omitted variables bias. If changes in pollution are correlated with changes

in these omitted variables, a fixed-effect approach still gives biased estimates of the implicit

prices.

Using data describing housing transactions in California’s Bay Area between 1990 and

2006, we show evidence in support of the hypothesis that the market is efficient, providing

support for our rationality assumption. Using our estimator, we recover implicit prices for

the three criteria air pollutants described above. In contrast to simple cross-sectional or

fixed-effect estimators, marginal willingnesses to pay for a reduction in all three pollutants

(considered individually or together) are all statistically significant, have the expected sign,

and are on the high-end of the range of estimates found elsewhere in the literature. Consid-

ered together, PM10, SO2, and O3 exhibit house price elasticities of -0.07, -0.16, and -0.60,

respectively. We contrast these results with those from a simple fixed-effects model and

find that controlling for time-varying unobservables appears to be extremely important for
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all three pollutants.

This paper proceeds as follows. Section 2 describes our estimator of implicit prices in a

simple parametric model. We generalize that model in the Appendix. Section 3 describes

the data that we use for our application. Section 4 presents results from our model, and

compares them to results from traditional cross-sectional and fixed-effects specifications.

Section 5 concludes.

2 Model: Estimating Implicit Prices

In this section, we consider the traditional hedonic framework – a model of demand in

a differentiated products market in which a consumer maximizes utility. The primary

application we have in mind is housing, however, many of the methods we propose could

carry over to other differentiated product markets where our assumptions are maintained.

We treat the consumer as being forward looking in her decision-making, but unconstrained

by adjustment costs; in a model of home buying without adjustment costs, forward-looking

agents maximize utility with respect to current house attributes (so that the model mimics

the standard static hedonic framework).

Houses, indexed by j = 1, ..., J , can be completely described by a finite vector of at-

tributes. Let xj denote a 1 by K vector of attributes such as the number of square feet, the

lot size, or the year built, all of which are commonly observed by the econometrician and

the consumer. In addition, ξj denotes a scalar that captures an omitted attribute of the

house that is observed by the consumers, but not by the economist. For instance, while

data sets on housing are quite detailed, they typically do not report features such as the

curb appeal of a home or its state of repair, both of which may be important to buyers. For

notational and expositional simplicity, we require these omitted attributes to be captured in

a single product attribute, ξj, though many of our results allow for a more general error term

with vector-valued omitted attributes. To summarize, from the perspective of consumers

i = 1, ..., I, product j can be completely summarized by the 1 by (K + 1) vector (xj, ξj).

Equilibrium prices can be written as pj = p(xj, ξj). We will refer to p as the hedonic

price function. This is a map between the product characteristics (xj, ξj) and the price of

good j (pj). The hedonic price function p is determined in equilibrium by the interactions
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of buyers and sellers. Bajari and Benkard (2005) show that consumer rationality plus mild

restrictions on consumer preferences imply that p is a function, not a correspondence. As

discussed in the introduction, the existence of the function p is our first key assumption

derived from economic theory.

In empirical applications, the economist is generally concerned with estimating p(xj, ξj)

using data on the observed prices, pj and characteristics, xj. Hedonic price regressions are

commonly conducted assuming that E [ξj|xj] = 0 , that is, the omitted product attributes

are mean independent of the observed attributes. This assumption is frequently criticized

in the literature, going back to Small (1975). Returning to our earlier example, suppose

that ξj reflects the curb appeal of a home. The above moment condition would imply that

the expected value of curb appeal is the same for small homes in low income neighborhoods

as it is for million dollar homes in exclusive neighborhoods. However, in practice we expect

higher values of desirable omitted attributes to be positively correlated with higher values of

desirable observed attributes. Thus, failure to correct for this omitted variable would bias

upward estimates of implicit prices of desirable attributes.

The only proposed solutions to this problem rely on quasi-random sources of variation

such as breaks in geography (Black, 1999) or discontinuities in the application of regulations

(Chay and Greenstone, 2004; Greenstone and Gallagher, 2007). While these are important

contributions to the empirical literature, they may face limitations like those discussed in

the introduction.

We propose an alternative approach to estimating implicit prices. Begin by considering

cases in which there are data on repeat sales so that the price of home j is observed in several

time periods among t = 1, 2, ..., T . Note that the price does not need to be observed in all

time periods. Our empirical strategy will require as few as two sales for each house. To

simplify notation, consider the case where there is a single observed, time-varying character-

istic, xj,t, which enters linearly into the hedonic price function. All of our results apply in

the more general case where this is a vector of characteristics and where the characteristics

enter nonparametrically; this situation is described in the Appendix (we consider observed

attributes that do not vary over time in Section 2.2). Suppose the system of hedonic pricing
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equations is:

ln(pj,1) = α1 + β1xj,1 + ξj,1 (1)
...

ln(pj,T ) = αT + βTxj,T + ξj,T .

Since we can observe prices of homes only when they actually transact, we have an unbal-

anced panel where some of ln(pjt)’s are never observed in (1).

In what follows, we assume that agents in the market are uncertain about the evolution

of ξj,t. This uncertainty could come from one of two sources. The first is that the omitted

characteristics themselves change over time periods. For example, a noisy neighbor may

move in next door to home j or an infestation may make it necessary to cut down all the large

trees in home j’s neighborhood. The second is that the implicit price of even time-invariant

omitted attributes could change over time. Both of these situations would look the same

from the point of view of the hedonic model.

In our model, we assume that the omitted product attribute evolves according to a first-

order Markov process,1

ξj,t′ = γ(t, t′)ξj,t + η(j, t, t′). (2)

This is our second key assumption. Here γ(t, t′)ξj,t is the expected value of the omitted

attribute at time t′ conditional on its value at time t, and η(j, t, t′) is the stochastic innovation

in the omitted attribute. Later in the description of the model we illustrate that this could

be, for example, extended to a second-order Markov process if the researcher has access to

three repeat sales observations for each house. In our application, we limit our attention to

houses that sell twice.

Our third assumption requires that

E[η(j, t, t′)|It] = 0. (3)

where It denotes the information available to the buyer at time t. In words, given all the

information available at time t, homebuyers predict that ξj,t′ will equal γ(t, t′)ξj,t in expecta-

tion. Note that this condition is required if individuals are to be unable to use information

1We assume that the unconditional mean of the omitted attribute equals to zero, E[ξj,t] = 0 without loss
of generality because if not, the intercept in the hedonic pricing equation (1) can subsume the nonzero mean.
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in It to predict excess appreciation rates for particular houses, which is a necessary condi-

tion for full informational efficiency of the housing market as described by Case and Shiller

(1989). While we do not require full informational efficiency of the housing market for our

estimator, we can use the Case and Shiller (1989) test of informational efficiency as an overly

stringent test of our third assumption. We do this in Section 4.1.

2.1 Lagged Prices and Consistent Estimation

We rewrite our hedonic price function for period t′ using information from the previous sale

of house j (i.e., in period t) to eliminate ξj,t′. In particular, rewriting ξj,t′ as a function of

ξj,t using (2) and substituting ln(pj,t)− αt − βtxj,t for ξj,t, we get,

ln(pj,t′) = αt′ + βt′xj,t′ + ξj,t′ (4)

= αt′ + βt′xj,t′ + γ(t, t′) [ln(pj,t)− αt − βtxj,t] + η(j, t, t′)

= (αt′ − γ(t, t′)αt) + γ(t, t′) ln(pj,t)

−γ(t, t′)βtxj,t + βt′xj,t′ + η(j, t, t′).

We note that xj,t′ could be correlated with η(j, t, t′), for example, the innovation in “curb

appeal” between t and t′ might be correlated with an observable characteristic such as

test scores in local public schools. Thus, a regression based on (4) produces inconsistent

estimates of the hedonic price function. For the parametric model of (4), we can use the

2SNLS approach to recover parameters under our maintained assumption of (3). In the first

stage we replace xj,t′ with its projected value based on xj,t and other observed variables wj,t

in the information set It using

xj,t′ = π0(t, t
′) + π1(t, t

′)xj,t + π2(t, t
′)wj,t + vj,t,t′ , E[vj,t,t′|It] = 0.

The first stage uses the assumption that the innovation in the observed attributes is orthog-

onal to time t information.

We show in the appendix that by exploiting the process that describes the evolution of

xj,t over time and using a control function approach, we can still obtain consistent estimates

of the key structural parameters even when the characteristics enter nonparametrically in

the hedonic pricing equations.
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Intuitively, our approach uses the information in lagged prices, pj,t to impute the lagged

value of the omitted attribute. For example, if the price for home j is unusually high after

controlling for xj,t, we would infer that ξj,t = ln(pj,t) − αt − βtxj,t is also large. This is

where our first economic assumption – that prices reflect attributes that are observed by

consumers – has “bite”. We also assume that the stochastic innovations (vj,t,t′) in the

observed attributes are orthogonal to current information. Furthermore, after controlling

for It, the stochastic innovation in the omitted attribute, η(j, t, t′), is assumed to be mean

zero. If these assumptions were not true, it would be possible to earn excess returns in the

housing market.

2.2 Time-invariant Covariates and Model Restrictions

When houses have only time-invariant attributes, some of the parameters of the model

described above are not identified without further restrictions. To see this, replace xj,t with

the time-invariant covariate zj in (4):

ln(pj,t′) = (αt′ − γ(t, t′)αt) + γ(t, t′) ln(pj,t)− γ(t, t′)βtzj + βt′zj + η(j, t, t′).

We cannot therefore identify βt′ separately from βt, i.e., a multicollinearity problem. Adding

the additional restrictions that αt = α0 and βt = β0 for all t, the above equation becomes

ln(pj,t′) = α0 (1− γ(t, t′)) + γ(t, t′) ln(pj,t) + (1− γ(t, t′))β0zj + η(j, t, t′).

With these restrictions, we can identify γ(t, t′) from the coefficient on ln(pj,t), α0 from the

constant term, and β0 from the coefficient on zj. An alternative approach is to normalize

β1 = 1. Then βt, t > 1 is identified recursively up to this normalization using the fact that

−γ(t, t′)βt + βt′ can be recovered in each period.

Imposing some structure on γ(t, t′) yields a set of over-identifying restrictions. For

example, we can let γ(t, t′) = γ(t, t̃)γ(t̃, t′) for t̃ between t and t′. Even with time-varying

x’s, the above restrictions may be useful to obtain more stable and robust estimates when

the variation over time is relatively small.
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2.3 Simple Parametric Model with Two Transactions

Often it may be the case that only two transactions per house are available in the data (as in

our application). Thus, we focus on the two-transaction setting as a straightforward illustra-

tion of how our estimator can be applied in many contexts. We describe the generalization

in the Appendix.

Assuming that the implicit prices are time-invariant βt = β for all t, the model simplifies

to

ln(pj,tb) = αtb − γ(ta, tb)αta + γ(ta, tb) ln(pj,ta) + γ(ta, tb)βxj,ta (5)

+βxj,tb + η(j, ta, tb).

where ta denotes the time period of the first sale and tb denotes the time period of the second

sale. The estimation can proceed as a simple application of the two-stage nonlinear least

squares (2SNLS). We can rewrite (5) as

xj,tb = π0(ta, tb) + π1(ta, tb)xj,ta + π2(ta, tb)wj,ta + vj,ta,tb (6)

ln(pj,tb) = αtb − γ(ta, tb)αta + γ(ta, tb) ln(pj,ta) + γ(ta, tb)βxj,ta

+β (π0(ta, tb) + π1(ta, tb)xj,ta + π2(ta, tb)wj,ta) + uj,ta,tb

where uj,ta,tb = βvj,ta,tb + η(j, ta, tb). E[uj,ta,tb|Ita ] = 0 because vj,ta,tb is the projection error

in the first step and E[η(j, ta, tb)|Ita ] = 0 by assumption (3).

In (6) wj,t denotes other observable variables in It, including pj,ta . Importantly, we do

not need wj,t to include any additional information. In other words, exclusion restrictions

are not needed to identify the key structural parameters (γ(ta, tb), β, and αtb − γ(ta, tb)αta),

as can be seen in (6). Our key identification condition is E[uj,ta,tb|Ita ] = 0. This condition

differs considerably from the standard approach to estimating hedonic models, which rely

instead on E [ξj,t|xj,t] = 0, i.e., that omitted attributes are conditionally mean independent

of observed attributes, as discussed above.

We let θ(ta, tb) = (αtb − γ(ta, tb)αta , γ(ta, tb), β)′. The coefficients in the second step

equation in (6) are nonlinear functions of θ(ta, tb) where π0(ta, tb), π1(ta, tb), and π2(ta, tb)
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are obtained in the first step. We obtain estimates by solving

π̂(ta, tb) = argminπ(ta,tb)

∑J

j=1
{xj,tb − π0(ta, tb)− π1(ta, tb)xj,ta − π2(ta, tb)wj,ta}

2

θ̂(ta, tb) = argminθ(ta,tb)

∑J

j=1
{ln(pj,tb)− g(ln(pj,ta), xj,ta , x̂j,tb ; θ(ta, tb))}

2

where x̂j,tb = π̂0(ta, tb) + π̂1(ta, tb)xj,ta + π̂2(ta, tb)wj,ta and

g(ln(pj,ta), xj,ta , x̂j,tb ; θ(ta, tb)) = αtb − γ(ta, tb)αta + γ(ta, tb) ln(pj,ta)

+ γ(ta, tb)βxj,ta + βx̂j,tb .

We can also impose some parametric restrictions on π(ta, tb)’s and γ(ta, tb)’s in the above.

Note that the first step estimation contributes to the asymptotic variance of the second

step estimators. We obtain correct standard errors by applying Murphy and Topel (1985).

Denote

√
J(π̂(ta, tb)− π(ta, tb)) →d N(0, V (ta, tb)) (7)

G(·; θ(ta, tb)) =
∂

∂θ(ta, tb)
g(·; θ(ta, tb))

Ω0(ta, tb) = E[η2(·, ta, tb)G(·; θ(ta, tb))G(·; θ(ta, tb))′]

Q0(ta, tb) = E [G(·; θ(ta, tb))G(·; θ(ta, tb))′]

Q1(ta, tb) = E [G(·; θ(ta, tb))β(1, xj,ta , wj,ta)]

Then, we have √
J(θ̂(ta, tb)− θ(ta, tb)) →d N(0,Σ(ta, tb))

where

Σ(ta, tb) = Q0(ta, tb)
−1 [Ω0(ta, tb) +Q1(ta, tb)V (ta, tb)Q1(ta, tb)

′]Q0(ta, tb)
−1.

We obtain a consistent estimate of the heteroskedasticity robust variance matrix Σ(ta, tb)
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using the following sample counterparts of (7):

V̂ (ta, tb) =

(
1
J

∑J
j=1(1, xj,ta , wj,ta)

′(1, xj,ta , wj,ta)
)−1 (

1
J

∑J
j=1 v̂

2
j,ta,tb

(1, xj,ta , wj,ta)
′(1, xj,ta , wj,ta)

)
×

(
1
J

∑J
j=1(1, xj,ta , wj,ta)

′(1, xj,ta , wj,ta)
)−1 ,

Ω̂0(ta, tb) =
1

J

J∑
j=1

η̂2(j, ta, tb)G(·; θ̂(ta, tb))G(·; θ̂(ta, tb))′,

η̂(j, ta, tb) = ln(pj,tb)− g(ln(pj,ta), xj,ta , xj,tb ; θ̂(ta, tb)),

Q̂0(ta, tb) =
1

J

J∑
j=1

G(·; θ̂(ta, tb))G(·; θ̂(ta, tb))′,

Q̂1(ta, tb) =
1

J

J∑
j=1

G(·; θ̂(ta, tb))β̂(1, xj,ta , wj,ta), and

Σ̂(ta, tb) = Q̂0(ta, tb)
−1

[
Ω̂0(ta, tb) + Q̂1(ta, tb)V̂ (ta, tb)Q̂1(ta, tb)

′
]
Q̂0(ta, tb)

−1.

3 Data

We demonstrate the role of efficient housing markets in controlling for time-varying, corre-

lated unobservables by measuring the marginal willingness to pay to avoid exposure to three

of the EPA’s “criteria” air pollutants – particulate matter (PM10), sulfur dioxide (SO2),

and ground-level ozone (O3).2 Without extremely detailed data describing the evolution

of neighborhood attributes, correlated unobservables are likely to play an important role in

such an application.

We consider housing transactions from California’s Bay Area (specifically, Alameda, Con-

tra Costa, Marin, San Francisco, San Mateo, and Santa Clara counties) over the period 1990-

2006. These data were purchased from the DataQuick Corporation and contain information

describing the universe of housing transactions (i.e., buyers’, sellers’ and lenders’ names,

dates, loan amounts, and transaction prices) and the houses that transacted (i.e., square

footage, lot size, year built, number of rooms, and how many of those rooms are bedrooms

or bathrooms). Important for our purposes, the data also provide the exact street address

2The list of criteria pollutants also includes nitrogen oxides, lead, and carbon monoxide. This list forms
the basis for the EPA’s primary (health) and secondary (environmental and aesthetic) emissions reduction
targets. Of the six criteria pollutants, particulate matter and ground-level ozone are commonly considered
to pose the greatest health threat. (http://www.epa.gov/air/urbanair)
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of each home, with which we can impute pollution measures using data from thirty-seven

monitors located throughout the Bay Area.

3.1 Housing Data

DataQuick reports a house’s attributes as they were measured at the time of the last sale

entered in our data. Because houses may have been altered (either improved or suffered

some severe damage), these attributes may not be applicable to all observed transactions.

We therefore carry-out a number of data cuts to avoid this problem. First, we consider the

appreciation rate exhibited by each house over each pair of sales that we observe in the data.

From this, we deduct the average appreciation rate for all houses that sold in the same pair

of years. We then drop the houses in the top and bottom 10% of the resulting distribution

of normalized appreciation rates. As such, we eliminate any house that appreciated or

depreciated at a very high rate relative to other houses on the market at the same time.

Second, we drop problematic observations – for example, all observations where “year

built” is missing, or where “year built” comes after the transaction date (signaling a purchase

of land on which a house was then constructed). We also drop all properties that fail to

report a transaction price or a latitude and longitude, houses with outlier attributes, and

all observations with housing attributes that appear to be coded with error – in particular,

houses where the number of bedrooms or bathrooms is greater than five. We also drop any

house more than 5,000 square feet in size, or which sits on more than a 70,000 square-foot

lot. We finally drop all homes that sell more than two times in the seventeen year period we

are considering. This is primarily for the sake of convenience, as it allows us to implement

our estimator using the simple specification described in Section 2.3. In the end, these cuts

leave us with data describing repeat transactions for 96,626 unique housing units. Table 1

summarizes the attributes of these houses.

Figure 1 describes the median transaction price in each year of our data. This makes

clear that there were periods of (slow) depreciation and (rapid) appreciation in the Bay Area

over the period we are considering.
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Table 1: House Attributes (N=96626)

Mean Std Dev Minimum Maximum
Lot size 6,922 5,519 1,000 69,809
Square feet 1709 620 500 4,994
No. of bathrooms 2.109 0.689 1 5
No. of bedrooms 3.233 0.831 1 5
No. of rooms 7.036 1.819 1 15
Year built 1966 22.72 1868 2005

Figure 1: Median Transaction Price by Year With 25th and 75th Percentiles
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3.2 Air Quality Data

We measure individuals’ average marginal willingness-to-pay (MWTP) to avoid three of the

EPA’s major criteria air pollutants.3 The MWTP is a key determinant of the benefits of any

new air pollution regulation, such as the Clean Air Act Amendments of 1990 that allowed

for trading in permits to emit sulfur dioxide. The other main source of value from a new air

pollution regulation comes from avoided mortality; this is typically measured by ascribing

the value of a statistical life (VSL) to each death avoided by the policy.

3Information on the health and aesthetic costs of each of the pollutants discussed in this section can be
found at the EPA’s web-site (http://www.epa.gov/air/).
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We first consider PM10, which denotes particles less than ten micrometers in diame-

ter. These particles (especially those smaller than 2.5 micrometers) can travel deep into

the lungs and even into the bloodstream. This can lead to a variety of health problems,

including asthma, chronic bronchitis, and heart attack.4 Fine particles also reduce visibility,

and prolonged exposure to PM10 can damage structures and stain building materials. While

not necessarily as important as health effects from a welfare perspective, these aesthetic ef-

fects may have a marked impact on housing prices. We consider the average annual PM10

concentration, which is measured in micrograms per cubic meter (µg/m3). PM10 concen-

tration at each house is imputed with an inverse-squared-distance weighted average of the

concentrations measured at each of the thirty-seven monitoring stations in the Bay Area.

Our second pollutant is sulfur dioxide (SO2). The primary health consequences of sulfur

dioxide come in the form of breathing difficulties, especially for those who suffer from asthma.

Like PM10, SO2 can create haze that impairs visibility. Acid rain (or acid fog), which is

produced when SO2 reacts with water and other chemicals in the air, will damage building

materials and kill vegetation. SO2 (and the remainder of our pollutants) is measured in parts

per million (ppm), and we use the maximum one-hour observation observed over the course

of the year at each monitor (imputed for each house again using an inverse-squared-distance

weighted average of all monitors’ observations). The maximum one-hour observation is an

important figure used by the California Air Resources Board in determining whether or not

an air district is in compliance with state regulations.

Third, we consider ground-level ozone (O3). Similar to smog, ozone can cause a va-

riety of severe respiratory problems including coughing, wheezing, breathing pain, aggra-

vated asthma, and increased susceptibility to bronchitis. Exposure to peak concentrations

of ground-level ozone can have acute effects, and repeated exposure to even moderate levels

can lead to permanent lung damage. In addition to its health consequences, O3 has detri-

mental impacts on the growth of vegetation (particularly trees and other plants in urban

settings), which can have important aesthetic consequences for housing prices.

4The Harvard ”Six City” Study (Dockery et al., 1993) established many of these effects, which have
been confirmed by numerous studies since that time. Lin et al., 2002; Norris et al., 1999; Slaughter et al.,
2003; and Tolbert et al., 2000) have demonstrated detrimental effects, particularly for the young and elderly
suffering from asthma. Hong et al., 2002; Tsai et al., 2003, and D’Ippoliti et al., 2003 provide evidence of
increased risk of heart attack and stroke. Ghio et al. 2000 finds evidence of lung tissue imflammation, while
Pope et al., 2002 finds increased risk of lung cancer. More recently, Samet et al., 2004 has found evidence of
increased risk of heritable diseases from exposure to fine particulates.
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Figure 2 describes the time path of three pollution measures (along with nitrogen oxides)

over the sample period. To make the numbers more easily interpretable on the same graph,

we express PM10 pollution in (µg/m3)*(1/1000).

Figure 2: Median One Hour Maximum Pollution Concentrations
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Table 2 describes the correlations across all three pollutants observed at the time of every

transaction in our sample. While PM10 and SO2 are fairly highly correlated, O3 has a much

lower correlation with SO2 and is even negatively correlated with PM10. This is consistent

with the intuition that O3, which is formed in a complicated photochemical process, is more

affected by weather patterns and is not restricted to the more polluted places. Although

collinearlity may be an issue for separately identifying the effects of PM10 and SO2, we

are still able to estimate a model with all three pollutants appearing simultaneously. In

addition, we measure the MWTP for each pollutant considered individually.

Table 2: Correlations of Pollutants

PM10 SO2 O3
PM10 1.000
SO2 0.516 1.000
O3 -0.097 0.217 1.000

A final feature of these pollutants that we do not address is the fact that the disutility
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from each may be a complicated nonlinear function of the concentrations of all the other

pollutants. This is a result of the photochemical processes through which they interact.

See Muller, Tong, and Mendelsohn (2009) for an example of research that considers these

interactions.

4 Results

4.1 Testing the Efficient Housing Market Hypothesis

Before applying our estimation strategy, we provide empirical evidence in support of our

identifying assumptions on homebuyer rationality, a limited form of the efficient housing

market assumption, by approximating Case and Shiller’s (1989) test of full informational

efficiency for the subset of houses that sold 3 times over our sample period. In particular,

we check to see whether or not observable attributes in the information set at time t have

any explanatory power for price changes after that time. This is a stronger test than

we require. In particular, our estimator allows for predictable changes in observables and

unobservables based on their current values to influence price changes. However, if we find

that the predictive power of current observables is weak, statistically and/or economically,

it bolsters our assumption that E[η(j, t, t′)|It] = 0.

Begin by letting ta, tb, and tc denote the times at which sales are observed for houses in our

data set that transact three times, ta < tb < tc. a, b, and c can be different for each of these

houses. We regress the annualized return,
ln(pj,tc )−ln(pj,tb

)

tc−tb
on the average return of previous

sales (which is allowed to differ across counties and years), housing attributes, pollutants,

and county fixed effects.5 While many of the coefficients are statistically significant, their

economic magnitudes in terms of marginal returns are negligible. Table 3 summarizes the

results.

To give a sense of the extent to which knowing housing attributes can help to generate

excess returns, we calculate dollar amounts of excess returns from the estimation results

in Panel A of Table 3 under the scenario that the previous average return is higher by 10

5The average return from previous sales is obtained as the fitted values from the regression of ln(pj,tb
)−

ln(pj,ta
) on dummies indicating the year of the first and the second sales and the county in which the house

is located.
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Table 3: Efficient Market Hypothesis(N=16656)

A. Regression of Annualized Return on House Attributes and Average Return
Avg. ret. Lotsize Sqft # Bath # Bed PM10 SO2 O3

Coeff 0.0205 0.0000 -0.0000 -0.0024 0.0077 -0.0040 1.0785 0.2496
[2.35] [1.29] [-13.66] [-1.67] [8.56] [-4.80] [6.78] [1.03]

B. Excess Returns Per Year in Dollar Amounts
Purchase Avg. ret. Lotsize Sqft # Bath # Bed PM10 SO2 O3
Price 10% ↑ 100 sf ↑ 100 sf ↑ 1 ↑ 1 ↑ 2 µg/m3 ↑ 5 ppb ↑ 10 ppb ↑
0.4M 820 13 -916 -953 3,080 -3,241 2,157 998
1M 2,050 33 -2,290 -2,382 7,699 -8,103 5,393 2,495
2M 4,100 66 -4,580 -4,764 15,398 -16,206 10,785 4,991

t-statistics are reported in brackets and calculated from clustered robust standard errors, clustered by
county. The dollar amounts in panel B are calculated from the estimates in panel A, based on purchasing
prices of .4M,1M and 2M respectively for the given change in the observed attribute.

percent, the lot size is larger by 100 square feet, the home size is larger by 100 square feet,

the number of bathrooms is larger by 1, the number of bedrooms is larger by 1, and the three

pollutant measures PM10, SO2, and O3 are higher by 2 µg/m3, 5 ppb, 10 ppb, respectively.

We also assume that the home prices at the time of purchase are 0.4 million, 1 million, and 2

million dollars, respectively. The results are reported in Panel B of Table 3. We see that the

amounts are small compared to the home prices (i.e., less than 1%). For example, when the

home price is 1 million at the time of purchase, one would make excess returns of 33 dollars

per year by purchasing a home with its lot size larger by 100 square feet and would earn

7,699 dollars of additional annual returns by purchasing a home with five bedrooms instead

of four bedrooms. One can interpret calculations of excess returns in other cases similarly.

These results suggest that information available at time t cannot be used to affect, in an

economically significant way, the returns derived from a house purchase decision. This im-

plies that information available at that time is not particularly useful in predicting η(j, t, t′);

hence, supporting our assumption that E[η(j, t, t′)|It] = 0.
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4.2 The Marginal Willingness-to-Pay to Avoid Air Pollution

In our application, we allow Bay Area housing prices to be determined by different hedonic

price functions in each of three separate periods: (1) 1990-1994, (2) 1995-2000, and (3) 2001-

2006. These periods correspond (roughly) to periods of depreciation, appreciation, and very

rapid appreciation in this housing market, as shown in Figure 1. They also correspond to

periods of changing enforcement of air pollution standards, as the Bay Area moved from

non-attainment to attainment and back to non-attainment with respect to federal ozone

regulations.

We report results for three different econometric models. First, we estimate a simple

cross-sectional model for each of the three time periods in our data set. This approach

does nothing to control for omitted attributes (time-varying or time-invariant) that may be

correlated with pollution:

Cross-Sectional Model

ln(pj,1) = α1 + x′j,1β1 + z′jφ1 + ξj,1,

ln(pj,2) = α2 + x′j,2β2 + z′jφ2 + ξj,2,

ln(pj,3) = α3 + x′j,3β3 + z′jφ3 + ξj,3,

where the subscripts {1, 2, 3} correspond to each of the three time periods, x′t ≡ {PM10, SO2, O3}
captures the pollutants and z includes the housing attributes described in Table 1 and a vec-

tor of county fixed effects.

Second, we estimate a house fixed-effect model that uses the panel aspect of the data

to control for time-invariant omitted attributes that could potentially be correlated with

pollution. We constrain the derivative of ln(P ) with respect to each pollutant to be constant

over time. This constraint allows us to recover an implicit price for pollution from the fixed-

effect specification. We allow the marginal effects of other housing attributes to vary over

time, meaning that we can only recover the change in the implicit prices of these attributes.
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House Fixed-Effect Model

ln(pj,3)− ln(pj,2) = ρ2,3 + (xj,3 − xj,2)
′β + z′jχ2,3 + uj,2,3,

ln(pj,3)− ln(pj,1) = ρ1,3 + (xj,3 − xj,1)
′β + z′jχ1,3 + uj,1,3,

ln(pj,2)− ln(pj,1) = ρ1,2 + (xj,2 − xj,1)
′β + z′jχ1,2 + uj,1,2.

where ρt,t′ = (αt′ − αt) and χt,t′ = (φt′ − φt).

Finally, we estimate a constrained specification of the model described in equation (6).

We restrict γ(1, 3) = γ(1, 2)γ(2, 3), and β1 = β2 = β3 = β. Constraining the marginal effect

of pollution on price to be constant over time assists with model identification and makes the

results more directly comparable to those of the house fixed-effect model. ψt,t′ replaces the

intercept in equation (4), ψt′,t = αt′ −γ(t, t′)αt, and z′jδt,t′ controls flexibly for any attributes

that do not vary over time.6 This implies the following specification:

Efficient Housing Market Model

ln(pj,3) = ψ2,3 + γ(2, 3) ln(pj,2)− x′j,2γ(2, 3)β + x′j,3β + z′jδ2,3 + ηj,2,3,

ln(pj,3) = ψ1,3 + γ(2, 3)γ(1, 2) ln(pj,1)− x′j,1γ(2, 3)γ(1, 2)β + x′j,3β + z′jδ1,3 + ηj,1,3,

ln(pj,2) = ψ1,2 + γ(1, 2) ln(pj,1)− x′j,1γ(1, 2)β + x′j,2β + z′jδ1,2 + ηj,1,2.

Depending upon the time periods a particular house sells, one of these three equations will

apply to it. The first equation applies when t = 2 and t′ = 3, the second equation applies

when t = 1 and t′ = 3, and the third equation applies when t = 1 and t′ = 2.

Given the linearity of the hedonic pricing equation, we implement a 2SNLS approach to

deal with the endogeneity of xt′ , as described in Section 2.1. In particular, we first estimate

the following regression equations using all the exogenous and predetermined variables as

instruments:

xj,3 = Π0Y earj + Π1(3, 2)xj,2 + Π2(3, 2) ln(pj,2) + Π3(3, 2)zj + Π4(3, 2)Countyj + vj,2,3,

xj,3 = Π0Y earj + Π1(3, 1)xj,1 + Π2(3, 1) ln(pj,1) + Π3(3, 1)zj + Π4(3, 1)Countyj + vj,1,3,

xj,2 = Π0Y earj + Π1(2, 1)xj,1 + Π2(2, 1) ln(pj,1) + Π3(2, 1)zj + Π4(2, 1)Countyj + vj,1,2.

6In particular, if z′jφt represents the contribution of time-invariant attributes zj to ln pj,t, then z′jδt,t′ =
z′j(φt′ − γ(t, t′)φt). For convenience, we label δt,t′ = φt′ − γ(t, t′)φt.
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where County denotes a vector of county dummies and Y ear denotes a vector of year dum-

mies indicating t′. The first equation applies to houses that sell in periods t = 2 and t′ = 3,

the second equation applies to houses that sell in periods t = 1 and t′ = 3, and the third

equation applies to houses that sell in periods t = 1 and t′ = 2. We then use the two sets

of equations described above and estimate using two-stage nonlinear as described in Section

2.3.7

Table 4: Implicit Price of Pollution: Cross-Sectional Estimates

Period 1 Period 2 Period 3
Coeff Elast.§ WTP‡ Coeff Elast.§ WTP‡ Coeff Elast.§ WTP‡

A. Regressions Controlling for All Pollutants
PM10 -0.0022 -0.0529 -65.4 0.0162 0.3827 473.1 -0.0328 -0.7755 -958.8
(µg/m3) [0.0071] [0.0088] [0.0084]
SO2 4.0666 0.1422 118.9 -1.1682 -0.0409 -34.2 -4.8399 -0.1693 -141.5
(ppm) [1.6431] [0.9537] [1.8254]
O3 -3.0468 -0.3129 -89.1 -2.3021 -0.2364 -67.3 -2.1635 -0.2222 -63.3
(ppm) [1.7886] [1.9823] [0.6847]

B. Separate Regression for Each Pollutant
PM10 0.0112 0.2648 327.4 0.0230 0.5431 671.4 -0.0414 -0.9792 -1210.5
(µg/m3) [0.0011] [0.0097] [0.0101]
SO2 1.9838 0.0694 58.0 -0.0877 -0.0031 -2.6 -6.0069 -0.2101 -175.7
(ppm) [0.5540] [0.6978] [1.5099]
O3 -1.8937 -0.1945 -55.4 -2.8659 -0.2943 -83.8 -3.4630 -0.3556 -101.3
(ppm) [0.2057] [1.9288] [1.7408]
N 47,909 74,399 75,862

Heteroskedasticity robust standard errors clustered by counties in brackets. Controls for lot size, square
feet, number of rooms, number of bedrooms, number of bathrooms, year built and county fixed effects also
included but not reported. § Elasticities calculated at medians of pollutants, which are 23.66 for PM10,
0.0350 for SO2, 0.1027 for O3. ‡ Willingness to pay calculated for marginal 1 µg/m3 change in PM10 and 1
ppb change in other pollutants, annualized at rate of 0.07 for median house price of $ 417,800.

Table 4 reports the results of a cross-sectional specification that considers all three pol-

lutants simultaneously (panel A), along with specifications that consider each pollutant in-

dividually (panel B). For many pollutant-year combinations, MWTP exhibits the counter-

intuitive (i.e., positive) sign. Only the implicit price of O3 consistently has the expected

7Note that other observable attributes of the house (in zj) are time-invariant because we only observe
them at the time of last purchase, so we do this correction only for the pollutants.
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Table 5: Implicit Price of Pollution: Fixed-Effect Estimates (N=76,405)

All Pollutants† Single Pollutant†

Coeff Elast.§ WTP‡ Coeff Elast.§ WTP‡

PM10 (µg/m3) 0.0047 0.1122 138.7 0.0056 0.1335 165.0
[0.0003] [0.0003]

SO2 (ppm) -1.9142 -0.0669 -56.0 -2.1023 -0.0735 -61.5
[0.0916] [0.0909]

O3 (ppm) -3.1038 -0.3188 -90.8 -3.3898 -0.3481 -99.1
[0.0677] [0.0674]

Heteroskedasticity robust standard errors in brackets. Controls for lot size, square feet, number of rooms,
number of bedrooms, number of bathrooms, year built and county fixed effects also included but not
reported. † The single pollutant regressions are run separately for each pollutant, whereas the other
estimates are run with all pollutants in a single regression. § Elasticities calculated at medians of
pollutants, which are 23.66 for PM10, 0.0350 for SO2, 0.1027 for O3. ‡ Willingness to pay calculated for
marginal 1 µg/m3 change in PM10 and 1 ppb change in other pollutants, annualized at rate of 0.07 for
median house price of $ 417,800.

Table 6: Implicit Price of Pollution: Efficient Markets (N=76,405)

All Pollutants† Single Pollutant†

Coeff Elast.§ WTP‡ Coeff Elast.§ WTP‡

PM10 -0.0030 -0.0710 -87.7 -0.0037 -0.0875 -108.2
(µg/m3) [0.0004] [0.0004]
SO2 -4.6987 -0.1643 -137.4 -5.8241 -0.2037 -170.3
(ppm) [0.1341] [0.1274]
O3 -5.8732 -0.6032 -171.8 -6.3151 -0.6485 -184.7
(ppm) [0.1082] [0.1042]

Heteroskedasticity robust standard errors in brackets. Controls for prior sales price, lot size, square feet,
number of rooms, number of bedrooms, number of bathrooms, year built and county fixed effects also
included but not reported. † The single pollutant regressions are run separately for each pollutant, whereas
the other estimates are run with all pollutants in a single regression. § Elasticities calculated at medians of
pollutants, which are 23.66 for PM10, 0.0350 for SO2, 0.1027 for O3. ‡ Willingness to pay calculated for
marginal 1 µg/m3 change in PM10 and 1 ppb change in other pollutants, annualized at rate of 0.07 for
median house price of $ 417,800.
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Table 7: Implicit Price of House Attributes

Efficient Market IV Fixed Effect Cross Section
Coeff Elast.§ Coeff Elast.§ Coeff Elast.§

Sold in period 3 and 2 Sold in period 3
Lot size 4.95E-06* 0.0343 -1.48E-07 -0.0010 1.35E-05* 0.0934

[2.99E-07] [3.08E-07] [1.61E-06]
Square feet 8.16E-05* 0.1394 -5.54E-05* -0.0947 3.42E-04* 0.5838

[4.89E-06] [4.60E-06] [1.82E-05]
No. of bedrooms 8.50E-03* 0.0275 1.78E-02* 0.0575 -1.51E-02* -0.0489

[2.40E-03] [2.55E-03] [1.02E-02]
No. of bathrooms 2.00E-03 0.0042 -6.31E-03 -0.0133 5.02E-02 0.1059

[1.50E-03] [3.72E-03] [1.25E-02]
No. of rooms 1.06E-02* 0.0746 -5.57E-03* -0.0392 1.46E-02 0.1030

[3.60E-03] [1.60E-03] [6.41E-03]
Year built -9.56E-04* -1.8804 -1.42E-03* -2.7937 -7.56E-04* -1.4871

[8.42E-05] [8.79E-05] [1.15E-03]
Sold in period 3 and 1 Sold in period 2

Lot size 7.90E-06* 0.0547 -4.22E-07* -0.0029 1.37E-05* 0.0948
[6.77E-07] [7.58E-07] [1.29E-06]

Square feet 1.86E-04* 0.3183 -5.62E-05 -0.0960 4.27E-04* 0.7289
[9.00E-06] [1.11E-05] [1.02E-05]

No. of bedrooms -5.30E-03 -0.0171 6.17E-03 0.0199 -3.62E-02 -0.1171
[4.50E-03] [6.19E-03] [1.92E-02]

No. of bathrooms 5.40E-03 0.0114 -9.35E-03 -0.0197 4.25E-02* 0.0895
[2.90E-03] [8.48E-03] [1.77E-02]

No. of rooms 2.79E-02* 0.1963 -4.16E-03 -0.0293 2.31E-02 0.1627
[6.50E-03] [3.79E-03] [1.21E-02]

Year built -1.30E-03* -2.5558 -6.70E-04* -1.3180 -1.86E-04 -0.3653
[1.60E-04] [2.09E-04] [1.61E-03]

Sold in period 2 and 1 Sold in period 1
Lot size 5.47E-06* 0.0379 1.08E-06* 0.0075 1.36E-05* 0.0941

[3.97E-07] [3.41E-07] [2.16E-06]
Square feet 1.34E-04* 0.2288 8.77E-06 0.0150 4.51E-04* 0.7709

[6.52E-06] [5.62E-06] [4.39E-05]
No. of bedrooms -3.90E-03 -0.0126 9.77E-03* 0.0316 -5.94E-02 -0.1921

[3.30E-03] [3.20E-03] [2.58E-02]
No. of bathrooms 6.60E-03* 0.0139 5.06E-03 0.0107 1.90E-02* 0.0402

[2.00E-03] [4.36E-03] [1.11E-02]
No. of rooms 1.51E-02* 0.1062 -1.55E-03 -0.0109 2.11E-02* 0.1484

[4.40E-03] [1.98E-03] [2.55E-02]
Year built -1.30E-03* -2.5558 -1.88E-03* -3.6965 -3.18E-04 -0.6256

[1.11E-04] [1.09E-04] [6.69E-04]

Heteroskedasticity robust standard errors in brackets. ∗ indicate statistically significantly different from 0
at 95% level. These parameter estimates are taken from the same regressions for which the pollutant
coefficients are reported in Table 6 (column 4), Table 5 (column 1), and Table 4 (panel A, columns 1,4,and
7). § Elasticities calculated at means of house characteristics as reported in Table 1.
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negative sign. Moreover, for every pollutant, results are unstable across years. These results

suggest the presence of (possibly time-varying) omitted attributes that are correlated with

the pollutants we are studying.

A straightforward way to control for time-invariant unobservables, which may be con-

founding the cross-sectional estimates, is to estimate the fixed-effect model as described

above. Table 5 describes these results, first including all pollutants and then for each pollu-

tant separated. MWTP estimates for SO2 and O3 are stable across the two specifications

(including all pollutants or not), have the expected sign, and are small but not unreasonable

in magnitude. For instance, the results including all pollutants suggest that at the median

housing price of $417,800, a homebuyer would be willing to pay $56 to avoid a 1ppb re-

duction in SO2 and $91 for a similar reduction in O3. MWTP for PM10, however, has

a counterintuitive sign, suggesting the presence of some sort of omitted attribute that was

not adequately controlled for by the house fixed effect. This is the typical sort of bias

encountered in the hedonic valuation of air pollution – desirable unobservables may evolve

over time in conjunction with worsening air pollution (e.g., the opening of new businesses,

or other forms of economic growth). The house fixed effect is unable to control for this sort

of evolving omitted attribute.

O3 appears to be an exception, producing comparable results across the cross sectional

and fixed-effect models. One explanation for this result has to do with the process in which

ground-level ozone is formed. In particular, ozone is the outcome of a photochemical process

that can be easily altered by variations in weather patterns – for example, it can be shut-

down by thick fog or cloud cover, both of which can be quite common in the Bay Area. This

may be a source of exogenous variation in ozone that helps identify its effect separately from

those of time-invariant omitted attributes. Recall also that this intuition is supported by

the low correlations of O3 with the other pollutants as described in Table 10.

Given concerns about time-varying unobservables, it is at this point in the research

process where previous work has turned to some quasi-random source of variation in pollution

to accurately identify MWTP. There is no natural source of quasi-random variation in our

Bay Area data set, so we instead turn to the model based on our assumption of rational

home-buyers. The results of this model for the pollution variables are described in Table 3.

We first consider the results for PM10 in detail. Whereas the fixed-effect estimates of the

MWTP for PM10 had a counterintuitive sign, estimates from our efficient housing market

model imply a statistically significant MWTP to avoid an additional microgram of PM10
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per cubic meter ranging between $88 and $108. Of the pollutants that we study, particulate

matter has received the most attention in the hedonics literature; Smith and Huang (1995)

survey that literature from 1967 to 1988 in the context of a meta-analysis. While those

papers focused on the elasticity of house prices with respect to TSP,8 elasticities are still

comparable to our results. Smith and Huang find elasticities that tend to lie between -0.04

and -0.07. Our results are therefore on the high-end of this range (i.e., -0.071 to -0.088).

Similar biases appear to be present for O3 and SO2, although in neither case is the bias

as severe as in the case of PM10. In the case of SO2, MWTP rises from $56 to $137 in the

case of the model with all pollutants when time-varying unobservables are accounted for,

and $62 to $170 for the single pollutant case. In the case of O3, MWTP rises from $91 to

$172 in the setting with all pollutants and from $99 to $185 for the single pollutant model.

In contrast to the comparison between the cross-sectional and fixed effect models (where the

addition of fixed effects did little to affect MWTP estimates), it appears that time-varying

unobservables do bias downward estimates of the MWTP to avoid O3.

Table 8 describes the results of all three models for non-pollution housing attributes.

For the efficient housing and fixed-effects models, these estimates describe the difference in

the implicit price of each attribute over time (e.g., the difference between the period 3 and

period 2 coefficients on lot-size in the efficient housing model is a statistically significant

5.22 × 10−6). We see that the implicit prices of many attributes associated with larger

homes tend to rise over time under the efficient housing model, while they more often fall

under the fixed-effects model (although this is by no means uniform across all attributes

and many of the estimates are insignificant). The value of newer homes (i.e., year-built)

falls over time in both of these specifications. The cross-sectional coefficient estimates for

non-pollution housing attributes in each period can be easily interpreted as implicit prices.

8Prior to 1987, the EPA measured the concentration of a wide range of particulate matter of vari-
ous sizes, denoted by total suspended particulates (TSP). After 1987, the EPA switched its focus to
”inhalable coarse particles” with diameters between 2.5 and 10 micrometers, and ”fine particles” with
diameters less than 2.5 micrometers. PM10 refers to any particle with a diameter smaller than 10 mi-
crometers. Thes particles, which are the focus of our analysis, are considered to have greater adverse
health consequences becasue of their potential to travel deep into the lungs and even into the bloodstream
(http://www.epa.gov/air/particlepollution/basic.html). They may not, however, be as visible as larger
particles, and may therefore have lower amenity costs.
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5 Conclusion

Our paper demonstrates a new approach to controlling for unobserved product attributes in

hedonic models. In particular, we show how an assumption about the rationality of home-

buyers with respect to the evolution of the omitted housing attribute can be exploited to

identify implicit prices in the context of either fixed or time-varying unobserved product

attributes. We then describe an estimator that can be applied to settings where repeat sales

data are available and our rationality condition is likely to hold.

We use our estimator to recover a consumer’s marginal willingness to pay for clean air

in the Bay Area. Particularly appealing features of our identification strategy are that (i) it

can be easily applied to data from a single, well-defined housing market, and (ii) our main

identification assumption is a necessary condition for something that can be tested (i.e., that

available information at time t should not predict economically significant excess returns in

periods t + 1 and beyond). We find evidence that this assumption is valid for the housing

market in the Bay Area.

We estimate the implicit price of three of the EPA’s criteria air pollutants (PM10, SO2,

and O3). In contrast to fixed-effects methods (which just control for time-invariant omit-

ted attributes) or cross-sectional methods (which ignore correlated omitted attributes alto-

gether), our estimates of the implicit price indicate that consumers value pollution reductions,

and that their MWTP to avoid pollution is significantly larger in magnitude than that found

by other models. Particularly in the case of PM10, it appears that failing to control for

omitted attributes at all or only controlling for time-invariant unobserved attributes leads to

the wrong sign on the estimate of the potential benefits of a pollution reduction policy. Our

estimates suggest that SO2 is also prone to a large bias from ignoring time-varying unob-

servables. Time-varying unobservables associated with ground-level ozone, while important,

do not appear to lead to as large of a bias.

To be clear, while our approach works well in this context, we are not claiming that it

will be superior to quasi-random approaches in all applications. The identifying assump-

tions in our approach and quasi-random approaches are not nested, and the plausibility of

either set of assumptions depends on the particular application and data one is using. Our

approach may be preferable when a legitimate source of quasi-randomness cannot be found,

or when one is available but it generates insufficient exogenous variation in the variable of
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interest. On the other hand, quasi-randomness will be preferable if there is reason to sus-

pect that our rationality assumption is violated (e.g., if there is strong serial correlation in

the stochastic innovation of the omitted housing attribute). In empirical work, we advise

applied researchers to test the sensitivity of results to alternative identifying assumptions

when they are available.
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Appendix

A Nonparametric Hedonic Pricing Equations: Gener-

alization

Consider the generalized system of hedonic pricing equations:

ln(pj,t) = αt + ht(xj,t) + ξj,t for t = 1, . . . , T

where we normalize ht(0) = 0 and ht(·) is nonparametrically specified. Similar to (4), we

obtain

ln(pj,t′) = αt′ + ht′(xj,t′) + ξj,t′ (8)

= αt′ + ht′(xj,t′) + γ(t, t′) [ln(pj,t)− αt − ht(xj,t)] + η(j, t, t′)

= (αt′ − γ(t, t′)αt) + γ(t, t′) ln(pj,t)

−γ(t, t′)ht(xj,t) + ht′(xj,t′) + η(j, t, t′).

To deal with endogeneity of xj,t′ (which may be correlated with η(j, t, t′)), we exploit the

process that describes the evolution of xj,t over time. We assume

xj,t′ = gt,t′(xj,t, wj,t) + vj,t,t′ E[vj,t,t′|It] = 0 (9)

In words, the innovation in the observed attributes is orthogonal to time t information where

wj,t denotes other observable variables in It. Also we assume that

η(j, t, t′) = τ(t, t′)vj,t,t′ + εj,t,t′ (10)

where τ(t, t′) is the 1 × K parameter vector. These assumptions imply that xj,t′ evolves

according to the process described in (9), but that the innovation in xj,t′ may be correlated

with the innovation in the omitted attribute. Applying assumptions (9) and (10) to (8), we
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obtain

ln(pj,t′) = (αt′ − γ(t, t′)αt) + γ(t, t′) ln(pj,t) (11)

−γ(t, t′)ht(xj,t) + ht′(xj,t′) + τ(t, t′)vj,t,t′ + εj,t,t′ .

Our identification and estimation methods are then based on the following moment condition

E [εj,t,t′|It, vj,t,t′ ] = 0.

This moment condition states that after controlling for time t information It and the innova-

tion in the observed attributes vj,t,t′ , the innovation in the omitted attribute has an expected

value of zero. This moment condition motivates the use of a control function approach

– in the first step, estimate equation (9) and obtain fitted residuals, v̂j,t,t′ ; in the second

step, include v̂j,t,t′ (K × 1) as additional regressors in (4), so we use one control for each

endogenous product attribute xj,k,t′ , k = 1, . . . , K.

A.1 Identification and Estimation

In order to show how the model described in Section 2 generalizes to more than two trans-

actions, suppose for each house j we observe transaction prices on three occasions, denoted

by ta(j), tb(j), and tc(j) such that 1 ≤ ta(j) < tb(j) < tc(j) ≤ T . The result in this section

can also be extended to four or more repeat sales. Here we assume that all the elements

in xj,t are time-varying. If some components in xj,t are time invariant, we need to assume

that implicit prices of those time invariant attributes are constant over time by the reason

explained in Section 2.2.

We write (11) for several time periods (assuming that we have enough observations of
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transaction prices for each time period9) such that

ln(pj,tb) = αtb − γ(ta, tb)αta + γ(ta, tb) ln(pj,ta)− γ(ta, tb)hta(xj,ta)

+htb (xj,tb) + τ(ta, tb)vj,ta,tb + εj,ta,tb

ln(pj,tc) = αtc − γ(tb, tc)αtb + γ(tb, tc) ln(pj,tb)− γ(tb, tc)htb(xj,tb)

+htc (xj,tc) + τ(tb, tc)vj,tb,tc + εj,tb,tc .

Estimation proceeds based on the following moment conditions:

E[xj,tb − gta,tb(xj,ta , wj,ta)|1, xj,ta , wj,ta ] = 0 (12)

E[εj,ta,tb|1, ln(pj,ta), xj,ta , xj,tb , vj,ta,tb , wj,ta ] = 0 (13)

E[xj,tc − gtb,tc(xj,tb , wj,tb)|1, xj,tb , wj,tb ] = 0 (14)

E[εj,tb,tc |1, ln(pj,tb), xj,tb , xj,tc , vj,tb,tc , wj,tb ] = 0 (15)

where wj,t denotes other observable covariates in It. From (12) we identify gta,tb(·) (along

with vj,ta,tb), and from (13) we identify αtb − γ(ta, tb)αta , γ(ta, tb), hta(xj,ta), htb (xj,tb), and

τ(ta, tb). Similarly from (14) we identify gtb,tc(·) (along with vj,tb,tc) and from (15) we identify

αtc − γ(tb, tc)αtb , htb(xj,tb), htc (xj,tc), and τ(tb, tc).

These may be run as two separate sets of estimations – i.e., one is based on (12) and (13)

and the other based on (14) and (15). We note, however, that htb(xj,tb) is over-identified from

the moment conditions, which suggests combining all the moment conditions and performing

a nonlinear nonparametric estimation. Having set-up the moment conditions in (12)-(15),

one can cast them into Ai and Chen (2003)’s framework and estimate all the parameters

(including nonparametric functions) simultaneously. The consistency of the estimators and

the asymptotic normality of the parametric components can be obtained following Ai and

Chen (2003).

Once we estimate the hedonic function, another parameter of interest will be the weighted

average derivative of the log housing price (ln(pj,t′)) with respect to the observed character-

istic xj,t for t ≤ t′, defined by

E

[
λ(xj,t)

∂ ln(pj,t′)

∂xj,t

]
. (16)

9To be precise, 1
J

∑J
j=1 1{ta(j) = t or tb(j) = t or tc(j) = t} −→

J→∞
C > 0 for all t = 1, . . . , T .
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This can be estimated using its sample analogue,

1

J

J∑
j=1

λ(xj,t)
∂ ln(pj,t′)

∂xj,t

≈ 1

J

J∑
j=1

λ(xj,t)
∂ ̂ln(pj,t′)

∂xj,t

where ̂ln(pj,t′) is the fitted log price function. The weight λ(·) satisfies λ(·) ≥ 0 and∫
λ(x)dx = 1. In the literature, estimated implicit prices

∂ ̂ln(pj,t′ )

∂xj,t
are commonly used

to recover valuation for non-market amenities such as clean air or public school quality.

Since
∂ ln(pj,t′ )

∂xj,t
varies across homeowners in the population, the function λ(xj,t) allows the

researcher to aggregate these heterogeneous marginal benefits. The scalar (16) summarizes

the average marginal benefit from an increase in the amount of some characteristic xj,t in

time period t and is often used to measure welfare from a policy change.
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