
Risk Preferences Are Not Time Preferences∗

James Andreoni†

University of California, San Diego

and NBER

Charles Sprenger‡

University of California, San Diego

January 25, 2010

Abstract

Risk and time are intertwined. The present is known while the future is
inherently risky. Discounted expected utility provides a simple, coherent struc-
ture for analyzing decisions in intertemporal, uncertain environments. Critical
to such analysis is the notion that certain and uncertain utility are functionally
interchangeable. We document an important and robust violation of discounted
expected utility, which is essentially a violation of this interchangeability. In pa-
rameter estimations, certain utility is found to be almost linear while uncertain
utility is found to be substantially more concave. These results have implications
for discounted expected utility theory and decision theory in general. Applica-
tions are made to dynamic inconsistency, the uncertainty effect, the estimation
of risk preferences, and probability weighting.
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1 Introduction

“. . . I viewed the principle of independence as incompatible with the preference for

security in the neighbourhood of certainty. . . this led me to devise some counter-

examples. One of them, formulated in 1952, has become famous as the ‘Allais

Paradox’. Today, it is as widespread as its real meaning is generally misunder-

stood.” (Allais, 2008, p. 4-5)

Research on decision making under uncertainty has a long tradition. A core of

tools designed to explore risky decisions has evolved, pinned down by the Savage (1954)

axioms and the expected utility (EU) framework. There are, however, a number of well-

documented departures from EU such as the Allais (1953) common consequence and

common ratio paradoxes whose featured ‘certainty effects’ informed the development of

prospect theory (PT) (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992).

More recently, several authors have documented an ‘uncertainty effect’ (Gneezy, List

and Wu, 2006; Simonsohn, 2009), incompatible with either PT or EU, where lotteries

are valued lower than the certainty of their worst possible outcome.

An organizing principle behind these important violations of expected utility is

that they seem to arise in situations where certainty and uncertainty are combined.

Indeed this is exactly the desired demonstration of the Allais Paradox.1 Allais (1953,

p. 530) argued that when two options are far from certain, individuals act effectively as

expected utility maximizers, while when one option is certain and another is uncertain

a disproportionate preference for certainty prevails.2

In few decision environments is the mix of certainty and uncertainty more prevalent

than intertemporal settings. The present is certain, while the future is inherently risky.

1The common consequence paradox became known as the ‘Allais paradox’, and is presented prior
to the common ratio paradox in Allais (1953).

2Allais’ intuition has at least partially carried through to economic experiments. In reviews of
the experimental literature, Camerer (1992); Harless and Camerer (1994); Starmer (2000) note that
violations of expected utility are less prevalent when all options are uncertain (i.e., on the interior of
the Marschak-Machina triangle).
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The discounted expected utility (DEU) model is the standard approach to addressing

decision-making in such contexts. Interestingly, there are relatively few noted violations

of the expected utility aspect of the DEU model.3

We document an important violation of expected utility in an intertemporal setting.

An implication of the standard DEU model is that intertemporal allocations should

depend only on relative intertemporal risk. For example, if sooner consumption will

be realized 50% of the time and later consumption will be realized 50% of the time,

intertemporal allocations should be identical to a situation where all consumption is

risk-free. This is because the two situations share a common ratio of probabilities.

In an experiment with 80 undergraduate subjects at the University of Califor-

nia, San Diego, we implement Andreoni and Sprenger (2009a) Convex Time Budgets

(CTBs) under varying risk conditions. With CTBs individuals are asked to allocate

a budget of experimental tokens to sooner and later payments. The relative value

of sooner versus later tokens determines the gross interest rate. CTB allocation deci-

sions are therefore equivalent to intertemporal optimization subject to a convex budget

constraint. Andreoni and Sprenger (2009a) show that preference parameters for both

discounting and utility function curvature are easily estimable from CTB allocations.

We implement CTBs in two baseline within-subject risk conditions: 1) A risk-free

condition where all payments, both sooner and later, will be paid 100% of the time;

and 2) a risky condition where, independently, sooner and later payments will be paid

only 50% of the time. Under the standard DEU model, CTB allocations in the two

conditions should be identical. The pattern of results clearly violates DEU and is

further inconsistent with non-EU concepts such as probability weighting (e.g., Tversky

3Loewenstein and Thaler (1989) and Loewenstein and Prelec (1992) document a number of anoma-
lies in the discounting aspect of discounted utility models. Machina (1989) demonstrates that non-EU
preferences generate dynamic inconsistencies and Halevy (2008) shows that hyperbolic discounting
can be reformulated in terms of non-EU probability weighting. The only evidence of intertemporal
violations of EU known to the authors is Baucells and Heukamp (2009) and Gneezy et al. (2006) who
show that temporal delay can generate an effect akin to the classic common ratio effect and that the
uncertainty effect is present for hypothetical intertemporal decisions, respectively.
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and Fox, 1995). In estimations of utility parameters, aggregate discounting is found to

be around 30% per year, close to the findings of Andreoni and Sprenger (2009a), and

is virtually identical in both conditions. Interestingly, subjects exhibit almost linear

preferences in the risk-free first condition, but substantial utility function curvature in

the risky second condition.

A foundational assumption in the construction of the DEU model is the assumption

that utility is continuous in probability. Continuity in probability implies that certain

and uncertain utility are functionally identical.4 We term this ‘interchangeability’.

The importance of interchangeability is clear: it implies that time-dated consump-

tion is evaluated using the same utility function whether this consumption is risky

or risk-free. The DEU violation we identify is more clearly viewed as a violation of

interchangeability. Our results suggest a real difference between the utility parameters

that govern the evaluation of certain and uncertain outcomes.

To explore interchangeability in greater detail, we examine four additional experi-

mental conditions with differential risk. In the first two conditions one payment, either

sooner or later, is paid 50% of the time while the other is paid only 40% of the time.

Allais argued that in these situations, far from certainty, individuals should behave ap-

proximately as expected utility maximizers. Indeed they do. In two further conditions,

one payment is certain while the other is paid only 80% of the time. We demonstrate a

disproportionate preference for certain payments that is inconsistent with interchange-

ability, but can be readily resolved if certain and uncertain consumption are evaluated

using different preference parameters. The observed effects are closely in line with the

desired demonstration of the Allais paradox.

Our results have substantial implications for both experimental research on time

4Continuity defined over lotteries states that given any three lotteries in the domain of possible
lotteries with a preference ordering x1 � x2 � x3, there exists a probability, p ∈ [0, 1], such that
x2 ∼ p◦x1 +(1−p)◦x3. If no such p exists, then utility is discontinuous in probability. If certain and
uncertain utility are different and x2 is a certain outcome (degenerate lottery), then it is possible to
find a set of three lotteries for which there will exist no probability mixture satisfying the definition
of continuity (see Andreoni and Sprenger (2009b) for discussion).
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and risk preferences and theoretical developments based on the DEU model. Specific

applications of our results can be made to hyperbolic discounting, the existence of

an uncertainty effect, the measurement of risk preferences, and the identification of

probability weighting. First, much attention has been given to dynamic inconsisten-

cies such as quasi-hyperbolic discounting. We demonstrate that the quasi-hyperbolic

pattern of discounting can be generated by differential assessment of certain and un-

certain consumption, rather than that of present and future consumption. Second,

the existence of an uncertainty effect is impossible in both EU and PT.5 However, if

certain and uncertain consumption are evaluated with different utility parameters, the

uncertainty effect is no longer anomalous. Third, in the experimental measurement

of risk preferences, subjects are often asked to give certainty equivalents for uncertain

lotteries. Such methodology frequently generates extreme measures of risk aversion

at odds with standard EU theory (Rabin, 2000). Our results suggest that one could

potentially resolve this issue by allowing for differential assessment of certain and un-

certain consumption. Fourth, probability weighting phenomena are generally identified

from certainty equivalents experiments similar to those employed to measure risk pref-

erences.6 Our results indicate that differences between certain and uncertain utility

can generate probability weighting phenomena.

The paper proceeds as follows: Section 2 presents a conceptual development of

discounted expected utility, building to a testable hypothesis of decision making in

certain and uncertain situations. Section 3 describes our experimental design. Section

4 presents results and Section 5 is a discussion and conclusion.

5In fact the uncertainty effect will be at odds with any utility theory satisfying a betweenness
property (Camerer and Ho, 1994).

6For example, in Tversky and Fox (1995), subjects were asked to provide the certainty equivalent x
of a lottery with empirical probability p and payout y. Assuming a power utility function, v(x) = xα,
with α = 0.88 obtained by Tversky and Kahneman (1992), the authors then back out the probability
weight, π(p) as the the value that solves xα = π(p)yα.
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2 Conceptual Background

The continuity-in-probability of expected utility frequently assumed in decision theory

implies that individuals assess certain consumption identically to uncertain consump-

tion. Let v(c) be some utility function for certain consumption and u(c) be a utility

function for uncertain consumption, assumed to be separable and linearly additive

over probabilistic states. Then accepted methodology relies on this assumption:

Assumption: Interchangeability. Individuals evaluate consumption, c, obtained

under certainty and uncertainty in an identical manner, that is u(c) ≡ v(c).

When decisions are intertemporal and utility is time separable, interchangeability

gives rise to the standard DEU model:

U = v(ct) +
T∑
k=0

δkE[v(ct+k)]

where present consumption is certain while future consumption is both discounted and

uncertain. The expectation, E[·], is taken via a standard linear-in-probabilities weight-

ing over N states: E[v(ct+k)] =
∑N

s=1 psv(ct+k,s) =
∑N

s=1 psu(ct+k,s). If all consumption

is certain, the expectation disappears:

Ũ = v(ct) +
T∑
k=0

δkv(ct+k).

If consumption at time t will be realized only with probability p1 while later consump-

tion will be realized with probability p2, utility is:

˜̃U = p1v(ct) +
T∑
k=0

p2δ
kv(ct+k) + Z

where Z represents a sum of discounted and linear probability-weighted v(0) terms.
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In this framework, we consider two risky prospects temporally separated by k peri-

ods. Let the first prospect yield ct with probability p1 and zero otherwise. Let the sec-

ond prospect yield ct+k with probability p2 and zero otherwise. Assume 0 ≤ p1, p2 ≤ 1.

Under the standard construction, utility is

p1v(ct) + p2δ
kv(ct+k) + ((1− p1) + (1− p2)δ

k)v(0).

Suppose an individual maximizes utility subject to the future value budget constraint

(1 + r)ct + ct+k = m,

yielding the marginal condition

v′(ct)

δkv′(ct+k)
= (1 + r)

p2

p1

.

The tangency condition, in combination with the budget constraint, generally yields

solution functions of the form

ct = c∗t (p1/p2; k, 1 + r,m).

A key observation in this construction is that intertemporal allocations will depend

only on the relative risk, p1/p2, and not on p1 or p2 separately. If p1/p2 = 1, for

p1 = p2 < 1, then behavior should be identical to a risk-free situation. This is a

critical and testable implication of the DEU model.7

Hypothesis: For any (p1, p2) and (p′1, p
′
2) where p1/p2 = p′1/p

′
2, c
∗
t (p1/p2; k, 1+r,m) =

c∗t (p
′
1/p
′
2; k, 1 + r,m).

7Note that restricting discounting to be exponential is an unnecessary simplification. Discounting
could take a general form D(t, k) and the implication would be maintained.

6



Readers will note this hypothesis is an intertemporal statement of the common

ratio property of expected utility. However, it is important to understand the degree

to which this common ratio hypothesis hinges upon interchangeability. If u(c) 6= v(c),

then there is no reason to expect c∗t (p1/p2; k, 1 + r,m) = c∗t (1/1, k, 1 + r,m) when

p1 = p2 < 1. This is because the marginal conditions in the two situations will

generally be satisfied at different allocation levels.8 Additionally, there is no reason

to expect c∗t (p1/p2; k, 1 + r,m) = c∗t (p
′
1/1, k, 1 + r,m) when p1/p2 = p′1 and p′2 = 1 or

c∗t (p1/p2; k, 1 + r,m) = c∗t (1/p
′
2, k, 1 + r,m) when p1/p2 = 1/p′2 and p′1 = 1.

In our later exposition it will be notationally convenient to use θ to indicate the

risk adjusted gross interest rate:

θ = (1 + r)
p2

p1

such that the tangency can be written as:

v′(ct)

δkv′(ct+k)
= θ

Provided that v′(·) > 0, v′′(·) < 0, c∗t will be increasing in p1/p2 and decreasing in 1+r.

As such, c∗t will be decreasing in θ. Note, as well the income effect implication that, for

a given θ, c∗t will be decreasing in 1 + r. An increase in the interest rate will both raise

the relative price of sooner consumption and reduce the available consumption set.

3 Experimental Design

In order to explore the evaluation of certain and uncertain intertemporal consumption,

an experiment using Andreoni and Sprenger (2009a) Convex Time Budgets under vary-

8In the risky situation the marginal condition will be u′(ct)/δku′(ct+k) = (1 + r)p2/p1 = (1 + r),
while in the risk-free situation the condition will be: v′(c′t)/δ

kv′(c′t+k) = (1 + r). And c′t = ct; c′t+k =
ct+k only if the marginal utility functions u′(·) and v′(·) are equal. Though this may occur with
u(·) 6= v(·), it generally will not.
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ing risk conditions was conducted at the Univeristy of California, San Diego in April

of 2009. In each CTB decision, subjects were given a budget of experimental tokens

to be allocated across a sooner payment, paid at time t, and a later payment, paid at

time t + k, k > 0. Two basic CTB environments consisting of 7 allocation decisions

each were implemented under six different risk conditions. This generated a total of

84 experimental decisions for each subject.

3.1 CTB Design Features

Choice of t and k: Sooner payments in each decision were always seven days from

the experiment date (t = 7 days). We chose this ‘front-end-delay’ to avoid any direct

impact of immediacy on decisions and to help eliminate differential transactions costs

across sooner and later payments.9 In one of the basic CTB environments, later pay-

ments were delayed 28 days (k = 28) and in the other, later payments were delayed 56

days (k = 56). The choice of t and k combinations was determined by the academic

calendar. Payment dates were set to avoid holidays, school vacation days and final

examination week. Payments were scheduled to arrive on the same day of the week (t

and k are both multiples of 7), to avoid differential weekday effects.

Token Budgets and Interest Rates: In each CTB decision, subjects were given a

token budget of 100 tokens. Tokens allocated to the sooner experimental payment

had a value of at while tokens allocated to the later experimental payment had a

value of at+k. In all cases, at+k was $.20 per token and at varied from $.20 to $.14

per token. Note that at+k/at = (1 + r), the gross interest rate over k days, and

(1 + r)1/k − 1 gives the standardized daily net interest rate. Daily net interest rates

in the experiment varied considerably across the basic budgets, from 0 to 1.3 percent,

implying annual interest rates of between 0 and 2100 percent (compounded quarterly).

9See below for the recruitment and payment efforts that allowed sooner payments to be imple-
mented in the same manner as later payments. For discussions of front-end-delays in time preference
experiments see Coller and Williams (1999); Harrison, Lau, Rutstrom and Williams (2005).
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Table 1 shows the token values, gross interest rates, standardized daily interest rates

and corresponding annual interest rates for the basic CTB budgets.

Table 1: Basic Convex Time Budget Decisions

t (start date) k (delay) Token Budget at at+k (1 + r) Daily Rate (%) Annual Rate (%)

7 28 100 0.2 0.2 1.00 0 0
7 28 100 0.19 0.2 1.05 0.18 85.7
7 28 100 0.18 0.2 1.11 0.38 226.3
7 28 100 0.17 0.2 1.18 0.58 449.7
7 28 100 0.16 0.2 1.25 0.80 796.0
7 28 100 0.15 0.2 1.33 1.03 1323.4
7 28 100 0.14 0.2 1.43 1.28 2116.6

7 56 100 0.2 0.2 1.00 0 0
7 56 100 0.19 0.2 1.05 0.09 37.9
7 56 100 0.18 0.2 1.11 0.19 88.6
7 56 100 0.17 0.2 1.18 0.29 156.2
7 56 100 0.16 0.2 1.25 0.40 246.5
7 56 100 0.15 0.2 1.33 0.52 366.9
7 56 100 0.14 0.2 1.43 0.64 528.0

Risk Conditions: The basic CTB decisions described above were implemented in

a total of six risk conditions. Let p1 and p2 be the probabilities that payment would

be made for the sooner and later payments, respectively. The six conditions were

(p1, p2) ∈ {(1, 1), (0.5, 0.5), (1, 0.8), (0.5, 0.4), (0.8, 1), (0.4, 0.5)}. For each payment in-

volving uncertainty, a ten-sided die was rolled at the end of the experiment to determine

whether the payment would be sent or not. Hence, p1 and p2 were independent and

subjects were explained that different random numbers would determine their sooner

and later payments.10

The risk conditions have several features. To begin, the first and second conditions

share a common ratio of p1/p2 = 1, the third and fourth conditions share a com-

mon ratio of p1/p2 = 1.25, and the fifth and sixth conditions share a common ratio

of p1/p2 = 0.8. Discounted expected utility predicts identical behavior across each

10See Appendix A.3 for the payment instructions provided to subjects.
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pair of conditions. Additionally, all of the odd conditions feature at least one certain

payment, while all of the even conditions feature only uncertainty. If there exists a

disproportionate preference for certainty, it should become apparent in cross-condition

comparisons. That is, subjects should disproportionately prefer the sooner payment

when it is certain in the third condition and the later payment when it is certain in the

fifth condition. Lastly, across conditions the sooner payment goes from being relatively

less risky, p1/p2 = 1.25, to relatively more risky, p1/p2 = 0.8. Following the discussion

of Section 2, subjects should respond to changes in relative risk, allocating smaller

amounts to sooner payments when relative risk is low.

3.2 Implementation and Protocol

One of the most challenging aspects of implementing any time discounting study is

making all choices equivalent except for their timing. That is, transactions costs as-

sociated with receiving payments, including physical costs and confidence, must be

equalized across all time periods. We took several unique steps in our subject recruit-

ment process and our payment procedure in order to equate transaction costs over

time.

3.2.1 Recruitment and Experimental Payments

In order to participate in the experiment, subjects were required to live on campus.

All campus residents are provided with an individual mailbox at their dormitory to use

for USPS and campus mail. Each mailbox is locked and individuals have keyed access

24 hours per day. We recruited 80 undergraduate students fitting this criterion.

All payments, both sooner and later, were placed in subjects’ campus mailboxes,

which allowed us to equate physical transaction costs across sooner and later payments.

Subjects were fully informed of the method of payment.11

11See Appendix A.2 for the information provided to subjects.
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Several other unique measures were also taken to equate transaction costs. Upon

beginning the experiment, subjects were told that they would receive a $10 minimum

payment for participating, to be received in two payments: $5 sooner and $5 later.

All experimental earnings were added to these $5 minimum payments. Two blank

envelopes were provided. After receiving directions about the two minimum payments,

subjects addressed the envelopes to themselves at their campus mailbox. At the end of

the experiment, subjects wrote their payment amounts and dates on the inside flap of

each envelope such that they would see the amounts written in their own handwriting

when payments arrived.

One choice for each subject was chosen for payment by drawing a numbered card

at random. All experimental payments were made by personal check from Professor

James Andreoni drawn on an account at the university credit union.12 Subjects were

informed that they could cash their checks (if they so desired) at the university credit

union. They were also given the business card of Professor James Andreoni and told

to call or email him if a payment did not arrive and that a payment would be hand-

delivered immediately.

3.2.2 Instrument and Protocol

The experiment was done with paper and pencil. Upon entering the lab subjects were

read an introduction with detailed information on the payment process and a sample

decision with different payment dates, token values and payment risks than those used

in the experiment.13 Subjects were informed that they would work through 6 decision

tasks. Each task consisted of 14 CTB decisions: seven with t = 7, k = 28 on one

12Payment choice was guided by a separate survey of N = 249 undergraduate economics students
eliciting payment preferences. Personal checks from Professor Andreoni, Amazon.com gift cards,
PayPal transfers and the university stored value system TritonCash were each compared to cash
payments. Subjects were asked if they would prefer a twenty dollar payment made via each payment
method or $X cash, where X was varied from 19 to 10. Personal check payments were found to have
the highest cash equivalent value.

13See Appendix A.3 for introductory text, instructions and examples.
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sheet and seven with t = 7, k = 56 on a second sheet. Each decision sheet featured

a calendar, highlighting the experiment date, and the sooner and later payment dates,

allowing subjects to visualize the payment dates and delay lengths.

Figure 1 shows a sample decision sheet. Identical instructions were read at the

beginning of each task providing payment dates and the chance of being paid for each

decision. Subjects were provided with a calculator and a calculation sheet transforming

tokens to payments amounts at various token values.

Four sessions were conducted over two days. Two orders of risk conditions were

implemented to examine order effects.14 Each day consisted of an early session (12

pm) and a late session (2 pm). The early session on the first day and the late session

on the second day share a common order as do the late session on the first day and

the early session on the second day. No identifiable order or session effects were found

(see Section 4.1).

14In one order, (p1, p2) followed the sequence (1, 1), (1, 0.8), (0.8, 1), (0.5, 0.5), (0.5, 0.4), (0.4, 0.5),
while in the second it followed (0.5, 0.5), (0.5, 0.4), (0.4, 0.5), (1, 1), (1, 0.8), (0.8, 1).
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4 Results

The results are presented in two broad sections. First, we examine behavior in the two

baseline conditions: (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5). We document a critical

violation of the DEU model and show that the pattern of results is generally incompat-

ible with various probability weighting concepts. In estimates of utility parameters, we

show clear differences between the utility functions for certain and uncertain consump-

tion. Second, we explore behavior in two further contexts: one where all payments

are uncertain, but there is differential risk; and another where one payment is certain

while the other is uncertain. We demonstrate a pattern of behavior consistent with

the notion that individuals behave as expected utility maximizers away from certainty

but exhibit a disproportionate preference for certainty when it is available.

4.1 Behavior Under Certainty and Uncertainty

Section 2 provided a testable hypothesis for behavior across certain and uncertain

intertemporal settings. For a given (p1, p2), if p1 = p2 < 1 then behavior should be

identical to a similarly dated risk-free prospect, (p1 = p2 = 1), at all gross interest

rates, 1 + r, and all delay lengths, k.15 Figure 2 graphs aggregate behavior for the

conditions (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5) across the experimentally varied

gross interest rates and delay lengths. The mean earlier choice of ct is graphed along

with error bars corresponding to 95 percent confidence intervals (+/− 1.96 standard

errors).

Under the DEU model, behavior should be identical across the two conditions. We

find strong evidence to the contrary. In a hypothesis test of equality across the two

conditions, the overall difference is found to be highly significant: F14,2212 = 15.66, p <

.001.16

15We ignore m because the experimental budget was held constant across all choices.
16Test statistic generated after analysis of variance with 2240 observations (28 per subject × 80

subjects) controlling for levels of interest rate (6 degrees of freedom), delay length (1 d.f), (interest
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Figure 2: Aggregate Behavior Under Certainty and Uncertainty
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Note: The figure presents aggregate behavior for N = 80 subjects under two conditions:
(p1, p2) = (1, 1), i.e. no risk, in blue; and (p1, p2) = (0.5, 0.5), i.e. 50% chance sooner
payment would be sent and 50% chance later payment would be sent, in red. t = 7 days
in all cases, k ∈ {28, 56} days. Error bars represent 95% confidence intervals, taken
as +/ − 1.96 standard errors of the mean. Test of H0 : Equality across conditions:
F14,2212 = 15.66, p < .001.

Stylistically, the data follow an interesting pattern. Behavior in both (p1, p2) =

(1, 1) and (0.5, 0.5) conditions respect increasing interest rates. Allocations to sooner

payments decrease as interest rates rise. At low interest rates, ct allocations are sub-

rate) × (delay length) (6 d.f) and (risk condition) × (interest rate) × (delay length) (14 d.f). 2240 -
6 - 1 - 6 - 14 - 1(constant) = 2212 d.f. The F -test corresponds to testing the null hypotheses that the
14 (risk condition) × (interest rate) × (delay length) terms have zero explanatory power. ANOVA
results available on request.
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stantially higher in the (1, 1) condition. However, as the gross interest rate increases,

(1, 1) allocations drop steeply, crossing over the graph of the (0.5, 0.5) condition.17 This

cross-over in behavior is particularly puzzling from a classical decision theory perspec-

tive and is in clear violation of discounted expected utility. Though this is suggestive

evidence against interchangeability, we must first consider possible alternative expla-

nations. Principal among these is Prospect Theory and, in particular, the existence of

probability weighting (Tversky and Fox, 1995).

Probability weighting states that individuals ‘edit’ probabilities internally via a

weighting function, π(p). π(p) is monotonically increasing in the interval [0, 1], but

is S -shaped, such that low probabilities are up-weighted and high probabilities are

down-weighted. Standard probability weighting is unable to explain the phenomena

observed in Figure 2. If p1 = p2, then π(p1) = π(p2); π(p1)/π(p2) = 1 and behavior

should again be identical to a risk-free situation.

Another potential explanation is that probabilities are weighted by their temporal

proximity (Halevy, 2008). Under this formulation, subjective probabilities are arrived

at through some temporally dependent function g(p, t) : [0, 1] × <+ → [0, 1] where

t represents the time at which payments will be made. Provided freedom to pick

the functional form of g(·) one could easily arrive at differences between the ratios

g(1, t)/g(1, t+ k) and g(0.5, t)/g(0.5, t+ k).18

These differences lead to a new risk adjusted interest rate similar to the θ defined

17This difference in allocations across conditions is obtained for all sessions and for all orders indi-
cating no presence of order or day effects. Results available on request.

18Halevy (2008) gives the example of g(p, t) = g(pt) such that g(0) = 0; g(1) = 1. In this case:

g(1, t)
g(1, t+ k)

=
g(1t)
g(1t+k)

= 1 6= g(0.5, t)
g(0.5, t+ k)

=
g(0.5t)
g(0.5t+k)

provided g(·) does not take on identical values at 0.5t and 0.5t+k. If one further assumes g(·) is strictly
monotonic and differentiable such that g′(·) > 0, then

g(1, t)
g(1, t+ k)

=
g(1t)
g(1t+k)

= 1 <
g(0.5, t)

g(0.5, t+ k)
=

g(0.5t)
g(0.5t+k)
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in Section 2

θ̃p1,p2 ≡
g(p2, t+ k)

g(p1, t)
(1 + r).

Note that either θ̃1,1 > θ̃0.5,0.5 for all (1+r) or θ̃1,1 < θ̃0.5,0.5 for all (1+r), depending on

the form of g(·) chosen. As such, once one obtains a prediction as to the relationship

between θ̃1,1 and θ̃0.5,0.5, it must hold for all gross interest rates.

Provided a concave utility function, ct allocations should be decreasing in θ̃. As

such, one should never observe the cross-over in behavior where for one gross interest

rate ct allocations are higher when (p1, p2) = (1, 1) and for another gross interest rate ct

allocations are higher when (p1, p2) = (0.5, 0.5). This cross-over, which is observed in

our data, is not consistent with temporally dependent probability weighting of the form

proposed by Halevy (2008). Given the freedom granted in choosing the function g(·),

even some hybrid of temporally dependent weighting and probability editing would be

generally unable to generate this switch in behavior.

4.1.1 Estimating Risk-Dependent Preferences

The observed data in the cases of (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5) are in-

consistent with the interchangeability assumption of the DEU model and are difficult

to reconcile with notions of probability weighting. Whereas allocations of ct when

(p1, p2) = (1, 1) vary substantially with the interest rate, the sensitivity of allocations

to interest rates is lower when (p1, p2) = (0.5, 0.5).

The sensitivity of intertemporal allocations to interest rates, that is the elasticity

of intertemporal substitution, is generally determined by both time preferences and

utility function curvature. Our experimental design allows us to identify and, given

some structural assumptions, estimate both discounting and curvature. Following the

methodology outlined in Andreoni and Sprenger (2009a), we assume the utility function

v(ct) = (ct − ω)α,
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where α represents utility function curvature and ω is a background parameter that

could be interpreted as Stone-Geary minima.19 Under this formulation of the DEU

model, the solution function c∗t can be written as

c∗t (p1/p2, t, k, 1+r,m) =
[1− (p2

p1
(1 + r)δk)

1
α−1 ]

[1 + (1 + r)(p2
p1

(1 + r)δk)
1

α−1 ]
ω+

[(p2
p1

(1 + r)δk)
1

α−1 ]

[1 + (1 + r)(p2
p1

(1 + r)δk)
1

α−1 ]
m,

or

c∗t (θ, t, k, 1 + r,m) =
[1− (θδk)

1
α−1 ]

[1 + (1 + r)(θδk)
1

α−1 ]
ω +

[(θδk)
1

α−1 ]

[1 + (1 + r)(θδk)
1

α−1 ]
m. (1)

We estimate the parameters of this function via non-linear least squares with stan-

dard errors clustered on the individual level to obtain α̂, δ̂ and ω̂. An estimate of

the annual discount rate is generated as 1/δ̂365 − 1, with corresponding standard error

obtained via the delta method.

Table 2 presents discounting and curvature parameters estimated from the two

conditions (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5). In column (1), we estimate a

baseline model where discounting and curvature are restricted to be identical across

the two risk conditions. The aggregate discount rate is estimated to be around 27%

per year and aggregate curvature is estimated to be 0.98.

In column (2) we estimate separate discounting and curvature parameters for the

two risk conditions. That is, we estimate a risk-free v(·) and a risky u(·). Discounting

is found to be similar across the conditions at around 30% per year.20 In the risk-

free condition, (p1, p2) = (1, 1), we find almost linear utility while in the the risky

condition, (p1, p2) = (0.5, 0.5), we estimate utility to be markedly more concave. A

similar result is observed in column (3) where discounting is restricted to be the same

19Frequently in the time preference literature, the simplification ω = 0 is imposed or ω is interpreted
as negative background consumption and calculated from an external data source. In Andreoni and
Sprenger (2009a) we show the sensitivity of parameter estimates to these simplifications.

20For comparison, Andreoni and Sprenger (2009a) find aggregate discount rate between 30-37% and
aggregate curvature of around 0.92 in risk-free situations.
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Table 2: Discounting and Curvature Parameter
Estimates

(1) (2) (3)

α̂ 0.982
(0.002)

α̂(1,1) 0.988 0.988
(0.002) (0.002)

α̂(0.5,0.5) 0.885 0.883
(0.017) (0.017)

Annual Rate 0.274 0.284
(0.035) (0.037)

Annual Rate(1,1) 0.282
(0.036)

Annual Rate(0.5,0.5) 0.315
(0.088)

ω̂ 3.608 2.417 2.414
(0.339) (0.418) (0.418)

R2 0.642 0.673 0.673
N 2240 2240 2240
Clusters 80 80 80

Notes: NLS solution function estimators. Subscripts
refer to (p1, p2) condition. Column (1) imposes the IA,
v(·) = u(·). Column (2) allows different curvature and
different discounting in each (p1, p2) condition. Col-
umn (3) allows only different curvature in each each
(p1, p2) condition. Annual discount rate calculates as
(1/δ̂)365 − 1, standard errors calculated via the delta
method.

across risk conditions. Hypotheses of equal utility function curvature across conditions

are rejected in both specifications: F1,79 = 37.97, p < .001; F1,79 = 38.09, p < .001,

respectively. To illustrate how well these estimates fit the data, Figure 2 also displays

solid lines corresponding to predicted behavior based on the parameters estimated in

column (3). The general pattern of aggregate responses is well matched.21

21Figure 2 additionally reports separate R2 values for the two conditions: R2
1,1 = 0.594; R2

0.5,0.5 =
0.761, indicating that the solution function estimation approach does an adequate job of fitting the
aggregate data. For comparison a simple linear regression of ct on the levels of interest rates, delay
lengths and their interaction in each condition would produce R̃2 values of R̃2

1,1 = 0.443; R̃2
0.5,0.5 =

0.346.
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Figure 3: Estimated Utility Function Curvature Under Certainty and Uncertainty
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Note: The figure presents estimated utility functions (corresponding to the estimates of Table 2,
column (5): cα̂. Dotted lines represent 95% confidence intervals. c = 20 corresponds to the value of
later payments in the experiment.

Though discounting is estimated to be similar across conditions, substantial dif-

ference in curvature is estimated between (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5).

Figure 3 demonstrates the economic importance of this result, plotting the two esti-

mated utility functions along with 95% confidence intervals of the estimates. While

utility deviates only slightly from linear preferences when (p1, p2) = (1, 1), the devia-
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tion is sizeable when (p1, p2) = (0.5, 0.5), even over the monetary values used in the

experiment.

These results are suggestive evidence against the interchangeability assumption.

Our estimations indicate that certain and uncertain payments are evaluated using

different utility functions.

4.2 Behavior with Differential Risk

In this section we analyze behavior in conditions with differential risk. First, we exam-

ine conditions where all payments are uncertain but sooner and later payments differ

in their level of risk. Second, we examine two hybrid conditions where one payment is

certain while the other is uncertain.

4.2.1 When All Choices Are Uncertain

The individual’s marginal condition under DEU establishes a tradeoff between relative

risk, p1/p2, and the gross interest rate, 1+r. This tradeoff is captured in the variable θ,

the risk adjusted interest rate. As noted in Section 2, given a concave utility function, ct

allocations should be increasing in the relative risk and decreasing in the gross interest

rate. As such, ct allocations should also decreasing in θ. Additionally, for a given θ

across situations, ct allocations will be higher where the gross interest rate is lower.

Figure 4 presents aggregate behavior from three risky situtations: (p1, p2) =

(0.5, 0.5) (in red); (p1, p2) = (0.5, 0.4) (in green); and (p1, p2) = (0.4, 0.5) (in or-

ange) over the experimentally varied values of θ and delay length. The mean earlier

choice of ct is graphed along with error bars corresponding to 95 percent confidence

intervals. We also plot predicted behavior based on the aggregate responses in the

(p1, p2) = (0.5, 0.5) condition. That is, based on α̂0.5,0.5, δ̂ and ω̂ estimated in Table 2,

column (3), we predict out of sample behavior for the two conditions (p1, p2) = (0.5, 0.4)

and (p1, p2) = (0.4, 0.5). These predictions are plotted as solid lines in green and or-
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ange.

Figure 4: Aggregate Behavior Under Uncertainty
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Note: The figure presents aggregate behavior for N = 80 subjects under three condi-
tions: (p1, p2) = (0.5, 0.5), i.e. equal risk, in red; (p1, p2) = (0.5, 0.4), i.e. more risk
later, in green; and (p1, p2) = (0.4, 0.5), i.e. more risk sooner, in orange. Error bars rep-
resent 95% confidence intervals, taken as +/− 1.96 standard errors of the mean. Solid
lines correspond to predicted behavior using utility estimates from (p1, p2) = (0.5, 0.5)
as estimated in Table 2, column (3).

We highlight two dimensions of Figure 4. First, the theoretical predictions are 1)

that ct should be declining in θ; and 2) that if two decisions have identical θ then

ct should be higher in the condition with the lower interest rate. These features are

observed in the data. Allocations of ct decline with θ and, where overlap of θ exists ct
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is generally higher for lower gross interest rates.22 Second, out of sample predictions

match actual aggregate behavior. Indeed, the out-of-sample calculated R2 values are

high: 0.878 for (p1, p2) = (0.5, 0.4) and 0.580 for (p1, p2) = (0.4, 0.5).23

Figure 4 demonstrates that in situations where all payments are risky, utility pa-

rameters measured under uncertainty describe behavior extremely well. That is, away

from certainty, subjects act as expected utility maximizers, trading off relative risk and

interest rates as predicted by the DEU model.

4.2.2 Differential Curvature: A Preference for Certainty

When all options are uncertain, individuals appear to recognize the trade-off between

relative risk and interest rates. The results demonstrated in Figure 4 are in line with

both Allais’ intuition and prior work on the identification of EU violations when all

options are uncertain (Harless and Camerer, 1994; Camerer and Ho, 1994). Inter-

changeability, however, requires that the same trade-offs between relative risk and

interest rates be made when one option is certain. In particular, interchangeabil-

ity requires that behavior when (p1, p2) = (0.5, 0.4) be identical to behavior when

(p1, p2) = (1, 0.8), and that behavior when (p1, p2) = (0.4, 0.5) be identical to behavior

when (p1, p2) = (0.8, 1). These conditions share common ratios of p1/p2.

Figure 5 graphs behavior in these four conditions, demonstrating that allocations

when all payments are risky differ dramatically from allocations where some payments

are certain.24 Hypotheses of equality across conditions are rejected in both cases.25

Subjects show a disproportionate preference for certainty when it is available. This

22This pattern of allocations is obtained for all sessions and for all orders indicating no presence of
order or day effects. Results available on request.

23By comparison, making similar out of sample predictions using utility estimates from (p1, p2) =
(1, 1) yields predictions that diverge dramatically from actual behavior (see Figure A1) and lowers R2

values to 0.767 and 0.462, respectively. This suggests that accounting for differential utility function
curvature in risky situations allows for an improvement of fit on the order of 15-25%.

24This difference in allocations across conditions is obtained for all sessions and for all orders indi-
cating no presence of order or day effects. Results available on request.

25For equality across (p1, p2) = (0.5, 0.4) and (p1, p2) = (1, 0.8), F14,2212 = 14.60, p < .001 and for
equality across (p1, p2) = (0.4, 0.5) and (p1, p2) = (0.8, 1), F14,2212 = 23.82, p < .001
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result follows naturally from our Table 2 estimates, which show that utility function

curvature is markedly more pronounced in uncertain situations relative to certain situ-

ations. Stated differently, the marginal utility of consumption is estimated to be higher

under certainty. This higher marginal utility translates into a differential preference

for certainty when it is available.

Figure 5: A Disproportionate Preference for Certainty
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Note: The figure presents aggregate behavior for N = 80 subjects under four condi-
tions: (p1, p2) = (1, 0.8), (p1, p2) = (0.5, 0.4), (p1, p2) = (0.8, 1) and (p1, p2) = (0.4, 0.5).
Error bars represent 95% confidence intervals, taken as +/ − 1.96 standard errors of
the mean. The first and second conditions share a common ratio as do the third and
fourth. Test of H0 : Equality across conditions 1 and 2: F14,2212 = 14.60, p < .001.
Test of H0 : Equality across conditions 3 and 4: F14,2212 = 23.82, p < .001.

To explore the influence of combined certainty and uncertainty on experimental
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responses, Figure 6 plots aggregate behavior in three conditions: (p1, p2) = (1, 1) (in

blue); (p1, p2) = (1, 0.8) (in gray); and (p1, p2) = (0.8, 1) (in purple) over the experi-

mentally varied values of θ and delay length. The mean earlier choice of ct is graphed

along with error bars corresponding to 95 percent confidence intervals.

Under interchangeability Figure 6 should be identical to Figure 4. Unlike the find-

ings of Figure 4, ct allocations are not uniformly decreasing in θ. Additionally, lower

interest rates do not generally lead to higher ct allocations when θ is equal across

conditions.

The cross-over in allocations across the (p1, p2) = (1, 0.8) and (p1, p2) = (1, 1) con-

ditions is particularly striking. When θ = 1, ct allocations are higher in the (1, 1)

condition, while at larger values of θ, ct allocations are higher in the (1, 0.8) condi-

tion. Such behavior is at odds with EU theory and cannot be explained by non-EU

probability weighting.26 Behavior in the (p1, p2) = (0.8, 1) condition seems to fit better

with the (p1, p2) = (1, 1) condition, however, allocations are generally quite low in this

region, precluding strong inference.27

In Figure 6 we also plot predicted behavior based on the estimates of Table 2,

column (3). The prediction is made under the assumption that certain consumption is

evaluated using α̂1,1 and uncertain consumption is evaluated using α̂0.5,0.5. We predict

out of sample for the conditions (p1, p2) = (1, 0.8) and (p1, p2) = (0.8, 1).28 These

predictions are plotted as solid lines in gray and purple.

Though the behavior illustrated in Figure 6 is at odds with interchangeability, its

stylistic properties are easily explained if we allow uncertain and certain consumption to

be governed by different utility functions. The solid lines show exactly this effect. The

cross-over in behavior between the (p1, p2) = (1, 0.8) and (p1, p2) = (1, 1) conditions is

26The argument is identical to the one presented in Section 4.1.
27This pattern of allocations is obtained for all sessions and for all orders indicating no presence of

order or day effects. Results available on request.
28One does not arrive at an analytic solution function for c∗t in these hybrid cases. Instead ct is

solved for as the root of a polynomial function. See Appendix A.4 for the solution procedure.
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Figure 6: Aggregate Behavior Under In Certain and Uncertain Situations
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Note: The figure presents aggregate behavior for N = 80 subjects under three con-
ditions: (p1, p2) = (1, 1), i.e. equal risk, in blue; (p1, p2) = (1, 0.8), i.e. more risk
later, in green; and (p1, p2) = (0.8, 1), i.e. more risk sooner, in orange. Error bars
represent 95% confidence intervals, taken as +/ − 1.96 standard errors of the mean.
‘Hybrid Prediction’ lines correspond to predicted behavior using utility estimates from
(p1, p2) = (0.5, 0.5) for uncertain payments and (p1, p2) = (1, 1) for certain payments
as estimated in Table 2, column (3).

predicted and the out of sample R2 value of 0.854 for the (p1, p2) = (1, 0.8) condition

is notably high. Behavior when (p1, p2) = (0.8, 1) is predicted to piece together with

behavior when (p1, p2) = (1, 1), though the out of sample R2 value of 0.133 is notably

low.

In sum, the data and corresponding estimations strongly indicate that separate
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utility parameters govern the assessment of certain and uncertain consumption. Un-

certain utility is able to predict behavior well in uncertain situations, where subjects

act effectively as expected utility maximizers. However, subjects exhibit a preference

for certainty when it is available. This behavior follows naturally from the finding

that certain consumption has lower utility function curvature and so higher marginal

utility than uncertain consumption. Indeed in hybrid situations where some payments

are certain and others are not, this difference in utility parameters is able to explain

behavior that is at odds with both standard DEU and PT theories. Finding differences

between certain and uncertain utility parameters has broad applications in decision

theory. In our discussion, we sketch several applications.

5 Discussion and Conclusion

Intertemporal decision-making involves a combination of certainty and uncertainty.

The present is known while the future is inherently risky. Though expected utility (EU)

violations are frequently found in decision environments combining risk and certainty,

there are few known violations of the EU aspect of discounted expected utility. In an

experiment using Andreoni and Sprenger (2009a) Convex Time Budgets under varying

risk conditions, we document an important violation of discounted expected utility. The

violation we document is more closely a violation of what we term interchangeability, or

the notion that certain and uncertain consumption are assessed using identical utility

parameters.

Our findings indicate that certain and uncertain consumption are evaluated very

differently. Substantially less utility function curvature is associated with certain con-

sumption relative to uncertain consumption. Additionally, individuals behave approxi-

mately as expected utility maximizers in uncertain situations, but exhibit a dispropor-

tionate preference for certainty when it is available. We interpret our findings as being

consistent with both prior research on expected utility violations and the intuition of
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the Allais Paradox (Allais, 1953).

Demonstrating a difference between certain and uncertain utility has substantial

impacts for decision theory. We highlight applications in four domains: 1) quasi-

hyperbolic discounting; 2) the ‘uncertainty effect’; 3) the measurement of risk prefer-

ences; and 4) the identification of probability weighting.

First, dynamic inconsistencies such as quasi-hyperbolic discounting are frequently

documented (for a review, see Frederick, Loewenstein and O’Donoghue, 2002). Re-

cently, the hallmark of dynamic inconsistency, diminishing impatience through time,

has been argued to be generated by differential risk on present and future payments (for

psychological evidence, see Keren and Roelofsma, 1995; Weber and Chapman, 2005).

Halevy (2008) argues that differential risk leads to dynamic inconsistency because in-

dividuals have a temporally dependent probability weighting function that is convex

(see Section 4.1 for details). Our results suggest that one need not call on a com-

plex probability weighting function to explain the phenomenon. If individuals exhibit

a disproportionate preference for certainty when it is available, then present, certain

consumption will be disproportionately favored over future, uncertain consumption.

When only uncertain future consumption is considered, the disproportionate prefer-

ence for certainty is not active and apparent present-biased preference reversals can be

generated.

Second, the ‘uncertainty effect’, in which a lottery is valued lower than the certainty

of its worst possible outcome, is at odds with a number of utility theories, including

both expected utility and prospect theory (Gneezy et al., 2006; Simonsohn, 2009). Our

results provide a simple resolution. If uncertain and certain consumption are assessed

with different utility parameters, then the uncertainty effect is a comparison of two

values: the expected utility of an uncertain gamble and the certain utility of its worst

outcome. If, as we find, uncertain utility is more concave than certain utility one could

well expect a gamble to be valued lower than its worst possible outcome. For example,
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consider the standard uncertainty effect, comparing a 50-50 lottery paying $50 or $100

to the certainty of $50. Let certain consumption be evaluated with CRRA utility and

a curvature parameter of 0.99 and let the lottery options be evaluated under expected

CRRA utility with a curvature parameter of 0.88, as found in our estimates. The

utility of the lottery is given as UL = 0.5× 500.88 + 0.5× 1000.88 = 44.41. The utility of

the certain $50 is given as UC = 500.99 = 48.08, demonstrating the uncertainty effect

of valuing a lottery lower than its worst outcome.

Third, risk preferences are frequently measured using certainty equivalence tech-

niques. Such methodology frequently generates extreme measures of risk aversion at

odds with standard EU theory via a calibration theorem (Rabin, 2000). A standard

CRRA curvature parameter finding in such low stakes experiments is between 0.5 and

0.6.29 Our results suggest that a potential issue with these findings is the differential

assessment of certain and uncertain consumption. Consider asking an individual to

provide the certainty equivalent of a 50-50 lottery paying out $50 or $0. Let certain

and uncertain consumption be evaluated as before. Normalizing u(0) = 0, we have:

C0.99 = 0.5 × 500.88, yielding a certainty equivalent of C = 16.07. If we assumed a

single curvature parameter, a, and found the a that rationalizes 16.07a = 0.5 × 50a,

we would solve for a = 0.61. As such, differential curvature for certain and uncertain

consumption may help to explain the extremely high levels of risk aversion obtained in

certainty equivalent experiments.

Fourth, experiments demonstrating prospect theory probability weighting also use

certainty equivalence techniques (see Tversky and Fox, 1995). Following a similar logic

to above, one can assume a curvature value, for example a = 0.88 (as in Tversky and

Fox, 1995), and examine the probability weight π(p) that rationalizes C0.88 = π(p) ×
29In the auction literature mention is made of ‘square root utility’ where α ≈ 0.5. Holt and Laury

(2002) discuss several relevant willingness to pay results from the auction literature in line with this
value. Interestingly, Kachelmeier and Shehata (1992) present evidence on both willingness to pay
and willingness to accept values for lotteries. Though the curvature implied from willingness to
pay certainty equivalents is around 0.6, the curvature from willingness to accept treatments actually
suggests risk-loving behavior.
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500.88 at various probabilities. For example, at p = 0.95 under our parameter values,

we would obtain C = 30.73 and a corresponding probability weight of π(0.95) = 0.652,

demonstrating down-weighting of high probability events. And at p = 0.01, we would

obtain C = 0.31 and a probability weight of π(0.01) = 0.013, demonstrating a slight

up-weighting of low probability events. Though this is far from the results obtained in

probability weighting experiments, it suggests that probability weighting of objective

probabilistic events may be conflated with differential utility for certain and uncertain

consumption.

The experiment presented here demonstrates that the DEU model can predict ex-

perimental behavior extremely well away from certainty. The standard DEU model

breaks down if we accept, as Allais suggested, that individuals have a disproportion-

ate preference for certainty when it is available. The brief applications of our central

findings provide further evidence. Future research should attempt to work through

these issues in both intertemporal and static decision contexts as well as examine wel-

fare effects and policy implications of differential utility over certain and uncertain

consumption.
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Figure A1: Aggregate Behavior Under Uncertainty with Predictions Based on Cer-
tainty
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Note: The figure presents aggregate behavior for N = 80 subjects under three condi-
tions: 1) (p1, p2) = (0.5, 0.5), i.e. equal risk, in red; 2) (p1, p2) = (0.5, 0.4), i.e. more
risk later, in green; and 3) (p1, p2) = (0.4, 0.5), i.e. more risk sooner, in orange. Er-
ror bars represent 95% confidence intervals, taken as +/− 1.96 standard errors of the
mean. Blue solid lines correspond to predicted behavior using utility estimates from
(p1, p2) = (1, 1) as estimated in Table 2, column (3).
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A.2 Welcome Text

Welcome and thank you for participating.

Eligibility for this study: To be in this study, you need to meet these criteria. You

must have a campus mailing address of the form:

YOUR NAME

9450 GILMAN DR 92(MAILBOX NUMBER)

LA JOLLA CA 92092-(MAILBOX NUMBER)

Your mailbox must be a valid way for you to receive mail from now through the

end of the Spring Quarter.

You must be willing to provide your name, campus mail box, email address, and

student PID. This information will only be seen by Professor Andreoni and his assis-

tants. After payment has been sent, this information will be destroyed. Your identity

will not be a part of any subsequent data analysis.

You must be willing to receive your payment for this study by check, written to

you by Professor James Andreoni, Director of the UCSD Economics Laboratory. The

checks will be drawn on the USE Credit Union on campus. You may deposit or cash

your check wherever you like. If you wish, you can cash your checks for free at the USE

Credit Union any weekday from 9:00 am to 5:00 pm with valid identification (drivers

license, passport, etc.).

The checks will be delivered to you at your campus mailbox at a date to be de-

termined by your decisions in this study, and by chance. The latest you could receive

payment is the last week of classes in the Spring Quarter.

If you do not meet all of these criteria, please inform us of this now.
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A.3 Instruction and Examples Script

Earning Money:

To begin, you will be given a $10 minimum payment. You will receive this payment

in two payments of $5 each. The two $5 minimum payments will come to you at two

different times. These times will be determined in the way described below. Whatever

you earn from the study today will be added to these minimum payments.

In this study, you will make 84 choices over how to allocate money between two

points in time, one time is ‘earlier’ and one is ‘later’. Both the earlier and later times

will vary across decisions. This means you could be receiving payments as early as

one week from today, and as late as the last week of classes in the Spring Quarter, or

possibly other dates in between.

It is important to note that the payments in this study involve chance. There is a

chance that your earlier payment, your later payment or both will not be sent at all.

For each decision, you will be fully informed of the chance involved for the sooner and

later payments. Whether or not your payments will be sent will be determined at the

END of the experiment today. If, by chance, one of your payments is not sent, you will

receive only the $5 minimum payment.

Once all 84 decisions have been made, we will randomly select one of the 84

decisions as the decision-that-counts. This will be done in three stages. First, we will

pick a number from 1 to 84 at random to determine which is the decision-that-counts

and the corresponding sooner and later payment dates. Then we will pick a second

number at random from 1 to 10 to determine if the sooner payment will be sent. Then

we will pick a third number at random from 1 to 10 to determine if the later payment

will be sent. We will use the decision-that-counts to determine your actual earnings.

Note, since all decisions are equally likely to be chosen, you should make each decision

as if it will be the decision-that-counts. When calculating your earnings from the

decision-that-counts, we will add to your earnings the two $5 minimum payments.
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Thus, you will always get paid at least $5 at the chosen earlier time, and at least $5

at the chosen later time.

IMPORTANT: All payments you receive will arrive to your campus mailbox. On

the scheduled day of payment, a check will be placed for delivery in campus mail

services by Professor Andreoni and his assistants. Campus mail services guarantees

delivery of 100% of your payments by the following day.

As a reminder to you, the day before you are scheduled to receive one of your

payments, we will send you an e-mail notifying you that the payment is coming. On

your table is a business card for Professor Andreoni with his contact information.

Please keep this in a safe place. If one of your payments is not received you should

immediately contact Professor Andreoni, and we will hand-deliver payment to you.

Your Identity:

In order to receive payment, we will need to collect the following pieces of in-

formation from you: name, campus mail box, email address, and student PID. This

information will only be seen by Professor Andreoni and his assistants. After all pay-

ments have been sent, this information will be destroyed. Your identity will not be a

part of subsequent data analysis.

On your desk are two envelopes: one for the sooner payment and one for the later

payment. Please take the time now to address them to yourself at your campus mail

box.

How it Works:

In each decision you are asked to divide 100 tokens between two payments at two

different dates: Payment A (which is sooner) and Payment B (which is later). Tokens

will be exchanged for money. The tokens you allocate to Payment B (later) will always
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be worth at least as much as the tokens you allocate to Payment A (sooner). The

process is best described by an example. Please examine the sample sheet in you

packet marked SAMPLE.

The sample sheet provided is similar to the type of decision sheet you will fill out in

the study. The sample sheet shows the choice to allocate 100 tokens between Payment

A on April 17th and Payment B on May 1st. Note that today’s date is highlighted in

yellow on the calendar on the left hand side. The earlier date (April 17th) is marked

in green and the later date (May 1st) is marked in blue. The earlier and later dates

will always be marked green and blue in each decision you make. The dates are also

indicated in the table on the right.

In this decision, each token you allocate to April 17th is worth $0.10, while each

token you allocate to May 1st is worth $0.15. So, if you allocate all 100 tokens to

April 17th, you would earn 100x$0.10 = $10 (+ $5 minimum payment) on this date

and nothing on May 1st (+ $5 minimum payment). If you allocate all 100 tokens to

May 1st, you would earn 100x$0.15 = $15 (+ $5 minimum payment) on this date and

nothing on April 17th (+ $5 minimum payment). You may also choose to allocate

some tokens to the earlier date and some to the later date. For instance, if you allocate

62 tokens to April 17th and 38 tokens to May 1st, then on April 17th you would earn

62x$0.10 = $6.20 (+ $5 minimum payment) and on May 1st you would earn 38x$0.15

= $5.70 (+ $5 minimum payment). In your packet is a Payoff Table showing some of

the token-dollar exchange at all relevant token exchange rates.

REMINDER: Please make sure that the total tokens you allocate between Payment

A and Payment B sum to exactly 100 tokens. Feel free to use the calculator provided

in making your allocations and making sure your total tokens add to exactly 100 in

each row.

Chance of Receiving Payments:
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Each decision sheet also lists the chances that each payment is sent. In this example

there is a 70% chance that Payment A will actually be sent and a 30% chance that

Payment B will actually be sent. In each decision we will inform you of the chance that

the payments will be sent. If this decision were chosen as the decision-that-counts we

would determine the actual payments by throwing two ten sided die, one for Payment

A and one for Payment B.

EXAMPLE: Let’s consider the person who chose to allocate 62 tokens to April

17th and 38 tokens to May 1st. If this were the decision-that-counts we would then

throw a ten-sided die for Payment A. If the die landed on 1,2,3,4,5,6,or 7, the person’s

Payment A would be sent and she would receive $6.20 (+ $5 minimum payment) on

April 17th. If the die landed 8,9, or 10, the payment would not be sent and she would

receive only the $5 minimum payment on April 17th. Then we would throw a second

ten-sided die for Payment B. If the die landed 1,2, or 3, the person’s Payment B would

be sent and she would receive $5.70 (+ $5 minimum payment) on May 1st. If the die

landed 4,5,6,7,8,9, or 10, the payment would not be sent and she would receive only

the $5 minimum payment on May 1st.

Things to Remember:

• You will always be allocating exactly 100 tokens.

• Tokens you allocate to Payment A (sooner) and Payment B (later) will be ex-

changed for money at different rates. The tokens you allocate to Payment B will

always be worth at least as much as those you allocate to Payment A.

• Payment A and Payment B will have varying degrees of chance. You will be fully

informed of the chances.

• On each decision sheet you will be asked 7 questions. For each decision you will

allocate 100 tokens. Allocate exactly 100 tokens for each decision row, no more,

39



no less.

• At the end of the study a random number will be drawn to determine which

is the decision-that-counts. Because each question is equally likely, you should

treat each decision as if it were the one that determines your payments. Two

more random numbers will be drawn by throwing two ten sided die to determine

whether or not the payments you chose will actually be sent.

• You will get an e-mail reminder the day before your payment is scheduled to

arrive.

• Your payment, by check, will be sent by campus mail to the mailbox number you

provide.

• Campus mail guarantees 100% on-time delivery.

• You have received the business card for Professor James Andreoni. Keep this card

in a safe place and contact Prof. Andreoni immediately if one of your payments

is not received.
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A.4 Solving Numerically for Out of Sample ct Predictions

We consider the case where certain and uncertain consumption are evaluated with

different preference parameters. That is u(·) 6= v(·). We assume CRRA utility in each

case v(ct) = (ct − ω)α and u(ct) = (ct − ω)β with α 6= β. ω can be thought of as a

Stone-Geary minimum parameter.

Let p1 = 1 and p2 < 1 such that sooner consumption is certain and later consump-

tion is uncertain. The individual’s optimization problem is:

maxct,ct+kp1(ct − ω)α + p2δ
k(ct+k − ω)β s.t. (1 + r)ct + ct+k = m

Yielding the marginal condition:

p1α(ct − ω)α−1

p2δk · β(ct+k − ω)β−1
= (1 + r)

(ct − ω)α−1

(ct+k − ω)β−1
= (1 + r)(

p2

p1

)(
β

α
)δk

Raise everything to the 1
β−1

power

(ct − ω)
α−1
β−1

ct+k − ω
= [(1 + r)(

p2

p1

)(
β

α
)δk]

1
β−1

Substitute in the budget constraint:

(ct − ω)
α−1
β−1

m− (1 + r)ct − ω
= [(1 + r)(

p2

p1

)(
β

α
)δk]

1
β−1

(ct − ω)
α−1
β−1 = [(1 + r)(

p2

p1

)(
β

α
)δk]

1
β−1 [m− (1 + r)ct − ω]

Define A ≡ [(1 + r)(p2
p1

)(β
α

)δk]
1

β−1 and B ≡ α−1
β−1
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(ct − ω)B = A[m− (1 + r)ct − ω]

(ct − ω)B = Am− A(1 + r)ct − Aω]

(ct − ω)B + A(1 + r)ct + Aω − Am = 0

Provided estimates for α, β, δ, ω as obtained in Table 2, A and B are known con-

stants. The numerical root to the above Bth order polynomial for a given p1, p2, 1 + r

and k will be the predicted value of ct in the situation. Many algorithms exist for

obtaining such function roots. This is the methodology for obtaining out of sample

predicted values in Figure 6 and is easily applied to situations where both payments

are uncertain or both payments are certain.
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