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1 Introduction

The Allais common consequence and common ratio paradoxes are known in decision theory as

the primary departures from expected utility. Their appeal is that even without experimenta-

tion they ring true, and with experimentation they are found to be robust. The two paradoxes

were proposed by Allais (1953) using the following hypothetical situations:1

1. Common Consequence:

Situation A: Certainty of receiving 100 million.

Situation B: 10% chance of 500 million; 89% chance of 100 million; 1% chance of
nothing.

Situation A′: 11% chance of 100 million; 89% chance of nothing.

Situation B′: 10% chance of 500 million; 90% chance of nothing.

2. Common Ratio:

Situation C: Certainty of receiving 100 milion.

Situation D: 98% chance of 500 million; 2% chance of nothing.

Situation C ′: 1% chance of 100 million; 99% chance of nothing.

Situation D′: 0.98% chance of 500 million; 99.02% chance of nothing.

Situations A and B share a common consequence of winning 100 million with probability

0.89. In situations A′ and B′ this common consequence is removed. Under expected utility,

if A is preferred to B, then A′ should be preferred to B′, as the manipulation is only one of

subtracting a common consequence. Situations C and D have a ratio of probabilities of 0.98.

Situations C ′ and D′ have a common ratio. Under expected utility if C is preferred to D, then

C ′ should be preferred to D′, as the manipulation is only one of dividing by 100.

Despite the predictions of expected utility, the majority of subjects choose A over B, B′ over

A′ , C over D and D′ over C ′ in similar problems (Kahneman and Tversky, 1979).2 Allais’ initial

1French francs were originally used as the currency of the paradoxes. No adjustment made for inflation.
2Perhaps the most revealing subject was Leonard Savage who chose A over B and B’ over A’ and concluded

that his preferences were ‘subtly’ in error (Savage, 1954, p. 103). This may have left Paul Samuelson in an
uncomfortable situation as he had stated just before, ‘I sometimes feel that Savage and I are the only ones in
the world who will give a consistent Bernoulli answer to questionnaires of the type that Professor Allais has
been circulating’ (Samuelson, 1952, p. 678).
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motivation for the paradoxes was an intuition that expected utility’s independence axiom was

‘incompatible with the preference for security in the neighbourhood of certainty’ (Allais, 2008,

p. 4). Decision theorists have responded to this critique by relaxing the independence axiom

and its implication of linearity in probabilities. The most important associated development

is cumulative prospect theory with its S -shaped probability weighting scheme (Tversky and

Kahneman, 1992; Tversky and Fox, 1995). Why then, would Allais claim to the present that

the paradoxes’ true thrust is ‘generally misunderstood’ (Allais, 2008, p. 5).

One potential source of misunderstanding is that a preference for security in the ‘neigh-

borhood of certainty’ represents only one half of Allais’ intuition. Allais also claimed that ‘far

from certainty’, individuals act as expected utility maximizers, valuing a gamble by the math-

ematical expectation of its utility outcomes (Allais, 1953).3 Though the argument is vague as

to the definitions of ‘neighborhood of certainty’ and ‘far from certainty’, such statements are

revealing. In this light, the common ratio and common consequence effects read less like a

general violation of linearity in probabilities and more like a local violation that appears as any

particular outcome becomes close to perfectly certain. Indeed, if the violation is isolated very

close to certainty, it may prove useful to represent it as a violation of continuity. Individuals

may exhibit discontinuous preferences over certain and uncertain outcomes. This is similar

in spirit to the quasi-hyperbolic representation of discounting where preferences are discon-

tinuous over immediate and future outcomes (Strotz, 1956; Phelps and Pollak, 1968; Laibson,

1997; O’Donoghue and Rabin, 1999). Just as a discontinuity at the present provides a simple,

tractable method for representing diminishing impatience through time, a discontinuity at cer-

tainty provides a simple, tractable way to represent a disproportionate preference for security

near to certainty. To motivate our discussion, we consider the following example:

Decision 1:
Situation P : Certainty of receiving 10 million.
Situation Q: 99% chance of 50 million; 1% chance of nothing.

3Allais’ wording of ‘far from certainty’ is ‘loin de certitude’ (Allais, 1953, p.530, authors’ translation).
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Decision 2:
Situation P ′: 99% chance of 10 million; 1% chance of nothing.
Situation Q′: 98% chance of 50 million; 2% chance of nothing.

Decision 3:
Situation P ′′: 98% chance of 10 million; 2% chance of nothing.
Situation Q′′: 97% chance of 50 million; 3% chance of nothing.

All three situations share a common ratio of probabilities (with only slight rounding) of

0.99. Under expected utility, if P is preferred to Q, then P ′ should be preferred to Q′, and P ′′

should be preferred to Q′′.4 Introspection suggests that a substantial proportion of individuals

will violate expected utility by preferring P to Q and Q′ to P ′. However, one would not expect

individuals who preferred P ′ to Q′ to prefer Q′′ to P ′′. That is, individuals may violate expected

utility between decisions 1 and 2, but not between 2 and 3.5

In a survey of 134 University of California, San Diego undergraduate subjects, 52 made

decision 1, 40 made decision 2, and 42 made decision 3.6 While 42.3 percent of subjects

preferred P to Q, only 22.5 percent preferred P ′ to Q′, indicating a significant violation of

expected utility (z = 1.999, p = 0.046)7. However, the 22.5 percent preferring P ′ to Q′ is not

significantly different from the 31.0 percent who preferred P ′′ to Q′′, indicating that expected

utility violations are less prevalent away from certainty (z = −0.864, p = 0.388).8 Conlisk

4Rounding error reinforces this prediction as 0.99 > 0.98/0.99 > 0.97/0.98. If U(10) > 0.99 · U(50), then
U(10) > 0.99 · U(50) > 0.98/0.99 · U(50) > 0.97/0.98 · U(50) by monotonicity. That is, if an individual prefers
10 million with certainty in decision 1, then the 10 million should grow more attractive in decision 2 and even
more in decision 3.

5Importantly, this occurs in a region where probability weighting is believed to be sharply decreasing (Tver-
sky and Kahneman, 1992; Tversky and Fox, 1995; Prelec, 1998), such that small changes in probabilities are
associated with large changes in probability weights. Consider a probability weighting function, π(p), monoton-
ically increasing and S -shaped. The elegant probability weighting explanation of the common ratio effect is that
the ratio of decision weights away from certainty is larger than the ratio of decision weights closer to certainty.
This allows for U(10) > π(0.99) · U(50) and π(0.99) · U(10) < π(0.98) · U(50); v(10) < π(0.98)/π(0.99) · U(50)
as π(0.98)/π(0.99) > π(0.99) when π(·) is S-shaped. The probability weighting logic is the same in 1) vs 2)
and 2) vs 3) as π(0.97)/π(0.98) > π(0.98)/π(0.99) > π(0.99) for an S -shaped, monotonic probability weighting
function.

6The numbers are unbalanced because subjects with ID numbers ending in 0, 1, 2, and 3 were asked to make
decision 1. Those with ID numbers ending in 4, 5 and 6 were asked to make decision 2 and those with ID
numbers ending in 7, 8, and 9 were asked to make decision 3.

7The test statistic z corresponds to the null hypothesis, H0, of equal proportions preferring P/P ′ across
conditions.

8A potential counterpoint is that at probability 0.99, all of the ‘action’ is effectively taken out of the proba-
bility weighting function. This interpretation is at odds with evidence on the shape of the probability weighting

3



(1989) provides a complementary example, dramatically reducing common consequence effects

by moving slightly away from certainty.

The above demonstration helps to pin down the Allais intuition. Away from certainty in

decisions 2 and 3, individuals behave roughly consistently. However, when forced to com-

pare situations with certainty and uncertainty together in decision 1, individuals exhibit a

disproportionate preference for certain outcomes. Such intuition also carries through to ex-

perimental studies. Violations of expected utility are found to be substantially less prevalent

when all outcomes are uncertain (Camerer, 1992; Harless and Camerer, 1994; Starmer, 2000).

Additionally, a growing body of evidence, at odds with both expected utility and probability

weighting, suggests that utility at or near certainty may differ from utility away from certainty

(Gneezy, List and Wu, 2006; Simonsohn, 2009; Andreoni and Sprenger, 2009b). In this paper,

we demonstrate that allowing for discontinuous preferences at certainty can provide a tractable

representation of Allais’ intuition and explain a variety of decision theory phenomena includ-

ing the certainty effect, experimentally observed probability weighting, the uncertainty effect,

extreme risk aversion over small stakes and quasi-hyperbolic time preferences.

The paper proceeds as follows: Section 2 discusses continuity of preferences over certainty

and uncertainty and presents a simple discontinuous model of preferences. Section 3 summarizes

several prior studies suggestive of differences between certain and uncertain utility. In Section

4, these results are applied to the five decision theory phenomena mentioned above. Section 5

provides a brief discussion and conclusion.

2 Continuity over Certainty and Uncertainty

Most textbook treatments of expected utility include an axiom for preference continuity.9

With fixed outcomes, preferences are represented as an ordering over probability distributions,

or lotteries. Let L represent the space of lotteries and let � be a complete, reflexive and

function, but is similar in spirit to the violation in continuity we discuss below. In Section 4.1, we discuss
probability weighting results in more detail.

9The definition and treatment here is that of Varian (1992) and is provided primarily for reference.
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transitive preference ordering.

Definition (Continuity): Preferences are continuous if the sets {p ∈ [0, 1] :

p ◦ x ⊕ (1 − p) ◦ y � z} and {p ∈ [0, 1] : p ◦ x ⊕ (1 − p) ◦ y � z} are closed

for all x, y, z ∈ L

Assume there exists a best lottery, b, and a worst lottery, w, such that for any lottery

z ∈ L, b � z � w. For a given lottery z, there exists a probability mixture of w and b that is

in the better than set and another probability mixture of w and b that is in the worse than set.

This implies that there exists a third mixture, pz, such that pz ◦ b ⊕ (1− pz) ◦ w ∼ z.

Importantly, continuity implies that for every certain outcome, a degenerate lottery, there

exists a probability mixture of the best and worst elements of L, a non-degenerate lottery,

that is indifferent. This further implies that certain and uncertain utility must be functionally

identical. The proof is by contrapositive. That is, if certain and uncertain utility are not

functionally identical then one can construct a case which violates continuity.

Let there be a fixed set of outcomes. Let v(x) represent utility under certainty and u(x)

represent utility under uncertainty and assume that both are increasing in x, but allow u(x)

to differ from v(x). Additionally, let there be standard expected utility away from certainty

such that for any gamble yielding xi with probability pi for i = 1, 2, ..., S with pi < 1 ∀ i, total

utility is represented by
∑S

i piu(xi).

For example, take the set of outcomes {0, 10, 50} and the set of lotteries (p1, p2, p3) such

that p1 + p2 + p3 = 1 and pi ≤ 1, i = 1, 2, 3. Consider the degenerate lottery of 10 with

certainty, so (p1, p2, p3) = (0, 1, 0). The best lottery is 50 with certainty, (0, 0, 1), and the worst

lottery is 0 with certainty, (1, 0, 0). To satisfy continuity, one must find a probability mixture

(a, 1−a), 0 ≤ a ≤ 1 such that a·u(50)+(1−a)·u(0) = 1·v(10). Note that the mixture, because

it is a non-degenerate lottery, is necessarily evaluated using the uncertain utility function, u(·),

and the certain outcome of 10 is evaluated with v(·). The value a·u(50)+(1−a)·u(0) < u(50) as
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long as a < 1 (a true mixture). If u(50) < v(10), continuity is violated. Figure 1 demonstrates

the logic.

Figure 1: Violating Continuity with u(·) 6= v(·)

0 10 20 30 40 50

u(50)

u()

v(10)

Utils

v()

●

a u(50) + (1−a) u(0)

Millions

Note: By allowing for a difference between certain utility, v(·), and uncertain utility, u(·),
continuity is violated. No probability mixture, (a, 1 − a), a < 1, exists satisfying v(10) =
a× u(50) + (1− a)× u(0).

The example discussed above yields exactly the common ratio effect. A disproportionate

preference for security at certainty is represented by v(10) > u(50). An individual would choose

10 with certainty over 50 with probability 0.99 if v(10) > u(50). However, an individual would

choose 50 with probability 0.98 over 10 with probability 0.99 if 0.98 · u(50) > 0.99 · u(10). The

common consequence effect can be generated with a very similar argument.

A simple discontinuous utility function can parsimoniously represent the preferences dis-

6



cussed above. Let there be a 1×S vector of outcomes: X = (x1, x2, ..., xS). Let L be the set of

all lotteries over these outcomes. L can be partitioned into LD, the set of degenerate lotteries,

and LN the set of non-degenerate lotteries. Note that LD has exactly S elements, one for

each possible degenerate lottery over the S outcomes. Let xj represent the degenerate lottery

outcome associated with a given element of LD and let (pN1, pN2, ..., pNS) represent a given

element of LN . For a given lottery L, we define the following discontinuous utility function:

W (X,L) =

 v(xj) if L ∈ LD∑S
i=1 pNi × u(xi) if L ∈ LN


Note that if u(·) = v(·), W (·) reduces to standard expected utility.10 Continuity is violated

if u(xi) 6= v(xi) for a given xi ∈ X. If v(x) > u(x) for x > 0, then individuals exhibit a

disproportionate preference for certainty.

Critical efforts have been made to provide an axiomatic basis for such a discontinuous rep-

resentation of preferences (see Neilson, 1992; Schmidt, 1998; Diecidue, Schmidt and Wakker,

2004). These results demonstrate that with additional continuity or independence assumptions,

W (X,L) can represent standard expected utility preferences with a disproportionate preference

for certainty. However, the represented preferences will violate stochastic dominance (Schmidt,

1998; Diecidue et al., 2004). Though one could work around dominance with an ‘editing’

argument similar to that of Kahneman and Tversky (1979), this leaves the above model of

preferences with the somewhat undesirable property of violating dominance without such ad-

ditional elements. As such, in the words of Diecidue et al. (2004), ‘the interest of the model is

descriptive and lies in its psychological plausibility.’

It is important to note that allowing for discontinuous preferences over certainty and un-

certainty is not standard in the study of decision making under risk. However, in models of

time discounting such preferences frequently arise. Quasi-hyperbolic discounting (Strotz, 1956;

10One need not posit standard expected utility as the baseline when u(·) = v(·). Prospect theory probability
weighting is also continuous in probabilities. We choose this baseline for two reasons: 1) to have a model with
a small deviation from standard expected utility and 2) to capture the stylized fact that away from certainty
individuals act mainly in line with expected utility.
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Phelps and Pollak, 1968; Laibson, 1997; O’Donoghue and Rabin, 1999) is discontinuous at the

present. In such models, individuals discount between the present and one future period with a

low discount factor, βδ, and between subsequent periods with a higher discount factor, δ alone.

The model of quasi-hyperbolic time preferences is considered an elegant and powerful sim-

plification for several reasons. First, only a single parameter is added to standard exponential

discounting; second, many behavioral anomalies can be reconciled. Third, the null hypoth-

esis of dynamically consistent preferences can be tested. Our goal is similar. Consider, for

example, standard CRRA utility of v(x) = xα. The discontinuity we envision is of the form

u(x) = xα−β, α > β > 0. A single parameter is added to a standard model, many behavioral

anomalies can be reconciled, and the null hypothesis of β = 0 can be tested. In the next section

we show several results in support of modeling such a discontinuity in risk preferences.

3 Experimental Results Suggesting Discontinuity

A growing body of literature is suggestive of discontinuous preferences over certainty and un-

certainty. Expected utility is generally found to perform well when all outcomes are uncertain

(Conlisk, 1989; Camerer, 1992; Harless and Camerer, 1994; Starmer, 2000).11 However, viola-

tions of expected utility abound when individuals are asked to consider certain and uncertain

outcomes together. Generally, the direction of these violations indicate a disproportionate pref-

erence for certainty. Of course, these findings alone do not establish differential treatment of

certain and uncertain utility. Importantly, there exists a collection of studies which test more

directly whether certain and uncertain utility should be treated as identical.

Among the most puzzling and surprising results is the ‘uncertainty effect’ documented

by Gneezy et al. (2006) and reproduced by Simonsohn (2009). In Gneezy et al. (2006), 60

undergraduate subjects at the University of Chicago are randomly assigned to one of three

conditions in equal numbers. Subjects were asked to provide their willingness to pay (WTP)

11However, there do exist identified violations even when all things are uncertain. For examples and discussion,
see the noted citations and Wu and Gonzalez (1996).
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for a $100 gift certificate to a local bookstore, or for a $50 gift certificate to the bookstore, or

for a lottery with 50% chance of winning a $100 gift certificate and 50% chance of winning a

$50 gift certificate to the bookstore. WTP was elicited using the Becker, DeGroot, Marschak

mechanism (Becker, Degroot and Marschak, 1964), 5% of subjects had their choices actualized

and were given $100 to purchase the gift certificate or lottery. The average WTP for the $50

gift certificate in condition 2 was significantly higher than the WTP for the lottery in condition

3.

The between-subject behavior of valuing a lottery lower than its worst possible outcome

violates expected utility and prospect theory probability weighting.12 The authors suggest

that the obtained ‘uncertainty effect’ should be interpreted as a violation of the ‘internality

axiom’ that ‘the value of a risky prospect must lie between the value of that prospect’s highest

and lowest outcome’ (Gneezy et al., 2006, p. 1284). This internality axiom, which has also

been called ‘betweenness’ (Camerer and Ho, 1994) proceeds from continuity. If preferences

are continuous, then for a given degenerate lottery, say the $50 gift certificate, a probability

mixture from the strictly better than set and the weakly better than set must be at least as

good. As such, violations of the internality axiom could be viewed as violations of continuity.

The results of Gneezy et al. (2006) are indicative of certain outcomes being assessed differently

than uncertain outcomes. Indeed (Gneezy et al., 2006) suggest subjects may ‘code’ uncertain

lotteries differently than certain outcomes and apply a direct premium for certainty akin to the

disproportionate preference v(x) > u(x) for x > 0.13

In Andreoni and Sprenger (2009b), we present a discounted expected utility violation that

is also suggestive of differences between certain and uncertain utility. Using Andreoni and

Sprenger (2009a) Convex Time Budgets (CTB) and a within-subject design, 80 subjects are

asked to make intertemporal allocation decisions in two principal decision environments. In

12Both of these models respect ‘betweenness’ (Camerer and Ho, 1994), such that lotteries must be valued at
some weighted average of the valuations of their outcomes.

13The authors express this premium as follows: ‘An individual posed with a lottery that involves equal chance
at a $50 and $100 gift certicate might code this lottery as a $75 gift certicate plus some risk. She might then
assign a value to a $75 gift certicate (say $35), and then reduce this amount (to say $15) to account for the
uncertainty’ (Gneezy et al., 2006, p. 1291).

9



Figure 2: Aggregate Behavior Under Certainty and Uncertainty

0

0

05

5

510

10

1015

15

1520

20

201

1

11.1

1.1

1.11.2

1.2

1.21.3

1.3

1.31.4

1.4

1.41

1

11.1

1.1

1.11.2

1.2

1.21.3

1.3

1.31.4

1.4

1.4k = 28 days

k = 28 days

k = 28 daysk = 56 days

k = 56 days

k = 56 days(p1,p2) = (1,1)

(p1,p2) = (1,1)

(p1,p2) = (1,1)(p1,p2) = (0.5,0.5)

(p1,p2) = (0.5,0.5)

(p1,p2) = (0.5,0.5)+/- 1.96 S.E.

+/- 1.96 S.E.

+/- 1.96 S.E.Mean Earlier Choice ($)
M

ea
n 

Ea
rli

er
 C

ho
ic

e 
($

)
Mean Earlier Choice ($)Gross Interest Rate = (1+r)

Gross Interest Rate = (1+r)

Gross Interest Rate = (1+r)Graphs by k

Graphs by k

Graphs by k

Note: The figure presents aggregate behavior for N = 80 subjects under two conditions:
(p1, p2) = (1, 1), i.e. no risk, in blue; and (p1, p2) = (0.5, 0.5), i.e. 50% chance sooner pay-
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cases, k ∈ {28, 56} days. Error bars represent 95% confidence intervals, taken as +/ − 1.96
standard errors of the mean. Test of H0 : Equality across conditions: F14,2212 = 15.66, p < .001.

the first decision environment, sooner and later payments are made 100% of the time.14 In the

second decision environment, sooner payments are made 50% of the time and later payments are

made 50% of the time (determined by rolls of two ten-sided die). The prediction from standard

discounted expected utility is that allocations should be identical across the two situations.

This is due to the common ratio of probabilities across the two condtions. Figure 2 reproduces

14See Andreoni and Sprenger (2009b) for efforts made to equate transaction costs.
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Figure 2 of Andreoni and Sprenger (2009b), presenting the sooner payment allocation decisions.

Allocations in the two decision environments differ dramatically, violating discounted expected

utility. Additionally, the pattern of results cannot be explained by either standard probability

weighting or temporally dependent probability weighting.15 In estimates of utility parameters,

utility function curvature is found to be markedly more pronounced when all payments are

risky as opposed to when all payments are certain, suggesting a disproportionate preference for

certainty, v(x) > u(x) for x > 0.16 For experimental payment values of around $20, certain

utility is estimated as v(x) = xα, α̂ = 0.988 (s.e. 0.002), uncertain utility is estimated as

u(x) = xα−β, β̂ = 0.105 (0.017), and the null hypothesis of β = 0 is rejected.

These studies indicate that modeling utility as different for certain and uncertain outcomes

may help to explain decision theory phenomena that remain anomalous in expected utility and

probability weighting models. Additionally, many experimental methodologies use certainty

equivalence techniques, asking individuals to compare certain and uncertain outcomes. If cer-

tain and uncertain utility are different, this may help to explain some of the broad violations

of expected utility. In the following section, we discuss five decision theory phenomena existent

in the literature that can be explained by allowing certain and uncertain utility to be different.

To demonstrate the effects we use the parameter estimates obtained in Andreoni and Sprenger

(2009b) in hopes of convincing readers that the difference between certain and uncertain utility

need not be large to reconcile anomalous results.

4 Applications: Five Phenomena of Decision Theory

Allowing certain and uncertain utility to be different with a disproportionate preference for

certainty can account for five important decision theory phenomena: the certainty effect, ex-

perimentally observed probability weighting, the uncertainty effect, experimentally observed

extreme risk aversion, and quasi-hyperbolic discounting. Readers will notice that although the

15See Andreoni and Sprenger (2009b) for discussion.
16Discounting is found to be virtually identical across the two conditions and very similar to Andreoni and

Sprenger (2009a).
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present section is titled ‘Five Phenomena’, there are only four subsections. This is because one

of the five decision theory phenemona we discuss is trivially generated by a difference between

certain and uncertain utility.

The ‘certainty effect’ is the robust finding, frequently derived from intuitions of the Allais

Paradox, that when certain options are available, they are disproportionately preferred. Al-

lowing certain and uncertain utility to differ with the assumption that v(x) > u(x) for x > 0

provides the certainty effect trivially. Certain options are assumed to be disproportionately

preferred via the functional difference between u(·) and v(·). In what follows, we discuss the

other four phenomena in detail.

4.1 Probability Weighting

In addition to the four-fold pattern of risk preferences over gains and losses relative to a ref-

erence point, one of prospect theory’s major contributions to decision theory is the notion of

probability weighting (Tversky and Kahneman, 1992; Tversky and Fox, 1995). Probability

weighting generally assumes that there exists a nonlinear function, π(p), which maps objective

probabilities into subjective decision weights. π(·) is normally assumed to be S -shaped. Figure

3 plots the popular one-parameter functional form π(p) = pγ/(pγ(1 − p)γ)1/γ with γ = 0.61

as estimated by (Tversky and Kahneman, 1992).17 Low probabilities are upweighted and high

probabilities are downweighted. Identifying the general shape of the probability weighting

function and pinning down its parameter values has received substantial attention both theo-

retically and in experiments (see e.g., Tversky and Fox, 1995; Wu and Gonzalez, 1996; Prelec,

1998; Gonzalez and Wu, 1999).

Experiments demonstrating an S -shaped probability weighting function generally use cer-

tainty equivalence techniques (see Tversky and Kahneman, 1992; Tversky and Fox, 1995). That

is, individuals are asked to state a certain amount, C, that makes them indifferent to a lottery

which yields X with probability p and 0 otherwise. Analysis proceeds as follows: certain and

17Other analyses with similar functional forms yield similar patterns and parameter estimates (for reviews,
see Prelec, 1998; Gonzalez and Wu, 1999).
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Figure 3: Standard Probability Weighting
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uncertain utility are assumed identical, the utility of zero is normalized to zero, a functional

form for utility is posited, and π(p) is identified as the value that rationalizes the indifference

condition

u(C) = π(p)× u(X). (1)

In Tversky and Kahneman (1992), u(X) = Xα is posited along with the popular probability

weighting function noted above and the parameters of π(·) and α are estimated jointly.18 In

Tversky and Fox (1995), the curvature parameter from Tversky and Kahneman (1992) of 0.88

18Additional utility parameters such as the degree of loss aversion are also estimated.
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is assumed and the parameters of a similar two-parameter π(·) function are estimated.

If certain and uncertain utility are functionally different, and u(0) = 0, instead of (1) the

indifference condition is

v(C) = p× u(X). (2)

It is easy to see how this might lead to downweighting of high probability events. Dividing

(1) by (2) we obtain u(C)/v(C) = π(p)/p. If v(C) > u(C), then π(p)/p < 1. This, of course,

assumes that u(X) is parameterized the same way in both cases, which may not be true if one

were to estimate the data first assuming (1) and then assuming (2).

Take a gamble with probability p = 0.90 of winning $50. Following the utility parameters

obtained in Andreoni and Sprenger (2009b), (2) would yield a certainty equivalent of C =

(0.9 × 500.99−0.11)1/0.99 = $29.10. Given a certainty equivalent of $29.10 and following (1)

with the utility parameters of Tversky and Kahneman (1992) and Tversky and Fox (1995),

one would infer a decision weight of π(0.9) = 29.100.88/500.88 = 0.62, indicating a sharply

decreasing probability weighting function away from certainty.19 Now, take a gamble with

probability p = 0.01 of winning $50. Following (2), this would yield a certainty equivalent

of C = (0.01 × 500.99−0.11)1/0.99 = $0.31. Given a certainty equivalent of $0.31 and following

(1), one would infer a decision weight of π(p) = 0.310.88/500.88 = 0.011, indicating a slight

upweighting at low probabilities.20

Experiments using certainty equivalence techniques to identify probability weighting would,

by our account, suffer from an experimental flaw: the certainty effect is built into the ex-

perimental design. Allowing for a difference between certain and uncertain utility, a sharply

decreasing probability weighting function and upweighting of low probabilities can be gener-

ated. These are the hallmarks of the S -shaped probability weighting function. Interestingly,

19It is noteworthy that the curvature of 0.88 from Tversky and Kahneman (1992) is identical to the uncertain
curvature parameter of α̂− β̂ = 0.88 from Andreoni and Sprenger (2009b).

20The inversion between upweighting and downweighting occurs because under the utility parameterization
if C < 1, v(C) < u(C) while for C > 1, v(C) > u(C). We recognize that these are likely to be pathological
cases, but note that upweighting of low probability events is distinctly less pronounced than downweighting of
high probability events (Prelec, 1998).
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when the certainty effect is eliminated by design, experimental data appear to reject probabil-

ity weighting. Andreoni and Harbaugh (2009) eliminate any certain outcomes, ask subjects to

trade probability for prize along a linear budget constraint, and find surprising support in favor

of expected utility, while significantly rejecting probability weighting.

4.2 The Uncertainty Effect

The uncertainty effect of valuing a lottery lower than its worst possible outcome is a surprising

and somewhat unintuitive result. The uncertainty effect violates expected utility, probability

weighting and any other utility representation respecting betweenness.

Consider the utility parameters obtained in Andreoni and Sprenger (2009b) and the original

uncertainty effect comparing a 50%-50% lottery paying $50 or $100 to the certainty of $50. The

utility of the lottery is given as UL = 0.5× 500.99−0.11 + 0.5× 1000.99−0.11 = 44.41. The utility of

the certain $50 is given as UC = 500.99 = 48.08, demonstrating the uncertainty effect of valuing

a lottery lower than its worst outcome.

Note should be made of two key issues. First, the uncertainty effect seems not to be

present for immediate monetary payments in certainty equivalents experiments (Birnbaum,

1992).21 Second, it is not observed within individuals (Gneezy et al., 2006). In addition to

our hypothesis, future research should examine whether the uncertainty effect is present within

individuals and across a variety of rewards, including money.

4.3 Extreme Risk Aversion

Experimentally elicited risk preferences generally yield extreme measures of risk aversion. These

results are at odds with standard expected utility theory as even moderate risk aversion over

small experimental stakes implies unbelievable risk aversion over large stakes (Rabin, 2000).

Importantly, risk preferences are frequently elicited using willingness to pay certainty equiva-

lence techniques similar to the experimental methods used to identify probability weighting.

21Though Gneezy et al. (2006) demonstrate that it is present for monetary payments over time.
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As such, certainty effects and extreme risk aversion may be conflated.

Allowing for differences between certain and uncertain utility, extreme experimental be-

havior can be generated. Consider the utility parameters obtained in Andreoni and Sprenger

(2009b) and the certainty equivalent of a 50%-50% lottery paying $50 or $0. Normalizing

u(0) = 0, the certainty equivalent is given as C = (0.5× 500.99−0.11)1/0.99 = 16.07.

Under the standard assumption that u(·) = v(·), one would find the curvature parameter,

a, which rationalizes 16.07a = 0.5 × 50a. The solution is a = 0.61. Importantly, curvature

parameters obtained in low-stakes certainty equivalence studies and in auction experiments are

generally between 0.5 and 0.6.22 This suggests that part of experimentally obtained extreme risk

aversion may be associated with differential assessment of certain and uncertain outcomes.23

4.4 Quasi-hyperbolic Discounting

In Section 2, we discussed the practice of modeling discontinuous, quasi-hyperbolic time prefer-

ences. Recently, arguments have been made that dynamically inconsistent preferences are gen-

erated by differential risk on sooner and later payments (for psychological evidence, see Keren

and Roelofsma, 1995; Weber and Chapman, 2005). Halevy (2008) argues that differential risk

leads to dynamic inconsistency because individuals have a temporally dependent probability

weighting function that is convex near certainty similar to standard probability weighting. The

probability of receiving payments is argued to decline through time, with present payments

being certain. If individuals weight probabilities in a non-linear fashion, then apparent present

bias is generated as a certainty effect.

We have demonstrated that if certain and uncertain utility are not identical, certainty

effects and sharply declining probability weights can be obtained. As such, one need not call on

22In the auction literature, mention is made of ‘square root utility’ where α ≈ 0.5. Holt and Laury (2002)
discuss several relevant willingness to pay results from the auction literature in line with this value. Interestingly,
Kachelmeier and Shehata (1992) present evidence on both willingness to pay and willingness to accept values
for lotteries. Though the curvature implied from willingness to pay certainty equivalents is around 0.6, the
curvature from willingness to accept treatments actually suggests risk-loving behavior.

23Note, our explanation is not sufficient to produce the effect of extreme small stakes risk aversion when
comparing two uncertain outcomes as in Holt and Laury (2002). This, in turn, suggests that experimental
methodology may also be part of any discussion of extreme risk aversion.

16



a complex probability weighting function to explain the phenomenon. If individuals exhibit a

disproportionate preference for certainty when it is available, then present, certain consumption

will be disproportionately favored over future, uncertain consumption. When only uncertain,

future consumption is considered, the disproportionate preference for certainty is not active,

generating apparent present-biased preference reversals. In Andreoni and Sprenger (2009b),

we show that apparent present bias (and future bias) can be generated experimentally via

comparisons of certainty and uncertainty.

Consider an individual asked to choose between $15 with certainty today and $20 with

uncertainty in one month. For simplicity, assume a monthly discount factor of δ = 1 and

let p < 1 be the assessed probability of being paid in the future. Following the utility pa-

rameters of Andreoni and Sprenger (2009b), the relevant comparison is 150.99 = 14.59 versus

p · 200.99−0.11 = p · 13.96 < 13.96, and the individual opts for the certain, sooner payment. If

asked instead to choose between $15 with uncertainty in one month and $20 with equal uncer-

tainty in two months, the comparison is p · 150.99−0.11 = p · 10.83 versus p · 200.99−0.11 = p · 13.96,

the later payment is preferred, and a present-biased preference reversal is observed. This sug-

gests that discontinuous preferences over time and risk may have an identical source: the future

is inherently risky.

5 Conclusion

We provide a simple model of discontinuous utility over certainty and uncertainty. We demon-

strate that allowing for certain and uncertain utility can help to resolve five decision theory

phenomena: the certainty effect, probability weighting, the uncertainty effect, extreme exper-

imental risk aversion, and quasi-hyperbolic discounting. It is compelling that such a broad

set of phenomena can be reconciled with discontinuous preferences over certain and uncertain

outcomes. Our arguments lay the foundation for re-thinking certain and uncertain utility. It

is important to remember that allowing for discontinuous utility need not replace other inter-

pretations of the discussed phenomena, such as visceral present bias or non-linear probability
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weighting. However, accounting for a disproportionate preference for certainty, following the

intuition of Allais, only adds to our understanding of decision-making.
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