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Short Notes on the Flow in Hydraulic-Machines

Keizo Tausur*

(Received February 1, 1956)

This report may be regarded as a supplement fo the two articles by the present
author in the previous bulletin!» 2 and contains expositions and amendments on some
problems therein. In the first half are described fundamental equations in some curved
orthogonal co-ordinates and relations between them. In the latter half, some simple or
approximate methods concerned with the axisymmetric flow are explained.

1. A short note on the relations between some systems of
curved orthogonal co-ordinates

Relations between co-ordinate systems
As in the previous paper,” the co-ordinate system (m, n, ) is taken. A meridian
plane passing z-axis (axis of the runner) is taken as # surface and the circumferential
direction as the direction of § axis. Then, owing to the different methods of choosing m
and # surfaces, the following systems are considered :-
system (a)---as shown in Fig. 1, both m and » surfaces of a volume element are assumed
parallel conical surfaces approximately,
éystem (b)---m and n surfaces are orthogonal surfaces of revolution and m, n lines of a
volume element are curves, each having constant radious of curveture,
system (c)---on any 8 surface, m is taken in the direction of the stream line and » per-
pendicular to m. m, n surfaces are composed of m, # lines respectively,
system (c)---the direction of co-ordinate axes is the same as (c), but the # surface is
made of three dimensional stream lines.
In systems (c¢) and (c’), the intersection lines of e, #n, 8 surfaces or a part of them do not
coincide with m, #, f axes, especially when a wide field of flow is taken. In such cases
the direction m or & is considered to represent the direction of the meridional or circum-
ferential velocity component.
In Fig. 1 (i) quantities with ’ denote those of system (b) and others express those
of system (a), then :

(cm’—l—g;;'}' dm’) cos (% dm’) — (c,,’+g7;",, dm’) sin (gz;, dm’) = cm+g»fn£ dm,
but o' =Com, d?n’sdm, %ﬂgzgz}',cnz g;‘; .............................. (1)

For the system (b)

0dm) ., o ey | 0
o dn'=R'S'— PQ'~R’'S’— RS~dn (—a—; dm ) R
o(dm) 0 , , '
an’ __a v dm .............................. (2)

* Department of mechanical Engineesing, College of Engineering.



8 K. TABUSHI
Main differences between system (b) and (c¢), if the guantities in the latter system be
denoted with 7, are (from Fig.1 (i) and (ii))

acn/~ ’7” al” 7" __ 6671”_ ac”/’_ac””__ @1
6‘07~Cm 507 ° Cn =on _om” 90" =0, 507 =+0.

From above relations and applying similar methods as Equ. (1) and (2) to Fig.1 (i),
(ii), we have the results shown in Table 1.

Table 1.
J Sysrem (€] l Syslem (C)
| 2oa ool | 284
CE T .—' g
o _ s 1 20k
207 A l = "
ACn & ra o e”
‘ am + Om oam’ " om”
26 ’ 2ol . " 2a?
‘ S T | = O
ACn . " A"
20’ = Gnior
el _ R D"
26 = © Ewirtass il
Sysfine (¢) a4 . 2%/ -0 Q‘”= 2602060 o
Gi 2wt P T Fow T
11 2dwm)_ o (') _ 3! sl 2(dn)_ 3%
: o 2m’ - B Smr
Fig. 1. Aaw') __ 2! gmr| w2
! 2n’/ wm/ 2m” m”

n surfaces of system (c¢’) are determined from system (c) by following equations

Aa—&ﬁ sin (a—0) 49

Pt Ce COS 8 ------------------------------
o=~ T TICEDW (3
Co cos 0 2

tan ex~— ™ sec § (34—@)
Co 2
Here, § is the angle between m axis and the intersection line of # and @ surfaces; e
is the angle between £ axis and the intersection line of # and m surfaces; 49, da are the
change of & and & in 49 respectively. Equ. (3) (4) can be deduced from geometrical
relations as in the previous paper' and, for the case 6)59 df, they are transformed into
Equ. (35) and (34) of that paper.

Fundamental equations in (a) (b) (c¢) systems of co-ordinates
When equations are obtained in co-ordinate system (a) or (b), they can be trans-
formed into system (b) or (a) using Table 1 and from them are deduced equations in
system (c) or (¢") using the same table. In this manner the following formulas are aquired.
Equations for the condition of continuity div¢=0 are obtained from the mass equili-

brium of a volume element and is expressed in system (a) as follows:

acm acn ace sin & COS_ (3 riiieineeiieenns
Im on o Cm Ty Ty =0 ’ (5
and in system (b),
Ocy  Oc, | Oco sin & cos & Ou oa
om Tom Trel Tom Ty Ty T gy g =0 (6)
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in system (c),

Ocm, , O  Oco M & e
+m+c e (7)

om T o

or multiplying (7) by #dn and putting dn=; we have

0 . .
T (ricm)+ rg—b’ (rjcg) =0

Table 2.

1 2(nl) _ 2Cn_

:\:5: %'m o | A6
Z.= 2Cm __a(/z )

.§ = 56 o
e g 'b _agm_

D7

% 12 _ 9

2 /L 'a n26
2Gm _ ¢ 2(2G)

\g 3. =756 S

— 9Cy _ 2¢

‘l‘i 59— 2m 9;1" *

n ) +(n-9——+5n 24
~lz =13(lzt‘o2 Cn 22
& [P R’ Lk rT
§ ; = ?Gm _12(2G)
.,% 26 T dm

= °4 3Cn

?® § Cn Mam It

Table 3.

o K= Pom— 2240, Sind ¢, G5l "‘+2—3§°-)
L_VC +Ccsa((c L-}C.—ﬁ 23(‘@)
= VG -, 4 2(Ae B | Cosd me)

v= 3?»; an‘+n=ae=+_*5a_+%1Lan

Sy.sfam (a)

K,,,=Vc,..~ ———(Q'.Aﬁv_.‘,qhmd +2 2£9_ -

(C Ama(+ ) (C +3Gn)
8 X _VC"+_/Z_ Com A"""(-i-(' ————2—-5—)1'
§ +3d(c\m Am-o(+ 9Cm+anq" BCaw)
vg\" K= VQ___+2(Amd Zc‘; 4 et ac,‘)
2 2% o 3
v= am-+en=+me=+—"r+7rm+
3w _T_'a_'u.
_ 2°Cm_ 0o Sl DG gac,,
K"'l In= ths'am+ /1,’997- N /#e""
Coogl G 2 Ddl
- ———-(c‘ +2 ) C"’E’S o /?as,
vilr =--‘L__&_i“g._%_2&4wd+
- "0 2B, ImPIn NG N 9. A
S| 3ot Bt e
Sle. - 2% _ 2% el
| Ko =T+ Bl B - R (3% v

M‘r%iﬁ “(%5“ GZ6)~
—%%(%s"’aj&a_azs('an G“j&) C"'nae'au

from which the stream function ¥,/ is
deduced.
The components of vorticity &=rot ¢ are
edf— <§>
s

face of a volume element (f is the area, s is

obtained from Sf ¢sds for each sur-
the circumference of that area) and are
expressed as in Table 2.

Putting

—roté&=iK,,+i,K,+i:.Ky -(9)

the components K,,, K,, K, are obtaineﬂ
from & in the same way as components of
& from ¢ for system (a) or (b). But such
method is not applicable to the system (¢),
because in this case £,==0 while ¢,=0.
Here the transformation method from system
(a) or (b) can be adopted. Thus K,,, K,,
Ky, are obtained and some of them are
simplified by adding or subtracting div ¢=0.
The results are shown in Table 3.

If we put

—eXE=i N, +i,N,+i,N, -(10)

then
N,=—c,fo+cofn,
N3= _cm$n+cn$m~

N,=— o+ Cmbo,

From above relations, the expression of the
equation of motion

o¢

2 2 .
T x &= —grad (%+%+9)—vrot€

§

in m, n, 8 directions can be easily found.

From Equ. (28) in the previous paper? rot & =rot7+rot 2@, but 2 is a parallel vector

with constant magnitude, so rot20=0.

In system (b), 2w=4,20 cos & +i,(—2w sin &),
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Putting rot 20=14,4,,+i,A,+1,4¢=A4,
6 oa
A, T (2w sin &) =2w cos « T =0,

A,,=rg—0 (2wcos @) =—2wsin %‘f;=0,

Ae:%( 2wsina)—%(2wcosa)~\—(——2wsina)g—;:+2wcosa%=0,
A=0
da Oa O« . oq
In system (a) B o ol = =0, s A=0.

Therefore, the equation of motion of the relative flow is

gtﬂ_w =—grad (gl)—vrot+wX28 o 12

When the equation of motion is expressed in the form

%z —grad 24+R oo (13)

R=i,R,,+i,R,+i:Rs
R.., R,, Ry are given in system (a) as follows (Fig. 2);

orR,,= 9 (m"o 4 (’g;’”) 05 g’ﬁ —ogsina,

ot Ro= 6(70,,) +0(g;r1nn> 4 655@-,;9 cos e,

Fig. 2.

orRy= %—4—6—(5;”9) +a<57”£ +Tg,COS A+ Tonsina. -(14)

and from usual assumptions

Ocg  ¢o dc )
Too=T, coS A+ —xn
né on= ( an 7 7 ’

a
-]

S

Om= —P+2ﬂ%-cmﬂ, 0p= —P+2ﬂac"

-

From (13) (14) (15) equations of motion in m, n, § directions are obtained which
coincide with those from Equ. (11).
The co-ordinate system (a) can be used in boundary layer problems, and system (c)

is convenient for the design of runners and guidevanes using the stream function and
S—¢ or R—0 surface as explained before,
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2. A short note on the axisymmetric flow

Some relations of the potential flow
If stream lines on the meridian surface are concentric curves as shown in Fig. 3 (i),

following relations hold

Con= (2%2)/{7" log, (1+—1~€;>+ch05 a}

(CMO’M>/{ * og, ( >+k cos a} ..................... (16)

An_fg._r_ {ro log, (14_1?)4_]?3,303 a} ..................... (17)

%:{ro log, 1%+k(R—Ra) cos }/{ro log, (1+I§ J+kBeosa} e (18)
k:g_f_+1 OF —1  eeeeereeemieereeneeeiieens (19)

@p is the quantity of flow between ¢ and P; @
is the total quantity ; 4Q is the quantity of a
partial runner and 4n is the breadth of it when

the flow is divided in several portions as shown

in Fig.3 (iii). Even when the walls are not

(i) (iii)

concentric, ¢,, and 4n near the convex wall are Fig. 3
ig. 3.

obtained approximately from (16) and (17).
If 7 curves on the meridian section are concentric as shown in Fig. 3 (ii), following
relations exist

%”’z % (a—a;) +Fk (cos a—cos a,-)}/{% (@, —a;) + K (cos a,—cos ai)} «+-(20)

dn— chQ kI’e (ro(aty—a) + K R(cos ag—cosa)} it D

kfzg_R=+1 OF —1  eveeeereeereerinnennennin @
m

In these relations m is taken in the direction of flow and if the direction of # is as-
sumed, then the direction of @, and consequently those of z and « are determined.
Generally the breadth 4u of a partial runner in Fig. 3 (iii) can be corrected by
following methods.
Let

rkdnk__z rednpg, — - —b
Y =bg, dms =by,, br=const.=b,

then
B=31 (o) = 31 (dnw)

B3 (o ) 53 2) (42

7k Tk

by=B/S (f’rﬂkk)  dmpgmby dmplre e, (23)
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where dng, is the corrected value of 4np, assuming 4my, 7, unchanged. From this cor-
rected 4n, 4m and r are revised.

An approximate method for a turbulent boundary layer

From experimental curves, the energy relation is approximately expressed® as (when
I,=8~30)

1 ad
2 dm

*
(s~ { S log, (“m0n%) 73 _584] o 24)

e ey,
m ml

If we take Equ. (26) of the previous paper® as the velocity distribution, namely

=1t g fiom oA 13}
and let Crm=20°k%, Cro=20"k*, x=09/0m,
then
=23 A+A), f1=am*/am:(1+%)b,
fom g (1+‘;1)b <2+ Al e,
fu= D b’{l b(2+A—i4——logex)}
fom ‘;1*4 3b(1+’g)+3b2(2+—2—A+?)—ba(6+%A+%A2+%A3),
4=y, a5 b 207,

and Equ. (24) becomes

_dd;n_ (cvznlbm _%) ~2b3]§3(;§n1Fe O LA T ETCR ST PR TRRTTRIT PR (25)

2
_l [ f1>
Fe e=— loge( v f +7.31,—584.

From Equ. (22) of the previous paper,?
db B2 [ 1 dem (2+ ft)_l_l _dL{l (691 ) (@, +ay) %}] Dy rreeeees (26)

Cm dm 12 r dm Cony

From Equ. (21) of the previous paper,” when E’%E—O,

Ao 1102 Coy 1 d(chCOI) fi fi 1 dee) . 2
am = b2 le—{cmlcm ~dm + 7 (Z—I— xf3>+ Xfs Cor dm }bmo ©1)

From experimental data®®

CoriD,, \0:268 0.246
( m; m ) =F,, F’”:Tl()‘)"in—zxzbzxz) ............... (28)

1
logm 09131719 —_=F9, Fo= IlG,/.zA Vr 10g10 (4 075 fa)
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When there is a laminar boundary layer upstream, the initial values of b, and b,
of the turbulent boundary layer are taken equal to those of the laminar layer at the tran-
sition point, and values of f,/(f:x) =b./0me and F,, and F, in Equ. (28) and (29) are
determined.

If we assume the initial value of A, b is obtained from F,,, and then f1, fz, fs, s
(f,x) are also obtained. From (f,x) and Fy, the values & and x can be derived by trial.

These values are put into Equ. (25) (26) (27), then variations of b, Dme, f5/f2 in
elementary length 4m are aquired and also F,,, Fy, Dp/bdme=ro/(fsx) at this new pesition.

A and b are determined from F,, and f;/f, by trial and consequently f, and (fx).
¥ and x are obtained from Fy and (f35x) as before. The variation of A in m direction
affords some clue of whether the assumed initial value is correct or not.

By assuming the initial value of x, approximate variations of the boundary layer are
also obtained by similar procedure.
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