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A Method for Minimal Realizations of Finite Automata

via Input-output Responses

Koji WATANABE*, Takeo IKAI** and Kunio FUKUNAGA **

(Received November 10, 1997)

Representing finite automata (FAs) by means of bilinear state space models over
B (= {0,1}), a linear algebraic approach for FAs is made possible and some concepts of the
field of dynamical systems and controls can be introduced to that of FAs.

In this paper, we propose a minimal realization algorithm of deterministic finite auto-
mata (DFAs) using Silverman’s minimal realization algorithm. Since Silverman’s algo-
rithm is built for linear state space models over the real numbers, we extend this algorithm
to apply it to FAs over B. Furthermore, we derive a minimal partial realization algorithm
of DFAs from finite partial input-output responses of FAs.

1. Introduction

Regarding finite automata (FAs) as discrete time
dynamical systems, bilinear state space models of
FAs can be obtained by means of the vectorization
of states and symbols over B(={0,1}) and the
parameterization of system characteristics (the state
transition function etc.). Based on the state space
model representation, a linear algebraic approach for
FAs is made possible as well as linear systems over
the real numbers (R) in the field of dynamical sys-
tems and controls”’ . The concepts -such as
reachability, observability and canonical decomposi-
tion, for example, can be defined for state space
models of FAs over B*®. ‘ '

An approach to construct system parameters of a
minimal state space model from input-output re-
sponSes of a dynamical system, called the realization
theory, was begun by Kalman® in the field of linear
dynamical systems over R and the relations among
reachability, observability and minimal realizations
were clarified. At present, there are many algo-
rithms for minimal realizations. Since these algo-
rithms are built for linear state space models over R,
however, some extensions are needed to apply them

to FAs. One minimal realization method for deter-
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ministic finite automata (DFAs) based on an ex-
tended Attasi’'s algorithm® has already proposed?.
But system parameters of minimal DFAs cannot be
obtained directly by that algorithm. ‘

In this paper, we shall propose a novel minimal re-
“alization method of DFAs using Silverman’s algo-
rithm® which is one for linear systems over R and
by which system parameters are given directly with-
out solving matrix equations. '

In chapter 2, for a given DFA, we show how to
construct its state space model over B. Next we de-
fine the reachability, observability, characteristic re-
sponses and the Hankel matrix for this model.

In chapter 3, we derive a method for minimal re-
alizations of DFAs via Hankel matrices using
Silverman’s algorithm. Since the models of FAs are
built over B as against the Silverman’s algorithm
over R, extensions of the algorithm are necessary.
Then, we propose three algorithms for minimal re-
alizations of FAs which are selected according to the
type of a given Hankel matrix. Furthermore, we pro-
pose a minimal partial realization algorithm via
subHankel matrices constructed from a finite part
of input-output responses. In this minimal partial
realizations, minimal DFAs are realized in the sense
of the identification-in-the-limit defined by Gold™®.
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2. State Space Models of Finite Automata

2. 1 State space models

We first introduce an algebraic system called the

boolean semiring (B, +, *) (where B={0,1}) to de-
rive state space models of FAs. Table 1 shows the
addition and multiplication of boolean semiring.
These are ordinary addition and multiplication in in-
tegers except 1 +1=1.

Boolean semiring

Table 1

addition multiplication
0+0=0 0+0=0

0+1=1 0-1=0

1+0=1 1-0=0

1+1=1 1-1=1

A FA is formally represented by 5-tuple,
M=(Q, 2, J,po,}?) (1)

where @ is the set of states, X is the set of input
symbols, ©J is the state transition function, p. is
the initial state, and F is the set of accepting
states. The number of states denoted by Q| is n
and that of symbols {ZX| is m.

We show the method to construct state space mod-
els of DFAs. First, the state ¢. (€ @) (where i=1, -+,
n) is represented by an n-dimensional unit vector e
(only i-th component is 1, the rest are 0 and called
i-unit vector). The initial state p, is expressed by
Xo.

Second, when the states ¢’ and g of the state tran-
sition function &(q, ax)=¢q  for an input symbol a.
(€ X) are represented by i- and j-unit vectors re-
spectively, the j-th column of a square matrix Aa of
order n over B is made of an i-unit vector. Aa is
called a state transition matrix and abbreviated as
A,

The state equation of a FA over B is defined as,

D= 3 1) A x() @
B=1

where x(0)=x,, and u (t) expresses an input symbol
to FAs as follows.
The strings over X are discrete time sequences and

are inputed to FAs from the time 0 in order. When
ax is inputed at the time ¢, u(t) of Eq.(2) becomes
1 otherwise 0. An input symbol a. of time ¢ and
u(t) are considered to be identical hereafter. x(¢
+1) is given from the state equation (2) by opera-
tions over B. In the case of DFAs, however, an
operation1 + 1 = 1 does not occur and then the state
vector x(¢) is an n-dimensional unit vector.

Next, the set F of accepting states is represented
by an n-dimensional vector ¢. That is, if g is a
member of F, an i-th component of ¢ is 1 and other-
wise 0.

The output equation using the vector ¢ is defined

as,
y(t) =ex(t) €))

where ¢ means the transposed vector of c¢. If the
state vector x(z) coincides with one of unit vectors
representing accepting states, y(¢) becomes 1 which
means the acceptance of a input string.

From described above, the state space model of a
FA is obtained as follows:

(@t +1) =h§ul.(t)A;.x(t)
- @
y(t)=cx(t)

Thus, FAs are expressed by bilinear systems over B.
The parameter representations are denoted by ({A.},
¢, x;) (where k=1, *:*, m) corresponding to sym-
bolic representations (1) and A.’s, ¢ and x, are
called system matrices or system parameters.

Let an input string w=as,_, @, " Gk, ak, (€ Z*)be
applied to a FA from right side symbol, then the
transition matrix A(w) which corresponds to w is

defined as,

A(w)=Ar., Ak, Ak Ak, (5)

where ar, (€ X) is an input symbol at the time ¢
and A, (E{4,, -
Gk,

, An}) is the transition matrix for

2. 2 Reachability and observability
For FAs considered as bilinear systems, the

reachability and observability can be defined in the
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same manner as linear discrete time systems.
2.2.1 Reachability
When there are input strings which cause transi-
tions from the initial state to some state g, the
state ¢ is called reachable. That is, when such an
input string w as J{(p., w)=gq exists, the state g is
reachable. If all states are reachable, system pa-
rameters ({A:}, xo) are called completely reachable.
The reachability matrix R.. is constructed by put-
ting n-dimensional vectors A(w)x, in alphabetical

order as follows:

R..,.,=[xo, Aixo, -, AmxmAlexo,
v, AnAixo, -, Al xe, ] WE XY, (6)

The column A(w)x, is denoted by the column label
w. The number of non-zero row vectors of R..
shows that of reachable states. System parameters
({A4}, xo) are completely reachable if there is no
zero row vector in R...

2. 2. 2 Observability

When there are strings which cause transitions

from some state g to an accepting state, the state ¢

is called observable. That is, when such a string w
as J(g, w)EF exists, the state g is observable and,
if all states are observable, System parameters
- ({A}, © are called completely observable.

The observability matrix O. . is defined as well as
the reachability matrix as follows,

id

O..n= we ). M

A

The row ¢A(w) of O., is denoted by the row label
w. The number of non-zero column vectors of O. .
shows that of observable states. System parameters
({A.}, © are completely observable if there is no
zero column vector in O. ..

Next we introduce the distinguishability. For some
states ¢ and g, if there is a string w such that
6(q:, wEF and J(qg, w)EF, then g: and ¢ are
called distinguishable. Since each state ¢: corresponds
to the i-th column of O.,, the states which have dif-
ferent column vectors in O, . are distinguishable.

2. 3 Characteristic responseskand Hankel matrix
The general solution of state space models (4) for

some input string w is written as follows:
(=AW x,, y(&)=cAW)x, ®

where w= & (& :empty string) at the time 0 and
A(e)=E, (E,: the unit matrix of order n).
Let

hw) =cAW) x,, €))
then the output sequence:

(h(e), hlay), =, hlaw, -, hw), -}
Cwe X A0

is called -the characteristic responses for state space

models (4). k
We construct an infinite matrix H.. called Hankel

matrix from characteristic responses (10) as fol-

lows,
e .
e h(e) - A
H..= r| k(D h(rv) - an

where, r (€ £*) is a row label and v (€ X") is a
column label which are arranged in alphabetical
order.

The Hankel matrix H. . can be decomposed into
the observability matrix O. , and reachability matrix
R.. as follows,

8 X U
e[ ¢xo AW x,
= rleax A AW xo
e| ¢
: : € W
T ricAn (xo AW xo )
=  (O..R... | a2

If a DFA of n states is completely reachable and
completely observable and moreover all states are
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distinguishable (completely distinguishable), that is,
there are all kinds of n-dimensional unit column vec-
tor in R,. and all column vectors of O., are non-
zero and different from each other, then the DFA is
minimal. The Hankel matrix H_ ., in this case, con-
sists of only n kinds of non-zero column vector in-
cluding zero column vectors. The number n of
different non-zero column vectors of H_ . represenfs
that of states of a minimal DFA.

We next define a matrix H®.. The (r, ¢) compo-
nent (where r; and ¢ are a row label and a column
is the output of FAs for
the input string ra.. H®, is decomposed as follows,

label respectively) of H®

HE. =0. AR.. 3)

where A. is the transition matrix of a DFA of n
states for an input symbol a. and O., and R,. are
its observability and reachability matrices respec-
tively.

2.4 Dual automata

When a FA accepts reverse strings which some FA
M accepts, the FA is called a dual automaton of M
and denoted by Maw. Mua is ordinarily a non-
deterministic finite automaton (NFA) even if M is
a DFA. System parameters of Mua are ({44}, xo, ©
for ({Ad, ¢, x0) of M and the Hankel matrix of
Mo 1s a transpose of that of M.

A DFA which is obtained by the subset construc-

tion® from the dual automaton of a completely
reachable DFA is a minimal DFA.

3. Minimal Realizations and Minimal Partial
Realizations of Deterministic Finite Automata

In the field of dynamical systems and controls,
constructing system parameters from input-output
responses of linear systems is called realizations. In
particular, the construction of minimal dimensional
system parameters is called minimal realizations.

There are many algorithms of minimal realiza-
tions over R, and some minimal realization algo-
rithms for DFAs represented by the state space
models over B have already proposed**'*"®. One of
them is an extended Attasi’s algorithm® which uses
commutative Hankel matrices (the Hankel matrices

whose row and column labels consist of com-

Hankel
matrices”. But, this algorithm does not give system

mutative strings) to non-commutative
parameters of a minimal DFA directly. That is, sin-
gular matrix equations over B must be solved to ob-
tain system parameters.

In this chapter, we apply Silverman’s algorithm to
DFAs which gives system parameters of a minimal
DFA directly.

Next, we derive a minimal partial realization al-
gorithm of DFAs via finite subHankel matrices con-
structed from a finite

partial sequence of

characteristic responses.

3.1 Minimal realizations of DFAs

Silverman’s algorithm needs the rank of a given
Hankel matrix. But Hankel matrices of FAs are ones
over B, then the ordinal definition of the rank over
R cannot be applied. Then, since the number of dif-
ferent non-zero column vectors of Hankel matrix is
that of states of a minimal DFA, we now define the
column rank of a Hankel matrix of a FA as the
number of different non-zero column vectors of it.
Furthermore, we define the row rank of a Hankel
matrix denoted by rank.. as the number of different
non-zero row vectors of it. Under these definitions,
the column rank and row rank do not agree gener-
ally. Then, we derive two kinds of algorithms which
are selected according to the column rank and the
row rank of a given Hankel matrix.

Algorithm 1

1. Compute the column rank of a subHankel ma-
trix in turns M., His, - in order to obtain the
minimal ¢ which satisfies the following equa-

tion,
rank H..=rank Herr,eoen =+ =7 (14)

where 7 is the number of states of a minimal
DFA. Next, compute the row rank of the
Hankel matrix as well as the column rank of it
in order to obtain the minimal r satisfying the

following equation,
rank., H.. = 7. ' (15)

If the row rank is less than the column rank, r

cannot be obtained. In such a case, the realiza-
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tions are performed by algorithms 2 or 3 de-
scribed later on.

2. Construct an rXc subHankel matrix H...

3. P,z is obtained by pulling out different non-zero

column vectors from H,. in order from the

first column of it.

. Construct P% from H® by taking out the cor-

responding column vectors to P,s.

. Pz is obtained by pulling out different row vec-

tors from P, .

. Construct P& from P% by taking out the corre-

sponding column vectors to Piw

. System parameters of a minimal DFA are ob-

tained as follows:

A=P:i P® (16)

. ? = ( 1 0 - 0 )‘7;,7. (17)
1
0.

Xo =. : . . (18)
0

Since P4 is needed in this algorithm, Psx is re-

garded as a matrix over R.

Example 1

Let the input-output data(characteristic responses) °

of a DFA of Fig. 1 be given. This DFA is minimal.

1.

b a h
[0S OWOsL
a b
Fig. 1 3 states DFA

The Hankel matrix H. . of the DFA of Fig. 1

is as follows,

e a b aa ba ab bb
e {1 0 1 1t 0 0 1
a [0 1 0 0 0 1 0
b 1 06 1 1 0 0 1.
aa{1 0 1 1 0 0 1 19
bal 0 1 0 0 0 1 0
ab} 0 0 0 0 1 0 O
bbl1 0 1 1 0 0 1

2. From Egs. (14) and (15), 7=3, r=6 and c¢=5

are obtained.

3. The subHankel matrix Hes is as follows,

€ a b aa ba
el1 0 1 1 O
a0 1 0 0 O
His=b |1 0 1 1 0 (20)
acl' 1 0 1 1 0
bal 0 1 0 0 O
abl0 0 0 0 1
4. Next Ps; is constructed from Hes as,
e a ba
ef1 0 0
al0 1 0
Ps=b|1 0 0 (21)
aall 1 0 O
bal 0 1 O
abV0 0 1
5. H@A and HB are as,
a aa ab aaa aba
e/0 1 0 0 O
al1 0 1 1 0
H3=b6{ 0 1 0 0 .0 (22)
agqg 01 0 O 0
bal 1 0 1 1 0
ab\ 0 0 0 O 1
b ba bb baa bba
1 0 1 1 0
al0 0 0 0 1
HB=0b {1 0 1 1 0 (23)
ae|l 0 1 1 0
bal 0 0 0 O 1
abl0 1 0 0 O

then, P4 and P& are obtained as follows,
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a aa aba
0 1 0
all 0 0
Pg=b6(0 1 0 (24)
aat 0 1 0
ball1 0 0O
abl0 0 1
b ba bba
e 1 0 0
a |0 0 1 &
P&=0b 1 0 0 25
aal 1 0 0
bal0 0 1
ab\0 1 0

6. Pis, P2, and P are constructed as follows,

€ a ba
e {1 0 O
Ps=a |0 1 0 (26)
ab\ 0 0 1
a aa aba
ef{0 1 0
Pa=al1 0 0 010
ab\ 0 0 1
b ba bba
ef/1 0 0
Po=a | 0 1. (28)
ab\ 0 1 0

7. From Eqs. (16) ~(18), System parameters of a
minimal DFA are obtained as follows:

1 0 1 0
A=[1 o0 L A=10 0 1 (29)
0 1 0 1 0
1
#=(1 0 0),%=10] (30)
0

There are such Hankel matrices as their row ranks
are less than their column ranks. If such a Hankel
matrix is given, r of Eq.(15) cannot be obtained.

Then, minimal realizations are performed by next

algorithms 2 or 3.
Algorithm 2
P.z and P® can be constructed even if the row
rank of a Hankel matrix is less than the column
rank of it by redefining r of Eq.(15) as a minimal r
satisfying the following equation,
rankmer,c =rankroer+l,c = e = nrow (31)
where n.., is the row rank of Hankel matrices.
Eq.(16) can be transformed to

PI‘LTLATh= ik)ﬁ (32)
and next equation holds.

P.:A.= P& (33)

By solving this matrix equation, A. can be obtained.
The algorithm using Eq.(33) is as follows.
1. ¢, r and 7@ are obtained from Eqs.(14) and (31).
2. P.» and P® are constructed in the same manner
as the algorithm 1.
3. A, is obtained from Eq.(33).
4. ¢ and %, can be computed from Egs.(17) and
(18).
Algorithm 3
If, in a given Hankel matrix, the row rank is less
than the column rank, a minimal realization can be
also performed by use of a dual automaton men-
tioned in 2.4.
1. Transpose a given Hankel matrix.
2. Realize a minimal DFA from the transposed
Hankel matrix by using the algorithm 1.
3. Construct a dual FA of the realized DFA.
4. Transform the dual FA to a DFA by the subset
construction. The transformed DFA is a desired
minimal DFA.

3.2 Minimal partial realizations of DFAs

In this section, we show a method of minimal par-
tial realizations for DFAs from subHankel matrices.

At first, we construct a subHankel matrix from a
partial sequence of characteristic responses of a FA
which are given in alphabetical order. From this
subHankel matrix, we get a DFA using algorithms
above-mentioned. Next, this subHankel matrix is en-

larged and a new. DFA is realized from it. By
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repeating this procedure, a minimal DFA is realized
in the limit.

Algorithm

1. Start from subHankel matrix H,: and let N=
1.

9. Let IT be the set of column labels of different
columns of the subHankel matrix. The column
of the subHankel matrix is expanded until in-
volving the column labels wiw;(where w, € Z,
w, €M.

3. Step 2. is repeated until a new different column
do not appear in expanded subHankel matrix.

4. Construct DFAy using Silverman’s algorithm
from the subHankel matrix.

5. Expand the Hankel matrix by a row. Let N=N
+ 1 and return step 2. v

By this algorithm, DFAy (N=1,2, ---) are ob-

tained in order. After some N, DFAy=DFAy:1 ="
holds. This means mihimal DFAy is obtained in the
limit. ’

Example 2

The object of realizations is the DFA of Fig. 1.

1. Let N=1. H.. is gotten as follows,

€ ,
Hi=e (D. &2

2. H., is expanded into next His,

€ a b aa ba

3. Construct DFA; from H.s.

(a) rankH.s =2 and rank..His =1. We use al-

gorithm 2 because of rank..H.s<rankHus.

() ¢ =2 and r=1 are computed from Egs.(14)
and (31).

(¢c) Contruct Hi., Hi% and H,

’ e a
Hi.=€e (1 0), (36)
a aa b ba

HG=¢e(0 1), HE=¢e(1 0). @D

(@) P, P% and P{% are obtained as follows,
e a

P,=¢(1 0), (38)

a aa b ba ‘

Pa=¢(0 1), PB=e(1 0). (39

101

(e) System parameters of DFA, are obtained

as follows,

_ (0 1) _ (1 0)
Aa= ,Ab=

1 0 0 1

1 .
=~ 0),xo=(0). 40
0 o
v @)X Ds
a

Fig. 2 DFA,

N

. Expand H.s by a row (N=2),

g a b 'aa ba

eft 0 1 1 0
2,6 = . 41
Hos =, (0 1 0 0 0) “

5. H.s is eventually expanded into Hsu as follows,
g - ab bb aaa baa aba bba

H_el'--O 1 0 1 o0 0
Tg\0o -1 0 1 0 o0 1)

(42)
6. Construct DFA; from Hiu,
0 1 0\ 1 00
A=[1 0 o], a=|o0 0 1 (43)
0 0 1 0 1 0
e=(1 0 0), &H%=1{0]. (44)
‘ 0
‘ e b
0B OWOs]
a b

Fig. 3 DFA,

7. Even if we repeat this procedure, an obtainéd
DFA is as same as DFA,. Then, DFA; is the
minimal DFA which is identified in the limit.
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4. Conclusions

There are two cases to obtain a minimal DFA.
One is a reduction of states of a DFA given by the
state transition diagram and so on**"'¥. The other
is a minimal realization from the input-output data
of a FA¥*#%9 With respect to the latter, many al-
gorithms such as Ho-Kalman’s, Silverman’s and
Rissanen’s'™™ algorithms etc. are known for linear
state space models of linear systems over R.

In this paper, we applied Siverman’s algorithm to
FAs. Since FAs are represented by the bilinear state
space models over B, we expanded Silverman’s algo-
rithm in order to apply it to FAs. Then, we pro-
posed various algorithms according to column ranks
and row ranks of given Hankel matrices, where the
column and the row rank of a matrix over B are de-
fined respectively to be the number of distinct col-
umns and rows. Moreover, we derived the method of
a minimal partial realization algorithm based on
Gold’s identification-in-the-limit.
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