
http://repository.osakafu-u.ac.jp/dspace/

   

Title
A Method for Minimal Realizations of Finite Automata via Input-output

Responses

Author(s) Watanabe, Koji; Ikai, Takeo; Fukunaga, Kunio

Editor(s)

Citation
Bulletin of Osaka Prefecture University. Series. A, Engineering and natur

al sciences. 1998, 46(2), p.95-102

Issue Date 1998-03-31

URL http://hdl.handle.net/10466/7773

Rights



Bulletin of Osaka Prefecture Unlversity
Series A, Vol. 46, No.2, 1997, pp.95-102

              A Method for Minimal Realizations of Finite Automata

  ' via lnput-output Responses
                                 '                          '                                                      '

                       Koji WATANABE*, Takeo IKAI** and･Kunio FuKuNAGA**

                                     (Received November IO, 1997)

            Representing finite automata (FAs) by means of bilinear state space models over
          B (= {O,l}), a linear algebraic approach for FAs is made possible and some concepts of the

      , field of dynamical systems and controls can be introduced to that of FAs.
            In this paper, we propose a minimal realization algorithrn of deterministic finite auto-

          mata (DFAs) using Silverrnan's minimal realization algorithm. Since Silverman's algo-
          rithm is built for iinear state space models over the real numbers, we ektend this aigorithm

          to apply it to FAs over B. Furthermore, we derive a minimal partial realization algorithin

          of DFAs from finite partial input-output responses of FAs.
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                 1. Introduction

                                   '
  Regarding finite automata (FAs) as discrete time

dynamical syst'ems, bilinear state space models of

FAs can be obtained by means of the vectorization

of states and symbols over B(={O,1}) and the

parameterization of system characteristics (the state

transition function etc.). Based on the state space

model representation, a linear algebraic approach for

FAs is made possible as well as linear systems over

the real numbers (R) in the'field of dynamical sys-

tems and controlsi). The concepts -such as

reachability, observability and canonical decomposi-

tion, for example,･can be defined for state space

m6dels of FAs over B2'3). '
  An approach to construct system parameters of a

minimal state space model from input-output re-

sponses of a dynamical system, called the realization

theory, was begun by Kalman`' in the field of linear

dynamical systems over R and the relations among

reachability, observability and minimal realizations

were clarified. At present, there are many algo-

rithms for minimal realizations. Since these algo-

rithms are built for linear state space models over R,

however, some extensions are needed to apply them

to FAs. One minimal realization method for deter-

 ministic finite automata (DFAs) based on an ex-

 tended Attasi's algorithm5' has already Proposed2).

 But system parameters of minimal DFAs cannot be

 bbtained directly by that algorithm.

   In this paper, we shall propose a novel minimal re-
! alization method of DFAs 'using Silverman's algo-

 rithm6) which is one for linear systems over R and

 by which system parameters are given directly with-

 out solving matrix equations.

   In chapter 2, for a given DFA, we show how to

 construct its state space model over B. Next we de

 fine the reachability, observability, characteristic rer

 sponses and the Hankel matrix for this model.

   In chapter 3, we derive a method for minimal re

 alizations of DFAs via Hankel matrices using

 Silverman's algorithm. Since the models of FAs are

 built over B as against the Silverman's algorithm

 over R, extensions of the algorithm are necessary.

 Then, we propose three algorithms for minimal re-

 alizations of FAs which are selected according to the

 type of a given Hankel matrix.. Furthermore, we pro-

 pose a minimal partial realization algorithm via

 subHankel matrices constructed from a finite part

 of input-output responses. In this minimal partial

 realizations, minimal DFAs are realized in the sense

 of the identification-in-the-limit defined by Gold"8'.

                                 '                                             '
* Graduate Student, Department of Computer and
  Systems Sciences, College of Engineering.

**Departrnent of Computer and Systems Sciences,
  College of Engineering.
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    2. State Space Models of' Finite Automata

2. 1 State space models

  We first introduce an algebraic system called the.

boolean semiring (B, +,.) (where B= {O,1}) to de-

rive state space models of FAs. Table 1 shows the

addition and multiplication of boolean semiring.

These are ordinary addition and multiplication in in-

tegers except 1 + 1 == 1.

           Table 1 Boolean semiring

additiori

o+o=o
O+1=1
1+O =1
1+1 == 1

multiplication

o.o == o

O.1=O
1･O == O

1.1=1

A FA is formally represented by 5-tuple,

         M= (Q, X, 6, po, E) (1)

where Q is the set of states, £ is the set of input

symbols, 0 is the state transition function, po is

the initial state, and F is the set of accepting

states. The number of states denoted by IQI is n

and that of symbols IXI is m.

  We show the method to construct state space mod-

els of DFAs. First, the state qi (Ei Q) (where i=1, ･･･,

n) is represented by an n-dimensiona! unit vector e･

(only i-th component is 1, the rest are O and called

i-unit vector). The initial state po is expressed by

xo･

  Second, when the states q' and q of the state tran-

sition function 0(q, ah)= q' for an input symbol da

(E X) are represented by i- and j-unit vectors re

spectively, the j-th column of a square matrix Aca of

order n over B is made of an i-unit vector. Ath is

called a state transition matrix and abbreviated as

A,.

  The state･equation of a FA over B is defined as,-

            m    x(t+1) == 2uk(t)Ak x(t) (2)
            h=1 -

where x(O)=xo, and uh (t) expresses an input symbol

to FAs as follows.

  The strings over X are discrete time sequences and
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  are inputed to FAs from the time O in order. When

  ak is inputed at the time t, uk(t) of Eq.(2) becomes

  1 otherwise O. An input symbol ak of time t and

  ttk(t) are considered to be identical hereafter. x(t

  +1) is given from the state equation (2) by opera-

  tions over B. In the case of DFAs, however, an

  operation1 + 1 = 1does not occur and then the state

  vector x(t) is an n-dimensional unit vector.

   Next, the set F of accepting states is represented

  by an rvdimensional vector c. That is, if qi is a

  member of F, an i-th component of c is 1 and other-

  wise O.

    The output equation using the vector c is defined

  as,

              y(t)=dx(t) (3)
  where d means the transposed v'ector of c. If the

  state vector x(t) coincides with one of unit vectors

  representing accepting states, y(t) becomes 1 which

  means the acceptance of a input string.

    From described above, the state space model of a

  FA is obtained as follows:

                  m         x(t+1) = 2 uk(t)Akx(t)
                 h=1                                             (4)

            pt(t) = dx(t)

  Thus, FAs are expressed by bilinear systems over B.

  The parameter representations are denoted by ({Ak} ,

  c, xo) (where le=1, ･･･, m) corresponding to sym-

  bolic representations (1) and Ak's, c and xo are

  called system matrices or system parameters.

    Let an input string tv= ala., aha "' ah, ah, (E X')be

  applied to a FA from right side symbol, then the

  transition matrix A(w) which corresponds to w ･is

  defined as,

       A(Lv)=Ah,.i Ah,.t '"Ahi Ako (5)

  where ala (E X) is an input symbol at the time t

  and Ah, (E! {Ai, "', A.}) is the transition matrix for

  ala.

  2. 2 Reachability and observability

    For FAs considered as bilinear systems,'the

  reachability and observability can be defined in the

'
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same manner as linear discrete time systems.

2.2.1 Reachability

  When there are input strings which cause transi-

tions from the initial state to some state q, the

state q is called reachable. That is, when such an

input string w as 0(Po, w)=q exists, the state q is

r'e' achable'. If all states are reachable, system pa-

rameters ({Ak}, xo) are called completely reachable.

  The reachability matrix R,,. is constructed by' put-

ting n-dimensional vectors A(w)xo in alphabetical

order as follows:

                       '
     Rlp=[xo, Aixe, '", AmxoiAiAixo,

       "', A.Aixo, "', A(w)xo, "'] (wEX'). (6)

                                           '
  The column A(w)xo is denoted by the column label

w. The number of non-zero row vectors of Ra..

shows that of reachable states. System parameters

({AE},xo) are completely reachable if there is no

zero row vector in R4.. ,
2. 2. 2 Observability

                                         --  When there are strings which cause transitions

from some state q to an accepting state, the state q'

is called observable. That is, when such a string w

as 6(q, w)EF exists, the state q is observable and,

if all states are observable, ' system parameters

({Ah}, el are called completely observable.

  The observability matrix O..,. is defined as well as

the reachability matrix as follows,

                d

       CL.,n== i (WE£')- (7)               d4(w)

                :

The row dA(tv) of O..,. is denoted by the row labe!

w. The number of non-zero column vectors of O..,.

shQws that of observable $tates. System parameters

 ({Ak}, cl are completely observable if there is no

zero'column vector in O.,..

  Next we introduce the distinguishability. For some

states qi and g･, if there is a string w such that

 0(qi, w)E'F and 0(g･, w)fiIE then qi and q･ are

called distinguishable. Since each state qi corresponds

to the i-th column of Q..., the states which have dif-

ferent column vectors in a.,. are distinguishable.

                                 tt
                         '2. 3 Characteristic responses and Hankel matrix

  The general solution of state space models (4) for

  '
  some input string w is written as follows:

         x(t) =A(w)xo, y(t) == dA(w)xe (8)

  where u7=e(E:empty string) at the time O and

  A(E)=E, (JEiL: the unit matrix of order n).

    Let

         h(w)=eA(w)xo, (9)

  then the output sequence.:

                        '                      '
       {h(E), h(ai), "', h(a.), ･-, h(tv),-･}

                                  (vwEX.) (10)

  is called the characteristic responses for state space

  models (4). '
    We construct an infinite matrix IH.,. called Hankel

  matrix' from characteristic responses (10) as fol-

  lows,

                 e ･- v ･-
              E h(E) -･ h(v) -･

              ---              :::
        7t.,.=r h(r) '･･ h(rv) ･'･ (11)

               ii l "'

  where, r(EII .X') is a row label and v(EE .X') is a

  column label which are arranged' in alphabetical

    The Hanke! matrix 7t.. .. can be decomposed into

  the observability matrix O.,. and reachability matrix

  R,,.. as follows,

          ' E "･ V -･
             E dxo "' dA(v)xe "'

             -- i             -- -             -- -      7tco･oo=r dA(r)x,. "' dA(r)A(v)Xo "'

             -- --             -- --
                                        '      '
             E' d

             I :･ ,E -･･ v ･-
           -. -r dA(r) (x, ･･･ A(v)xo "')
             --             --             --                            '
   ' == O-.nRn,-･ (l2)
                                                 '

  If a DFA of n states is completely reachable and

  completely observable and moreover all states are
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distinguishable (completely distinguishable), that is,

there are all kinds of n-dimensional unit column vec-

tor in R.. and all column vectors of O.,. are non-

zero and different from each other, then the DFA is

minimal. The Hankel matrix 7I.,., in this case, con-

sists of oniy n kinds of non-zero column vector in-

cluding zero column vectors. The number n of

different non-zero column vectors of tH..,. represents

that of states ofaminimal DFA. .
        '
  We next define a matrix 7tLP... The (n, q) compo-

nent (where n and q are a row label and a column

label respectively) of 7tg,'. is the output of FAs for

the input string nakq･. 7tg,).. is decomposed as follows,

                '
      IH9,-== O-. nAkRu- (13)
                                 '

where Ak is the transition matrix of a DFA of n

states for an input symbol ak and Oco.. and R4m are

its observability and reachability matrices respec-

tively.

2. 4 Dual automata

  When a FA accepts reverse strings which some FA

M accepts, the FA is cal!ed a dual automaton ofM

and denoted by Mduol. Mdi,al is ordinarily a non-

deterministic finite automaton (NFA) even if M is

a DFA. System parameters of Mdu.i are ({Ath} , xo, el

for ({Ak}, c, xo) of M and the Hankel matrix of

Mdual isatranspose of that of M. .
  A DFA which is obtained by the subset construc-

tion9) from the dual automaton of a completely

reachable DFA is a minimal DFA.

   3. Minimal Realizations and Minimal Partial

     Realizations of Deterministic Finite Automata

  In the field of dynamical systems and controls,

constructing systern parameters from input-output

responses of linear systems is called realizations. In

particular, the construction of minimal dimensional

system parameters is called minimal realizations.

  There are many algorithms of minimal realiza-.

tions over R, and some minimal realization algo-

rithms for DFAs represented by the state space

models over B have already proposed2･3･'e-i'ti2). One of

them is an･ extended Attasi's algorithm5) which uses

commutative Hankel matrices (the Hankel Matrices

whose row and column labels consist of com-
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  mutative strings) to non-commutative Hankel

  matricesi3). But, this algorithm does not give system

  parameters of a minimal DFA directly. That is, sin-

  gular matrix equations over B must be solved to ob-

    .  tam system parameters. '
   In this chapter, we apply Silverman's algorithm to

  DFAs which gives system parameters of a minimal

  DFA, directly.

   Next, we derive a minimal partial realization al-

  gorithm of DFAs via finite subHankel matrices con-

  structed from a finite partial sequence of
  characteristic responses.

  3. 1 Minimal realizatiens of DFAs

   Silverman's algorithm needs the rank of a given

  Hankel matrix. But Hankel matrices of FAs are ones

  over B, then the ordinal definition of the rank over

 R cannot be applied. Then, since the number of dif-

  ferent non-zero column vectors of Hankel matrix is

  that of states of a minimal DFA, we now define the

  column rank of a Hankel matrix of a FA as the

 number of different non-zero column vectors of it.

 Furthermore, we define the row rank of a Hankel

 matrix denoted by rank.. as the number of different

 non-zero row vectors of it. Under these definitions,

 the column rank and row rank do not agree gener-

 ally. Then, we derive two kinds of algorithms which

 are selected according to the column rank and the

 row rank of a given Hankel matrix.

   1. Compute the column rank of a subHankel ma-

      trix in turns "i,i, H2,2, ･･･ in order to obtain the

     minimal c which satisfies the following equa-

     tion,

           rank H..=rank CH.+i,,+i="' =ft (14)

                           '
     where -n is the number of states of a minimal

     DFA. Next, compute the row rank of the

     Hankel matrix as well as the columri rank of it

     in order to obtain the minimal r satisfying the

     following equation,

           rank.. 7t,,, == 7i. ' (15)

     If the row rank is less than the column rank, r

     cannot be obtained. In such a case, the realiza-
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                                                                                  K
    tions are performed by algorithms 2 or 3 de-

    scribed later on. . '' ' 2. From Eqs. (14) and (15), 'n--3, r=6 and
                                                      are obtained.  2. Construct an rXc subHankel matrix 7t,,..

 3. A- is obtained by pulling out different non-zero ' ,
                                                   3. The subHankel matrix 7t6,s is as follows,    column vectors from 7t.,･ in order from 'the

                                    '    first column of it. ･
  4. Construct A,Q. from IHse by taking out the corL E a                                                                       aa ba                                                                    b

    responding column vectors to a-.. E 1 O l 1 O
 5. iiki is obtained by pulling out different row vec- a O 1 O O O

    tors froM R.n. ' 7t6,s=b 1O11O.
 6. Construct tsl from A.Dn by taking out the corre- aa .1 O 1 1 O

    sponding column vectors to A.= ' ba O 1 O O O
 7. System parameters ofaminimal DFA are obL ab O O O O 1
    tained as follows:

                                      . 4. Next Pb.3 is constructed from 7t6.s as,
                                                                           '         A, =- iil[i lilli) (16) '
                                                                E a ba
                                        '          -c'=(1 O ･- O)]lilgi ' (17) E1 'O O
         '          '                                                            aOIO

                               , , Pb.,=b lQO.                1
                    '
                           ' aa-1O                                                                        o                o.

                :･ . , .' (18) baO
                                                            ab O                                                                    OI                o
                                                     '                                                             '                                        '                                                        '               '
    'Since E[S is needed in this algorithm, An is re- 5. 7tgPs and litE,bls dre as,

    garded asamatrix overR '
                                                                a aa ab aaa aba
            '                             '                           '

  Let the input-output data(characteristic responses) ' ' a 1 .                                                                     Ol 1O

ofaDFA of Fig.lbe given. This DFA is minimaL '' 7{Ef}=b O 1 e O ･O .
                                                                        o･                                                                             oo                                                             aa O･ 1

                 a -b ba lOl lO       h <Iil)

                 a

              Fig. 1

   '
  1. The Hankel matrix

    is as follows,

         -E ab
          101      E,

     aOIO
          lel     b

             Ol".,ca = aa         1

    'ba O 1                 o

         ooo     ab

          101     bb

      ----      ::::

q2

 3 states

  7t.,.

aa ba
 1･ O

 oo
 10
 10
 oo
 Ol
 10
 :･ l

     q3

h

 DFA
6f the DFA

 ab bb "`

 O 1 ,-･
  1 O ･･･

  O 1. ･-

  e1 -･
 1 O ･-
 ,o o ･･･

 O 1 ･-
  l i "'

a

of Fig. 1

(19)

IHE9g =

then, REfg

ab ooo o 1
          '       '
   b ba bb baa,bbq

aa 1' Ol 1 O
ba ooo e 1
ab o1O o o
 and REP, are obtained as follows,

  99

ctr5

(20)

(21)

(22)

(23)
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              a aa aba

          EO1O
          alOO '
     RE9,Fb O1O (24)
          aa O1 O
          ba 1O O
          ab OO 1

               b ba bba

           EIOO
           a O O 1

     PEP,=b 1O O. (25)
           ua 1O O
           ba OO 1
           ab O1 O

  6. A3, A?, and PS? are constructed as follows,

                  e a ba

              E100
         A, ==a O1O (26)
              ab OO1

                  a ca aba

               EOIO
         -Kal.,=a 1OO (27)
               ab OO 1

                   b' ba bba

               E10O
                           1. (28)         -ps.ol,=a o o,

                                   '               ab O1 O

  7. From Eqs. (16) N(18), System parameters of a

     minimal DFA are obtained as follows:

                          '

          OIO 100
     A.:1 O O,A,= O O 1 (29)
           OOI OIO
            '

              '1
      -ct==(1 o o), i, == O. (30)
                             o･

                   '

  There are such Hankel matrices as their row ranks

 are less than their column ranks. If such a Hankel

 matrix is given, r of Eq.(15) cannot be obtained.

 Then, minimal realizations are performed by next
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  algorithms 2 or 3.

  Algorithm 2 '. -
   aE and PII-l can be constructed even if the row

  rank of a Hankel matrix is less than the column

  rank of it by redefining r of Eq.(15) as a minimalr

  satisfying the following equation,

         rank.,.lt,,, ==ranknv".+i,. = "' == n.. (31)

  where n.. is the 'row rank of Hankel matrices.

   Eq.(16) can be transformed to

            PkaJ2ik=PkE) (32)

  and next equation holds.

            R,m`Sle=A.Q. (33)
                       tt

                    --By solving this matrix equation, Ak can be obtained.

  The algorithm using Eq.(33) is as follows.

  1. c, r and -n are obtained from Eqs.(14) and (31).

  2. R,z and PfP-. are constructed in the same manner

    as the algorithm 1.

  3. Ak is obtained from Eq.(33).

  4. iand -xe can be computed from Eqs.(17) and

    (18).

At!ggpt!!!!!L{}1 th3

  If, in a given Hankel matrix, the row rank is less

than the column rank, a minimal realization ･can be

also performed by use of a dual automaton men-

tioned in 2.4.

  1. Transpose agiven Hankel matrix. ･
  2. Realize a minimal DFA from the transposed

    Hankel matrix by using the algorithm 1.

  3. Construct a dual FA of the realized DFA.

  4. Transform the dual FA to a DFA by the subset

    construction. The transformed DFA is a desired

    minimal DFA.

3.2 Minimal partial realizations of DFAs

  In this section, we show a method of minimal par-

tial realizations for DFAs from subHankel matrices.

  At first, we construct a subHankel matrix from a

partial sequence of characteristic responses of a FA

which are given in alphabetical order. From this

subHankel matrix, we get a DFA using algorithms

above-mentioned. Next, this subHankel matrix is en-

Iarged and a new DFA is realized from it. By
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l.fiPtehaeti ff.mlth.iS PrOCedUre, a Minimal DFA is realized as(ef)ollSoyws,g?m parameters of DFAi are obtained

                                                        /t
 1. Start from subHankel matrix 7ti,i and let N=

    1.

 2. Let U be the set of column labels of different

   columns of' the subHankel matrix. The column

    of the subHankel mat'rix is expanded until in-

    volving the column labels wiw2(where wi E X,

    w, E a).

 3. Step 2. is repeated until a new different column

    do not appear in expanded subHankel matrix.

 4. Construct DFAN using Silverman's algorithm

    from the subHankel matrix. '
 5' E+X:anadnihreet?rannkseiepma2rrix by a row･ Let N :N

 By this algorithm, DFAN (N=:1,2, ･･･) are ob-

tained in order. After some Nl DFAN=DFAN+i="' '

?iOml2tSJ ThiS Means minimal DFAN is obtained in the

,E!!)!aii!p!g-ii2

 The object of realizations is the DFA of Fig. 1.

  1. Let N=1. IH- 'is gotten as follows,

                        e.
 - '' 7-t,.,=E(1). (34)
                              '

  2. Hi,i is expanded into next lti.s,

          '                  E a b aa ba
          7t,,,=E(1 O 1 1 O). (35)
                                      '

  3. Construct DFAi frorn '7ti,s･

    (a) rankni,s=2 and rank.."i,s ==1. We use al-

    gorithm 2 because of rank..lti,s<rankllti,s･

    (b) c =2 and r==1 are computed from Eqs.(14)

    and (31). ･
    (c) Contruct HL2, Hfe2 and HfP2, . '

   "SP,

(d) R,,,

   Apt,

            Ea
   IH,,,=:E(1 O),

     aaa b
=:E(O 1), lt5Pi-E(1

A92 and A9i are obtained

           Ea
   R,,=E(1 O),

    aaa b
=-E(O 1), APi-E(1

      (36)

 ba

  O). (37)

 as follows,

      (38)

ba
o). (3g5

                     tt     Aa = ( Ol lo) ･ Ab ==,( lo Ol)

 '
                      '     v== (i o), xo ==(6)･ (49)

        '

               '   '                        '
                                   '                   a
         b0 q2'.b '
           '                   a

               Fig.2 DFAi

4. Expand llti.s by a row (N=2),

              a a b 'aa ba
     N,,,-=Z(6' ? 8 8 g). , (4i)

                         tt
5. 7t2,s is eventually expanded into tH2.ii as follows,

        e ･･･ ab bb aaa baa aba bba

",n-
z(s iii o, s g-t g O,)-'

                                       (42)

6. Construct bFA2 from tH2,n,

                               o         OIO 10
                   -   A. == 1 O O,A, == O O 1 (43)
                        '                                   '      ･O'O1 O1O
     '
         '
                            1

       iL (1 O O), xt == O . (44)
                             o

               ab
     h

7. Even if

  DFA is

  minimal

          q2

      a

     Fig. 3

we repeat

as same as

DFA which is

q3

     b

  DFA,

       '
this procedure,

DFA2. Then,
   identified

  a

 an obtain'ed

DFA2 is the

in the limit.
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4. Conclusions

  There are two cases to obtain a minimal DFA.

One is a reduction of states of a DFA given by the

state transition diagram and so on3･'O'ii"`). The other

is a minimal realization from the input-output data

of a FA2TT3･i2･'5:'6). With respect to the latter, many al-

gorithms such as Ho-Kalman's, Silverman's and

Rissanen'si') algorithms etc. are known for linear

state space models of linear systems over R.

  In this paper, we applied Siverman's algorithm to

FAs. Since FAs are represented by the bilinear state

space models over B, we expanded Silverman's algo-

rithm in order to apply it to FAs. Then, we pro-

posed various algorithms according to column ranks

and row ranks of given Hankel matrices, where the

column and the row rank of a matrix over B are de

fined respectively to be the number of distinct col-

umns and rows. Moreover, we derived the method of

a minimal partial realization algorithm based on

Gold's identification-in-the-limit.
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