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Abstract 

This paper presents and exemplifies results developed for cointegration analysis with state 

space models by Bauer and Wagner in a series of papers. Unit root processes, cointegration 

and polynomial cointegration are defined. Based upon these definitions the major part of the 

paper discusses how state space models, which are equivalent to VARMA models, can be 

fruitfully employed for cointegration analysis. By means of detailing the cases most relevant 

for empirical applications, the I(1), MFI(1) and I(2) cases, a canonical representation is 

developed and thereafter some available statistical results are briefly mentioned. 
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1 Introduction

Since the seminal contribution of Clive W.J. Granger (1981) that introduced the concept of coin-

tegration, the modelling of multivariate (economic) time series using methods and models that

allow for and incorporate unit roots and cointegration has become standard econometric practice

with applications in many areas ranging from macroeconomics to finance.1 Cointegration refers

to the fact that linear combinations of unit root – also referred to as integrated – processes can be

integrated of a lower order than the processes themselves (precise definitions of unit root processes

and cointegration are given in Section 2).

Cointegration analysis is performed using several approaches that can be roughly divided in non-

parametric and parametric modelling. The non-parametric approach dates back to Engle and

Granger (1987) and in this approach the focus is only on testing for and estimating the cointegrat-

ing relationships whilst all other characteristics of the data generating process (DGP) are treated

as nuisance parameters. Contributions pursuing this approach include (from a long list) Bierens

(1997), Park and Phillips (1988, 1989), Phillips and Hansen (1990), Saikkonen (1991), Sims et al.

(1990) or Stock and Watson (1988). As the name suggests, in parametric analysis a fully spec-

ified model class is posited and cointegration analysis is performed within this framework. The

by far most prominent parametric model class for cointegration analysis are vector autoregressive

(VAR) models, popular due to the important work of Søren Johansen and his co-authors (see his

monograph Johansen 1995).2

Some authors have also considered vector autoregressive moving average (VARMA) models for

cointegration analysis, e.g. Yap and Reinsel (1995) and Lütkepohl and Claessen (1997). This

allows (in principle) to overcome some potentially relevant limitations of VAR models including:

First, it is well-known since Zellner and Palm (1974) that processes composed of subsets of the

variables of VAR processes in general follow VARMA processes (with the empirical literature full of

examples where also for subsets of variables for which VAR models have been fitted VAR models

are considered).3 Second, quite similarly also aggregation of VAR processes leads to VARMA

1Clive W.J. Granger and Robert F. Engle shared the Nobel prize in economics in 2003. One of the contributions
for which they have been awarded is cointegration. The second awarded contribution are so-called ARCH models
that allow to model time-varying conditional variances, a pertinent phenomenon in e.g. financial time series. Note
as a historical remark that several other researchers also were ‘close to discovering’ cointegration around the same
time, e.g. Box and Tiao (1977) or Krämer (1981).

2His work on cointegration analysis with VAR models has made Søren Johansen one of the most widely cited
econometricians. VAR models are not only the by far most popular approach in cointegration analysis, VAR
cointegration analysis is also the ‘most developed’ strand of the literature, providing a large battery of tools for
diagnostic testing (including stability testing) as well as other tools that are considered useful for empirical analysis,
e.g. impulse response analysis and forecast error variance decompositions.

3In order to address this problem the literature often refers to approximation results that show that VARMA, or
in fact even more general, processes can be approximated by VAR processes with the lag lengths tending to infinity
with the sample size at certain rates. This line of work goes back to Lewis and Reinsel (1985) for stationary processes.
Extensions of some form or another to cointegrated processes are provided by Saikkonen (1992), Saikkonen and
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processes. Temporal aggregation is e.g. a relevant concern when studying the term structure of

interest rates with cointegration methods, for a detailed discussion see Bauer and Wagner (2009).

Third, the (linearized) solutions to dynamic stochastic general equilibrium models are typically

VARMA rather than VAR processes, as has been pointed out already in Campbell (1994). Fourth,

a VARMA model may be a more parsimonious description of the DGP than a VAR model.

State space models (as considered here) are an equivalent model class to VARMA models (a

detailed discussion of state space models and their links to VARMA models in the stationary case

is contained in Hannan and Deistler 1988).4 Like VARMA models state space models have rarely

been used for cointegration analysis. A few early exceptions include Aoki (1987) and Aoki and

Havenner (1989, 1991), all of which deal with the I(1) case only. In a series of papers Bauer and

Wagner develop structure theory as well as statistical theory for cointegration analysis with state

space models. Some of their contributions are discussed in the course of this paper.

The paper is organized as follows: In Section 2 unit root processes, cointegration and polynomial

cointegration are defined. Section 3 is devoted to a discussion of cointegration analysis with

state space models, where both structure theoretic as well as statistical aspects are considered.

Finally, Section 4 very briefly mentions some open questions that need to be addressed to render

cointegration analysis with state space models a fully fledged alternative to VAR cointegration

analysis and this section also concludes. This paper does not offer new theoretical results, instead

it is intended to give an overview of cointegration analysis with state space models at one place.

Correspondingly, the presentation at times will be exemplary and a bit sloppy to convey the main

ideas rather than to present results in their most general or exact form. Throughout, however,

references to precise discussions will be provided.

2 Unit Roots and Cointegration

Since the late 1970s the question of (trend-) stationarity versus unit root nonstationarity of eco-

nomic and financial time series has received a lot of attention. E.g. in macroeconomics an impor-

tant contribution (that spurred a lot of interest of both economists and econometricians) has been

the work of Nelson and Plosser (1982), who study the trend behavior of 14 US macroeconomic

time series. They find that all but one of the series have a stochastic rather than a deterministic

trend, i.e. are unit root processes, the exception being the unemployment rate (for which to test

Luukkonen (1997) and Bauer and Wagner (2007). On top of the issue of the existence and properties of such a
sequence of VAR approximations (as a function of sample size) also the question whether a VAR approximation is
parsimonious arises.

4Here we focus only on linear state space models and use a similar approach as Hannan and Deistler (1988) or
Kailath (1980). In the econometric literature the term state space model is also used differently and sometimes
more generally, see e.g. Durbin and Koopman (2001), Harvey (1989) or Kim and Nelson (1999).
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for a unit root may be unnecessary on conceptual grounds in the first place).5 The nature of the

trend component in time series is not only of interest (to stick to the example) for macroeconomists

trying to build models with corresponding propagation mechanisms that reflect the trend compo-

nents of observed series (or instead use correspondingly filtered time series), but also has important

consequences for statistical analysis. It is known since a long time (see for example the presidential

address to the Royal Statistical Society of Yule 1926) that the presence of unit roots or stochastic

trends has drastic consequences for the behavior of regressions. A regression of two stochastically

independent random walks on each other leads to a seemingly significant regression coefficient, a

phenomenon labeled nonsense-regression by Yule (1926) and spurious regression by Granger and

Newbold (1974). The latter paper provides simulation evidence only and an analytical study of

spurious regression and its asymptotic properties is given in Phillips (1986). It turns out, for the

mentioned regression of two independent random walks on each other, that the limit of the regres-

sion coefficient is non-zero and that its (‘textbook OLS’) t-value diverges with rate square root of

sample size, thus resulting in seemingly significant coefficients also and especially in large samples.

The understanding of spurious regression led to concerns about the validity of findings involving

potentially unit root nonstationary variables obtained with ‘traditional’ methods, which in turn

ignited the large and ongoing research in cointegration analysis which allows for valid inference in

unit root nonstationary settings. In particular, as we shall see below, cointegration is equivalent

to common stochastic trends and cycles being present in some (or all) of the variables and thus

is a convenient way of describing the relationships between unit root nonstationary variables. In

particular testing for the presence (respectively) absence of cointegration allows to distinguish a

spurious regression situation from a situation in which the variables studied are indeed related.

Let us now turn to formal definitions of unit roots and cointegration, following Bauer and Wagner

(2005). We consider s-dimensional (real valued) stochastic processes (yt)t∈Z with zero mean, i.e.

E(yt) = 0, t ∈ Z. The difference operator at frequency 0 ≤ ω ≤ π is defined as

∆ω(L) :=
{

1− eiωL, ω ∈ {0, π}
(1− eiωL)(1− e−iωL), ω ∈ (0, π). (1)

Here L denotes the backward shift operator, such that L(yt)t∈Z = (yt−1)t∈Z. Keeping this defi-

nition in mind we also use the sloppy shorthand notation Lyt = yt−1, with which we obtain e.g.

∆ω(L)yt = yt−2 cos(ω)yt−1 +yt−2 for 0 < ω < π. Note that for 0 < ω < π the difference operator

∆ω(L) filters the pair of complex conjugate unit roots e±iω jointly. This ensures that also filtered

processes ∆ω(L)(yt)t∈Z are real valued for real valued processes (yt)t∈Z.
5Nelson and Plosser (1982) employed the unit root tests of Dickey and Fuller (1981), which are amongst the most

widely-used unit root tests. The unit root and stationarity testing literature has since then grown to an extremely
large literature with numerous tests developed under various sets of assumptions against all sorts of alternatives
(e.g., nonlinear alternatives, alternatives with deterministic trend components with breaks, etc.).
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Definition 1 The s-dimensional zero mean process (yt)t∈Z has unit root structure

Ω := ((ω1, h1), . . . , (ωl, hl)) ,

with 0 ≤ ω1 < ω2 < . . . < ωl ≤ π, hk ∈ N, k = 1, . . . , l, if

D(L)yt := ∆h1
ω1

(L) · · ·∆hl
ωl

(L)yt = vt, t ∈ Z, (2)

with vt =
∑∞

j=0 cjεt−j a linearly regular6 stationary process. Here c(z) :=
∑∞

j=0 cjz
j , z ∈ C with

cj ∈ Rs×s, j ≥ 0 and
∑∞

j=0 ‖cj‖ < ∞ corresponds to the Wold representation of (vt)t∈Z. It holds

that c(eiωk) 6= 0 for k = 1, . . . , l and (εt)t∈Z is a white noise process with Eεtε
′
t = Σ > 0.

Processes (yt)t∈Z with nonempty unit root structure are called unit root processes. The set

{ω1, . . . , ωl} is referred to as set of unit root frequencies and the integers hk, k = 1, . . . , l are

called integration orders. A (zero mean) linearly regular stationary process is said to have empty

unit root structure Ω0 := {}.
A unit root process with unit root structure ((0,m)), m ∈ N, is called I(m) process and a unit

root process with unit root structure ((ω1, 1), . . . , (ωl, 1)) is called called multiple frequency I(1), in

short MFI(1), process.

As discussed in Bauer and Wagner (2005, Section 2) the unit root structure as just defined is

unique. Note furthermore that in the literature definitions of integrated processes (zt)t∈Z are often

formulated for demeaned processes, i.e. for processes (zt−E(zt))t∈Z, compare e.g. Johansen (1995,

Definition 3.3, p. 35). Here we only consider the latter zero mean process. For further discussion

concerning the definition of unit root processes see Bauer and Wagner (2005, Section 2).

Before we now turn to a definition of cointegration and polynomial cointegration we first define

a semi-ordering of unit root structures. Denote for a unit root structure Ω with F (Ω) the set of

distinct unit root frequencies included, i.e. F (Ω) := {ω1, . . . , ωl}.

Definition 2 Let Ω̃ := ((ω̃1, h̃1), . . . , (ω̃l̃, h̃l̃)) and Ω := ((ω1, h1), . . . , (ωl, hl)) be two unit root

structures. Then Ω̃ ¹ Ω if

1. F (Ω̃) ⊆ F (Ω).

2. For all ω ∈ F (Ω̃) for k̃ and k such that ω̃k̃ = ωk = ω it holds that h̃k̃ ≤ hk.

Further Ω̃ ≺ Ω if Ω̃ ¹ Ω and Ω̃ 6= Ω.

For two unit root structures Ω̃ ¹ Ω define the decrease δk(Ω, Ω̃) of the integration order at frequency

6For a definition see Hannan and Deistler (1988, p. 20).
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ωk, for k = 1, . . . , l, as

δk(Ω, Ω̃) :=
{

hk − h̃k̃ , ∃k̃ : ω̃k̃ = ωk ∈ F (Ω̃),
hk , ωk /∈ F (Ω̃).

Clearly, the empty unit root structure is the smallest element in this semi-ordering, i.e. Ω0 :=

{} ≺ Ω for any non-empty unit root structure Ω.

The definitions of cointegration and polynomial cointegration are based on the introduced semi-

ordering of unit root structures.

Definition 3 An s-dimensional unit root process (yt)t∈Z with unit root structure Ω = ((ω1, h1), . . . , (ωl, hl))

is called cointegrated of order (Ω, Ω̃), where Ω̃ ≺ Ω, if there exists a vector β ∈ Rs, β 6= 0, such

that (β′yt)t∈Z has unit root structure Ω̃. The vector β is in this case called cointegrating vector

(CIV) of order (Ω, Ω̃).

Until now by far most applications of cointegration analysis are concerned with the analysis of I(1)

processes. Closely related is, by considering unit roots with integration orders equal to 1 also at

non-zero frequencies, the case of so-called seasonal unit roots and seasonal cointegration has also

received quite some attention. In our notation this corresponds to the case of MFI(1) processes

with the unit root frequencies corresponding to the ‘seasonal’ frequencies. In the case of quarterly

data thus the considered unit root frequencies are 0, π/2 and π. Early contributions in seasonal

cointegration analysis include Hylleberg, Engle, Granger and Yoo (1990), Lee (1992) and Ahn and

Reinsel (1994).

The concept of cointegration has been generalized by considering not only static but also dynamic

linear transformations of the form
∑q

j=0 β′jyt−j . Such a generalization has first been introduced

as multi-cointegration by Yoo (1986) and Granger and Lee (1989a, 1989b). Multi-cointegration

prevails for an s-dimensional I(2) process (yt)t∈Z, if there exists a linear combination of the two

I(1) processes (β′yt)t∈Z – i.e. β ∈ Rs×k, k ≥ 1, comprises one or more cointegrating vectors that

reduce the integration order from 2 to 1 – and (yt − yt−1)t∈Z that is stationary. The concept

of multi-cointegration has been generalized (by allowing for higher integration orders and higher

order linear dynamic transformations) to polynomial cointegration by Gregoir and Laroque (1994)

with one formal definition given in Gregoir (1999). We shall see below that already in the MFI(1)

case a certain form of polynomial cointegration, referred to as dynamic cointegration, may occur

that annihilates the stochastic cycles to unit root frequencies 0 < ω < π.

As discussed in Bauer and Wagner (2005, Section 5) and in more detail in Bauer and Wagner (2008)

the definition of Gregoir (1999, Definition 3.1) has several limitations and drawbacks, including

that it does not generalize multi-cointegration. Our definition of polynomial cointegration given
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next has as one of its advantages that it does generalize multi-cointegration (for further discussion

see Bauer and Wagner 2008).

Definition 4 An s-dimensional unit root process (yt)t∈Z with unit root structure Ω is called

polynomially cointegrated of order (Ω, Ω̃), where Ω̃ ≺ Ω, if there exists a vector polynomial

β(z) =
∑q

m=0 βmzm, βm ∈ Rs, m = 0, . . . , q, βq 6= 0 for some integer 1 ≤ q < ∞ such that:

(i) β(L)′(yt)t∈Z has unit root structure Ω̃,

(ii) maxk=1,...,l ‖β(eiωk)‖δk(Ω, Ω̃) 6= 0.

The vector polynomial β(z) is in this case called polynomial cointegrating vector (PCIV) of order

(Ω, Ω̃).

The restriction formulated in item (ii) of the above definition excludes vector polynomials that

reduce the integration orders by merely differencing the process.

It is clear that a unit root process (yt)t∈Z can be cointegrated and polynomially cointegrated of

different orders. However, for any CIV or PCIV for a process (yt)t∈Z, its cointegration respectively

polynomial cointegration order is unique. This follows from the above mentioned uniqueness of

the unit root structure of unit root processes. Note furthermore that not every statically or

dynamically linearly transformed unit root process needs to be a unit root process. Components

in the kernel of the differencing filter D(L) as given in Definition 1 may cause problems, for details

see Bauer and Wagner (2005).

As concerns applications, the seasonal MFI(1) and I(2) cases are the prime cases in which poly-

nomial cointegration has been studied for economic phenomena. I(2) cointegration analysis has

been developed and applied e.g. in Johansen (1997) or Stock and Watson (1993).

3 Cointegration Analysis with State Space Models

A stochastic process (yt)t∈Z, yt ∈ Rs is said to have a state space representation if it is a solution

to the state space or system equations

yt = Cxt + εt,
xt+1 = Axt + Bεt,

(3)

for a white noise process (εt)t∈Z. The unobserved process (xt)t∈Z ∈ Rn is referred to as state

process and A ∈ Rn×n, B ∈ Rn×s and C ∈ Rs×n real matrices. The triple (A,B,C) is referred to as

a state space realization of the transfer function k(z) := Is+zC(In−zA)−1 = Is+
∑∞

j=1 CAj−1Bzj ,

well defined for z ∈ C such that |z| < (|λmax(A)|)−1, where λmax(A) denotes an eigenvalue of
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maximum modulus of the matrix A. The transfer function characterizes the dependence of (yt)t∈Z

on (εt)t∈Z and thus summarizes the dynamic properties of (yt)t∈Z.

The above format of a state space system with the same noise process (εt)t∈Z appearing in both

the output and state equation is often referred to as innovations form. It can be shown that any

state space model of the form yt = Cxt + εt, xt+1 = Axt + vt can be transformed into innovation

form, see e.g. Aoki and Havenner (1991, Section 2).

The sequence of the coefficients of the transfer function is, especially in the VAR literature, referred

to as impulse response sequence. Thus, computation of the impulse response sequence is a trivial

task for state space models once the system matrices (A,B,C) have been estimated, with the

impulse response coefficient matrices given by Is, CB, CAB,...

As discussed (for the stationary case) in great detail in Hannan and Deistler (1988, Chapters 1

and 2) there are close connections between state space models and VARMA models, which are

essentially equivalent model classes. Lemma 1 in Bauer and Wagner (2005) discusses the equiv-

alence of state space and VARMA models also in the unit root case. Thus, both model classes

allow to study rational unit root processes. Using the notation of Definition 1 by this we mean

that the transfer function c(z) corresponding to the process (vt)t∈Z is restricted to be a rational

function, i.e. c(z) = a−1(z)b(z), with a(z) and b(z) left co-prime matrix polynomials. The pair of

matrix polynomials (a(z), b(z)) is referred to as VARMA realization of the transfer function c(z),

for which as just mentioned also state space realizations (A,B, C) exist (see also the discussion in

Hannan and Deistler 1988, Chapters 1 and 2).

Remark 1 The discussion in Bauer and Wagner (2006) indicates, for the MFI(1) case, how state

space modeling ideas can be used to approximate non-rational unit root processes. For rational

approximation of stationary processes see also Hannan and Deistler (1988, Chapter 7.4). These

aspects are not pursued further in this paper where we only consider rational unit root processes.

3.1 Structure Theory

Like VARMA models also state space models for a given rational process (yt)t∈Z are not unique, i.e.

there exist multiple state space realizations (Ai, Bi, Ci)i∈I that correspond to the same transfer

function. Denote with Sn the set of all triples of system matrices (A,B,C) with A ∈ Rn×n,

B ∈ Rn×s and C ∈ Rn×n and denote with U the set of all s × s rational transfer functions k(z)

with k(0) = Is. Now define a mapping Π :
⋃

n≥0 Sn → U attaching the transfer function k(z)

to the triple (A, B,C) ∈ Sn (as given below (3) above) for n ≥ 0. Using this notation, non-

uniqueness of state space realizations refers to the fact that the pre-image of the mapping Π for a
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given transfer function k(z) is generally not a singleton. Identification of state space systems thus

requires to impose a sufficient set of restrictions on (A,B, C) such the pre-image of the mapping

Π only contains one element for each k(z) ∈ Ũ , where Ũ denotes the set of transfer functions for

which identification is considered.

There are two sources of non-uniqueness of state space realizations for a given transfer function.

First, there exist state space realizations with different state dimensions. A state space system

(A,B, C) ∈ Sñ is called minimal, if there exists no state space system (A,B, C) ∈ Sñ such

that Π(A,B,C) = Π(Ã, B̃, C̃) and n > ñ, i.e. if the state dimension is minimal. Minimality

is the state space analogue to left coprimeness in the VARMA framework. The dimension n of

the state in a minimal state space model is called order of the state space model or order of

the transfer function. Second, non-uniqueness arises via the choice of the basis of the state, for

fixed state dimension. It holds that two minimal state space realizations (A,B,C) ∈ Sn and

(Ã, B̃, C̃) ∈ Sn are observationally equivalent, i.e. Π(A,B, C) = Π(Ã, B̃, C̃), if and only if there

exists a nonsingular matrix T ∈ Rn×n such that Ã = TAT−1, B̃ = TB and C̃ = CT−1. Note that

such a transformation implies a corresponding basis change of the state vector to x̃t = Txt.

Minimality captures the fact that there are no ‘superfluous’ components contained in the state

vector that do not influence the output. This in turn implies that minimality is a necessary

condition for correspondence of the unit root properties of the state process and the output process

(for details see Bauer and Wagner 2005, Theorem 3). The main idea is, however, also immediately

seen in a simple example of a non-minimal system:

yt =
[

C1 0
] [

xt,1

xt,2

]
+ εt

[
xt+1,1

xt+1,2

]
=

[
A11 0
A21 A22

] [
xt,1

xt,2

]
+

[
B1

B2

]
εt

Here, the process (yt)t∈Z only depends upon the first block of the state (xt,1)t∈Z whose dynamics

depend only upon the eigenvalues of the matrix A11. (xt,2)t∈Z is not relevant because of the

reduced column rank of C and because of the lower block-triangular structure of the A matrix

which implies that there are no feedbacks from (xt,2)t∈Z to (xt,1)t∈Z. Consequently, in the above

example the second block of the state process (xt,2)t∈Z could have any dynamic property, i.e could

be even an explosive process, since it is not ‘loaded’ into the output. Thus, in case of non-minimal

systems, there is typically no one-to-one correspondence between the unit root structures of the

output and the state. If the subsystem (A11, B1, C1) is minimal then all coordinates of (xt,1)t∈Z

‘appear’ in the output and the unit root structures of (yt)t∈Z and (xt,1)t∈Z. A precise discussion

of this issue is given in Bauer and Wagner (2005, Theorem 3).
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Let (A,B, C) be a minimal state space realization of a rational transfer function k(z) and let

(a(z), b(z)) be a left coprime VARMA realization of the same transfer function, i.e. k(z) =

a−1(z)b(z) with (a(z), b(z)) left coprime. It holds analogously to the result for stable systems given

in Hannan and Deistler (1988, Theorem 1.2.2), that the nonzero eigenvalues of A equal the inverses

of the roots of det a(z). Thus, for minimal state space systems the stability condition |λmax(A)| < 1

corresponds to the stability assumption det a(z) 6= 0 for |z| ≤ 1. The relationship also implies that

eigenvalues of A with unit modulus correspond to roots of det a(z) on the unit circle, i.e. to the unit

roots. Considering the inverse transfer function k−1(z) = b−1(z)a(z) = Is−zC(In−z(A−BC))−1B

it follows analogously that the condition det b(z) 6= 0 for |z| < 1 is equivalent to the condition

|λmax(A − BC)| ≤ 1. The condition det b(z) 6= 0 for |z| < 1 is known as miniphase assumption

(see Hannan and Deistler 1988, p. 25) and has been imposed in Definition 1 (where it is assumed

that c(z) corresponds to the Wold representation). Denote with Mn the set of all rational transfer

functions such that k(0) = Is, det k(z) 6= 0 for |z| < 1 and that have no pole for |z| < 1. Then we

can now formally define a canonical form, used to achieve identification of state space realizations

for all transfer functions in
⋃

n≤0 Mn, as a mapping ϕ :
⋃

n≥0 Mn → ⋃
n≥0 Sn that attaches a

unique state space system (A,B, C) ∈ Sn to k(z) ∈ Mn.

As already mentioned, the eigenvalues of the matrix A are crucial for the dynamic properties of the

state process (xt)t∈Z and hence (in a minimal representation also) of the output process (yt)t∈Z.

Let us illustrate the effect of the eigenvalue structure for a simple bivariate example, i.e. yt ∈ R2,

with a 2-dimensional state process xt ∈ R2 with the only eigenvalues of the matrix A equal to 1.

We compare two cases: In the first case λ = 1 is a simple eigenvalue (i.e. there are two Jordan

blocks of size 1 in the Jordan normal form of A, which is hence equal to I2) and in the second

example the eigenvalue λ = 1 leads to a Jordan block of size 2 in the Jordan normal form of A.7

Thus, consider

yt =
[

C1 C2

]
xt + εt[

xt+1,1

xt+1,2

]
=

[
1 0
0 1

] [
xt,1

xt,2

]
+

[
B1

B2

]
εt,

with C1, C2 ∈ R2 and B′
1, B′

2 ∈ R2. It immediately follows that if the matrix B = [B′
1, B

′
2]
′

has full (row) rank, that the process (xt)t∈Z is an I(1) process that is not cointegrated. This is

trivially seen by defining vt = Bεt and noting that the covariance matrix of (vt)t∈Z, BΣB′, has

full rank when B has full rank, since by assumption Σ > 0. If both C1 6= 0 and C2 6= 0, then both

inputs of the state are ‘loaded’ into the output (yt)t∈Z and the state space model is minimal.

7A full discussion of the eigenvalue structure, its implications and the related so-called state space unit root
structure is given in Bauer and Wagner (2005, Sections 3-5).
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Note that if B does not have full rank, then B2 = τB1 and consequently vt,2 = τvt,1, using

vt = [vt,1, vt,2]′. This in turn (using x1 = 0 for simplicity) implies that also xt,2 = τxt,1 and

hence yt = C1xt,1 + C2xt,2 + εt = (C1 + τC2)xt,1 + εt. Therefore, in case of reduced rank of B,

the state space system is not minimal, with a minimal representation given by yt = C̃1xt,1 + εt,

xt+1,1 = xt,1+B1εt, with C̃1 = C1+τC2 and C̃1 6= 0. Thus, (and this observation holds generally)

in a minimal representation different Jordan blocks of size 1 correspond to I(1) state processes

that are not cointegrated and minimality thus implies full (row) rank of (certain blocks rows of)

the B matrix and also places as we have seen some restrictions on (certain block columns of) the

C matrix.

Consider now the other example, where the state equation is given by
[

xt+1,1

xt+1,2

]
=

[
1 1
0 1

] [
xt,1

xt,2

]
+

[
B1

B2

]
εt,

Clearly, as before (xt,2)t∈Z is an I(1) process (if B2 6= 0). For the first coordinate of the state process

observe that ∆0(L)(xt+,1) = xt,2 +B1εt, t ∈ Z and ∆0(L)2(xt+1,1) = B1εt +(B2−B1)εt−1, t ∈ Z.

Thus, (xt,1)t∈Z is an I(2) process, since the spectral density of ∆0(L)2(xt+1,1) at frequency 0 is

non-zero for B2 6= 0. Note that it holds irrespective of B1, and also for B1 = 0 in which case

∆0(L)xt+1,1 = xt,2, that (xt,1)t∈Z is an I(2) process for B2 6= 0. Thus, in the I(2) version of the

example minimality only places restrictions on B2, i.e. on the block of B corresponding to the I(1)

component. Now consider the output equation yt = C1xt,1 +C2xt,2 +εt. (yt)t∈Z is an I(2) process

if C1 6= 0, irrespective of whether C2 6= 0 or C2 = 0. If C2 = 0, the process (xt,2)t∈Z nevertheless

cannot be dropped from the state space representation since it is input in (xt,1)t∈Z.8 Altogether

we see that minimality puts constraints on (sub-blocks) of the B and C matrices as well as the A

matrix.

Summarizing we can draw two conclusions (that hold generally) for minimal representations:

First, Jordan blocks of size m correspond to I(m) state processes (with the generalization from

2 to m > 2 obvious), where the coordinates of the associated state form a ‘chain’ of increasing

integration orders. Second, state coordinates corresponding to different Jordan blocks are not

cointegrated. These observations also generalize to unit roots z = e±iω for 0 < ω < π, as will be

illustrated for MFI(1) processes below.

Let us now turn back to the state space or system equations (3) and let us consider their solutions.

For a given value x1, the equations can be solved for t ∈ Z to obtain (assuming here for brevity

for the moment that A is invertible, with the general case being discussed in Bauer and Wagner
8The difference to the above example discussing minimality is that here the A matrix is not lower block diagonal.
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(2005, Lemma 1))

yt =

{
CAt−1x1 + εt +

∑t−1
j=1 CAj−1Bεt−j , t ≥ 1,

CAt−1x1 + εt −
∑0

j=t CAj−1Bεt−j , t < 1.
(4)

This shows that any choice concerning x1 leads to choosing a unique particular solution of the

system equations (3). It is due to the fact that the state equation is an autoregression of order

1 that the set of all solutions to the system equations, for a given process (εt)t∈Z, is so easily

described.9 Necessarily the solution (4) also shows that the eigenvalues of the matrix A characterize

the dynamic behavior (i.e. stationarity or unit root behavior) of (xt)t∈Z and hence (in minimal

representations) of (yt)t∈Z.

The observation that the eigenvalues characterize the dynamic behavior allows to make beneficial

use of the above mentioned non-uniqueness up to non-singular transformations for minimal realiza-

tions by choosing realizations with the A matrix in Jordan normal form (to be precise the part of

the A matrix corresponding to the unit modulus eigenvalues) and thus with a particularly simple

dynamic structure of the state process. This clearly is possible since the Jordan normal form of

the matrix A is similar to the ‘original’ matrix A, i.e. there exists a matrix T ∈ Rn×n, such that

diag(J,A•) = TAT−1 is such that |λmax(A•)| < 1 and J is in Jordan normal form and corresponds

to all unit modulus eigenvalues. To be precise a specifically reordered Jordan normal form will be

employed. In the transformed system (diag(J,A•), TB,CT−1) the properties of the correspond-

ingly transformed state process (Txt)t∈Z are particularly simple. The block-diagonal structure of

J decomposes the state vector into sub-vectors corresponding to only one real eigenvalue respec-

tively a pair of complex conjugate eigenvalues and the also decoupled stationary state components

corresponding to A•. This, implies that these sub-vectors of the state are either integrated at only

unit root frequency or are stationary. The block-diagonal structure of the transformed A matrix

furthermore implies that the subsystems corresponding to the different unit modulus eigenvalues

respectively pairs of eigenvalues can be analyzed separately and for the same reason also the stable

subsystem can be analyzed separately.10 Restricting the A matrix to the mentioned form does not

lead to a unique representation. Thus, further restrictions have to be imposed on the matrices B

and C. These restrictions are formulated for rational unit root processes with arbitrary unit root

structures in Bauer and Wagner (2005, Theorems 1 and 2). Rather than developing the necessary

identifying restrictions for the general case we will consider the canonical representation here only

for the three cases of major interest for applied econometric cointegration analysis. These are the
9It also follows immediately that considering only zero mean processes (yt)t∈Z necessitates CAjE(x1) = 0 for

j ∈ Z.
10This follows since for A = diag(A1, . . . , Am), B = [B′1, . . . , B′m]′ and C = [C1, . . . , Cm] partitioned accordingly

it follows that the power series coefficients of k(z) = Π(A, B, C) fulfill CAjB =
∑m

h=1 ChAj
hBh for j ≥ 0.
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I(1), the MFI(1) and the I(2) case. Discussing these three cases conveys all major ideas already

and facilitates the understanding of the general case as discussed in Bauer and Wagner (2005).

The I(1) Case

In the I(1) case the A matrix is in the canonical representation is of the following form A =

diag(Id, A•) for some d > 0 and where |λmax(A•)| < 1, i.e. A• has only stable eigenvalues.11

Partition B = [B′
1, B

′
•]
′ and C = [C1, C•] accordingly with B1 ∈ Rd×s and C1 ∈ Rs×d. The

subsystem (A•, B•, C•) has a unique stationary solution for t ∈ Z, which is obtained by setting

x1,• =
∑∞

j=1 Aj−1
• B•ε1−j and x1,1 is taken to have zero mean but is otherwise unrestricted. The

solution to the state space equations in the considered format is then given (as a special case

of (4)) by

yt =





C1x1,1 + C1B1

∑t−1
j=1 εt−j + wt, t ≥ 1,

C1x1,1 − C1B1

∑0
j=t εt−j + wt, t < 1,

(5)

with wt = k•(L)εt = εt+
∑∞

j=1 C•A
j−1
• B•εt−j . Minimality implies (remember the above example)

that C1 ∈ Rs×d has full column rank and that B1 ∈ Rd×s has full row rank, which implies d ≤ s, i.e.

the number of I(1) common trends (defined, considering for brevity only t ∈ N, as B1

∑t−1
j=1 εt−1)

is smaller or equal to the number of variables. The solution (5) for t ∈ N extends the Granger

representation for I(1) processes as given for AR processes in Johansen (1995, Theorem 4.2).

Denote with C1,⊥ ∈ Rs×(s−d) a full rank matrix such that C ′1,⊥C1,⊥ = Is−d and C ′1C1,⊥ = 0.

Then (C ′1,⊥yt)t∈Z = (C ′1,⊥wt)t∈Z and is hence stationary, i.e. the column space of C1,⊥ spans

the cointegrating space. This holds for any zero mean x1,1, which reflects the results of Bauer

and Wagner (2005, Lemma 1) that starting from an appropriate state space system the property

whether the corresponding solution process is a unit root process depends upon the value x1,•

only and not upon zero mean x1,1.12

The I(1) part of the solution in (5) depends only upon the product C1B1. In order to define a

unique representation of the subsystem corresponding to the I(1) components, i.e for the system

(Id, B1, C1), a unique decomposition of the product C1B1 has to be performed.13 One unique

decomposition of the product C1B1 is described in Bauer and Wagner (2005, Lemma 2), which
11A discussion of the algebraic properties of cointegration in the I(1) case is provided by Neusser (2000).
12In order to result in a unit root process, x1,• has to be chosen to render (wt)t∈Z stationary. This is only

achieved by taking x1,• from the unique stationary solution to the stable subsystem.
13Clearly, without further restrictions, the system (Id, B1, C1) is not identified, since for any unitary T ∈ Rd×d,

i.e. T ′T = TT ′ = Ic, it holds that Π(Id, TB1, C1T−1) = Π(Id, B1, C1), i.e. all these realizations correspond to the
same transfer function and describe the same dynamic behavior (which is obvious from (5)).
Remember that identification means that if there are two state space realizations (A1, B1, C1, ) and (A2, B2, C2)
of the same transfer function that fulfill all identifying constraints, it holds that A1 = A2, B1 = B2, C1 = C2.
Equivalently this can be stated as that starting from an identified realization (A, B, C) of k(z) that fulfills all
constraints, the set of all transformation matrices T ∈ T such that also (TAT−1, TB, CT−1) fulfills all constraints
contains only T = In.
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requires C1 to fulfill C ′1C1 = Id and B1 to be positive upper triangular and of full row rank. A

matrix M = [mi,j ]i=1,...,c,j=1,...,m ∈ Cc×m is positive upper triangular (p.u.t.) if there exist indices

1 ≤ j1 < j2 < . . . < jc ≤ m, such that mi,j = 0, j < ji, mi,ji ∈ R, mi,ji > 0, i.e if M is of the form



0 · · · 0 m1,j1 ∗ . . . ∗
0 . . . 0 m2,j2 ∗

0 . . . 0 mc,jc ∗


 , (6)

where the symbol ∗ indicates unrestricted entries. Note that in case that a real valued matrix is de-

composed (as with C1B1 in the I(1) case), both matrix factors are real valued. The decomposition,

however, also applies to complex valued matrices (see Bauer and Wagner 2005, Lemma 2).14

Thus, in the I(1) case a unique realization of the subsystem corresponding to the unit roots is of

the form: The corresponding A matrix is equal to Id, the B1 matrix is p.u.t. with full row rank

and the C1 matrix is normalized to C ′1C1 = Id. This normalization facilitates the computation

of the cointegrating space, which is given by the ortho-complement of the span of C1. A unique

representation of the total system is then obtained by restricting the stable subsystem (A•, B•, C•),

corresponding to the stationary process (wt)t∈Z in (5), to be in a canonical form as well. The

literature provides numerous possibilities in this respect, e.g. the balanced canonical form (see

Ober 1996) or the echelon canonical form (see Hannan and Deistler 1988, Section 2.5). We consider

the echelon canonical form and combining the stable subsystem in echelon canonical form with the

unit root subsystem in the unique format described above leads to a unique representation of I(1)

state space systems that is well suited for cointegration analysis, since it e.g. immediately leads

to a Granger type representation. Also, if one is interested in impulse response analysis and on

e.g. wants to place long-run restrictions on the impulse responses, these can be placed on C1B1

in a rather straightforward manner.

The MFI(1) Case

The canonical representation for the MFI(1) case is a generalization of the I(1) case to the case of

multiple unit roots where some of the unit roots are potentially conjugate complex (i.e. correspond

to pairs of complex conjugate eigenvalues of unit modulus of the A matrix). We consider the system

in block-diagonal format with the first l blocks corresponding to the unit roots ordered according

to increasing unit root frequencies 0 ≤ ωk < ωk+1 ≤ π, k = 1, . . . , l − 1 in a format related to

the real Jordan normal form and the final block being the stationary subsystem. The latter is, as
14An alternative factorization is given by leaving B1 unrestricted and by requiring C1 to fulfill C′1C1 = Id and

C1 positive lower triangular, i.e. it is a matrix whose transpose is p.u.t..
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before, considered in echelon canonical form:15

yt =
[

C1 · · · Cl C•
]
xt + εt, (7)




xt+1,1

...
xt+1,l

xt+1,•


 =




A1 0 · · · 0

0
. . . . . .

...
...

. . . Al 0
0 . . . 0 A•







xt,1

...
xt,l

xt,•


 +




B1

...
B1

B•


 εt. (8)

The unique form of the sub-blocks corresponding to the unit roots depends upon whether the

corresponding unit root frequency ωk ∈ {0, π}, i.e. corresponds to a real unit root (±1), or

0 < ωk < π, i.e. corresponds to a pair of complex conjugate unit roots. In case of real unit roots

the constraints on the system matrices (Ak, Bk, Ck) are as discussed above, with Ak = ±Idk and

Bk and Ck fulfilling the constraints formulated above in the I(1) case.

Things are slightly more involved in case of a pair of complex conjugate unit roots zk = eiωk ,

zk = e−iωk , 0 < ω < π, where we have to consider one additional step in the development of a

canonical form. From the fact that (A,B,C) as well as (yt)t∈Z are real valued it follows after a

transformation to the Jordan normal form that not only the blocks in the transformed A matrix

that correspond to a pair of conjugate complex unit modulus eigenvalues, zk and zk, are conjugate

complex, but also the correspondingly transformed blocks of B and C are conjugate complex.

Consequently the subsystem corresponding to a pair of conjugate complex unit roots is in complex

valued format given by

Ak,C =
[

zkIdk 0
0 zkIdk

]
, Bk,C =

[
Bk,−
Bk,−

]
, Ck,C = [Ck,− Ck,−], (9)

with Bk,− ∈ Cdk×s, Ck,− ∈ Cs×dk

and where a denotes as already used above the complex

conjugate of a. A unique realization of the complex subsystem (zkIdk , Bk,−, Ck,−) is, analogously

to the I(1) case discussed above, obtained by positing the constraints C ′k,−Ck,− = Idk and Bk,− is

p.u.t and has full row rank. This, of course, also implies a unique realization of (zkIdk , Bk,−, Ck,−).

Based on this unique complex representation, a real valued canonical representation is obtained by

transforming the pairs of conjugate complex subsystems (zkIdk , Bk,−, Ck,−), (zkIdk , Bk,−, Ck,−)

to real valued systems using the transformation matrix

TR,d :=




1 1
i −i

1 1
i −i

. . . . . .
. . . . . .




∈ C2d×2d. (10)

15The result is again a special case of the canonical representation developed in Bauer and Wagner (2005,
Theorem 2).
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This results in real valued subsystems (Ak, Bk, Ck) with Ak = Idk ⊗ Q(ωk), with Q(ωk) :=[
cos(ωk) − sin(ωk)
sin(ωk) cos(ωk)

]
and ⊗ denoting the Kronecker product. For the other system matrices

this transformation leads to

Bk =




2R(Bk,−,1)
−2I(Bk,−,1)

...
2R(Bk,−,dk)
−2I(Bk,−,dk)




, Ck =
[R(Ck,−,1), I(Ck,−,1), . . . ,R(Ck,−,dk), I(Ck,−,dk)

]
,

where Bk,−,m denotes the m-th row of Bk,−, Ck,−,m denotes the m-th column of Ck,− for m =

1, . . . , dk and R and I denote the real respectively imaginary part of a complex quantity.

Consider now only the block corresponding to one unit root with unit root frequency 0 < ω < π,

where we omit here for brevity the subscript k and also set d = 1. Then it holds that

[
xt+1,1

xt+1,2

]
=

[
cos(ω) − sin(ω)
sin(ω) cos(ω)

] [
xt,1

xt,2

]
+ Bεt,

which shows that xt has unit root structure (ω, 1) – i.e. is a stochastic cycle to frequency ω – since

it holds that ∆ω(L)(xt)t∈Z is a stationary process with non-zero spectrum at frequency ω.

Let us next consider (for brevity only for t ∈ N and x1 = [x′1,u, x′1,•]
′) the solution to the state

space system in canonical form, where we consider here the case that ω1 = 0 and ωl = π:

yt = C1B1

t−1∑

j=1

εt−j +
t−1∑

j=1

C2(Id2 ⊗Q(ω2)j−1)B2εt−j + . . . +
t−1∑

j=1

Cl−1(Idl−1 ⊗Q(ωl−1)j−1)Bl−1εt−j +

ClBl

t−1∑

j=1

(−1)j−1εt−j + S̃t + wt, (11)

with S̃t = C1x1,1 + C2(Id2 ⊗ Q(ω2)t−1)x1,2 + . . . + Cl(−1)t−1x1,l summarizing the effect of the

state components x1,u = [x′1,1, . . . , x
′
1,l]

′ and wt = εt +
∑∞

j=1 C•A
j−1
• B•εt−j , using again x1,• =

∑∞
j=1 Aj−1

• B•ε1−j .

Thus, the canonical state space representation immediately leads (as before in the I(1) case)

to a Granger type representation decomposing the process (yt)t∈Z into the stochastic trends

(B1

∑t−1
j=1 εt−j) and cycles (

∑t−1
j=1(Idk⊗Q(ωk)j−1)Bkεt−j , for k = 2, . . . , l−1, Bl

∑t−1
j=1(−1)j−1εt−j)

at the different unit root frequencies, the effects of the state x1,u (S̃t) and a stationary process (wt).

The relationship between the state space system matrices and the Granger representation (11) is

much simpler than e.g. the relation between AR coefficients and the corresponding Granger rep-

resentation as derived for the AR case in Johansen and Schaumburg (1999). This implies that

it is easier to define a parameterization in the state space framework than in the AR or ARMA

framework, see also the next section or Bauer and Wagner (2006) for details.
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Bauer and Wagner (2005, Theorem 3) shows that also in the MFI(1), like in the I(1), case the

stochastic trends respectively cycles (xt,k)t∈Z are not cointegrated. Thus, cointegration occurs

for vectors β 6= 0 such that β′Ck = 0 for at least one k = 1, . . . , l. Clearly, a vector β can be

orthogonal to several matrices Ck1 , . . . , Ckm , in which case it annihilates the stochastic trends

respectively cycles at several frequencies ωk1 , . . . , ωkl
.

As already mentioned in the MFI(1) case additionally also so-called dynamic cointegrating rela-

tionships, i.e. polynomial cointegrating relationships of polynomial degree 1 may occur for unit

root frequencies 0 < ωk < π, i.e for the stochastic cycles. Consider β(L) = β0 + β1L, with

β0, β1 ∈ Rs and β0, β1 6= 0. Considering one unit root frequency we obtain

(β′0 + β′1L)Ckxt,k = β′0Ckεt−1 + [β′0Ck(Idk ⊗Q(ωk)) + β′1Ck]xt−1,k

using xt,k = (Idk ⊗Q(ωk))xt−1,k +Bkεt−1. Therefore, the polynomial β(L) eliminates the stochas-

tic cycle (xt,k)t∈Z in β(L)′(yt)t∈Z and is a PCIV, since it automatically fulfills condition (ii) of

Definition 4, if and only if

[β′0 β′1]
[

Ck(Idk ⊗Q(ωk))
Ck

]
= 0.

The above matrix of dimension 2s × 2dk, with dk ≤ s (cf. Bauer and Wagner 2005, Lemma 1),

has full column rank 2dk due to minimality. This leaves space for a 2(s − dk)-dimensional space

of dynamic cointegrating relationships. Similarly as before a vector polynomial β(L) can be

cointegrating at several unit root frequencies.

The I(2) Case

In the I(2) case the block of the A matrix corresponding to the eigenvalue z = 1 has a Jordan

normal form that is not equal to the identity matrix, but contains Jordan blocks of size 2, as

has been illustrated in the previous sub-section. In the canonical representation a specifically

reordered form of the Jordan normal form is used, see (12) below. This specific reordering is

chosen to induce that the state vector corresponding to the unit root is ordered block-wise with

increasing integration orders from bottom to top. We use for the example the notation used in

Bauer and Wagner (2005) for the general case to facilitate reading of that paper, i.e. we have:

yt =
[

C1,E
1 C2,G

1 C2,E
1 C•

]



x1,E
t,1

x2,G
t,1

x2,E
t,1

xt,•


 + εt (12)




x1,E
t+1,1

x2,G
t+1,1

x2,E
t+1,1

xt+1,•


 =




Id1 Id1 0 0
0 Id1 0 0
0 0 Id2−d1 0
0 0 0 A•







x1,E
t,1

x2,G
t,1

x2,E
t,1

xt,•


 +




B1
1

B2,1
1

B2,2
1

B•


 εt,
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with x1,E
t,1 ∈ Rd1 , x2,G

t,1 ∈ Rd1 , x2,E
t,1 ∈ Rd2−d1 , B1

1 ∈ Rd1×s, B2,1
1 ∈ Rd1×s, B2,2

1 ∈ R(d2−d1)×s,

C1,E
1 ∈ Rs×d1 , C2,G

1 ∈ Rs×d1 , C2,E
1 ∈ Rs×(d2−d1) and d1 ≤ d2.16 Clearly, in case d1 = d2 certain

components given above are not present. For the discussion here we assume d1 < d2, but the

discussion also makes clear what happens in case d1 = d2 (as has been the case in the above I(2)

example with d1 = d2 = 1).

In the canonical representation the stable subsystem (A•, B•, C•) is again assumed to be in eche-

lon canonical form with x1,• =
∑∞

j=1 Aj−1
• B•ε1−j corresponding to the unique stationary solution

of the stable subsystem. The identifying constraints formulated in Bauer and Wagner (2005,

Theorems 1 and 2) are in the I(2) case: (CE
1 )′CE

1 = Id2 , where CE
1 = [C1,E

1 , C2,E
1 ], where the

full column rank implies d2 ≤ s, (C2,G
1 )′C1,E

1 = 0, B2
1 = [(B2,1

1 )′, (B2,2
1 )′]′ has full row rank and

B2,1
1 and B2,2

1 are both p.u.t.. These constraints are, of course, closely related to the constraints

formulated for the I(1) case. The differences are that full column rank and normalization (i.e.

(CE
1 )′CE

1 = Id2) are only formulated for a part of the C1 matrix (with the E superscript). Con-

straints on the B1 matrix are only formulated for B2
1 , namely full row rank of B2

1 and p.u.t. format

for both sub-blocks B2,1
1 and B2,2

1 .

We now consider the implications of these constraints for the unit root and cointegration properties

of (xt)t∈Z and (yt)t∈Z, thereby generalizing the above bivariate I(2) example. Equation (12) implies

that x2
t+1,1 = x2

t,1 + B2
1εt, t ∈ Z, with x2

t,1 = [(x2,G
t,1 )′, (x2,E

t,1 )′]′. This immediately implies that

(x2
t,1)t∈Z is an I(1) process. Furthermore, since B2

1 has full row rank (x2
t,1)t∈Z is not cointegrated.

Thus, similarly to the I(1) case, the I(1) coordinates of the state process are not cointegrated.

Equation (12) also implies that x1,E
t+1,1 = x1,E

t,1 + x2,G
t,1 + B1

1εt, t ∈ Z, and hence (x1,E
t,1 )t∈Z is an I(2)

process. From Bauer and Wagner (2005, Theorem 3) it follows that (x1,E
t,1 )t∈Z is not cointegrated

either, which can also be seen below in (13), due to full row rank of B2,1
1 . Thus, the state vector

(xt,1)t∈Z is given in a form where its sub-blocks (xj
t,1)t∈Z, for j = 1, 2 are integrated of order 3− j

and are not cointegrated. Thus, the number of I(1) common trends is d2, which like in the I(1)

case is smaller or equal than s, and the number of I(2) common trends is given by d1, also smaller

or equal than s.

Considering again for notational brevity only the solution for t ∈ N we obtain for the integrated

components of the state vector:

x1,E
t,1 = x1,E

1,1 + (t− 1)x2,G
1,1 + B2,1

1

t−1∑

i=1

i−1∑

j=1

εi−j + B1
1

t−1∑

j=1

εt−j (13)

16The reason for as well as the need for different double superscripts for the blocks of C1 and xt,1 on the one
hand and for B2

1 only becomes clear when looking at higher order integrated processes (see Bauer and Wagner 2005,
Theorem 2).
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x2,G
t,1 = x2,G

1,1 + B2,1
1

t−1∑

j=1

εt−j

x2,E
t,1 = x2,E

1,1 + B2,2
1

t−1∑

j=1

εt−j

(14)

This implies for the solution yt, t ∈ N, using wt = εt +
∑∞

j=1 C•A
j−1
• B•εt−j for the stationary

component and S̃t = C1,E
1 [x1,E

1,1 + (t − 1)x2,G
1,1 ] + C2,G

1 x2,G
1,1 + C2,E

1 x2,E
1,1 for the effect of the state

x1,1:

yt = C1,E
1 B2,1

1

t−1∑

i=1

i−1∑

j=1

εi−j + (C1,E
1 B1

1 + C2,G
1 B2,1

1 + C2,E
1 B2,2

1 )︸ ︷︷ ︸
C1B1

t−1∑

j=1

εt−j + S̃t + wt (15)

From the solution (15) the cointegration properties of (yt)t∈Z can be immediately deduced. First,

since both C1,E
1 and B2,1

1 are full rank matrices, a vector β 6= 0, β ∈ Rs reduces the integration

order from 2 to (at least) 1 if and only if β′C1,E
1 = 0. Reduction of the integration order from 2

to 0 necessitates some additional orthogonality constraints to be fulfilled, namely β′(C2,G
1 B2,1

1 +

C2,E
1 B2,2

1 ) = 0. The dimension of this space depends upon the process considered, but can

be easily determined for any given process by simple orthogonality constraints. E.g. in case

that C1B1 ∈ Rs×s has full rank, no cointegration that reduces the integration order from 2

to 0 exists. The above representation (15) that follows straightforwardly from the state space

equations immediately displays cointegration and is analogous to the representation developed for

the autoregressive case in Johansen (1997, (10), p. 437).

It remains to discuss polynomial cointegration. Bauer and Wagner (2005, Theorem 4) states that

a necessary condition for a polynomial β(L) = β0 + β1L to be a polynomial cointegrating vector

is

[β′0, β
′
1]

[
C1J1

C1

]
= 0. (16)

In the I(2) case this leads to the orthogonality constraint

[β′0, β
′
1]

[
C1,E

1 C1,E
1 + C2,G

1 C2,E
1

C1,E
1 C2,G

1 C2,E
1

]
= 0 (17)

Since minimality implies that the above matrix has full column rank the solution space to the

above equation is of dimension 2(s− d1 − d2). Now, the above orthogonality constraints are only

necessary conditions, since they do not incorporate the item (ii) of Definition 4, which excludes

polynomials that are (in the I(2) case) multiples of the differencing filter ∆0(L) = 1 − L. In the

I(2) case a polynomial fulfills item (ii) if and only if it holds that

[β′0, β
′
1]

[
Is

Is

]
6= 0,
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i.e. if it does not fulfill a certain orthogonality constraint. Thus, the intersection of the ortho-

complement of the left kernel of the above matrix with the solution space of (17) characterizes all

polynomial cointegrating relationships. Similar ideas hold also for the case of unit root processes

with arbitrary unit root structure, as is discussed in detail in Bauer and Wagner (2008). I.e.

in other words, the characterization problem of polynomial cointegration is transformed into a

static orthogonality problem. That paper also discusses the notion of minimum degree polynomial

cointegrating vectors. This is necessary since for a PCIV β(L) any vector polynomial p(L)β(L),

where p(L) is a scalar polynomial, is also a PCIV, as long as the pre-multiplication with p(L) does

not invalidate condition (ii) of Definition 4. In the I(2), respectively I(m), case this just requires

that p(1) 6= 0. Clearly, only the set of minimum degree PCIVs of a certain order is relevant. The

characterization of minimum degree PCIVs can also be formulated as an orthogonality problem.

3.2 Statistical Theory

Compared to structure theory, which is developed for unit root processes with arbitrary unit

structures, statistical theory is in a relatively nascent state with results available only for some

cases. Pseudo maximum likelihood estimation theory is developed to some extent for the MFI(1)

case and for the I(1) case a computationally simple so-called subspace algorithm for the estimation

of the system matrices as well as for order estimation (n) and testing for the number of common

trends (d) has been developed. Here we only very briefly discuss the available results and refer the

reader to the original papers for details. For pseudo ML estimation see Bauer and Wagner (2006)

and for subspace algorithm cointegration analysis see Bauer and Wagner (2002, 2009).

Pseudo ML Estimation for MFI(1) Processes

The major purpose of the developed canonical form, probably more important than allowing

for an easy understanding of the unit root, cointegration and polynomial cointegration prop-

erties of (yt)t∈Z, is that it allows to define a parameterization. Formally, in our context a

(finite-dimensional) parameterization of Mn is a bijective mapping from ψ : T → Mn, with

T ⊂ Rm,m < ∞ such that τ ∈ T → ψ(τ) = k(z, τ) = Π(A(τ), B(τ), C(τ)) ∈ Mn, i.e. a parame-

terization assigns in a bijective fashion a transfer function to a parameter vector. A canonical form

is an important ingredient for a parameterization since it attaches a unique state space realization

to any k(z) ∈ Mn. As we have seen, the canonical representation places restrictions on the system

matrices, i.e. not all entries in (A, B,C) are free parameters. The free parameters in the canonical

representation are collected in the parameter vector τ ∈ Rm. For a detailed discussion see Hannan

and Deistler (1988).
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In our context, for given unit root frequencies and unit root structure (to be precise, for given state

space unit root structure as defined in Bauer and Wagner 2005), which in the MFI(1) case means

the multiplicities d1, . . . , dl of the unit roots, there are no free parameters in the part of the A

matrix corresponding to the unit roots and the corresponding blocks Ck and Bk, k = 1, . . . , l, have

to fulfill certain constraints (ortho-normality, orthogonality, p.u.t.). Similarly, using the echelon

canonical form for the stable subsystem places restrictions on (A•, B•, C•).

It is known since Hazewinkel and Kalman (1976) that the set of transfer functions Mn cannot be

parameterized continuously. Clearly, however, continuity and even differentiability of a parameter-

ization are desirable properties. This, since continuity implies that when the estimated parameters

are ‘close’ to the true parameters also the corresponding transfer functions are ‘close’ in a certain

sense and hence the estimated model exhibits characteristics that resemble the characteristics of

the true but unknown model. Differentiability allows to use gradient based methods for optimiza-

tion of the likelihood and also allows to use (in case that the true parameter vector is an interior

point of the parameter set) expansions around the true parameter vector to derive asymptotic dis-

tributions. Thus, in order to have piece-wise continuous parameterizations for subsets of Mn, this

set is partitioned, i.e. Mn =
⋃

θ Mθ
n, according to some index θ that summarizes the partitioning,

as discussed next for the MFI(1) case, with a continuous and differentiable parameterizations of

Mθ
n.

To be concrete let us discuss this for the considered MFI(1) case: Let n be fixed and consider

also a fixed unit root structure Ω = ((ω1, 1), . . . , (ωl, l)). Furthermore, let the multiplicities of the

unit roots be denoted as d = (d1, . . . , dl). Furthermore, the structure of the p.u.t. indices (which

describe the position of the first non-zero entry in each row) for the matrices Bk,− is collected in

θput. Finally, with θ• we denote the structure (multi-)index characterizing the echelon canonical

representation of (A•, B•, C•), see Hannan and Deistler (1988, Theorem 2.5.2, p. 61). Combine

these in θ = (n, Ω, d, θput, θ•). Then, the set Mn is partitioned according to the defined parameter

θ as just defined. Given the focus on the cointegration properties it appears natural to partition

Mn according to the unit root properties as summarized by Ω and d as well as according to the

partitioning induced by the echelon canonical form for the stationary subsystem.17

The parameter vector is partitioned in three components, i.e. τ = (τC , τB , τ•) and of course there

are also s× (s + 1)/2 parameters to be estimated in Σ. The precise dimensions of the parameter

vectors are discussed in Bauer and Wagner (2006). Statistical analysis is based on (−2/T ) the

17More details and properties of a parameterization are contained in Bauer and Wagner (2006), which uses the
factorization referred to in footnote (14). The underlying topological properties of the parameterization discussed
there are a special case of results contained in an older version of Bauer and Wagner (2005), which is available from
the author upon request.
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Gaussian pseudo (log-)likelihood,

L(τ, Σ|y1, . . . , yT ) = log det(Σ) +
1
T

ε̂t(τ)Σ−1ε̂t(τ), (18)

with ε̂t(τ) defined from

ε̂t(τ) = yt − C(τ)xt(τ) (19)

xt+1(τ) = A(τ)xt(τ) + B(τ)ε̂t(τ). (20)

The pseudo ML estimators τ̂ and Σ̂ are defined as the minimizers of the function (18) over some

compact Λ ⊂ T .

Under a set of appropriate assumptions, which include correctly specified structure indices n, d

and the θput, as well as assumptions on (εt)t∈Z (to be a strictly stationary MDS with constant

conditional variance and finite fourth moments) and some technical assumptions on k(z) Bauer

and Wagner (2006, Theorem 1) establish consistency of τ̂ .

Furthermore, if the true parameter point, τ0 say, is an interior point of the parameter space also the

asymptotic distribution is available (see Bauer and Wagner 2006, Theorem 2). As is probably not

a surprise, the parameters in C are estimated super-consistently, i.e. T (τ̂γ−τγ,0) → B(Ω, d). Here

B(Ω, d) is used to denote a ‘complicated’ vector of Brownian motions whose precise form depends

upon the unit root structure Ω and the multiplicities d. The other parameters, τB and τ•, are

estimated at the standard rate
√

T and are asymptotically normally distributed. All parameters

converge jointly. Availability of the asymptotic distribution allows to construct hypothesis tests

on the parameters. An important ingredient missing to date is a consistent order estimation

criterion, i.e. a consistent estimator of the order n as well as tests for the number of common

trends respectively cycles (i.e. for d).

Subspace Algorithm Cointegration Analysis for I(1) Processes

For the special case of I(1) processes ‘complete’ statistical analysis including order estimation

as well as testing for the number of common trends has been developed in Bauer and Wagner

(2002, 2009) using an alternative estimation approach referred to in the literature as subspace

algorithms.

Subspace algorithms originated in the engineering literature of the 1980s (see e.g. Larimore 1983,

Van Overschee and DeMoor 1994, Verhaegen 1994) and consequently have been mainly used in

a stationary context. The exception is Aoki (1987, Chapter 9), whose procedure however lacks

a thorough statistical foundation and can be shown to be inefficient for stationary processes.

Bauer and Wagner (2002) extend and modify the so-called CCA (Canonical Correlation Analysis)

algorithm of Larimore (1983) from the stationary case to the I(1) case.
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Despite the fact that subspace algorithm cointegration analysis is the to date only published strand,

and hence most easily available part, of the state space model cointegration analysis research

agenda we briefly present the main idea, since subspace algorithms may not be too well-known in

the econometrics literature. As has been seen above, pseudo ML estimation proceeds by obtaining

estimates of the system matrices (Â, B̂, Ĉ), from which in turn a corresponding estimate of the

state x̂t can be constructed. The idea of subspace algorithms is to reconsider the system equations

assuming that the in fact unobserved state process were observed or a consistent estimate is

available, x̂t say. In that case the matrices in the system equations yt = Cx̂t+εt, x̂t+1 = Ax̂t+Bεt

can be estimated by least squares methods. E.g. the output equation yt = Cx̂t +εt can be used to

estimate Ĉ and ε̂t, which then in turn can be used to estimate Â and B̂ from x̂t+1 = Ax̂t+Bε̂t+ξt,

with ξt denoting here the regression residual. Thus, in order to transform the estimation problem

to such a simple regression problem a consistent estimator of the state has to be constructed and

the asymptotic effect of using x̂t in place of xt has to be studied.

There are several ways of doing that and CCA type algorithms base the estimation of the state

on the canonical correlations between Y +
t,f = [y′t, y′t+1, . . . , y

′
t+f−1]

′ on Y −
t,p = [y′t−1, y

′
t−2, . . . , y

′
t−p]′

for appropriately chosen indices f, p ≥ n (with in general p → ∞ for T → ∞ at a suitable rate;

hence in this step an autoregressive approximation is performed, compare also Remark 1). Denote

S++ = 1
Tf,p

∑T−f
t=p+1 Y +

t,f (Y +
t,f )′, S−− = 1

Tf,p

∑T−f
t=p+1 Y −

t,p(Y
−
t,p)′ and S+− = 1

Tf,p

∑T−f
t=p+1 Y +

t,f (Y −
t,p)′.

The algorithm is based on the canonical correlations between Y +
t,f on Y −

t,p, in our notation given

by S
−1/2
++ S+−S

−1/2
−− . 18 It holds that for the canonical correlation matrix the number of non-zero

eigenvalues (i.e. canonical correlations) is asymptotically equal to the system order n. This fact is

exploited for consistent order estimation. Furthermore, the number of eigenvalues asymptotically

equal to 1 equals the number of common trends. For a chosen order n̂ an estimate of the state is

(essentially) computed from the singular value decomposition of the canonical correlation matrix

considering only the first n canonical correlations. I.e. consider a singular value decomposition of

S
−1/2
++ S+−S

−1/2
−− = Û Σ̂V̂ ′ = ÛnΣ̂nV̂ ′

n + R̂n, with Σ̂n ∈ Rn×n and the other matrices of appropriate

dimensions and where Rn captures the contribution of all neglected canonical correlations. Then,

an estimate of the state is given by x̂t = Σ̂nV̂ ′
nS

−1/2
−− Y −

t,p.19 Based on the estimated state, as

discussed above, the system matrices can be estimated. Tests for the number of common trends can

18Note also that the coefficient matrix of a regression of Y +
t,f on Y −t,p is given by β̂f,p = S+−S−1

−−, which of course is

related to the canonical correlation matrix by pre- and post-multiplication with S
−1/2
++ and S

1/2
−−. Different subspace

algorithms differ, amongst other things, by their choice of weighting matrices with which the OLS coefficient matrix
β̂f,p is pre- and post-multiplied. Note that a specific choice of weighting matrices also leads to a specific ‘solution’
of the identification problem.

19Bauer and Wagner (2002) discuss a modified estimate of the state taking into account the number of common
trends, d in our notation. We abstain from detailing this modification here.
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be based on the eigenvalues of Â, since asymptotically the d largest eigenvalues are equal to 1 (cf.

Bauer and Wagner 2005, Theorem 5). Tests can also be based on a reduced rank regression. Thus,

subspace algorithms are a computationally extremely cheap (one SVD and two OLS regressions)

alternative to pseudo maximum likelihood estimation for cointegrated I(1) VARMA processes in

the state space framework.

Both simulation evidence as well as empirical applications have shown that the outlined procedure

performs well. Wagner (2004) uses subspace algorithm cointegration analysis, and for comparison

the methods of Bierens (1997) and Johansen (1995), to test for and to estimate the cointegrating

space for the one-sector neoclassical growth model (see also King, Plosser and Rebelo 1988, King

et al. 1991). The estimated cointegrating space is closer (in the sense of the gap distance) to

the cointegrating space implied by economic theory than the estimates obtained with the other

methods.

Bauer and Wagner (2009) use the method to investigate the expectations hypothesis of the term

structure from a cointegration perspective, which has some tradition by now in the cointegration

literature, see e.g. Campbell and Shiller (1987) or Hall et al. (1992). The expectations hypoth-

esis, dating back to Fisher (1896) and Hicks (1946)20, has – when cast into a set-up amenable

to cointegration analysis – clear implications for cointegration: The interest rates to all different

maturities are considered to be I(1), whereas all spreads, i.e. interest rate differentials, are sta-

tionary. I.e. for s interest rates of different maturities the dimension of the cointegrating space

implied by theory is s− 1, with a basis given by the vectors of the form [1, 0, . . . , 0,−1, 0, . . . , 0]′

with the −1 entry running from the second to the last position. Note that in terms of state space

models as considered, this simply implies that the ortho-complement of the cointegrating space,

i.e. C1 ∈ Rs×1 is proportional to [1, . . . , 1]′, which in other words just states the fact that the

underlying stochastic trend is loaded in all interest rates with the same coefficient.

Using US and German interest rate (with maturities from 1 to 12 months) and bond returns data

(with maturities from 1 to 6 years) Bauer and Wagner (2009) find strong support for the outlined

expectations hypothesis in that indeed they find s− 1 cointegrating relationships, or equivalently

only one stochastic trend, for the US and German interest rate data and the US bond data.

Applying the Johansen (1995) VAR method leads to the conclusion of a much lower dimensional

cointegrating space. Also, an estimate of the underlying factor (using here the word factor in the

sense of underlying theoretical finance models like Cox et al. 1985, Vasicek 1977) is immediately

available as x̂t,1.

The two mentioned applications show that using state space models, which allows to model
20For a ‘modern’ exposition see Shiller (1990).
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VARMA processes, may make a difference in cointegration analysis. Remember that for both

applications there are theoretical reasons why considering VARMA processes might be relevant,

in the growth example this is the observation that the log-linearized solutions of economic models

often follow VARMA processes, and in the term structure example VARMA processes may be

relevant due to temporal aggregation of the underlying (instantaneous) interest rate modelled as a

diffusion process in the mentioned finance models. Clearly, in both cases the argument for VARMA

processes stems from theoretical models that need not be supported by the data. Nevertheless, it

may be useful to take findings from theoretical considerations into account when setting out for

empirical econometric analysis.

4 Open Issues, Summary and Conclusions

From the above discussed results the open issues can be seen immediately, by considering the set

of results one would ultimately want to have available when performing cointegration analysis.

With respect to structure theory the major open issue is the inclusion of exogenous variables

(which includes, of course, deterministic variables), or in other words the consideration of unit

root VARMAX instead of unit root VARMA processes. This leads to considering state space

models of the form

yt = Cxt + Mzt + εt (21)

xt+1 = Axt + Nzt + Bεt, (22)

with (zt)t∈Z containing the exogenous variables. Depending upon the nature of (zt)t∈Z this raises

many interesting questions, both structure theoretical and statistical. Many economic variables

contain in addition to the stochastic trend also deterministic trend components, thus at least

allowing for certain deterministic trend components is relevant.21.

With respect to statistical theory it is clear that many things are missing, since not even for

the three discussed cases (I(1), MFI(1) and I(2)) complete statistical analysis ranging from order

estimation to parameter estimation to testing for the number of common trends and cycles is

available. Some results might be relatively easy to achieve (e.g. the distribution of the impulse

response coefficients, given the distribution of the parameters in (A,B, C)) whereas others might

be more difficult (like showing consistency and deriving the asymptotic distribution of estimators

for processes with general unit root structures). It is a major purpose of the developed canonical

form to set the stage for parameter estimation for processes with general unit root structures.
21Note that a non zero mean of the processes is easily captured by non zero x1,1

24



Alternatively, or as a complement, due to their computational simplicity one may also want to

extend subspace algorithms beyond the I(1) case.

Altogether this shows that cointegration analysis with state space models is a field with many

interesting questions still to be formulated let alone solved and we hope that this summary paper

spurs the interest of some researchers to work in this interesting field.
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