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Abstract: 
In this paper we review some Solow-type growth models, framed is discrete time, which are able to 

generate complex dynamic behaviour. For these models – put forward by Day (1982, 1983); Böhm and Kaas 

(2000); and Commendatore (2005) – we show that crucial features which could determine the emergence of 

regular or irregular growth cycles are (i) if the average saving ratio is constant or not; and (ii) the curvature of 

production function, representing the degree of substitutability between labour and capital. The lower the degree 

of substitutability, the higher the likelihood of complex behaviour. 
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1. Introduction 

 
The analysis of the fundamental issues in dynamical macroeconomics usually begins with the 

study of two (one-sector and one-dimensional) growth models: the Ramsey model [Ramsey, (1928)] 

and the Solow model [Solow, (1956)]. In the Ramsey model a representative consumer  has an infinite 

life horizon and optimizes his/her utility. In the Solow model consumption is not optimal the 

representative agent saves a constant fraction of his income. In the next sections we will describe the 

Solow model and a few models which are very close to the Solow one and are able to generate chaotic 

dynamics. We note here that researches in several direction have spanned from the Solow model. For 

example, the Solow model inspired the works of Shinkay (1960), Meade (1961), Uzawa (1961,1963), 

Kurz (1963) and Srinivasan (1964) on two-sector growth models. Following this line of research, 

works about two-sector models appeared on the Review of Economic Studies in the 1960s [Drandakis 

(1963), Takajama (1963, 1965), Oniki-Uzawa (1965), Hahn (1965), Stiglitz (1967), among others].  

 
2. The Solow growth model in discrete time 
 

Following Hans-Walter Lorenz (1989) and Costas Aziariadis (1993), we will develop a discrete 

time variant of the growth model due to  Solow (1956). We consider  a single good economy, i.e. an 

economy in which only one good is produced and consumed. We assume that time t is discrete, that is t 

= 0, 1, 2, … . The symbols t t t t t tY , K , C , I , L , S  indicate economywide aggregates respectively 

equal to income, capital stock, consume, investment, labor force, saving at time  t. The capital stock 

0K  and labor 
0L  at time 0 are given. The constant s denotes both the average and the marginal 

savings rates and the constant n denotes the growth rate of population. We consider s and n as given 

exogenously. The map t t t tF: (K ,L )  F(K ,L ) → is  the production function. We assume that: 

1. t t tY = C  + I  : for all time t = 0, 1, …, the economy is in equilibrium, i.e. the supply of 

income tY  is equal to the demand composed of the quantity tC  of good to consume plus the stock 

tI  of capital to invest (closed economy like a Robinson Crusoe economy); 

2. t t + 1I  = K : investment at time t corresponds to all capital available to produce at time t+1 

(working capital hypothesis); 

3. t t t tS  = Y  - C = s Y  (0 < s < 1): saving is a share of income; 

4. t t tY  = F(K , L ), i.e. at time t all income is equal to the output obtained by the inputs 

capital and labor; 
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5. 
t

t 0 L  = (1+n)  L (n > 0): the labor force grows as a geometric progression at the rate (n). 

From (1.) and (3.) in a short run equilibrium 
t t tY  = C  + S  or

t t I  = S . Thus, applying 

(2.) and (3.), we have 
t + 1 tK  = sY . Finally, from (4.) we obtain 

t + 1 t tK  = s F(K , L ).  

From the latter expression, 
t+1 t+1 t t t+1K L = s F(K ,L ) L  .  

If F is linear-homogeneous (or it tells that F exhibits constant returns to scale), i.e. 

F(  K,  L) =  F(K, L) (for all  > 0),λ λ λ λ  

then we have  ( )t+1 t+1 t t t tK L  = s L F K L ,1 L (1+n).  

We set t t tk  = K L (capital-labor ratio or capital per worker) and t t ty  = Y L .(output-labor 

ratio or output per worker). We derive in this way the production function in the intensive 

form: ( )t t t ty =f(k ) = f K L ,1 . Therefore we get the equation of accumulation for the Solow model in 

discrete time with the working capital hypothesis: 

t + 1 tk  = s f(k ) (1+n)     (2.1)  

If we assume that capital depreciates at the rate 0    1 (δ≤ ≤ fixed capital hypothesis), the 

capital available at time t +1 corresponds to 
t + 1 t t tK  = K  -  K  + I , δ from which  

t + 1 t t tK  = s F(K , L ) + (1 - ) K .δ  

As before we get the following time-map for capital accumulation 

t + 1 t t k (1+n) = s f (k ) + (1 - ) k  (2.2)δ  or  t + 1 tk  = h(k )      (2.3) 

where t t t

1
h (k ) = [s f (k ) + (1 - ) k ].

1+n
δ  

We notice that t I is the gross investment while t + 1 t t tK  - K  = I  -  K  δ is  the net investment. 

Costas Azariadis (1993, p. 4) tells us that this model captures explicitly a simple idea that is 

missing in static formulations: there is a trade-off between consumption and investment or between 

current and future consumption. The implications of this ever-present competition for resources 

between today and tomorrow are central to macroeconomics and can be explored only in a dynamic 

framework. Time is clearly of the essence. 

For example, if we use the Cobb-Douglas production function ( )tf k Bk β=  (B > 0, 0 1β< < , 

k  ≥ 0) – in intensive form - the eq. (2.1) becomes  ( ) ( ) ( )1
1

t t t
k h k sBk n

β
+ = = +   (2.4).  

For all k ≥ 0 and B > 0, if we assume (β > 0) we deduce only that ( )th k is strictly 

monotonically increasing, instead we need to use both inequalities ((β > 0) and (β < 1) t show the 

concavity of ( )th k . 

As a matter of fact, from above assumptions we get  

( )
1

0
1

t

sB k
h k

n

ββ −

′ = >
+

,   ( )
( ) 21

0
1

t

sB k
h k

n

ββ β −−
′′ = <

+
. 

The h-map has two fixed point at k = 0 (trivial and repelling fixed point) and at 

( )
( )1 1

1s
k sB n

β−
 = +   (interior and asymptotically stable). The eq. (2.4) is able only to generate 

monotonic convergence to a fixed point (See Figure 1. ).  

If we use the Leontief production function , i.e. ( ) { }min , ,   a,b,c > 0t tf k ak b c= +  [Böhm, 

Kaas, (2000)], that is only piecewise differentiable, from (2.1) we deduce that  the dynamical system is 

described  by two affine-linear maps 

( )
( ) ( )
( ) ( )

t

1

t

1 ,  if k b/a;

1 ,      if k  > b/a.

t

t t

ask cs n
k h k

bs cs n
+

 + + ≤
= = 

+ +
 .  
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Figure 1: Monotonic Convergence to the fixed point 
s

k  
 

3. Complex dynamics in the Solow Discrete Time Growth Model 
R.H. Day (1982,1983) first has noticed that complex dynamics can emerge from simple 

economic structures as, for example, the neoclassical theory of capital accumulation. Day focuses on 

the assumptions of the standard Solow growth model and argues that the kind of nonlinearity of the 

th (k ) map and the lag present in (2.1) are not sufficient to lead to chaos. Day rewrites (2.1)  in a 

more general form: 

( ) ( )1

1

1
t t tk s k f k

n
+ =

+
,         (3.1) 

where ( )ts k is the saving propensity. Then, Day  makes changes in (3.1) deriving two alternative 

models able to generate chaos in the Li-Yorke (1975) sense. In the first model he keeps ( )ts k  as an 

exogenous constant and modifies the production function ( )tf k into a unimodal map, i.e. a concave 

and one humped shaped map. Instead in the second model he modifies ( )ts k  into a unimodal map 

and he keeps ( )tf k as an neoclassical production function like the Cobb-Douglas, obtaining a  robust  

result [Boldrin and Woodford, (1990)].  

In particularly, in the former case he sets ( )ts k s≡   and defines 

( )t t
t

B k ,  if k ;
f (k ) =   

0,                      otherwise

tm k m
γβ − <




  

where m is a positive constant , 0 <  < 1, β  0 <  < 1 and B > 0.γ  

In the latter case he sets t tf (k ) = Bk  (B  2, 0 <  < 1) β β≥ and he replaces the constant s with 

the saving function t
t

t

kb
s (k ) = a (1- ) ,

r y
 where 

t

t

r = f  (k ) =  ,  a > 0, b > 0.
k

ty
β′  

Thus from the equation (3.1) we deduce respectively the expressions 

45°-line 

0k  1k  2k  
0k% 1k% 

s
k  

tk  

1tk +  
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t t t

t +1

1
sBk (m-k ) ,   k m; 

 k  =  1+n

0,                           otherwise,

if
β γ

≤



      (3.2) 

and 

1 - 

t +1 t t

a b
k  =  k  1- k   

1+n  B

β

β

  
  

  
       (3.3) 

It is very simple to solve the equation (3.2) when m =  =  = 1. γ β As a matter of fact we can 

rewrite it like this 

t + 1 t t

1
 k  = s B k (1-k )

1+n
        (3.4) 

If we set 
sB

  =  
1+n

µ then the (3.4) becomes the well-known logistic equation  

t + 1 t tk  =  k (1- k )µ . 

To obtain chaos as Li-Yorke (1975) occurs that in the interval J,  in which the continuous map 

( )th k  is defined,  exists a point 
ck such that ( ) ( ) ( )3 2

c c c ch k k h k h k≤ < < , where 

( ) ( )( )2

c c
h k h h k≡  and ( ) ( )( )3 2

c c
h k h h k≡ . We restrict our study to eq. (3.2). The steps followed 

by Day to obtain 
ck  are: (1) he derives the point k

∗
that maximizes ( )th k  and calls 

m
k the maximum 

of ( )th k ; (2) he solves the equation ( )th k k
∗=  and indicate with 

ck the smallest root; (3) he assumes 

that ( ) 0m
h k = , 

m
k m<  and 

m
k k

∗ < ; (4) he names 
s

k the steady-state of ( )th k ; (5) he observes 

that, fixing the parameters ,  and m, β γ the graph of th(k ) stretches upwards as B is increased and 

at same time the position of 
ck  does not change  because in the expression of 

ck  the parameter B 

does not appear while the maximum 
ch(k ) depends linearly on B (See Figure 2 and Figure 3). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2:  Monotonic Growth or Contraction                            Figure 3:   Sufficient Conditions for Li-Yorke 

Chaos  

 

4. A Two Class Growth Model: Böhm and Kaas (2000) 

 

4.1 Introduction  
The main results of Böhm and Kaas (2000) work are two. The first consists in proving that, 

slightly changing the standard assumptions of the neoclassical production function (introducing 
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conditions which are slightly weaker than the Inada conditions), the dynamics is similar to the one 

generated by the Solow model. As a matter of fact they define a differentiable, monotonically strictly 

increasing and strictly concave capital accumulation map that admits a fixed point but not cycles (See 

below Proposition  4.1 , Proposition 4.2, Proposition 4.3). 

The second involves the introduction of a Leontief production function, which does not satisfy 

the weak Inada conditions, in order to construct a piecewise differentiable capital accumulation map. 

This map can admit zero, one or two steady-states (See Proposition 4.2.1, Proposition 4.2.2, Figure 

4. Figure 5). Moreover Böhm and Kaas (2000) are also able to derive Li-Yorke chaos [Böhm and 

Kaas, (2000)]. 

In particular, in the model of Böhm and Kaas (2000) there are two types of agents (two class 

model), called workers and shareholders, and only one good (or commodity) is produced which is 

consumed or invested (one sector model). Like  Kaldor (1956,1957) and Pasinetti (1962), the workers 

and shareholders have constant savings propensities, denoted respectively with ws  and 

rs  (0  s  1  and 0  s  1). ≤ ≤ ≤ ≤ The output is produced with two factors: labor and capital. We 

consider that the capital depreciates at a rate 0 <   1 δ ≤ and the labor grows at rate n  0. ≥ We 

write the production function f:    ℜ → ℜ in intensive form (i.e. it is maps capital per worker k into 

output per worker y), and suppose that f satisfies the following conditions : 

� f is 
2C ;  

� f(  k)=  f(k) λ λ  (constant returns to capital); 

� f is monotonically increasing and strictly concave (i.e. f  (k)>0 and f  (k)<0 ′ ′′ for all k > 0); 

� 
k
lim  f (k) = ;

→∞
∞  

� 
( )

k 0 k

f k f(k)
lim =  and (b) lim = 0  

k k→ →∞
∞ (weak Inada conditions (WIC)) 

 If we assume that the market is competitive then the wage rate w(k) is coincident with the 

marginal product of labor, i.e. w(k) = f(k) - k f  (k),  ′ and the interest rate (or investment rate) r  is 

equal to the marginal product of capital, i.e. r = f'(k). We suppose that f(0) generally is not equal to 0. 

We observe that the total capital income per worker is kf '(k). Moreover from WIC we deduce that: 

� w(k)  0;≥  

� w (k) = - k f (k) > 0 (w(k) ′ ′′
is strictly monotonically increasing); 

� 0  kf '(k)  f(k) - f(0);≤ ≤  

� k 0
lim  kf (k) = 0.

→
′

 
Similarly to the Solow model we obtain that the time-one map of capital accumulation is 

( )t + 1 t t w t r t t

1
k = G k = ((1- ) k + s w(k ) + s k f (k ))  (4.1).

1+n
δ ′  

Proposition 4.1.1 Given n  0≥ and 0    1, let f(k) δ≤ ≤ be a production function which 

satisfies the WIC. If the workers do not save less than shareholders (i.e w r. s   s ) ≥ or 

f (k)e   -1 then G′ ≥  is monotonically increasing in k. 

The following proposition investigates the existence and the uniqueness of steady states. 

Proposition 4.1.2 Consider n and δ fixed and let f(k) be a production function which satisfies 

the WIC. The following conditions hold: 

� k  = 0 if and only if ws  = 0 
or f(0) = 0. 

� There exists al least one positive steady state if 
r

k 0
(s  > 0 and lim f (k) = 0) 

→
′

or if 

w(s  > 0 and f (0) < ).′ ∞
 

� There exists at most one positive steady state if r w(s   s ).≥  
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Proposition 4.1.3 k
∗

is a steady state of Pasinetti-Kaldor iff, for given n and δ the pairs 

r w(s , s ) of savings rates describe the line 
( )
f

r w

f

1- e (k )
s  + s  = 1 

e k

∗

∗
in the 

r w(s , s )- diagram, 

where
( )f(k)

kf (k)
e  = 

f k

′
 

� has negative slope; 

� goes across the point r w(s , s ) = (1,0);
 

� is below or above the w r45°- line s = s  depending on 
f(k )

e  ∗ is less or greater than 1 2.  

The r w(s , s ) -  plane is coincident with the square [ ]
2

 0,1 .  

 

4.2 The dynamics with fixed proportions 

We consider the Leontief technology { }Lf (k) = min ak, b  + c,   a, b, c > 0.    

Let k  = b/a ∗
be. We have 

L

ak+c, if k  k ,
f (k) =   

b+c,     if k > k

∗

∗

 ≤



and   
L

a, if k k ;
f (k) =  

0, if k > k . 

∗

∗

 ≤
′ 


 

The map G becomes 

1 r w

L

2 w

1
G (k) = ((1 -  + s a) k + s c), if k k ,

1+n
G (k) =  

1
G (k) = ((1- )k + (b+c) s ),    if k > k .

1+n

δ

δ

∗

∗


≤





 

We may say that: 

� 1 2G  and G  
are affine-linear maps strictly monotonically increasing; 

� 
1 r 2

1 1
G  =  (1 -  + s a) > G  =  (1 - );

1+n 1+n
δ δ′ ′

 

� 2 2 2G  < 1: the map G  has always a fixed point k′ ′
 if we define 2 ( )G k

 for all k ≥ 0; 

� 1G  
has the fixed point 1k  

if and only if 1G  < 1, ′
that is rn +  - s a  > 0;δ

 

� 
1 w 2 w

1 1
G (0) = s  c < G (0) = (b+c) s

1+n 1+n  if we define 2 ( )G k  for all k ≥ 0 . 

Let 1k  be the fixed point for 1G . Then 1k  is a fixed point also for G if and only if 1k  < k∗
.  

Analogously, found the fixed point 2 2k  for G , we have that 2k  is a fixed point also for G if and only 

if 2k  < k .∗
 

Proposition 4.2.1 Let 1G  < 1′ be. We obtain that: 

(i) the fixed point 1 1k  for G  is equal to w

r

cs
;

n+ -asδ
 

(ii) 1k  is a fixed point also for G if and only if r w

b
bs  + cs  < (n+ ) ;

a
δ  

(iii) 1G (k ) < k  ∗ ∗
if and only if 

r w

b
bs + cs < (n+ ) .

a
δ  

Proposition 4.2.2 We get 
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(i) the fixed point of w
2 2

(b+c)s
G  is k = ;

n+δ
 

(ii) 2 k is the fixed point also for G if and only if 
w

(n+ )b
s  > ;

(b+c)a

δ
 

(iii) 
2G (k ) > k  ∗

∗ if and only if 
w

(n+ )b
s > .

(b+c)a

δ
 

 
 

Figure 4 Types of time-one map with Leontief technology 

 

 
Figure 5 Stability regions for the Leontief technology 

 

5. Complex Dynamics in a Pasinetti-Solow Model of Growth and Distribution: a Model of 

P.Commendatore 

5. 1 Introduction 
Similarly to the paper of Böhm and Kaas (2000), the model of Commendatore (2005) 
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� is a two-class model, that is two distinct group of economic agents (workers and capitalists)          

exist, with constant propensities to save [Kaldor, (1956)]; 

� labor and capital markets are perfectly competitive; 

� the income sources of workers are wages and profits and the income of capitalists is only 

profits [Pasinetti, (1962)]; 

� the time is discrete; 

� there is a single good in the economy (one sector model). 

Commendatore's model differs from the model of Böhm and Kaas in some assumptions: 

� following Chiang (1973), workers not save in same proportions out of labor and income of 

capital; 

� the production function is not with fixed proportions (Leontief technology) but it is a CES 

production function; 

� likewise Samuelson-Modigliani (1966) that, following Pasinetti (1962), extend the Solow 

growth model (1956) to two-dimensions, the map that describes the accumulation of capital in discrete 

time is two-dimensional because it considers not only the different saving behaviour of two-classes but 

also their respective wealth (capital) accumulation. 
 

5.2 The model: the economy, short-run equilibrium, steady growth equilibrium 

Let ( )
1

f k =  +(1- )k
ρρα α    be the CES production function in intensive form, where k is the 

capital/labor ratio, 0 <  < 1α  is the distribution coefficient, ( )-  <  < 1 (   0),  = 1 1-ρ ρ η ρ∞ ≠  is 

the constant elasticity of substitution. We consider f(k) > 0. 
1

Therefore f(k) =   +(1- )k
ρρα α    = 

1
-  k +(1- ) k.

ρρα α    The terms 
w ck  and k  denote, respectively, workers' and capitalists' capital 

per worker, where 
w c w c0  k   k, 0  k   k, k = k + k . ≤ ≤ ≤ ≤ The workers' saving out of wages are 

represented by 
wws (f(k) - kf  (k)) ′ and the workers' saving out of capital revenues consist in 

wP ws f (k)k , ′ where 
ww wP0  s   1, 0  s   1. ≤ ≤ ≤ ≤ Instead the capitalists' savings are 

c cs f (k)k , ′ where c0  s  1. ≤ ≤ We assume { }c ww wPs  > max s ,s . Thus the aggregate savings 

correspond to 
c w ww wP w c cs(k ,k ) = s (f(k) - f (k)k) + s f (k)k + s f (k ).′ ′ ′  

Let n be the constant rate of growth of labor force, the following map 

[ ]w c

1
G(k ,k )=  (1- )k+i

1+n
δ describes the rule of capital accumulation per worker, where i indicates 

gross investment per worker and 0 <  < 1 δ is the constant rate of capital depreciation. In a short-run  

equilibrium G becomes 

( ) ( )w c ww wP w c c

1
G k ,k (1- )k + s (f k  - f (k)k) + s f (k)k + s f (k ) ,

1+n
δ ′ ′ ′ =       (5.2.1) 

from which we deduce the capitalist' process of capital accumulation 

[ ]w w c w ww wP w

1
G (k ,k ) =  (1- )k + s (f(k)-f (k)k + s f (k)k

1+n
δ ′ ′                        (5.2.2) 

and the capitalist's rule of capital accumulation 

[ ]c w c c c c

1
G (k ,k )= (1- )k + s f (k)k

1+n
δ ′                                                               (5.2.3) 

In order to obtain the steady states of w cG  and G , we imposing  

w w c w c w c cG (k ,k ) = k  and G (k ,k ) = k .  

We get w ww wP w(n+ )k  = s (f(k) - f (k)k) + s f (k)k ,  δ ′ ′  c c c(n+ )k  = s f (k ) δ ′  .                                           

Commendatore (2005) find three types of equilibria: Pasinetti -equilibrium (capitalists own 

positive share of capital), dual equilibrium (only workers own capital) and trivial equilibrium (the 
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overall capital is zero) and, developing ingeniously a geometrical method used by Meade [Meade, 

(1966)], describes geometrically  the coexistence of them (See Figure 6). To detect above equilibria he 

relates 
( )f k

k
to ( )

( )
( )f k

f k k
e

f k

′
=  and he finds that 

( )
( )f

f k
e

k
ϕ=  for Pasinetti-equilibrium and 

( )
( )f

f k
e

k
θ= ,  where ( )

1
1

x
x

ρ
α

ϕ
− 

≡  
 

(0 < α < 1) and ( )
( )1ww wP

n
x

s x s x

δ
θ

+
≡

− +
.   

For example, if ρ < -1, the curve  ( )f
eϕ is monotonically strictly increasing and strictly 

concave while the curve ( )f
eθ  is (a) a horizontal line if ww wPs s= , (b) monotonically strictly 

decreasing and strictly concave if ww wPs s<  and (c) monotonically strictly increasing  and strictly 

convex if ww wPs s> . Look at the Figure 6: the intersection between  ( )f
eϕ and ( )f

eθ represents a 

Dual-equilibrium,  the point ( )( )1, 1ϕ gives a trivial equilibrium and the intersection between the 

vertical line 

1
1

1( ) (1 )
P

f

c

n
e k

s

ρ

ρ
ρ δ

α
−

−  +
= −  

 
and ( )f

eϕ identifies the Pasinetti -equilibrium. To 

derive the remaining cases we observe that the other diagrams of  ( )xϕ  are showed in Figure 7. 

 

 

 
 

( )f k

k
 

( )f k

k
 

( )f k

k
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θ 
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Pasinetti 

Dual 
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Trivial 
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Pasinetti 
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(a) sww = swP  (b) sww < swP  

 

(c) sww > swP  

 

Figure 6: Steady growth equilibria are identified for the 

cases (a) sww = swP, (b) sww < swP, (c) sww 

> s  
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Figure 7 The diagram of ( )xϕ  for (0 <  ρ < 1) and  (ρ = -1). 

 

The author analyses the local stability and the global stability of the nonlinear dynamical 

system given by (5.2.2) and (5.2.3). To study the local stability, he starts from Pasinetti equilibria and 

he finds the trace T and the determinant D of  the Jacobian matrix J evaluated at a Pasinetti-

equilibrium fixed. Then he applies the conditions of stability of dynamical system [Azariadis, C., 

(1993)] and identifies the stability region (Triangle Stability) in TD-plane. Moreover, with the Theory 

of Local Bifurcations,  he studies which bifurcation appears when a given Pasinetti-equilibrium loses a 

stability.  Using the characteristic equation he derives the eigenvalues of J and analyses the global 

stability. 
 

6. Conclusions 
 

We observe that Commendatore's model generalizes Böhm and Kaas (2000) model and Solow 

(1956) model. As a matter of fact 

� setting ww wP w cs = s  and k = k  = k  in (5.2.1) 

[ ]w c ww wP w c c

1
G(k ,k )=   (1- )k + s (f(k) - f (k)k) + s f (k)k + s f  (k )  ,

1+n
δ ′ ′ ′  

we have the (4.1), i.e. from Commendatore's model we deduce Böhm and Kaas (2000) model; 

� setting w rs  = s   in (4.1) 

t + 1 t t w t r t t

1
  k  =  G(k ) = ((1- ) k + s w(k ) + s  k  f (k )),

1+n
δ ′  

we obtain the (2.2), i.e. from Böhm and Kaas (2000) model we deduce the Solow (1956) model. 
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