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Abstract

The Two–Stage Least Squares (2–SLS) is a well known econometric technique used to estimate the 
parameters of a multi–equation econometric model when errors across the equations are not correlated 
and the equation(s) concerned is (are) over–identified or exactly identified. However, in presence of 
outliers in the data matrix, the classical 2–SLS has a very poor performance.  In this study a method has 
been proposed to generalize the 2–SLS to the Weighted Two–Stage Least Squares (W2–SLS), which is 
robust to the effects of outliers and perturbations. Monte Carlo experiments have been conducted to 
demonstrate the performance of the proposed method. It has been found that robustness of the proposed 
method is not much destabilized by the magnitude of outliers.  The breakdown point of the method is quite 
high, somewhere between 45 to 50 percent of the number of points in the data matrix. 
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1. Introduction: 
The Two–Stage Least Squares (2–SLS) is a well known econometric technique used to 

estimate the parameters of a multi–equation (or simultaneous equations) econometric model when 
errors across the equations are not correlated and the equation(s) concerned is (are) over–
identified or exactly identified. It is one of the members of the family of k–class estimators. 
Unlike the Three–Stage Least Squares, it does not estimate the parameters of all the equations of 
the model in one go. The 2–SLS estimates the parameters of an econometric model equation by 
equation, that is, one equation at a time.

Let a multi–equation econometric model be described by the system of its structural 
equations 0,YA XB U   where Y  is an n m data matrix of m  endogenous variables in n

observations, X  is an n k  data matrix of k exogenous or pre–determined variables  in n
observations, A  is an m m  full rank matrix of unknown parameters or coefficients associated 
with ,Y B  is a k m  matrix of unknown parameters or coefficients associated with X  and U is 
an n m  matrix of (unobserved) errors. The elements of A  and B  are called the structural 
parameters.  Since U is often correlated with Y  which is itself stochastic, the parameters in the 
columns of A  and B  cannot be estimated by means of the Ordinary Least Squares (OLS) in view 
of the violation of the Gauss–Markov assumptions for the applicability of the OLS. Instead of 
using the OLS directly, the system of equations 0YA XB U   is first transformed into the 
reduced form equations. The reduced form equations describe Y  in terms of X  only. Indeed if 
we post–multiply the system of equations 0YA XB U   by 1,A  we have 

1 1 1 0YAA XBA UA      or ,Y XP E   where 1P BA   and 1.E UA   Now since X  is fixed 
(non–stochastic) and it cannot be correlated with ,E the system of reduced form equations 
Y XP E   is amenable to estimation by the OLS. Therefore, P  (which is the matrix of the 
reduced form coefficients) is estimated by the OLS as 1ˆ [ ]P X X X Y   and used to obtain ˆ ˆ.Y XP

Then in each equation where any endogenous variable jY Y  appears as an explanatory variable, 

jY  is replaced by ˆ
jY . Due to this replacement, the explanatory variables are no longer stochastic 
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or correlated with the error term in the equation concerned, and so the equation is amenable to 
estimation by the OLS. Application of the OLS (once again) on this transformed equation readily 
gives the estimates of the parameters in that equation. 

2. Implications of the Presence of Outliers in the Data Matrices: 
Now suppose there are some outliers in ,X Y or both the data matrices. This would affect 

1ˆ [ ]P X X X Y   and consequently ˆ ˆ.Y XP  At the second stage since ˆ ˆ
jY Y  appear as explanatory 

variables, all the estimated parameters would be affected. As a matter of fact, the effects of 
outliers will pervade through all the equations and the estimated structural parameters in them. 
These effects are so intricately pervasive that it is very difficult to assess the influence of outliers 
on the estimated structural parameters.

A number of methods have been proposed to obtain robust estimators of regression 
parameters but most of them are limited to single equation models. Their adaptation to estimation 
of the structural parameters of multi–equation models is not only operationally inconvenient, it is 
also theoretically unconvincing.  Moreover, generalization of those methods to multi–equation 
cases has scarcely been either successful or popular.

3. The Objectives of the Present Study: 
In this study a method has been proposed to conveniently generalize the 2–SLS to the 

weighted 2–SLS (W2–SLS) so that 1ˆ [( ) ( )] ( ) ( ),P wX wX wX wY   where w is the weight matrix 

applied to Y and .X  Accordingly, we have ˆ ˆ.Y XP  At the 2nd stage, for the thi  equation we have 
1[( ) ( )] ( ) ( ),i i i i i i i i ig Z Z Z y      where 
ˆ ˆ ˆ ˆˆ[ | ] ; [ | ]; ; ; ;i i i i i i i i i ig a b Z Y X y Y Y Y y Y     iX X ; iy  is the observed endogenous 

variable appearing in the thi  structural equation as the dependent variable, ˆ
iY  is the set of 

estimated endogenous variables appearing in the thi  equation as the explanatory variables and iX

is the set of exogenous (or predetermined) variables appearing in the thi  equation as the 
explanatory variables. It may be noted that at the second stage of the proposed W2–SLS we use 
different weights  ( )   for different equations.  These weights ( w and i ) are obtained in a 
particular manner as described latter in this paper. We also conduct some Monte Carlo 
experiments to demonstrate that our proposed method performs very well in estimating the 
structural parameters of multi–equation econometric models while the data matrices are 
containing numerous large outliers.

4. Determination of Weights in the Weighted Two–Stage Least Squares
Using the Mahalanobis distance as a measure of deviation from center, Campbell (1980) 

obtained a robust covariance matrix that is almost free from the influence of outliers. Campbell’s 
method is an iterative method. Given an observed data matrix,  , in n  observations (rows) and  
v  variables (columns) it obtains a v –elements vector of weighted (arithmetic) mean, ,z  and 

weighted variance–covariance matrix, ( , ),S v v in the following manner. Initially, all weights, 

; 1, n    are considered to be equal, ,/1 n and the sum of weights, 
1

1.
n 


 
 Defining 

0 1 / 2;d v   1 22, 1.25,   we obtain



Journal of Applied Economic Sciences 
Issue 4 (6)/Volume III /Winter 2008

  2 2

1 1 1 1
/ ; ( ) ( ) / 1 ;

n n n n
z z S z z z z   

   
                  

 1/ 21( ) ( ) ; 1, ;d z z S z z n       

( ) / ; 1, :d d n     
2 2

0 0 0 2( ) ( ) exp[ 0.5( ) / ].d d if d d else d d d d          

If 0d   then  1.   We will call it the original Campbell procedure to obtain a robust 

covariance matrix. However, our experience with this procedure to obtain a robust covariance 
matrix is not very encouraging in this study as well as elsewhere (Mishra, 2008). We will use the 
acronym OCP for this original Campbell procedure.

Hampel et al. (1986) defined the median of absolute deviations (from median) as a measure 
of scale, ( ) | ( ) | / 0.6745H a a as z median z median z  

 
 which is a very robust measure of 

deviation. Using this measure of deviation also, we may assign weights to different data points. If 

we choose to heuristically assign the weight 1  for ( ) ( ),H Hd s d d d s d     

2(1/ 2)  for 2 ( ) ( )H Hd s d d d s d       as well as 2 ( ) ( )H Hd s d d d s d       and 

so on, and use Campbell’s iterative method incorporating these weights, we may obtain a robust 
covariance matrix and weights. Our experience with this procedure has been highly rewarding in 
this study as well as elsewhere [Mishra, (2008)]. We will call it the Modified Campbell Procedure 
(MCP) to obtain a robust covariance matrix and weights to different data points. 

The weights ( )  obtained through the MCP (or OCP, as the case may be) are used as w  in 
1ˆ [( ) ( )] ( ) ( )P wX wX wX wY  at  the first stage of the W2–SLS to obtain the robust estimates of the 

matrix of reduced form coefficients. In this procedure of obtaining ˆ,P X  contains the unitary 

vector to take care of the intercept term, although weights ( )w  are obtained with *Z that 

contains Y  and all the variables in ,X  sans the unitary vector relating to the intercept term. 
Similarly, at the second stage, the MCP/OCP weights ( )i i   are obtained from 

* *ˆ[ | | ],i i iZ y Y X  where *
iX  contains all exogenous (predetermined) variables appearing in the thi

structural equations, sans the unitary vector related to the intercept term. However, in obtaining 
[ | ]i i ig a b  , the matrix ˆ[ | ]i i iZ Y X  is used wherein iX  contains all exogenous (predetermined) 

variables, including the one related to the intercept term in the thi  equation. 

5. Some Monte Caro Experiments  
In order to assess the performance of our proposed method and compare it with the 2–SLS 

when data matrices ( Y  and X ) contain outliers, we have conducted some Monte Carlo 
experiments. Using the random number generator seed = 1111, we have generated X  containing 
five exogenous variables   in 100 observations and appended to it the 6th  column of unitary vector 
to take care of the intercept term. Thus, in all, we have X  in 100 rows and 6 columns. All values 
of X  lie between 0 and 20 such that 0 20.ijx   Then the data matrix for endogenous variables, 

,Y  has been generated with the parameter matrices, A  and B  and adding a very small normally 
distributed random error, (0,0.001)U N�  directly, without going into the subtleties of obtaining 

.U EA   The magnitude of error has been kept at a very low  level since our objective is not to 
mingle the effects of errors with those of outliers on the estimated parameters. If the magnitude of 
errors is large, it would affect the estimated values of parameters and it would be difficult to 
disentangle the effects of outliers from those of the errors. The computer program GENDAT (in 
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FORTRAN 77) to generate data is appended. As already mentioned, the program was run with 
the random number generator seed = 1111. The following are the matrices of structural 
parameters used in our experiments.

   -1     7     0    -6     0  0     5     0    -7     0    60

    3    -1     5     0     0  

    0     0    -1     3     0 ;

    6     0     0    -1    -3

 -11     0     9     0    -1

A B

 
 
 
   
 
 
  

3     0    -5     0     0    20

 0     2     0     0     0     9

 0     4     0     0    -3    -8

 0     0     0     6     0   -11

 
 
 
 
 
 
  

The data (Y and X ) thus generated are used as the base data to which different number and 
different sizes of perturbation quantities are added in different experiments.  For every 
experiment we have limited the number of replicates (NR) to 100, although this number could 
have been larger or smaller. For each experiment the mean, standard deviation and RMS (Root–

Mean–Square) of expected parameters ( Â  and B̂ ) have been computed over the 100 replicates. 
The following formulas are used for computing these statistics.

1 1
ˆ ˆˆ ˆ( ) (1/ ) ; , 1, ; ( ) (1/ ) ; 1, ; 1,

NR NR

ij ij ij ijMean a NR a i j m Mean b NR b i k j m
 

       

0.5 0.5
2 2 2 2

1 1

1 1ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ; , 1, ; ( ) ( ) ( ) ; 1, ; 1,
NR NR

ij ij ij ij ij ijSD a a Mean a i j m SD b b Mean b i k j m
NR NR 

   
         
   
  

 

0.5 0.5
2 2

1 1

1 1ˆ ˆˆ ˆ( ) ( ) ; , 1, ; ( ) ( ) ; 1, ; 1,
NR NR

ij ij ij ij ij ijRMS a a a i j m RMS b b b i k j m
NR NR 

   
         
   
  

 

A distance between RMS and SD entails bias of the estimation formula and a larger SD 

entails inefficiency of the estimation formula. Reduction in SD as a response to increase in the 

number of replicates entails consistency of the estimator formula. In the present exercise we have 

not looked into the consistency aspect by fixing the number of replicates (NR) to 100, although it 

could have been done without much effort by increasing NR from (say) 20 to 200 (or more) by an 

increment of 20 or so.

Experiment–1: In this experiment we have set the number of perturbations at 10 (i.e. 
NOUT=10) and the size of perturbation (OL) in the range of 10 25  or between –15 to 35. In this 
range the size of perturbation quantities is randomly chosen and those quantities are added to the 
data at equiprobable random locations.  Accordingly, in the program ROB2SLS the parameters 
are set at OMIN=10, OMAX=50 such that OL=OMIN+(OMAX–OMIN)*(RAND–0.5). The 
random number RAND lays between zero and unity (exclusive of limits). To generate the random 
numbers seed = 2211 has been used (in this as well as subsequent experiments). With this design, 
we have estimated the structural parameters by 2–SLS, OCP and MCP. The results are presented 
in tables 1.1 through 3.3. A perusal of these table immediately reveals that the 2–SLS and the 
W2–SLS(OCP) perform very poorly. Of the two, the 2–SLS appears to perform somewhat better. 
However, the performance of the W2–SLS(MCP) is excellent. 

Table–1.1. Mean of Estimates of Structural Parameters: Method –2–SLS

Mean of Estimated A Matrix Mean of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1

–1
1.493

5 0
0.348

3 0 0
2.078

9 0
–

1.146 0
17.937

1
Eq–2 2.894 –1 4.978 0 0 2.925 0 – 0 0 22.126
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5 5 6 4.946
2

2

Eq–3
0 0 –1

2.895
1 0 0

1.920
2 0 0 0 9.5226

Eq–4

1.99 0 0 –1

–
0.883

3 0
0.757

6 0 0

–
0.906

3
–

5.6702
Eq–5 –

9.983
5 0

8.143
2 0 –1 0 0 0

5.525
1 0

–
10.194

Table–1.2. Standard Deviation of Estimates of Structural Parameters: Method –2–SLS

Standard Dev of Estimated A Matrix Standard Dev of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 2.1017 0 2.591 0 0 1.1407 0 2.2643 0 14.9058
Eq–2 0.4527 0 1.6893 0 0 0.7541 0 1.3289 0 0 13.289
Eq–3 0 0 0 0.3976 0 0 0.3328 0 0 0 2.0584
Eq–4 6.1134 0 0 0 3.2882 0 4.9767 0 0 3.227 3.1004
Eq–5 3.8894 0 2.7011 0 0 0 0 0 2.076 0 9.5898

Table–1.3. Root Mean Square of Estimates of Structural Parameters: Method –2–SLS

RMS of Estimated A Matrix RMS of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 5.894 0 6.8566 0 0 3.1359 0 6.2767 0 44.6259
Eq–2 0.4648 0 1.6894 0 0 0.7577 0 1.33 0 0 13.458
Eq–3 0 0 0 0.4112 0 0 0.3422 0 0 0 2.1237
Eq–4 7.3112 0 0 0 3.9105 0 5.9397 0 0 3.8467 3.8782
Eq–5 4.02 0 2.8337 0 0 0 0 0 2.1296 0 9.6236

Table–2.1. Mean of Estimates of Structural Parameters: Method –W2–SLS (OCP)

Mean of Estimated A Matrix Mean of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1

–1 4.5418 0
–

3.2473 0 0 3.6247 0
–

4.271 0 36.9997
Eq–2

2.0327 –1 5.0332 0 0 3.1394 0
–

4.0161 0 0 12.6559
Eq–3 0 0 –1 2.654 0 0 1.6841 0 0 0 9.0044
Eq–4

2.402 0 0 –1
–

1.1363 0 2.1191 0 0
–

2.2551 –1.4636
Eq–5 –

8.5972 0 7.1151 0 –1 0 0 0 4.68 0 –7.7846

Table–2.1. Mean of Estimates of Structural Parameters: Method –W2–SLS (OCP)

Standard Dev of Estimated A Matrix Standard Dev of Estimated B MatrixVariables
/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x

Eq–1
0

3.348
6 0

3.718
4 0 0

2.059
8 0

3.771
9 0

48.442
3

Eq–2
4.0175 0 9.9488 0 0

6.52
1 0

3.759
6 0 0

64.218
3

Eq–3
0 0 0

1.131
4 0 0

1.286
4 0 0 0 12.064

Eq–4 10.049
4 0 0 0

4.253
7 0 7.802 0 0

6.672
5

53.640
2
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Eq–5 13.153
5 0

10.989
9 0 0 0 0 0

8.595
6 0

24.226
6

Table–2.3. Root Mean Square of Estimates of Structural Parameters: Method –W2–SLS (OCP)

RMS of Estimated A Matrix RMS of Estimated B MatrixVariables
/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x

Eq–1
0

4.15
4 0

4.626
5 0 0

2.476
7 0

4.655
6 0

53.625
3

Eq–2
4.1323 0 9.9489 0 0

6.522
5 0

3.886
2 0 0

64.636
9

Eq–3
0 0 0

1.183
1 0 0

1.324
6 0 0 0 12.064

Eq–4
10.674 0 0 0

4.644
1 0

8.025
5 0 0

6.713
9 54.037

Eq–5 13.371
1 0

11.150
4 0 0 0 0 0

8.696
4 0 24.439

Table–3.1. Mean of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Mean of Estimated A Matrix Mean of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 –1 7.0498 0 –6.058 0 0 5.0261 0 –7.0532 0 60.3819
Eq–2 3.0002 –1 5.0011 0 0 3.0004 0 –5.0011 0 0 20.01
Eq–3 0 0 –1 2.9999 0 0 1.9999 0 0 0 8.9995
Eq–4

5.9973 0 0 –1
–

2.9984 0 3.9975 0 0 –2.9986 –7.9969
Eq–5 –

11.0005 0 9.0001 0 –1 0 0 0 5.9999 0 –10.9989

Table–3.2. Standard Deviation of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Standard Dev of Estimated A Matrix Standard Dev of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 0.0067 0 0.0078 0 0 0.0035 0 0.0071 0 0.051
Eq–2 0.0001 0 0.0004 0 0 0.0002 0 0.0004 0 0 0.0035
Eq–3 0 0 0 0.0001 0 0 0.0001 0 0 0 0.0005
Eq–4 0.002 0 0 0 0.001 0 0.0016 0 0 0.0011 0.0014
Eq–5 0.0013 0 0.0009 0 0 0 0 0 0.0006 0 0.002

Table–3.3. Root Mean Square of Estimates of Structural Parameters: Method –W2–SLS (MCP)

RMS of Estimated A Matrix RMS of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 0.0503 0 0.0585 0 0 0.0263 0 0.0536 0 0.3852
Eq–2 0.0002 0 0.0012 0 0 0.0004 0 0.0012 0 0 0.0106
Eq–3 0 0 0 0.0002 0 0 0.0001 0 0 0 0.0007
Eq–4 0.0033 0 0 0 0.0019 0 0.003 0 0 0.0017 0.0034
Eq–5 0.0014 0 0.0009 0 0 0 0 0 0.0006 0 0.0022

Experiment–2: In this experiment we have set the number of perturbations at 10 (i.e. 
NOUT=10) and the size of perturbation (OL) in the range of 10 50  or between –40 to 60. The 
parameters in the program are set at OMIN=10, OMAX=100 and hence OL=OMIN+(OMAX–
OMIN)*(RAND–0.5). The dismal performance of 2–SLS and W2–SLS(OCP) observed in 
experiment–1 has been further aggravated and therefore we do not consider it necessary to report 
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the mean, SD and RMS of estimated structural parameters for those estimators. However, once 
again the W2–SLS(MCP) has performed exceedingly well and the results have been presented in 
Tables 4.1 through 4.3.

A comparison of Tables 3.1 through 3.3 with the Tables 4.1 through 4.3 reveals that 
increase in the magnitude of perturbation has hardly affected the results.

Table–4.1. Mean of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Mean of Estimated A Matrix Mean of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 –1 7.0498 0 –6.0579 0 0 5.0261 0 –7.0531 0 60.3817
Eq–2 3.0002 –1 5.0011 0 0 3.0004 0 –5.0011 0 0 20.0097
Eq–3 0 0 –1 2.9999 0 0 2 0 0 0 8.9996
Eq–4 5.9973 0 0 –1 –2.9984 0 3.9974 0 0 –2.9986 –7.9969
Eq–5 –

11.0005 0 9.0001 0 –1 0 0 0 5.9999 0 –10.9989

Table–4.2. Standard Deviation of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Standard Deviation of Estimated A Matrix Standard Deviation of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 0.0065 0 0.0076 0 0 0.0034 0 0.0069 0 0.0492
Eq–2 0.0001 0 0.0005 0 0 0.0002 0 0.0004 0 0 0.0038
Eq–3 0 0 0 0.0001 0 0 0.0001 0 0 0 0.0005
Eq–4 0.0018 0 0 0 0.001 0 0.0015 0 0 0.001 0.0015
Eq–5 0.0014 0 0.0009 0 0 0 0 0 0.0006 0 0.002

Table–4.3. Root Mean Square of Estimates of Structural Parameters: Method –W2–SLS (MCP)

RMS of Estimated A Matrix RMS of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 0.0502 0 0.0584 0 0 0.0263 0 0.0536 0 0.3848
Eq–2 0.0002 0 0.0012 0 0 0.0004 0 0.0012 0 0 0.0104
Eq–3 0 0 0 0.0002 0 0 0.0001 0 0 0 0.0007
Eq–4 0.0033 0 0 0 0.0019 0 0.003 0 0 0.0017 0.0034
Eq–5 0.0014 0 0.0009 0 0 0 0 0 0.0006 0 0.0023

Experiment–3:  In this experiment we have once again set the number of perturbations at 
10 (i.e. NOUT=10) and the size of perturbation (OL) in the range of 10 150  or between –140 to 
160. The parameters in the program are set at OMIN=10, OMAX=300 and hence 
OL=OMIN+(OMAX–OMIN)*(RAND–0.5). The results are presented in Tables 5.1 through 5.3. 
The findings are that increase in the magnitude of perturbation has not affected the W2–
SLS(MCP) estimates in any significant manner.

Table–5.1. Mean of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Mean of Estimated A Matrix Mean of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1

–1 7.0501 0
–

6.0583 0 0 5.0262 0
–

7.0534 0 60.3836
Eq–2

3.0002 –1 5.0011 0 0 3.0004 0
–

5.0011 0 0 20.0095
Eq–3 0 0 –1 2.9999 0 0 1.9999 0 0 0 8.9996
Eq–4

5.9973 0 0 –1
–

2.9984 0 3.9975 0 0
–

2.9986 –7.997
Eq–5 – 0 9 0 –1 0 0 0 5.9998 0 –10.9989
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11.0004

Table–5.2. Standard Deviation of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Standard Dev of Estimated A Matrix Standard Dev of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 0.0071 0 0.0083 0 0 0.0036 0 0.0075 0 0.0539
Eq–2 0.0001 0 0.0004 0 0 0.0002 0 0.0004 0 0 0.0036
Eq–3 0 0 0 0.0001 0 0 0.0001 0 0 0 0.0005
Eq–4 0.0019 0 0 0 0.001 0 0.0015 0 0 0.001 0.0014
Eq–5 0.0012 0 0.0009 0 0 0 0 0 0.0006 0 0.002

Table–5.3. Root Mean Square of Estimates of Structural Parameters: Method –W2–SLS (MCP)

RMS of Estimated A Matrix RMS of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 0.0506 0 0.0589 0 0 0.0264 0 0.054 0 0.3874
Eq–2 0.0002 0 0.0012 0 0 0.0004 0 0.0012 0 0 0.0101
Eq–3 0 0 0 0.0002 0 0 0.0001 0 0 0 0.0006
Eq–4 0.0032 0 0 0 0.0019 0 0.0029 0 0 0.0017 0.0033
Eq–5 0.0013 0 0.0009 0 0 0 0 0 0.0006 0 0.0023

Experiment–4: In this experiment we have set the number of perturbations at 30 (i.e. 
NOUT=30) and the size of perturbation (OL) in the range of 10 25  or between –15 to 35 as in the 
experiment–1. We want to look into the effects of increasing the number of perturbations in the 
data matrix. A perusal of the results (presented in Tables 6.1 through 6.3) reveals that the W2–
SLS estimator continues to be robust.

Table–6.1. Mean of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Mean of Estimated A Matrix Mean of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1

–1 7.0367 0
–

6.0423 0 0 5.0194 0
–

7.0391 0 60.2825
Eq–2

3.0002 –1 5.0009 0 0 3.0003 0
–

5.0009 0 0 20.0077
Eq–3 0 0 –1 2.9998 0 0 1.9999 0 0 0 8.9992
Eq–4

5.9981 0 0 –1
–

2.9988 0 3.9981 0 0
–

2.9989 –7.9988
Eq–5 –

11.0017 0 9.001 0 –1 0 0 0 6.0005 0 –11.0009

Table–6.2. Standard Deviation of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Standard Dev of Estimated A Matrix Standard Dev of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 0.012 0 0.014 0 0 0.0063 0 0.0129 0 0.0915
Eq–2 0.0001 0 0.0007 0 0 0.0003 0 0.0006 0 0 0.0055
Eq–3 0 0 0 0.0001 0 0 0.0001 0 0 0 0.0007
Eq–4 0.0026 0 0 0 0.0014 0 0.0021 0 0 0.0014 0.0025
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Eq–5 0.0014 0 0.001 0 0 0 0 0 0.0007 0 0.0025

Table–6.3. Root Mean Square of Estimates of Structural Parameters: Method –W2–SLS (MCP)

RMS of Estimated A Matrix RMS of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 0.0386 0 0.0446 0 0 0.0204 0 0.0412 0 0.2969
Eq–2 0.0002 0 0.0011 0 0 0.0004 0 0.0011 0 0 0.0095
Eq–3 0 0 0 0.0002 0 0 0.0001 0 0 0 0.001
Eq–4 0.0032 0 0 0 0.0018 0 0.0028 0 0 0.0017 0.0027
Eq–5 0.0022 0 0.0014 0 0 0 0 0 0.0008 0 0.0026

Experiment–5: In this experiment we set NOUT=30 as in experiment–4, but increase the 
size of perturbations (OL) in the range of 10 150  or between –140 to 160 (as in experiment–3). 
The results are presented in the Tables 7.1 through 7.3. It is observed that the increase in the size 
of perturbation has not affected the robustness of W2–SLS(MCP) in any significant manner.

Table–7.1. Mean of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Mean of Estimated A Matrix Mean of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 –1 7.0359 0 –6.0416 0 0 5.0189 0 –7.0383 0 60.277
Eq–2 3.0002 –1 5.0009 0 0 3.0003 0 –5.0009 0 0 20.0075
Eq–3 0 0 –1 2.9999 0 0 1.9999 0 0 0 8.9992
Eq–4 5.9982 0 0 –1 –2.9989 0 3.9982 0 0 –2.999 –7.9989
Eq–5 –11.0016 0 9.0009 0 –1 0 0 0 6.0005 0 –11.0009

Table–7.2. Standard Deviation of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Standard Dev of Estimated A Matrix Standard Dev of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 0.0124 0 0.0145 0 0 0.0066 0 0.0133 0 0.0948
Eq–2 0.0001 0 0.0007 0 0 0.0003 0 0.0006 0 0 0.0055
Eq–3 0 0 0 0.0002 0 0 0.0001 0 0 0 0.0008
Eq–4 0.0025 0 0 0 0.0013 0 0.002 0 0 0.0013 0.0024
Eq–5 0.0016 0 0.0011 0 0 0 0 0 0.0007 0 0.0026

Table–7.3. Root Mean Square of Estimates of Structural Parameters: Method –W2–SLS (MCP)

RMS of Estimated A Matrix RMS of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 0.038 0 0.044 0 0 0.02 0 0.0406 0 0.2928
Eq–2 0.0002 0 0.0011 0 0 0.0004 0 0.001 0 0 0.0094
Eq–3 0 0 0 0.0002 0 0 0.0001 0 0 0 0.0011
Eq–4 0.0031 0 0 0 0.0017 0 0.0027 0 0 0.0017 0.0026
Eq–5 0.0022 0 0.0015 0 0 0 0 0 0.0009 0 0.0028

Experiment–6: Now we increase the number of perturbations (NOUT=60) but keep the 
size as in experiment–1 (between –15 to 35). The results are presented in the Tables 8.1 through 
8.3. We observe an increase in the RMS of estimated parameters. Yet, the SD and the RMS 
values are quite close to each other and the mean coefficients are not far from the true values. 
These findings indicate that even now the robustness of W2–SLS has not been much affected.

Table–8.1. Mean of Estimates of Structural Parameters: Method –W2–SLS (MCP)
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Mean of Estimated A Matrix Mean of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1

–1 6.8745 0
–

5.8587 0 0 4.9293 0
–

6.8653 0 59.0309
Eq–2

2.993 –1 5.0427 0 0 3.017 0
–

5.0316 0 0 20.3147
Eq–3 0 0 –1 2.9998 0 0 1.9999 0 0 0 8.9992
Eq–4

5.9328 0 0 –1
–

2.9627 0 3.9389 0 0
–

2.9597 –7.9645
Eq–5 –

11.0289 0 9.0121 0 –1 0 0 0 6.0301 0 –11.2607

Table–8.2. Standard Deviation of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Standard Dev of Estimated A Matrix Standard Dev of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 0.8672 0 0.9883 0 0 0.477 0 0.9275 0 6.6729
Eq–2 0.1023 0 0.2672 0 0 0.0961 0 0.1807 0 0 2.0419
Eq–3 0 0 0 0.0002 0 0 0.0001 0 0 0 0.0009
Eq–4 0.9662 0 0 0 0.5063 0 0.7721 0 0 0.4964 0.5506
Eq–5 1.1557 0 0.7296 0 0 0 0 0 0.5238 0 2.1615

Table–8.3. Root Mean Square of Estimates of Structural Parameters: Method –W2–SLS (MCP)

RMS of Estimated A Matrix RMS of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 0.8762 0 0.9984 0 0 0.4822 0 0.9372 0 6.7429
Eq–2 0.1025 0 0.2706 0 0 0.0976 0 0.1834 0 0 2.066
Eq–3 0 0 0 0.0002 0 0 0.0002 0 0 0 0.0012
Eq–4 0.9685 0 0 0 0.5077 0 0.7746 0 0 0.498 0.5517
Eq–5 1.1561 0 0.7297 0 0 0 0 0 0.5247 0 2.1772

Experiment–7: Now we keep NOUT=60 but increase the size of perturbations to –140 to 
160 (as in experiment–3). The results are presented in the Tables 9.1 through 9.3. We observe that 
the mean estimated structural parameters are as yet quite close to the true values, SDs are quite 
close to the RMS values, much smaller than the magnitude of the mean estimates in most cases. 
Hence, we may hold that the W2–SLS continues to be robust to outliers/perturbations.

Table–9.1. Mean of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Mean of Estimated A Matrix Mean of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1

–1 6.4972 0
–

5.4211 0 0 4.7328 0
–

6.4631 0 56.1148
Eq–2

2.9728 –1 4.7654 0 0 2.9132 0
–

4.8139 0 0 18.0302
Eq–3 0 0 –1 2.9348 0 0 1.9504 0 0 0 8.7548
Eq–4

5.6354 0 0 –1
–

2.8069 0 3.7122 0 0
–

2.8101 –7.8982
Eq–5 –

9.9977 0 8.1903 0 –1 0 0 0 5.4531 0
–

9.2529

Table–9.2. Standard Deviation of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Standard Dev of Estimated A Matrix Standard Dev of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
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Eq–1 0 1.8062 0 2.0791 0 0 0.961 0 1.9283 0 13.9632
Eq–2 0.5312 0 2.0574 0 0 0.8135 0 1.489 0 0 15.7156
Eq–3 0 0 0 0.4834 0 0 0.3779 0 0 0 1.8151
Eq–4 1.4475 0 0 0 0.7716 0 1.1431 0 0 0.759 1.6985
Eq–5 3.5302 0 2.6157 0 0 0 0 0 1.7315 0 5.5525

Table–9.3. Root Mean Square of Estimates of Structural Parameters: Method –W2–SLS (MCP)

RMS of Estimated A Matrix RMS of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1

0
1.874

9 0
2.158

2 0 0
0.997

4 0
2.001

6 0
14.493

6
Eq–2 0.531

9 0
2.070

8 0 0
0.818

1 0
1.500

6 0 0
15.838

5
Eq–3

0 0 0
0.487

8 0 0
0.381

1 0 0 0 1.8316
Eq–4 1.492

7 0 0 0
0.795

4 0
1.178

7 0 0
0.782

3 1.7016
Eq–5 3.669

7 0
2.738

1 0 0 0 0 0
1.815

8 0 5.8209

Experiment–8: Next, we increase the number of perturbations to set NOUT=75 and set the 
size of perturbations in the range of  –15 to 35. The results are presented in the Tables 10.1 
through 10.3. We observe that the unbiasedness of W2–SLS is not much disturbed since the SDs 
and the RMS values are close to each other. However, many of the mean estimated structural 
parameters are now quite far from the true values and many SDs are not much smaller than the 
mean estimated structural parameters. These observations suggest that the W2–SLS is no longer 
robust to perturbations and it has surpassed its breakdown point.  It may be noted that the data 
matrix has 100 points. When NOUT=60, on an average about 45 of the points are perturbed. 
Some points are perturbed more than once. For NOUT= 75 about 52 of the points are perturbed; 
some points are perturbed more than once. Hence we may conclude that W2–SLS has a 
breakdown point somewhere between 45 to 50 percent. When more than 45 percent of points are 
perturbed, the estimator may break down and hence may not be reliable.

Table–10.1. Mean of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Mean of Estimated A Matrix Mean of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1

–1 3.3231 0
–

1.7563 0 0 3.0309 0
–

3.0828 0 31.9744
Eq–2

2.9671 –1 4.985 0 0 3.007 0
–

4.9555 0 0 19.8781
Eq–3 0 0 –1 2.9232 0 0 1.9397 0 0 0 9.1577
Eq–4

4.7061 0 0 –1
–

2.319 0 2.9417 0 0
–

2.335 –7.0549
Eq–5 –

10.0395 0 8.2862 0 –1 0 0 0 5.5304 0 –9.8211

Table–10.2. Standard Deviation of Estimates of Structural Parameters: Method –W2–SLS (MCP)

Standard Dev of Estimated A Matrix Standard Dev of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 3.5138 0 4.0812 0 0 1.8679 0 3.7447 0 26.6848
Eq–2 0.3998 0 1.8369 0 0 0.7822 0 1.3523 0 0 12.602
Eq–3 0 0 0 0.3961 0 0 0.3163 0 0 0 1.3959
Eq–4 4.1717 0 0 0 2.2287 0 3.5142 0 0 2.1507 4.343
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Eq–5 2.7754 0 2.1354 0 0 0 0 0 1.387 0 5.734

Table–10.3. Root Mean Square of Estimates of Structural Parameters: Method –W2–SLS (MCP)

RMS of Estimated A Matrix RMS of Estimated B MatrixVariables/
Equations 1y 2y 3y 4y 5y 1x 2x 3x 4x 5x 6x
Eq–1 0 5.0859 0 5.8877 0 0 2.7141 0 5.4191 0 38.6977
Eq–2 0.4011 0 1.837 0 0 0.7822 0 1.353 0 0 12.6026
Eq–3 0 0 0 0.4035 0 0 0.322 0 0 0 1.4047
Eq–4 4.3678 0 0 0 2.3304 0 3.6701 0 0 2.2512 4.4446
Eq–5 2.9369 0 2.2516 0 0 0 0 0 1.4644 0 5.8539

6. Conclusion
In this paper we have proposed a robust 2–Stage Weighted Least Squares estimator for 

estimating the parameters of a multi–equation econometric model when data contain outliers. The 
estimator is based on the procedure developed by Norm Campbell which has been modified by 
using the measure of robust median deviation suggested by Hampel et al. The estimation method 
based on the original Campbell procedure performs poorly, while the method based on the 
modified Campbell procedure shows appreciable robustness. Robustness of the proposed method 
is not much destabilized by the magnitude of outliers, but it is sensitive to the number of 
outliers/perturbations in the data matrix. The breakdown point of the method, is somewhere 
between 45 to 50 percent of the number of points in the data matrix. 
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