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I. Introduction 

 

In The Common Law, Oliver Wendell Holmes noted that 

 
[l]egal, like natural divisions, however clear their general outline, will be 
found on exact scrutiny to end in a penumbra or debatable land.  This is 
the region of the jury, and only cases falling on this doubtful border are 
likely to be carried far in court.1 

 

In spite of this early recognition by a prominent legal theorist, the connection between 

legal uncertainty and litigation was not examined within a theoretical framework until 

Priest and Klein (1984).  Since then, a substantial literature has developed on the 

selection of disputes for litigation. 

 Trial selection theory consists of models that explain or predict the characteristics 

that distinguish cases that are litigated to judgment from those that settle, and the 

implications of those characteristics for important trial outcome parameters, such as the 

plaintiff win rate, and for the development of legal doctrine.2  The starting point for this 

literature is the Priest-Klein hypothesis, which holds that the plaintiff win rate will tend 

toward fifty percent unless the litigants have asymmetric stakes.3 

 Although the Priest-Klein hypothesis is widely cited in the law and economics 

literature and has been tested empirically, it still lacks a formal treatment.4  The original 

Priest-Klein article provides an informal argument, as do later articles testing it.5  The 

lack of a formal model makes it difficult to separate important from unimportant 

assumptions in the Priest-Klein analysis, and to formally separate Priest-Klein analysis 

from competing theories of trial selection.  Moreover, the interpretation of tests of trial 

                                                 
1 Holmes (1881), at 127. 
2 On trial selection and the development of legal doctrine, see Priest (1980), Gennaioli and Shliefer (2007), 
Miceli (2009). 
3 On the theory of stakes asymmetry and litigation, see Che and Yi (1993). 
4 Waldfogel, 1995, comes closest to providing a formal treatment of the Priest-Klein analysis.  However, 
the fifty percent prediction of the analysis is demonstrated in the Waldfogel article through the use of a 
simulation rather than a formal proof. 
5 Of the articles testing the Priest-Klein hypothesis or related claims, see Waldfogel, (1995), Waldfogel 
(1998), Siegelman and Waldfogel (1999), Siegelman and Donohue (1995), Eisenberg (1990), Eisenberg 
and Heise (2007). 
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selection theories is also dependent on understanding the formal scope and limitations of 

the underlying models.6 

  This paper offers a formal model of trial selection in the manner of Priest and 

Klein.  The model incorporates alternative (e.g., asymmetric-information) theories of 

selection as well.  Given that the empirical and theoretical literature on trial selection has 

been described as a horse race between Priest-Klein (symmetric information) and 

asymmetric information theories of trial selection,7 the model in this paper effectively 

unifies the major trial selection theories under one framework.8   

 The model permits an examination within a single framework of the results in the 

trial selection literature.  For example, the fifty percent prediction of the Priest-Klein 

analysis is based on a hypothetical distribution of the probability of litigation mapped 

over an index of the defendant’s probability of violating the legal standard (i.e., the guilt 

level).  The fifty percent prediction holds in the limit, it has been said, as the trial rate 

approaches zero – which may happen because uncertainty over trial outcomes diminishes 

or because trial becomes more expensive.9  While this is helpful to the fifty percent 

prediction in the symmetric information model, it is not a necessary feature. 

 This model shows that the implications of trial selection theory depend almost 

entirely on the “censoring function” – i.e., the function describing the probability of 

litigation conditional on the defendant’s guilt level – and the probability distribution of 

guilt.  When both are symmetric the fifty percent prediction holds precisely – and there is 

no need to talk about limiting conditions.  When the guilt distribution is not symmetric 

we derive a general condition for it (“window property”) that supports the tendency 

toward fifty percent.  The fifty percent prediction is also generated in the limit as the 

censoring function becomes more convex, which occurs as trial outcome uncertainty 

                                                 
6 For a discussion of this issue, see our companion piece to this paper, Hylton and Lin (2009). 
7 Waldfogel, 1998, at 451. 
8 However, as noted in the Hylton and Lin (2009) review, trial selection theories can be based on a larger 
set of variables than examined in the symmetric and asymmetric information literature.  Eisenberg and 
Farber (1996) develop a theory of selection based on the cost of litigation. 
9 Waldfogel, 1995, at 232-33.  Waldfogel’s 1995 article, which is perhaps the most elaborate formalization 
to date of the Priest-Klein model, describes the key Priest-Klein prediction as follows: “The limiting 
implication of their model is that, with equal stakes to the parties, as the fraction of cases going to trial 
approaches zero (either because plaintiff or defendant uncertainty about trial outcomes declines or because 
trial costs increase), plaintiff win rates at trial will approach 50 percent.”  Waldfogel, at 229-30. 
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declines at the endpoints of the guilt spectrum relative to the middle – i.e., in Holmes’s 

terms, umbral uncertainty declines relative to penumbral uncertainty. 

 There is a simple generalization of the Priest-Klein hypothesis in terms of this 

framework.  When the censoring function is skewed right (because trial outcome 

uncertainty is greater at high levels of guilt than at low levels) the expected win rate will 

tend toward a level greater than fifty percent; and, conversely, when the function is 

skewed left, the win rate will tend toward less than fifty percent. Symmetry of the 

censoring function is a necessary condition for the fifty percent result. 

 The model also permits us to consider the extent to which informational 

asymmetry leads to departures from the symmetric information analysis.  When the 

symmetry condition holds for the censoring function, informational asymmetry generates 

intuitively sensible predictions: e.g., when defendants only are informed, the win rate is 

less than fifty percent because guilty-and-informed defendants settle disproportionately.  

However, when the symmetry condition does not hold, then it is no longer clear that 

informational asymmetry will result in win rates greater or less than fifty percent, 

consistent with Shavell (1996). 

 Our approach, which consists of relaxing symmetry conditions for the censoring 

and distribution functions, can be contrasted with much of the asymmetric information 

modeling of trial selection, which is based on models of strategic behavior in settlement.  

However, the implications of the strategic behavior models are highly dependent on their 

particular assumptions.10  We avoid dependence on specific strategic behavior 

assumptions.  This model shows that a rich analysis of trial selection theory can be based 

on general statistical properties of the variables that determine the propensity to litigate. 

 

II. Literature 

 

Trial selection theory,11 as initially presented in Priest and Klein (1984), builds on 

the idea, recognized at least since Holmes, that only the most uncertain disputes go all the 

                                                 
10 Compare, for example, the divergent implications of Bebchuk (1984) and Png (1987), which both present 
strategic behavior models of the settlement process. 
11 We are distinguishing “trial selection theory” from “settlement theory”.  Trial selection theory generates 
predictions on important trial outcome parameters, such as the plaintiff win rate.  The more general 
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way to a judgment in litigation without being settled beforehand.  According to the 

Priest-Klein analysis, if litigants have symmetric stakes the win rate for plaintiffs will 

tend toward fifty percent, like coin tosses.  The model assumes litigants have symmetric 

information and does not explicitly incorporate strategic behavior. 

If litigants have asymmetric stakes, the Priest-Klein conjecture holds that the 

plaintiff win rate may exceed or fall below fifty percent.12  One of the parties may have a 

strong desire to litigate in order to persuade or induce the court to change the law or to 

establish a reputation as a litigator.  Priest and Klein introduced empirical evidence to 

support their hypothesis.  Eisenberg (1990) reexamined the empirical evidence and found 

significant deviations from the fifty percent hypothesis.  Waldfogel (1995), in contrast, 

finds evidence consistent with the Priest-Klein hypothesis; specifically, that plaintiff win 

rates tend toward fifty percent as the trial rate approaches zero.  This finding suggests that 

the fifty percent win rate is more likely to be observed as legal uncertainty declines, or as 

trial costs increase. 

 The trial selection literature has been expanded by the incorporation of strategic 

behavior and asymmetric information.  The first formal model of trial selection under 

informational asymmetry was offered in Shavell (1996).13  Building on the screening 

model of Bebchuk (1984), Shavell concluded that any win rate percentage could be 

observed, and that there was no clear tendency for the plaintiff win rate to be less than or 

greater than fifty percent in the context of informational asymmetry.  Hylton (2002), 

building on the signaling model of Png (1983, 1987), argues that win rates will tend to be 

consistent with the Priest-Klein analysis, and to show predictable deviations from fifty 

percent when information is asymmetric. 

 Although the asymmetric information models have provided a rigorous 

framework for trial selection theory, in contrast to the informal analysis of Priest and 

Klein, they have failed to generate a consistent set of testable predictions with respect to 

                                                                                                                                                 
settlement literature examines settlement incentives.  On the settlement literature, see Bebchuk (1984), 
Daughety and Reinganum (1993), Spier (1992).   
12 For an early critique of the Priest-Klein model, see Wittman (1985).  Wittman found that in a more 
general model there was no tendency toward a fifty percent win rate. 
13 Froeb (1993) presents a model of case selection under asymmetric information that precedes that of 
Shavell.  However, Froeb focuses on the criminal law setting rather than the civil law setting of the Priest-
Klein analysis.   Hylton (1993) presents an informal analysis of trial selection in the civil context under 
informational asymmetry. 
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trial outcome parameters.  The asymmetric information models have to be assessed 

within the context of their particular assumptions. 

 This paper offers an alternative strategy to modeling trial selection theory that 

captures both Priest-Klein and asymmetric information models.14  We pinpoint the 

distributional assumptions that are needed for the Priest-Klein conjecture to hold, as well 

as those needed for informational asymmetry models. 

 

III. Model 

 

A. Assumptions 

 

The core component of this model is the familiar Landes-Posner-Gould (LPG) 

litigation condition: parties choose to litigate rather than settle a dispute if and only if 

 

(Pp – Pd) > γ             (1) 

 

where Pp = plaintiff’s estimate of the probability of a verdict in his favor, Pd = 

defendant’s estimate of the probability of a verdict in plaintiff’s favor; γ = C/J, where C = 

the sum of the plaintiff’s litigation cost (Cp) and the defendant’s litigation cost (Cd), and J 

= the value of the judgment.  I assume that the settlement cost is zero (i.e., the bargaining 

costs to reach settlement are zero).  If the litigation condition (1) holds, the set of 

mutually beneficial settlement agreements is empty, so the parties choose to litigate. 

Each party’s predictions is the sum of a rational estimate and an error term: Pp = 

P'
p + εp, Pd = P'

d + εd.  If Ωp represents the information set of the plaintiff, and Ωd the 

information set of the defendant, P'
p  = E(Pp| Ωp) , P'

d  = E(Pd| Ωd), E(εp | Ωp) = 0, E(εd | 

Ωd) = 0. 

                                                 
14 These models use the litigants’ predictions as the basis of a model settlement and trial selection.  
However, a trial selection theory can be based on any factor that determines the decision to litigate rather 
than settle.  Eisenberg and Farber (1996) introduce the litigious-plaintiff hypothesis, which holds that win 
rates can be understood according to the plaintiff’s cost of litigation, which varies more for individuals than 
for corporations.  In this paper we will restrict ourselves to the Priest-Klein and asymmetric information 
models.  Those models deliver the clearest implications for trial outcome parameters. 
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The error terms result from lapses or random shocks in the prediction process.  

The litigant has all of the information that he would use to reach a prediction of the 

probability of plaintiff victory, and then something happens that disturbs the true 

prediction from the rational estimate based on his information set.  One can draw an 

analogy to a production process that experiences a glitch in one of every one thousand 

runs of the process, resulting in an altered product.  The production glitch could be due to 

a random mechanical failure or to an external shock, such as a lighting strike.  In the 

same sense, a litigant’s prediction is based on a set of informational inputs and a 

cognitive process for converting those inputs into a prediction.  But the conversion 

process is not error-free.  A litigant can have a lapse that leads to an error in prediction; 

or the information needed to make the prediction may exceed the litigant’s cognitive 

capacity at the moment.  Alternatively, a random shock – an unforeseen intervention – 

can disturb the actual prediction from the rational estimate. 

 Suppose, for example, that both plaintiff and defendant have access to the same 

information bearing on the defendant’s guilt.  Both observed the manner in which the 

defendant, a medical doctor, conducted a test.  A rational observer, examining the same 

information, would predict that the probability that the doctor would be held liable for 

malpractice is .6.  However, the plaintiff may fail to take all of the facts favoring the 

defendant into account, or mistakenly believe some fact improves his likelihood of 

success when it does not, and predict that probability he will win is .65. 

 This sort of fact-based error should be distinguished from judicial error.  The 

rational observer might predict a .6 likelihood of victory on the basis of the law, but the 

probability of judicial error could lead such an observer to predict a higher likelihood of 

victory.  For example, a rational observer may believe that the plaintiff will be 

particularly appealing to a jury because of some unfortunate event in his life (e.g., job 

loss).  Even though the law, as applied to the facts, would lead the rational observer to put 

the probability of plaintiff victory at .6, the possibility of judicial error, in the sense of 

deviating from the law, might lead the observer to set the probability of victory higher. 

Rational predictions regarding the trial outcome will incorporate judicial error 

probabilities.  Let v = probability of a verdict for the plaintiff, w = probability of guilt 

(equivalently, the probability that the defendant in a legal dispute violated the legal 
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standard), q1 = probability that a defendant who has violated the legal standard will be 

found innocent (type-1 judicial error), and q2 = probability that a defendant who has not 

violated the legal standard will be found guilty (type-2 judicial error).  Assuming w, q1, 

and q2 are public information, the rational estimate (or the objective probability) of a 

verdict in the plaintiff’s favor, given public information, is ν = w(1–q1) + (1–w)q2.  So 

that courts are at least minimally accurate, we assume 1–q1 > q2. 

 We will focus on two information scenarios below.  One is the scenario in which 

each litigant forms a rational estimate based solely on public information of the 

likelihood of a verdict for the plaintiff (P'
p = P'

d).  This is a case of symmetric 

information, with litigation driven by prediction errors.  The other scenario is that of 

asymmetric information, in which the defendant knows whether or not he complied with 

the legal standard. 

 Another important assumption of this model is heteroscedasticity of the prediction 

error variances.  From the perspective of a litigant, the outcome of a dispute is most 

uncertain when the rational component of the litigants’ prediction is equal to fifty 

percent.  This is the case in which the trial outcome is viewed by the litigant as a coin 

toss.  We will therefore assume that the variance of the prediction error term is a function 

of the rational component of the litigant’s prediction, and that the variance reaches a 

maximum when the rational component is fifty percent and with minima at the endpoints. 

 

Symmetric Heteroscedasticity: ( ) (1 )v vσ σ σ= = − and, for 0 < v < ½, ( ) 0vσ ′ > . 

 

B. The Probability of a Verdict for the Plaintiff, the Probability of Guilt, and the 

Frequency of Litigation 

 

The probability of a verdict for the plaintiff (v) can be viewed as an index of case 

quality.  If the distribution of v is uniform, then the probability of a verdict for the 

plaintiff is the same in all disputes; or equivalently, all claims have the same quality.  If 

the v distribution is skewed right, then there is a tendency for legal disputes to involve 

guilty defendants.  We will assume that v is governed by the probability density function 
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h(v).  Since v is a linear function of the probability of guilt, the probability density 

function for v will be related to the density for the probability of guilt w. 

 To simplify, we will start with the assumption that courts are error free, so that the 

probability of a verdict for the plaintiff is the same as the probability of guilt (v = w).  

Thus, h(v) describes both the distribution of guilt and the distribution of the probability of 

a plaintiff verdict. 

 If all disputes were litigated to a judgment, the average plaintiff win rate would be 

determined by the distribution of guilt (or case quality) in the population.  Thus, if all 

disputes were litigated the expected plaintiff win rate would be the same as the expected 

population level of guilt, which is 

 

∫=≡
1

0

)()( dvvvhvE μ              (2) 

 

Of course, not all cases are litigated.  And the cases that are litigated are not necessarily a 

random sample from the population of disputes.  For this reason it is necessary to 

consider the factors that influence litigation. 

 The probability of litigation conditional on the guilt level is f = prob((Pp–Pd) > γ) 

which can be expressed as  f = prob(εp – εd > γ –Δ), where Δ = P'
p – P'

d.  We assume that 

the error difference εp – εd is generated by a truncated normal distribution with mean zero 

and variance σ2, where εp – εd  ∈ [–1–Δ, 1–Δ].  The variance of the error difference can be 

decomposed σ2 = σ2
p + σ2

d – 2ρ. 

Given these assumptions, the probability of litigation conditional on the guilt level 

can be expressed as  

 

f = 1 – G,             (3) 

 

where G, the probability of settlement conditional on the guilt level, is  
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1( ) ( )

)

γ −

( ; 1 ,1 ) 1 1( ) (
G σ σγ

σ σ

Δ − −
Φ −Φ

−Δ − −Δ −Δ =

Δ

−Δ − −
Φ −Φ

Δ
.         (4) 

 

 There are some immediate implications from this setup.  As the degree of 

uncertainty regarding the probability of liability (σ) increases, the probability of litigation 

rises, a basic result of the Priest-Klein model.  The frequency of litigation function f 

combines features from several models of litigation.  As the cost of litigation rises 

relative to the judgment (γ increases) the probability of litigation falls (Landes-Posner-

Gould).  Over-optimism generates litigation.  A negative correlation between prediction 

errors (ρ), consistent with litigant over-optimism (Shavell, 1982), reduces σ which in turn 

increases litigation. 

 

C. Symmetric Information Model: Preliminary Results 

 

The symmetric information case (Δ = 0) has been associated with the Priest-Klein 

analysis, according to which litigation is driven by uncertainty and the plaintiff win rate 

tends toward fifty percent (assuming symmetric stakes).  In this part, we will examine the 

basic components of that analysis. 

The Priest-Klein conjecture is based on what should be observed within the 

sample of cases that have been litigated – i.e., the ex post plaintiff win rate.  Within the 

sample of litigated cases, according to the conjecture, one will observe a plaintiff win rate 

that tends toward fifty percent, irrespective of the underlying distribution of guilt.  We 

will focus on a formal construction of this argument. 

Given the assumption of no judicial error, the expected plaintiff win rate is equal 

to the expected guilt level conditional on litigation  

 
1

1
0

0

( ) ( )ˆ( | )
( ) ( )

vf v h v dvE v lit
f v h v dv

μ≡ = ∫
∫

 .                        (5) 
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For simplicity, we will refer to this measure as the plaintiff win rate.  An alternative way 

of measuring the plaintiff success would focus on the expected plaintiff win rate within 

the set of litigated and settled disputes: .  However, the selection literature 

has focused on the plaintiff win rate within litigated disputes, and this is a sensible 

decision given the great difficulty in finding reliable statistics on settled disputes (Priest 

and Klein, 1984). 

1

0

( ) ( )vf v h v dv∫

The following proposition is implied by (5): 

 

Proposition 1: The expected population level of guilt is equal to the sum of the 

plaintiff win rate, multiplied by the trial rate, and the expected level of guilt within settled 

cases, multiplied by the settlement rate. 

 

Proof: This follows from a straightforward decomposition for the expected 

population win rate: 

 

           

1 1

1 1
0 0
1 1

0 0

0 0

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

vf v h v dv vG v h v dv
E v f v h v dv G v h v dv

f v h v dv G v h v dv

⎛ ⎞ ⎛
⎜ ⎟ ⎜⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝

∫ ∫
∫ ∫

∫ ∫

⎞
⎟
⎟
⎟
⎟⎟
⎠

■      (6) 

 

Proposition 1 clarifies the relationship between the quality of claims and the 

frequencies of trial and settlement under the symmetric information model.  Assume, for 

example, that the Priest-Klein conjecture holds, so that the plaintiff win rate is fifty 

percent.  If, in addition, the expected guilt level in the population is .75 and the trial rate 

is .25, the expected guilt level within the sample of settled cases would be .83. 

 Proposition 1 also clarifies how little information is conveyed by the observed 

plaintiff win rate, and how much information must be obtained to fully understand the 

distribution of case quality within the samples of settled and litigated disputes.  Knowing 

the plaintiff win rate tells us little about the average quality of all disputes.  However, 

knowing the plaintiff win rate, the rate at which cases settle, and the average probability 
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of prevailing within the sample of settled disputes would allow us to infer the average 

quality of all claims. 

 It should be clear that the Priest-Klein conjecture depends on there being a 

“pyramid of disputes” (Felstiner, et al. 1980) with trial occurring within a fraction of 

disputes at the top.  The conjecture holds that the plaintiff win rate is invariant to the 

underlying distribution of guilt (or case quality).  This claim becomes more plausible as 

the trial rate diminishes. 

 Let the trial rate be represented by: 

 
1 1

0 0

( ) ( ) 1 ( ) ( )f v h v dv G v h v dvθ ≡ = −∫ ∫ .                       (7)       

 

Let the average quality of settled disputes be represented by  

 
1

0
1

0

( ) ( )

( ) ( )

vG v h v dv

G v h v dv
μ ≡

∫

∫
% .             

Then the expected guilt level decomposition (6) can be written as: 

 

ˆ (1 )μ θμ θ μ= + − %               (8)  

 

With basic terms defined, we will focus on constructing the Priest-Klein argument 

within this model.  The first result, which is an important component of the symmetric 

information analysis, shows the relationship between the frequency of litigation and the 

guilt level. 

 

Proposition 2: The probability of litigation conditional on the guilt level, f, 

reaches its maximum when the guilt level (the probability of a verdict for the plaintiff) is 

equal to fifty percent. 
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Proof: We need to show that the f is symmetric around ½ and it is strictly 

increasing for 0 ≤ v ≤ ½.  Combining these two properties, the proof is done. 

Step 1: Symmetry property:   

By definition, ( ( )) 1 ( ( ))f v G vσ σ= − . Because ( ) (1 )v vσ σ= − , we have 

( ) 1 ( ( ))
1 ( (1 ))

( (1 )) (1 )

f v G v
G v

f v f v

σ
σ

σ

= −
= − −
= − = −

 

Step 2: Monotonically increasing property:  

First, we will show that the frequency of settlement, G(σ), is strictly decreasing in 

σ.  In other words, 

( )G σ
σ

∂
∂

<0 where 

1( ) ( )
( ; 1,1) 1 1( ) ( )

G

γ
σ σγ

σ σ

−
Φ −Φ

− =
−

Φ −Φ
.  

Let 0 0 0
0

0 0

( ) ( ) ( ) ( )( ; )
( ) ( )

0x x xx
x x

xε φ ε φλ ε
ε

− + + +
=

Φ + −Φ
where 0

1x
σ
−

= . The sign of ( )G σ
σ

∂
∂

is the 

same as  

0 0

1 1 1 1 1 1[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]( ) { }1 1 1( ) ( ) ( ) ( )

1 2( ; ) ( ; )

G

x x

γ γφ φ φ φσ σ σ σ σ σ σ σ σ
γσ
σ σ σ σ

γλ ε λ ε
σ σ

− − −
− + − +∂

∝ −
− −∂ Φ −Φ Φ −Φ

+
= = − =

−

 

 
The above equation can be considered as the difference of two points along the curve of 

0( ; )xλ ε  and the sign of ( )G σ
σ

∂
∂

will depend on the shape of 0( ; )xλ ε . We need to check 

whenγ moves between the range of [0,1], how does the value of 0
1( ; )xγλ ε

σ
+

= change? 

We have  
 

0 0 0
2

0 0

( ; ) ( ; ) ( )1
( ( ) ( ))

x x x
x x

λ ε ε φ
γ σ ε

∂ +
=

∂ Φ + −Φ
l ε

0 )

  

 
where 2

0 0 0 0 0 0 0( ; ) (( ) 1)( ( ) ( )) ( ) ( ) (x x x x x x xε ε ε ε φ ε= + − Φ + −Φ + + + −l xφ .  To 

analyze the sign of 0( ; )xλ ε
γ

∂
∂

, it is equivalent to study the sign of 0( ; )xεl . Note that 

0( ; )xεl is increasing inγ  because for any [0,1]γ ∈  
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0
0 0

( ; ) 2 ( )( ( ) (

2 1( )( ( ) ( )) 0

x
0 ))x x xε ε ε

γ σ
γ γ

σ σ σ σ

∂
= + Φ + −Φ

∂
−

= Φ −Φ >

l

 

Now we show here that 0( ; )xεl evaluated at the left-end point ( 1ε
σ

=  or 0γ = ) is 

negative and 0( ; )xεl evaluated at the right-end point ( 2ε
σ

= or 1γ = ) is positive. 

It is easy to show that at the left-end point 

0
1 10 ,

1 1 1( ; ) ( ) (0) ( ) 0L

x
x

ε
σ σ

ε φ Ll
σ σ σ= =−

= = Φ − −Φ + <l l because  is increasing in σ and it 

reaches zero while σ goes to infinity.  Similarly, we can show that at the right-end 

point
0

2 10 2

1 1 2( ; ) ( 1)(2 ( ) 1) ( )R
x

x
ε

σ σ
ε φ

σ σ σ= =−
= = − Φ − + >l l

,

1 0
σ

because is decreasing in Rl

σ and it reaches zero while σ goes to infinity.   

Based on the above arguments, we can conclude that 0( ; )xλ ε is first decreasing and then 

increasing inγ .   

Now we show that 0
1( ; ) ( ; 0

2 )x xλ ε λ ε
σ σ

= = = , which means that γ has the same value 

evaluated at its left-end point and right-end point.  

To sum up, 0( ; )xλ ε is first decreasing and then increasing in γ , and λ has the 

same value at its left-end point and right-end point. As a result, for (0,1]γ∀ ∈  or 

1 2( , ]ε
σ σ

∀ ∈ , 0
1( ; ) ( ; 0

2 )x xγλ ε λ ε
σ σ
+

= < = .  This proves that 0G
σ
∂

<
∂

2

. 

The final step of the argument is to show what the foregoing implies for the 

frequency of litigation function.  For any 0 1/v≤ ≤ , we have 

( ) (1 ( )) ( ) ( ) ( ) 0f v G v G v G v
v v v v

σ σ
σ

∂ ∂ − ∂ ∂ ∂
= = − = −

∂ ∂ ∂ ∂ ∂
> .■  

 

Although the frequency of litigation conditional on the guilt level is symmetric 

about ½ and has a maximum at that point, the conditional probability of litigation 

function does not constitute a probability density over v, given 
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that
1 1

0 0

( ) 1 ( ) 1f v dv G v dv= − <∫ ∫ .  Since f is not a density over v, the better description of 

the Proposition 2 is that f is stochastically dominant when v = ½. 

The next step in formalizing the Priest-Klein conjecture is to identify the set of 

special cases in which the fifty percent claim holds with precision. 

 

Proposition 3: The plaintiff win rate is equal to fifty percent for any symmetric 

distribution of guilt. 

 

Proof: Note that  
1 1

0 0
1 1 1

0 0 0

( ) ( ) (1 ) (1 ) (1 )

(1 ) ( ) ( ) ( ) ( ) ( ) ( )

vf v h v dv v f v h v dv

v f v h v dv f v h v dv vf v h v dv

= − − −

= − = −

∫ ∫

∫ ∫ ∫
 

The first equality is by integration by substitution; the second is by the symmetry 

properties of f(v) and h(v). From the above equation, we get 
1 1

0 0

1( ) ( ) ( ) ( )
2

vf v h v dv f v h v dv=∫ ∫  

so that  
1

0
1

0

( ) ( )
1ˆ( | )
2

( ) ( )

vf v h v dv
E v lit

f v h v dv
μ≡ = =

∫

∫
.■  

 

Proposition 3 is a stronger result than the Priest-Klein conjecture.  The Priest-

Klein conjecture predicts a tendency of the plaintiff win rate toward fifty percent, no 

matter what form the underlying distribution of case quality takes.  The reason is that 

cases of high and low quality are censored out of the final litigation sample by the 

settlement process.  Our third proposition shows that the censoring process yields a 

precise fifty percent outcome in the case of a symmetric distribution of case quality.  

Moreover, there is no need for the trial rate to be small (as argued in Waldfogel, 1995) in 
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order to get the fifty percent prediction – the prediction is invariant to the trial rate in the 

case of symmetry. 

The symmetric case quality distribution includes the normal (truncated) and 

uniform as special cases.15  The result is not surprising, given that the average guilt level 

in the symmetric distribution case is fifty percent.  We have only shown that when the 

guilt distribution is symmetric, the plaintiff win rate is not biased away from the 

population average guilt level as a result of the settlement process.  Since the conditional 

probability of litigation given guilt level does not itself form a probability density over 

the guilt level, it is not immediately obvious that the settlement-censoring process should 

preserve the population average even in the symmetric guilt distribution case. 

If the underlying distribution of case quality is not symmetrical, the plaintiff win 

rate is not necessarily fifty percent.  The question then becomes under what conditions 

the censoring process causes the win rate to tend toward fifty percent.  

In the more general setting, the Priest-Klein conjecture has two components, or 

implications.  One is that the plaintiff win rate will be closer to fifty percent than is the 

expected population guilt level.  The second is that as the censoring process becomes 

more severe, in the sense that the conditional litigation function f becomes more convex, 

the tendency of the plaintiff win rate toward ½ will become more pronounced or reliable.  

One might think of the first component as a weak requirement, but it is not.  As we show 

below, the first implication is not more likely to be satisfied than is the second.  We will 

take up the two implications in order. 

First, we consider whether the plaintiff win rate will tend to be closer to fifty 

percent than is the expected population guilt level.  In other words, if all disputes were 

litigated to a final judgment, the plaintiff win rate would always be the same as the 

expected population guilt level.  Since not all disputes litigate to a final judgment, the win 

rate will differ from the population average guilt level.  But will it move closer to fifty 

percent? 

 

                                                 
15 Waldfogel, 1995, at 232, notes that his model assumes that the “distribution of filed cases’ underlying 
quality is standard normal,” which means that guilt is assumed to normally distributed in his study.  Given 
Proposition 3, the fifty percent should be observed in any model that assumes a normal or symmetric 
distribution of case quality. 
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Proposition 4: The plaintiff win rate will be closer to fifty percent than is the 

expected population level of guilt, that is,  

           1 1ˆ
2 2

μ μ− < −  

if and only if μ% <(>)μ <(>) 1 1 (1 )
2 2

θ μ+ − % . 

 

Proof: 
2 21 1ˆ 0

2 2
μ μ⎛ ⎞ ⎛ ⎞− − − <⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 holds if and only if ( )( )ˆ ˆ (1 ) 0μ μ μ μ− − − < . 

Let A = , which is the numerator of
1

0

( ) ( )vf v h v dv∫ μ̂ .  Integrating by parts 

A =  ]
1 1

1

0
0 0

(1 ) (1 )H G v Hgvdv H G dv− + − −∫ ∫

After applying integration by parts again 

A =   , ]
1 1

1

0
0 0

( ) ( )Hv vGh v dv H v dv+ −∫ ∫

or, equivalently, 

A =  
1 1

0 0

1 ( ) ( )vGh v dv H v dv+ −∫ ∫

It follows that 
1 1

0 0
1

0

1 ( ) ( )
ˆ

( ) ( )

vGh v dv H v dv

f v h v dv
μ

+ −
=

∫ ∫

∫
 

Since , we have 
1

0

1 ( )H v dvμ = − ∫
1 1

0 0
1

0

( ) ( )
ˆ

( ) ( )

vGh v dv vGh v dv

f v h v dv

μ
μ μ

−
− =

∫ ∫

∫
 .                       (9) 

From the same derivation it follows that 



 17

 
1 1

0 0
1

0

( ) ( )
ˆ (1 )

( ) ( )

vGh v dv H v dv

f v h v dv

μ
μ μ

− −
− − =

∫ ∫

∫
         (10) 

 

One case in which the inequality ( )( )ˆ ˆ (1 ) 0μ μ μ μ− − − < holds is when μ̂ μ>  and 

.  From (9), ( ˆ (1 ) 0μ μ− − <) μ̂ μ>  will hold when 

1 1

0 0

( ) ( ) 0vGh v dv vGh v dvμ − >∫ ∫ ,  

or equivalently when μ μ> % .  The other inequality follows from (8) and setting (10) less 

than zero. ■ 

 

Given the relationship amongμ ,μ% , and μ̂ implied by (8), there is an equivalent 

set of conditions governing the relationship between μ  and μ̂ . For example, the 

conditionsμ μ> %  and 1 1 (1 )μ
2 2

θ< + − μ%  imply ˆμ μ< and ˆ1μ θμ< − .  Without imposing 

additional conditions not imposed in Proposition 4, there is no reason to believe that these 

parameter constraints are likely to be satisfied in general. 

The question remains whether the first implication of the Priest-Klein conjecture 

(Proposition 4) is likely to hold for a diverse set of guilt distributions.  To examine this, 

we take a more formal approach below.  Specifically, we examine the conditions that 

must be imposed on the distribution of guilt to satisfy the first and second implications of 

the Priest-Klein conjecture, given the symmetry property of the conditional probability of 

litigation function. 

 

D. Implications of Priest-Klein Conjecture 

 

Taking advantage of the symmetry of f, we will examine the properties that the 

population distribution of guilt must have in order for the first and second implications of 
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the Priest-Klein conjecture to hold.  Recall that the first implication is that the plaintiff 

win rate is closer to fifty percent than is the population guilt level.  We derive a condition 

under which this holds. 

 

Theorem 1: Let v be a random variable with the density function h(v): [0,1] → 

[0, +∞).  Then for any such that( ) :[0,1] [0, )f v → +∞ f is increasing on the interval 

1[0, ]
2

and symmetric around 1
2

, i.e., 1 1( ) ( )
2 2

f v f v= + , for any 1[0, ]
2

v∈ , −

1
10

1 0

0

( ) ( ) 1 1( )
2 2( ) ( )

vf v h v dv
vh v dv

f v h v dv
− ≤ −∫

∫
∫            

(11)  

if and only if for any 1(0, ]
2

α ∈ , 

  

1
2

1 _ 1
2

1 0
2

1 _
2

( )
1 1( )
2 2( )

vh v dv
vh v dv

h v dv

α

α

α

α

+

+
− ≤ −

∫
∫

∫
                       

(12) 

 
Before we begin the proof, we first see two definitions and one lemma. 
 

Definition 1: A function αχ :[0  is called the characteristic function of 

the interval 

,1] [0, )→ +∞
1 1[ ,
2 2

]α α− + where 1(0, ]
2

α ∈ if it is 1 on interval 1 1[ ,
2 2

]α α− + and zero 

otherwise. 
 

Definition 2: A function f is called a symmetric simple function if there exist a 

finite increasing sequence of numbers 1[0, ]
2nα ∈ ( 1, 2,3,n N )= K where 0 0α = and 

1
2Nα = and a finite non-increasing sequence of nonnegative numbers Mn (n = 0,1, 2,…, 

N) such that nf M= on the interval 1]nα
1 1
2 2nα[ , −− − and 1

1 1[ , ]n n2 2
α α−+ + for 

. 1, 2,3,= K,n N
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Remark: based on the two definitions above, it is not hard to see any symmetric 

simple function f can be expressed as a linear combination of characteristic functions, 

i.e., 
1

1
1

)
n

N

n n
n

( Nf M M= − Mαχ
−

+
=

+∑  or 1
1

(
n

N

n n
n

f M M ) αχ+
=

= −∑ if we define . 1 0nM + =

In particular, if ,2N =
11 2( ) 2f M M Mαχ= − + . 

Lemma 1. For any function which is increasing on the 

interval

:[0,1] [0, )f → +∞

1[0, ]
2

and symmetric around 1
2

, there exists a sequence { }nf of symmetric simple 

functions such that lim ( ) (nn
)f v f v

→∞
= almost everywhere on[0 where ,1] 1( ) ( )n nf v f v+≤ for 

 1, 2,3,n = K

We omit the proof of Lemma1 here since it simply follows the idea that any real 

function can be almost everywhere pointwisely approximated by the simple functions and 

the proof of that can be found in every real analysis book. 

 
Proof of Theorem 1: Since (1.2) has the exactly the same form as 

 

1
10

1 0

0

( ) ( ) 1 1( )
2 2( ) ( )

v v h v dv
vh v dv

v h v dv

α

α

χ

χ
− ≤ −∫

∫
∫

, 

Taking f αχ= in (11) simply gives us the necessity. 

As to the sufficiency, (12) gives us that (11) holds for the characteristic functions αχ  and 

by the linearity, (11) also holds for any characteristic function multiplied by a constant. 

Then since any symmetric simple function is a linear combination of characteristic 

functions, it is natural for us to expect (11) holds for any symmetric simple function f . 

Indeed, without lost of generality, to prove that we may assume 2N = . The proofs of 

other cases follow completely the same idea. 

Now,
11 2( ) 2f M M Mαχ= − + . From above, we already have  

 1

1

1
11 20

1 0
1 20

( ) ( ) ( ) 1 1( )
2 2( ) ( ) ( )

v M M v h v dv
vh v dv

M M v h v dv

α

α

χ

χ

−
− ≤ −

−

∫
∫

∫
, 

i.e., 
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1 1

1

1 1

1 2 1 21 0 0
10

1 20

1

0

1( ) ( ) ( ) ( ) ( ) ( )1 2( )
2 ( ) ( ) ( )

1( )
2

v M M v h v dv M M v h v dv
vh v dv

M M v h v dv

vh v dv

α α

α

χ χ

χ

− − −
− − ≤

−

≤ −

∫ ∫
∫

∫

∫                

(13) 

  
and also  

 

1
120

1 0
20

( ) 1 1( )
2 2( )

vM h v dv
vh v dv

M h v dv
− ≤ −∫

∫
∫

 

i.e., 

 

1 1

2 21 10 0
10 0

20

1( ) ( )1 12( ) ( )
2 2( )

vM h v dv M h v dv
vh v dv vh v dv

M h v dv

−
− − ≤ ≤

∫ ∫
∫ ∫

∫
− .             (14) 

Then 

  

1

1

1 1

1

1 1 1

1 2 20 0 0
1 1 1

1 2 20 0 0

1 1 1

1 2 1 2 2 20 0 0

1 2

( ) ( ) ( ) ( ) ( ) ( )1 1
2 2( ) ( ) ( ) ( ) ( ) ( )

1 1{ ( ) ( ) ( ) ( ) ( ) ( ) } { ( ) ( )
2 2

( ) ( ) (

vf v h v dv v M M v h v dv vM h v dv

f v h v dv M M v h v dv M h v dv

v M M v h v dv M M v h v dv vM h v dv M h v dv

M M v h v

α

α

α α

α

χ

χ

χ χ

χ

− +
− = −

− +

− − − + −
=

−

∫ ∫ ∫
∫ ∫ ∫

∫ ∫ ∫
1

0
}∫

1 1

20 0
) ( )dv M h v dv+∫ ∫

By (13), (14), it is easy to see

 
 

1
1 10

10 0

0

( ) ( )1 1( ) ( )
2 2( ) ( )

vf v h v dv
vh v dv vh v dv

f v h v dv
− − ≤ − ≤∫
∫ ∫

∫
1
2

− . 

Therefore, (11) holds for any symmetric simple function.  

 Our final step is to use Lemma1 to extend the result of symmetric simple 

functions to their limits. For any function such that ( ) :[0,1] [0, )f v → +∞ f is increasing 

on the interval 1[0, ]
2

and symmetric around 1
2

, by Lemma1, there exists a sequence 

{ }nf of symmetric simple functions where (n )f v increases to ( )f v almost everywhere. 
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Then by the Lebesgue Dominance Convergence Theorem, we have 

 and 
1 1

0 0
( ) ( ) lim ( ) ( )nn

vf v h v dv vf v h v dv
→∞

=∫ ∫
1 1

0 0
( ) ( ) lim ( ) ( )nn

f v h v dv f v h v dv
→∞

=∫ ∫ . Since 

( )nf v ( )increases to f v
1

0
( ) ( )n, f v h∫ v dv also increases to 

1

0
( ) ( )f v h v dv∫ . So

1

0
( ) ( )f v h v dv∫  

should be greater than zero so that 

1

0
1

0

vf ( ) ( ) 1
2( ) ( )

v h v dv

f v h v dv
−∫

∫
is well-defined and from above, 

 

1 1
1

0 0
1 1 0

0 0

( ) ( ) ( ) ( )1 1lim ( )
2 2( ) ( ) ( ) ( )

n

n
n

vf v h v dv vf v h v dv
vh v dv

f v h v dv f v h v dv→∞
− = − ≤ −∫ ∫

∫
∫ ∫

1
2

 
 

which completes the proof.■ 

 

Theorem 1 means that a necessary and sufficient condition for the first 

implication of the Priest-Klein conjecture – that the win rate is closer to fifty percent than 

is the population level of guilt – is that the distribution of guilt have the following 

property: within any window around the fifty percent guilt level, the conditional mean 

given you are within the window is at least as close to fifty percent as is the mean of the 

distribution.   

Theorem 1 is intuitive in view of the effect of the settlement-censoring process 

under symmetric information.  The effect of settlement censoring is to exclude or under-

weight cases in which the guilt level is close to one or close to zero.  If the population 

distribution of guilt is such that the mean is at least as close to fifty percent within any 

window around ½ than for the whole distribution, then the censoring that takes place 

under symmetric information will always move the win rate closer to fifty percent than is 

the population guilt level.  Thus, the first implication of Priest-Klein conjecture holds 

when (and only when) the population distribution of guilt satisfies the window property 

in (12). 

The window property is satisfied by a diverse set of distributions.  Certainly any 

symmetric distribution will satisfy the window property.  Moreover, a large set of 
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asymmetric distributions also satisfy it.  We tried several simulations with the Beta 

distribution and could not find a parameter set that failed to satisfy the window property. 

The following example illustrates a case in which Theorem 1 does not hold.  The 

distribution of guilt in this example does not satisfy the window property. 

 

Example: Let h(v) = v + 15(213)(v – ½)14 describe the population distribution of 

guilt, and let the function f(v) = – (v – ½ )2 + .25 approximate the conditional probability 

of litigation given the guilt level.  In the model, the conditional probability of litigation 

function is determined by the underlying truncated normal.  We have chosen a simple 

function that is symmetric about ½ to aid the illustration.  The population distribution of 

guilt has the following shape: 

 

 

 

  

 

 

 

                      Figure 1: A hypothetical guilt distribution      

 

For this example, 

1 1( )
2 2

E vμ − = − =
1

12
 

 
1

0
1

0

117( ) ( )
1 1 12040ˆ

52 2 2 200 12
( ) ( ) 51

vf v h v dv

f v h v dv
μ − = − = − = >

∫

∫

17 1  , 

so the win rate conditional on litigation is further away from fifty percent than is the 

population average level of guilt. 
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Recall that the second implication of the Priest-Klein conjecture is that as the 

censoring process becomes more severe, in the sense that the conditional probability of 

litigation function f becomes more convex, the plaintiff win rate will tend more reliably 

toward fifty percent.  While Proposition 2 is a statement about the first order stochastic 

dominance, the second implication is really a statement about second order stochastic 

dominance.  In other words, as the conditional litigation function becomes more 

dominant in the second order sense, the tendency of the plaintiff win rate to fifty percent 

becomes more certain or reliable. 

 

Theorem 2: Let be a random variable with the density function 

. The function is increasing on the 

interval

v

( ) :[0,1] [0, )h v → +∞ ( ) :[0,1] [0, )f v → +∞

1[0, ]
2

and symmetric around 1
2

, i.e., 1 1( ) (
2 2

)f v f v− = + for any 1[0, ]
2

v∈ .  

For any 0ε > , define as:[0,1] [0, )fε → +∞

1
1 1 2( ) ( )

2

v
f v fε ε ε

−
= − if 1

2 2
v ε

− ≤  

and if ( ) 0=f vε
1 1

2
v< − ≤

2 2
ε . Define be( ) :[0,1] [0,1]g xε →

( )( )
{ ( )}

f xg x
Max f x

ε
ε

ε

= , then 

1

0
10

0

vg ( )

( )

v h v

g v h

ε

ε

( )
1lim
2

( )

dv

v dv
ε→

=
∫

∫
.  

In particular, if 1( )
2

E V ≠ , 

1

1
0
1

0

0

( ) ( )
1 1( )
2 2

( ) ( )

vg v h v dv
vh v dv

g v h v dv

ε

ε

− ≤ −
∫

∫
∫

 

when ε  is small enough. 

 
 



 24

Proof: First notice that the boundedness of f(v) guarantees the finiteness of the 

integrals. Next to show 

1

0
10

0

( ) ( )
1lim
2

( ) ( )

vg v h v dv

g v h v dv

ε

ε

ε

→
=

∫

∫
 , it is enough to 

prove

1

0
10

0

( ) ( )
1lim
2

( ) ( )

vf v h v dv

f v h v dv

ε

ε

ε

→
=

∫

∫
.  

 

Now we construct an instrument function which extends the domain to .  

Note that  is exactly the same as

( )F v

( )

( ,−∞ +∞)

( )F v f v , except for the extended domain for the 

demonstration of the following proof. Define ( ) : ( , ) [0,F v )−∞ +∞ → +∞ as  

for and  otherwise.  Then define

( ) (F v f v= )

[0v∈ ,1] ( ) 0F v =
1( ) ( )
2

G v F v= − and 

thusG v if( ) 0=
1 1[ ,
2 2

]v∉ − and the function 1 1( ) ( ) ( )
2

vG f vε εG v
ε ε

= = − for 1 1[ , ]
2 2

v∈ − and 

equals 0 otherwise. Then,  

 

1
2

1

1
0 2
1 1

2

0
1
2

1 1 1( ) ( ) ( ) 1 1( ) ( ) ( ) ( ) ( )2 2 2
2 2

1( ) ( ) ( ) ( )1 1( ) ( ) 2
2 2

1( ) ( )
21

2 1( ) ( )
2

v f v h v dv
vf v h v dv v G v h v dv

f v h v dv G v h v dv
f v h v dv

vG v h v dv

G v h v dv

ε
ε ε

ε ε
ε

ε

ε

∞

−
−∞

∞

−∞

−

∞

−∞
∞

−∞

− − −
− −

= =
−

− −

−
= −

−

∫∫ ∫

∫ ∫∫

∫

∫

 

To prove the final result, now it is enough to show 
0

1( ) ( )
2

lim 0
1( ) ( )
2

vG v h v dv

G v h v dv

ε

ε

ε

∞

−∞
∞→

−∞

−
=

−

∫

∫
. 
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Let vz
ε

= , by changing variables, 

 
1 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1( ) ( ) ( ) ( ) ( ) ( )( ) ( )

vv G h x v dvvG v h x v dv zG z h x z dz zG z h x z dz
vG v h x v dv G z h x z dz G z h x z dzG h x v dv

ε

ε

ε ε εε ε ε
ε ε

ε ε

−− −
= = =

− −−

∫∫ ∫
∫ ∫∫

−

−
∫
∫

 

Since outside ( ) 0G v =
1 1[ , ]
2 2

− , 

1
2

1
2
1
2

1
2

( ) ( )
( ) ( ) 1

2( ) ( )
( ) ( )

zG z h x z dz
zG z h x z dz

G z h x z dz
G z h x z dz

ε
ε

ε
ε

−

−

−
−

= ≤
−

−

∫
∫
∫

∫

. 

Therefore, 

 
0 0

1( ) ( ) ( ) ( )2
lim lim 0

1 ( ) ( )( ) ( )
2

vG v h v dv zG z h x z dz

G z h x z dzG v h v dv

ε

ε ε

ε

ε
ε

ε

∞

−∞
∞→ →

−∞

− −
= =

−−

∫ ∫
∫∫

, 

 
which completes the proof.■  
 

 

 The intuition for Theorem 2 is straightforward.  As the conditional probability of 

litigation function becomes more convex, it will approach the shape of a spike at the fifty 

percent guilt level.  The rest of the argument can be drawn on the reasoning for the 

familiar Chebyshev inequality.  However, intuition based on the Chebyshev inequality is 

not technically appropriate in this case.  The Chebyshev inequality addresses a 

relationship between a realization of a random variable and its mean, as the variance of 

the underlying distribution collapses.  In contrast, this is a model of a censoring process 

applied to a random variable (the guilt level).  The “distribution” that “collapses” in this 

case is the conditional probability function describing the censoring process.  Rather than 

a case where the variance of a specific probability distribution collapses as in the 

Chebyshev result, this is instead a case where the censoring process becomes more 

convex around a particular conditioning value. 

 The second theorem provides an alternative way of looking at the argument that 

the fifty percent prediction of Priest and Klein holds in the limit as the trial rate goes to 
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zero (Waldfogel, 1995).  The “in the limit” result can be viewed as a statement about the 

convexity of the censoring function f.  That convexity, in turn, is determined by the 

convexity of the prediction error variance σ(v).  Thus, if we use σ"(v)/σ(v) as a measure 

of the convexity of the error variance, the limiting result depends on  σ"(v)/σ(v) 

increasing.  As the convexity of σ(v) increases, the win rate approaches fifty percent. 

 In terms of implications for litigation, the second theorem implies that the fifty 

percent result holds as relative uncertainty lessens at the extremes of the guilt probability 

scale, relative to the center.  Greater convexity translates into cases settling with greater 

frequency when the guilt status of the defendant is close to one or close to zero.  This is 

more likely to be true when the law is clear, which makes it easier to determine whether a 

violation occurred, or the facts of the dispute are clear.   

The following simple numerical example illustrates the effects of greater 

convexity in the censoring function.   

Example: Consider two censoring processes, with the second being more convex 

than the first.  Assume the connection between the guilt of the defendant, the distribution 

of guilt, and the probability of litigation given guilt is as follows: 

 

v        ¼             ½              ¾  

Prob(lit | v)         .2          .6        .2 

Prob(v = vo)        .3             .3             .4 

 

Under these assumptions, 

 

E(v) = (¼) (.3) + (¾)(.4) + (½)(.3) = .52 

Prob(lit) = (.3)(.2)+ (.4)(.2) + (.3)(.6) = .32 

1 (.2)(.3) 1 (.3)(.6) 3 (.2)(.4)( | ) .515
4 .32 2 .32 4 .32

E v lit ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

=

  

Now consider an alternative censoring process that is more convex in the sense described 

earlier. 
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v        ¼             ½              ¾  

Prob(lit | v)         .1          .7        .1 

Prob(v = vo)        .3             .3             .4 

 

For this case, we have 

 

E(v) = (¼) (.3) + (¾)(.4) + (½)(.3) = .52 

Prob(lit) = (.3)(.1)+ (.4)(.1) + (.3)(.7) = .28 

1 (.1)(.3) 1 (.7)(.3) 3 (.1)(.4)( | ) .509
4 .28 2 .28 4 .28

E v lit ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

=

                                                

 

 

 The trial rate could also approach zero as the cost of litigation increases relative to 

the judgment (γ increases) (Waldfogel, 1995).  This is equivalent to shifting the censoring 

function f down, which will generally result in the disputes at the extreme of the guilt 

distribution settling.  However, Theorem 1 and the counterexample imply that this effect 

will not necessarily lead to a movement toward fifty percent.  If the window property is 

not satisfied by the guilt distribution, a shift downward of the censoring function may not 

result in a win rate closer to fifty percent.16 

 

E. Generalization of Conjecture 

 

Much of the foregoing has been an effort to understand the conditions under 

which the Priest-Klein conjecture may be valid.  The core assumption is that the variance 

of the difference between the parties’ trial outcome prediction errors is a function of the 

level of guilt (heteroscedasticity) and that this function is symmetric about the midpoint 

of the range of guilt levels.  The prediction errors can be viewed as random shocks that 

cause the litigant’s subjective prediction of the probability of a verdict for the plaintiff to 

differ from the rational estimate based on the litigant’s information set.  Since parties are 

 
16 Of course, if the underlying distribution of guilt is symmetric (which would satisfy the window property 
of Theorem 1), then shifting the censoring function down will lead to the fifty percent result.  Waldfogel 
(1995, at 232) assumes the distribution of guilt is normal, which may explain his finding.  We impose no 
functional assumptions on the distribution of guilt. 
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assumed to have symmetric information, the rational prediction of the guilt level is the 

same for both parties and is equal to the true guilt level.  When the litigant’s information 

generates a rational prediction equal to the most uncertain guilt level, fifty percent, his 

subjective prediction is most sensitive to a random shock.   

 Of course, the variance symmetry property need not hold.  It could be that the 

variance of the prediction error difference is greater when guilt levels are small than 

when they are large (or the converse).  Consider, for example, the simple case of failing 

to look both ways before crossing an intersection in a car.  A failure to look is obviously 

negligence, and the prediction of guilt would be relatively insensitive to information-

processing errors.  On the other hand, looking both ways may have been held reasonable 

care in a previous case, but may not necessarily be so in any other case with more 

complicated facts.  The actual prediction would be relatively more sensitive to prediction 

error than in the clear non-compliance scenario (failing to look). 

 The possibility that the prediction error variance might be asymmetric suggests a 

generalization on the Priest-Klein conjecture.  If the assumption of symmetric 

heterscedasticity is replaced with an assumption of asymmetric heteroscedasticity, then 

there should be no clear tendency for the plaintiff win rate to move toward fifty percent, 

even under the window property of Theorem 1.  Indeed, if the direction of the asymmetry 

(or skewness) is right (left), the model presented here would suggest a win rate that is 

greater than (less than) fifty percent.  The easiest way to see this generalization of the 

Priest-Klein conjecture is to consider the case where the distribution of guilt is 

symmetric. 

 

Proposition 5: Suppose the prediction error difference is asymmetrically 

hesteroscedastic, with a left skew.  Then the plaintiff win rate will be less than fifty 

percent for any symmetric guilt distribution.  Conversely, if the prediction error 

difference has a right skew, the plaintiff win rate will be greater than fifty percent for any 

symmetric guilt distribution. 

 

Proof: Assume the following form of asymmetric heteroskedasticity: 

(1) ( ) (1 )v vσ σ≥ − and ( ) 0vσ ′ > for 0 < v < ½ . 
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(2) ( ) (1 )v vσ σ≤ − and ( ) 0vσ ′ < for ½ < v < 1. 

This implies 

( ) (1 )f v f v≥ − for 0 < v < ½ , and 

( ) (1 )f v f v≥ − for ½ < v < 1 , 

which means that the conditional probability of litigation function, graphed over v, is 

skewed toward the left.  Following the proof of Proposition 2  
1 1

0 0
1

0
1

0

( ) ( ) (1 ) (1 ) (1 )

(1 ) (1 ) ( )

(1 ) ( ) ( )

vf v h v dv v f v h v dv

v f v h v dv

v f v h v dv

= − − −

= − −

≤ −

∫ ∫

∫

∫

 

The second equality follows from the symmetry of h(v).  The inequality results from the 

left skewness of f (induced byσ(v)).  From the above inequality, we get 
1 1

0 0

1( ) ( ) ( ) ( )
2

vf v h v dv f v h v dv≤∫ ∫  

so that  

1ˆ
2

μ ≤ . 

If we reverse the inequalities in (1) and (2), the same argument leads to the conclusion 

that μ̂ ≥ ½. ■  

 

Proposition 5 illuminates some limitations on the Priest-Klein conjecture.  Recall 

that we described the conjecture as having two key implications: first, that the plaintiff 

win rate would be closer to fifty percent than is the population guilt level, and, second, 

that as the censoring function became more convex, the tendency of the win rate to equal 

fifty percent would become more reliable.  It should be clear that in the presence of 

asymmetric heteroscedasticity, the first implication is not valid.  Theorem 1 shows that 

for any population distribution of guilt that satisfies what we have called the window 

property, the win rate will be closer to fifty percent than is the expected population guilt 

level.  That result is inconsistent with Proposition 5.  The symmetric distribution of guilt 
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obviously satisfies the window property of Theorem 1.  That the settlement process leads 

to a win rate different from fifty percent shows that the first implication of the Priest-

Klein conjecture is not valid when the symmetric heteroscedasticity assumption is 

replaced by asymmetric heteroscedasticity. 

 The second implication of the Priest-Klein conjecture no longer continues to hold, 

though the deviation from fifty percent is vanishing in the limit.  As the censoring process 

becomes more severe (convex), the expected win rate conditional on litigation will 

necessarily move toward fifty percent.  However, the plaintiff win rate will be biased in 

the direction in which the prediction error variance is skewed. 

 

F. Extension to Judicial Error Setting and Asymmetric Information 

 

To simplify the analysis we assumed in the previous part that courts operate 

without error.  Under that assumption, the probability of a verdict for the plaintiff is the 

same as the probability that the defendant is guilty.  If courts make mistakes, the 

probability of a verdict for the plaintiff will differ from the probability of guilt.  Error 

distorts the link between case quality and merit. 

 When courts make mistakes, the foregoing analysis remains intact, though the 

notation is more complicated.  The distribution of the probability of a verdict in favor of 

the plaintiff will now differ from the population guilt distribution.  But since the two are 

linearly related, the two distributions will also be related.  If the density for the 

probability of guilt is k(w), then the density for the probability of a plaintiff verdict is 

 

2

1 2 1 2

1( ) ( )
(1 ) (1 )

v qh v k
q q q q

−
=

− − − −
, 

 

over the interval q2 and 1–q1–q2.  None of the results in the previous part is dependent on 

the assumption that v runs from 0 to 1, and they can be modified where necessary to 

incorporate the new limits. 

 For the asymmetric information setting examined next, there are substantial 

differences between the model with judicial error and the model without error.  The most 
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basic implications are the same between these two models, but the details are so different 

that it would be difficult to analyze the model with error by reinterpreting the model 

without error.  Because the error-free model is a special case of the judicial error model, 

we will examine the model with error in the remaining parts. 

As a general matter, P'
p = wp(1–q1p) + (1–wp)q2p, where wp = E(w| Ωp), q1p = E(q1| 

Ωp), q2p = E(q2| Ωp); and, similarly, P'
d = wd(1–q1d) + (1–wd)q2d.   For each litigant, the 

rational prediction of the probability of guilt and the prediction of the likelihood of error 

will both depend on the information available to him.  In the case of the uninformed 

litigant, his rational predictions are equal to the objective probability based on public 

information.  For the informed litigant, his estimate of w is equal to 1 in the case of non-

compliance by the defendant, or 0 in the case of compliance by the defendant. 

 Thus, in a dispute involving an informed-innocent defendant and an uninformed 

plaintiff, P'
p = v and P'

d = q2, and the actual predictions are:  

 

Pp = v + εp          (15) 

   

Pd = q2 + εd          (16) 

 

As in the previous part, we will assume litigation is determined by condition (1) 

from the LPG model.  However, the LPG condition requires additional justification in a 

model that allows for asymmetric information.  In asymmetric information models the 

settlement decision is not governed solely by the LPG condition.  Indeed, litigation 

occurs more frequently under Bebchuk’s screening model than would be implied by the 

LPG model.  The reason is that the uninformed plaintiff trades off the cost of litigating 

for the gain of getting a larger share of the settlement surplus. 

In spite of this, there are two justifications for using the LPG model to describe 

litigation here.  The first is Occam’s razor.  This model assumes that error in litigants’ 

predictions of the probability of plaintiff victory plays a substantial role in generating 

litigation.  In the absence of such error, settlement decisions would separate the guilty 

from the innocent, unless the parties behaved strategically (Bebchuk, 1984).  With error 
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in predictions, the defendant’s willingness to settle does not reveal his type.  Strategic 

behavior is therefore not a necessary feature of the litigation model. 

Second, the LPG condition is broadly consistent with both screening and 

signaling models of litigation.  In signaling models LPG condition (1) still separates the 

conditions in which litigation may occur from those in which it will not (Png, 1983; Png 

1987, Hylton 2002).  In other words, the LPG condition provides a lower bound on the 

settlement zone.  In Bebchuk’s screening model, the LPG condition is a necessary but not 

sufficient condition for settlement – that is, it provides an upper bound on the settlement 

zone.17  The LPG model permits us to capture in broad form the implications of both 

types of asymmetric information model without having to commit to one of them. 

We consider two asymmetric information scenarios: where the defendant has the 

informational advantage and where the plaintiff has the informational advantage.  When 

the defendant has the informational advantage, the frequency of litigation will depend on 

the defendant’s type.  If the plaintiff is uninformed and the defendant is innocent, P'
p = 

w(1–q1) + (1–w)q2, P'
d = q2; thus, ΔI = w(1–q1–q2).   

In the asymmetric information setting w should be understood as the rational 

prediction of the probability of guilt given information publicly available about the 

parties and the facts of the dispute.  In the previous section of this paper, where we 

considered symmetric information, the plaintiff and the defendant chose the same 

estimate for w.  In this part, only the uninformed party chooses w as his estimate of the 

probability of guilt.  Having chosen w, the uninformed party’s estimate of the likelihood 

of a verdict for the plaintiff is equal to v = w(1–q1)+(1–w)q2. 

Let fI be the probability of litigation for the innocent-defendant, uninformed 

plaintiff pairing, given guilt level w.  The frequency of litigation is  

 

fI = 1 – GI          (17) 

 

where the probability of settlement, is  

                                                 
17 One way to think of the difference between the models is by drawing an analogy to price setting.  In 
Bebchuk’s model the uninformed litigant screens by setting the settlement amount.  He sets the price in 
order to grab some of the surplus, which results in the standard monopoly-pricing inefficiency.  In the 
signaling model the informed actors set prices in a way that price discriminates. 
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It should be clear that litigation can occur even though the defendant’s guilt level is low.  

The plaintiff is uninformed, so makes his decision on whether to litigate on the 

population average level of guilt. 

 If the defendant is guilty, P'
p = w(1–q1) + (1–w)q2, P'

d = 1–q1, and ΔG = – (1–

w)(1–q1–q2).  Let fG be the probability of litigation for the guilty-defendant, uninformed 

plaintiff pairing, given guilt level w. 

 

fG = 1 – GG          (19) 

 

where the probability of settlement, is  
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Proposition 6: For any Δ1 > Δ2,  
 
        1 1 1 2 2( ; 1 ,1 ) ( ; 1 ,1G G 2 )γ γ− Δ − −Δ −Δ < −Δ − −Δ −Δ   . 
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It follows that fI > fG, since it is a special case where ΔI = w(1–q1–q2) and ΔG = –

(1–w)(1–q1–q2).  Since ΔI > ΔG, we have GI(γ – ΔI ; –1– ΔI , 1– ΔI) < GG(γ – ΔG ; –1– ΔG , 

1– ΔG); and it follows that fI > fG.  The reason fI > fG is that guilty informed defendants 

settle their cases at a higher rate than do the innocent informed defendants.  Since guilty 

defendants are more likely to be held liable than are the innocent, the potential payoff 

from litigating is lower for the guilty. 

 As in the previous parts we will examine the plaintiff win rate.  When the 

defendant has the informational advantage, the win rate is  

 
1

1 2
0

1

0

[ (1 ) (1 ) ] ( )
ˆ

[ (1 ) ] ( )

G I

G I

wf q w f q k w dw

wf w f k w dw
μ

− + −
=

+ −

∫

∫
              (21) 

 

Following the approach of the previous part, we can derive the key implications for trial 

selection by examining the setting in which the guilt distribution is symmetric.  If the 

fifty percent prediction fails to hold in the symmetric guilt distribution case, then it will 

clearly not hold in the more general analysis. 
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Proposition 7: Assume the guilt distribution is symmetric.  When the defendant 

(plaintiff) has the informational advantage, the plaintiff win rate will be less than 

(greater than) or equal to fifty percent, as long as error rates satisfy reasonable 

assumptions.  

 

Proof: Letting Ψ represent the denominator, (21) can be rewritten as: 
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The symmetry of fI and fG are established by the first step of the proof of Proposition 2.  

Assuming the symmetry of the guilt distribution and taking advantage of Proposition 3, 

this simplifies to: 
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Since  and , 
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Rewrite (22) as 

 

1 2
1 1 ˆˆ (1 )
2 2

q qμ θ θ⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

% . 

 

Where θ%  is equal to the left hand side of (23) and θ̂  is equal to the left hand side of (24).  

Moreover, it is straightforward to show that ˆθ θ<% , 1θ <% , , and .  The 

question is whether

ˆ 1θ > ˆ 2θ θ+ =%

1ˆ
2

μ ≤ .  To simplify the remaining argument, assume the judicial 

error terms q1 and q2 are close in value, so that q2 = q1+ε.  Then 2 ˆ 1μ ≤ if and only if (1–

q1)θ% ≤1–(q1+ε)θ̂ .  Since , this is equivalent to 0 (ˆ 2θ θ+ =%
11 2q )(1 ) (2 )θ ε θ≤ − − −% %− .  For 

ε sufficiently close to zero and q1<½, this holds with a strict inequality.  Indeed, for 

reasonable assumptions on the judicial error terms, the condition holds.  It is violated 

when q2>q1 (ε large) and q1 is close to ½, which are conditions under which judicial 

decisions are essentially coin tosses. ■ 

 

 It follows that even if the window property of Theorem 1 holds, the plaintiff win 

rate will not tend toward fifty percent.  However, there are directional tendencies.  Where 

the defendant has the informational advantage, the win rate will tend toward a level that 

is less than or equal to fifty percent, and conversely where the plaintiff has the 

informational advantage. 

 

G. Asymmetric Stakes 

 

We have to this point ignored the issue of asymmetric stakes, which was a part of 

the original Priest-Klein analysis.  The asymmetric stakes theory was offered by Priest 

and Klein as an explanation for areas of litigation, such as medical malpractice, in which 

plaintiff win rates were consistently below the fifty percent prediction of their model.  

The model presented in the previous parts generates plaintiff win rates that deviate from 

fifty percent without the additional assumption of asymmetric stakes.  However, the 
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model can be extended to incorporate asymmetric stakes.18  In the remainder of this paper 

we will discuss the application of this model to trial win rate data. 

  

III. Discussion and Implications 

 

We have identified three main settings in which to examine the tendency of 

plaintiff win rates toward fifty percent, as hypothesized by Priest and Klein.  The first is 

where the censoring function (probability of litigation conditional on the guilt level) is 

symmetric over the range of guilt levels with a maximum at fifty percent.  The second is 

where the censoring function has a maximum at fifty percent but is asymmetrical.  The 

third is where the litigants have asymmetric information.  There is a straightforward 

generalization of the Priest-Klein hypothesis: (1) under symmetric information and 

uncertainty, the plaintiff win rate tends toward fifty percent; (2) under symmetric 

information and asymmetric uncertainty, the win rate tends toward the pole with greatest 

uncertainty; and (3) under asymmetric information and symmetric uncertainty, the win 

rate favors the party with the information advantage 

 The symmetric censoring function corresponds to the original Priest-Klein 

analysis.  This is a setting that can be described, to use Holmes’s language, as one of 

penumbral uncertainty.  The uncertainty around the trial verdict is greatest when the 

defendant’s compliance is in a region of uncertainty between clear non-compliance and 

clear compliance.  Uncertainty at the edges is minimal.  Consider a medical malpractice 

case.  Under the law of torts, a doctor’s negligence is determined by his compliance with 

custom of the medical profession.  If the doctor complies with the custom he is not 

negligent, and conversely.  Uncertainty is minimal at the endpoints of compliance and 

noncompliance.  Litigation is most likely to arise when the fact of compliance is unclear.  

If both doctor and patient have symmetric information with respect to the facts, the 

conditions of the Priest-Klein analysis will hold.  Symmetric information might be 

observed when the doctor is charged with negligence in a course of conduct that is 

observable by the patient – for example, the diagnosis of a physical ailment. 

                                                 
18 Let the plaintiff’s payoff from litigation be the sum of the damage award J and the “stakes gain” G.  The 
defendant loses J and the “stakes loss” L.  The condition for litigation then becomes (Pp–Pd)(J+L) + Pp(G–
L) > C, which can then be treated in a manner similar to (1). 
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 The second case identified by the model of this paper is one of symmetric 

information where the level of uncertainty is greatest midway between the endpoints of 

compliance and noncompliance, but uncertainty is greater at one endpoint than at the 

other.  To use Holmes’s terms, this is the setting of asymmetric (or one-sided) umbral 

uncertainty.  This case was not identified in the Priest-Klein analysis, and has not been 

examined in previous analyses of trial selection.  Consider the road crossing example.  

Failing to look both ways is negligence.  On the other hand, looking both ways may have 

been deemed reasonable care in a previous case, but may not be under more complicated 

facts.  In other words, while there is a set of acts that will always be deemed a failure to 

comply, it may be impossible to identify a set of acts that will always be deemed 

compliance.  The umbral uncertainty associated with compliance may be greater than that 

associated with noncompliance.  The win rate will tend toward the node with greatest 

umbral uncertainty.  Thus, if the uncertainty surrounding the court’s decision in the case 

of compliance is greater than in the case of noncompliance, the win rate will tend toward 

a level less than fifty percent. 

 As an alternative example consider malpractice.  Many courts have replaced local 

standards of medical custom with national standards.  In a setting where the litigants 

expect that the local standard to be replaced by a national standard, there would be one-

sided umbral uncertainty, with the uncertainty associated with compliance greater than 

that associated with noncompliance.  The uncertainty would be legal rather than factual, 

but the difference is not important in this example.  Legal uncertainty simply means that 

the given facts of the case might generate a different legal outcome than expected under a 

particular view of the law.  This is no different from saying that given a clear rule, factual 

uncertainty implies that the clear legal rule might generate a different outcome than 

expected under a particular view of the facts.   

 The third set of cases identified by this model is informational asymmetry, a topic 

that the literature has explored.  Medical malpractice offers many scenarios of 

informational asymmetry.  If the patient is put under anesthesia, he will not know what 

procedures were performed on him, while the doctor will know.  Any negligence claim 

brought against the doctor will involve a patient who is ignorant of the facts bearing on 

the doctor’s compliance with medical custom during the period he was anesthetized.  



 39

Doctors who know they violated the custom will tend to settle, while doctors who know 

that they did not will litigate to judgment.  The result will be a tendency of the plaintiff 

win rate below fifty percent. 

 This model does not incorporate the asymmetric stakes argument of Priest and 

Klein, though it is not difficult to extend the model to do so.  For Priest and Klein, 

asymmetric stakes provided an argument that explained plaintiff win rates that 

consistently deviated from fifty percent.  However, we do not have a need to employ the 

asymmetric stakes argument, given that plaintiff win rates that deviate from fifty percent 

are generated on the basis of the uncertainty captured within this model. 

 There are difficult questions associated with the empirical application of this 

model.  Any attempt to empirically test this model would have to distinguish cases of 

penumbral uncertainty from asymmetric umbral uncertainty, and in addition distinguish 

cases of informational asymmetry.  Since penumbral uncertainty is a characteristic of all 

litigated disputes, the analyst would have to try to identify the cases where the effects of 

umbral uncertainty or informational asymmetry are likely to outweigh those of 

penumbral uncertainty.  Similarly, any attempt to use the model to provide a positive 

theory of trial outcome statistics must distinguish the various types of uncertainty that 

generate plaintiff win rate patterns that diverge from the fifty percent prediction. 

 Table 1 provides a summary of the salient results from empirical studies of trial 

selection.  The studies summarized in the table are those of Priest and Klein (1984), 

Eisenberg (1990), Kessler, Meites, and Miller (1996), and Waldfogel (1995).  Priest and 

Klein is the only article in the table that uses a sample based on state court trials.  The 

remaining three studies use samples from federal court.  The distinction could be 

important in examining the evidence of trial selection.  To bring a lawsuit in federal 

court, the plaintiff’s case must raise a federal question (e.g., an issue under a federal 

statute) or there must be “diversity of citizenship” between the plaintiff and defendant, 

meaning that the parties are not from the same state.  For the ordinary personal injury 

torts shown in the first two rows of Table 1, a large number of the lawsuits must be based 

on diversity, which means that the amount in controversy had to cross a minimum 

financial threshold. The diversity requirements impart some degree of selection 

immediately in the federal sample. 
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 In any event, if there are selection biases embedded in the federal sample, they are 

not obvious to the naked eye.  The most obvious impression is that the fifty percent 

hypothesis of Priest and Klein does not hold generally.  This paper’s model implies that 

the fifty percent win rate prediction will hold under rather special conditions: no (one-

sided) informational asymmetry, no asymmetric umbral uncertainty, and the underlying 

guilt distribution satisfies the conditions of Theorem 1. 



 41

 

        TABLE 1: 
 

      Summary of Plaintiff Win Rates in Four Studies 
 

 Priest-Klein 
(1984) 

Eisenberg 
(1990) 

Kessler et al. 
(1996) 

Waldfogel 
(1995) 

 
Personal injury 
torts  
(non-traffic) 
 

 
.51* 

(3,045) 

 
.46 

(3,808) 

 
.27 
(97) 

 
.15 

(639) 

 
Personal injury 
torts (traffic) 
 

 
.47 

(9,987) 

 
.60 

(3,261) 

 
.17 
(35) 

 
.34 

(337) 

 
Product liability 
 

 
.43 

(477) 
 

 
.25 

(3,255) 

 
.41 
(83) 

 
.01 

(243) 

 
Medical 
malpractice 
 

 
.40 

(202) 

 
.38 

(697) 

 
.00 
(6) 

 
.19 

(143) 

 
Employment 
discrimination 
 

  
.21 

(7,165) 

 
.15 

(448) 

 
.14 

(666) 

 
Antitrust 
 

  
.43 

(586) 

 
.26 
(31) 

 
.32 
(98) 

 
 
Years  
 
Court 

 
1959-1979 

 
State  

(Cook County) 
 

 
1978-1985 

 
Federal 

 

 
1982-1987 

 
Federal  

(7th Circuit) 

 
1984-1987 

 
Federal 

(S.D.N.Y.) 

     
    Notes: *Based on common carrier, injury on property, street hazard, and dramshop 
    categories in Table 7 of Priest and Klein (1984). 
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 The results that seem closest to the fifty percent prediction are the first two cells 

from the Priest-Klein study, showing plaintiff win rates for “non-traffic torts” and for 

“traffic torts”,19 and the first cell from the Eisenberg study, showing the win rate from 

“non-traffic torts”.  However, even within their respective rows, the win rates from the 

other studies diverge widely from the fifty percent prediction, though most of them are 

below fifty percent.  Waldfogel (1995) finds evidence that the fifty percent hypothesis 

holds in samples in which the trial rate is relatively low.  If the data in the first two rows 

were disaggregated by court or by year, the fifty percent result might be observed in 

specific courts or years in which trials were less frequent.  In addition, the first row 

(personal injury torts, non-traffic) aggregates different areas of litigation (premises 

liability, worker injury, etc.), some of which may fail to satisfy the requirements of the 

fifty percent prediction. 

 The more consistent patterns appear in the third through sixth rows.  The product 

liability, medical malpractice, employment discrimination, and antitrust categories show 

a consistent pattern of plaintiff win rates less than fifty percent.  

 The model in this paper incorporates two uncertainty based explanations for the 

win rates below fifty percent.  One is defendant-sided informational asymmetry: if the 

defendant has an informational advantage over the plaintiff, then the plaintiff win rate 

will tend to be less than fifty percent.  The other explanation is compliance-centered 

umbral uncertainty: if there is greater uncertainty associated with compliance than with 

noncompliance, win rates will tend toward the level associated with the compliance 

endpoint.  

 The consistent low win rates for medical malpractice litigation invite an 

explanation based on informational asymmetry.  Informational asymmetry with respect to 

facts is a recognized feature of medical malpractice litigation. 

                                                 
19 The personal injury torts (non-traffic) cell from Priest and Klein (the first cell in Table 1) excludes 
traffic-based torts,  medical malpractice, product liability, and worker injury torts.  Priest and Klein treated 
the last three categories as anomalous because of asymmetric stakes.  We think informational asymmetry is 
largely responsible for the results reported by Priest and Klein in these categories.  Priest and Klein 
reported high win rate for worker injury cases.  They could not explain the result.  The most  plausible 
explanation is that the worker injury lawsuits, which are brought by workers against non-employers (e.g., 
property owners), reflect selection based on asymmetric information.  Most weak worker lawsuits will be 
selected into workers compensation.  Workers who have relatively strong claims (say, because of an 
absence of any contributory negligence) will select into the tort system by suing non-employers. 
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 The low product liability win rates could also be explained by the asymmetric 

information theory.  Liability for defective design is determined by the risk-utility test, 

which compares the incremental risk and the incremental utility of the challenged design 

relative to some feasible safer alternative.  The test may give an informational advantage 

to the defendant, provided the defendant knows more than the plaintiff about the 

incremental risk and the range of feasible alternatives, which seems plausible.  But this is 

unlikely to be a complete explanation for the low win rates.  The risk and utility features 

of many products are easily observable or at least discoverable early in a trial.20 In 

addition, some courts have shifted the burden of proof on the risk-utility where evidence 

is entirely in the hands of the defendant.21   Given this, compliance-centered umbral 

uncertainty provides an alternative explanation for the low win rates in product liability 

litigation.  In cases where the product cannot be made entirely free of risk, there is no 

absolutely safe feasible alternative; the manufacturer has to trade off some risks for 

others.  In these cases, there is likely to be a great deal of uncertainty over the extent of 

compliance.  A firm that concludes, after a review of the risk tradeoffs, that its product is 

relatively safe will still face substantial uncertainty over whether a court would find that 

the design was defective. 

 Employment discrimination and antitrust share the same features as product 

liability.  There is a plausible argument in both areas that the defendant has an 

informational advantage, more so in the discrimination case than in the antitrust case.  

The defendant in an employment discrimination action knows more about the efficiency 

justifications for its decisions than will the plaintiff.  But employment discrimination is 

an area where compliance-centered umbral uncertainty is likely to exist.  An employer 

can design a test for screening potential employees with the purpose of avoiding a 

discriminatory impact, and still be unsure that it would not lose in a discrimination 

lawsuit later brought on the basis of the test outcome. 

 We have not attempted to conduct an empirical test of the selection pressures 

identified in this article.  However, such a test should start with identifying areas in which 

informational asymmetry or one-sided umbral uncertainty are likely to dominate the 

                                                 
20 Of course, the discovery process may not fully reveal the private information of the defendant, see Hay 
(1995).  Discovery may be insufficient to change the dispute into a symmetric information case. 
21 See, e.g., Barker v. Lull Engineering Co., 573 P.2d 443 (Cal. 1978). 
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penumbral uncertainty emphasized by Priest and Klein.  This requires an examination of 

the relevant legal tests that will determine the outcome of litigation.  The simplest types 

of litigation to examine will be those in which the legal test examines the conduct of only 

one party.  For example, in medical malpractice cases, the legal test focuses on the doctor 

alone; contributory negligence is almost never an issue.  Within the set of tests that focus 

on the conduct of one actor, the relative influence of informational asymmetry and 

penumbral uncertainty can be assessed.  

 

IV. Conclusion 

 

We have offered a model that unifies existing trial selection theories and 

introduces a new theory as well.  The model identifies conditions under which the fifty 

percent prediction holds, and also suggests that the conditions under which it holds are 

unlikely to be observed generally. The symmetric information version of our model, 

which incorporates the Priest-Klein analysis, generates the fifty percent prediction of the 

Priest-Klein analysis.  However, it also predicts win rates that deviate from fifty percent 

when litigation uncertainty is greater at one end of the guilty spectrum than at the other.  

The general prevalence of below fifty percent win rate statistics in litigation may be 

explained by the simple fact that trial outcome uncertainty surrounding compliance is 

often greater than uncertainty surrounding noncompliance. 
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