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On a games theory of random coalitions
and on a coalition imputation

Oleg Vorobyev1

Ellen Goldenok,2, and Helen Tyaglova3

Abstract
The main theorem of the games theory of random coalitions is reformulated in
the random set language which generalizes the classical maximin theorem but
unlike it defines a coalition imputation also.

The theorem about maximin random coalitions has been introduced as a
random set form of classical maximin theorem. This interpretation of the max-
imin theorem indicate the characteristic function of the game and its close con-
nection with optimal random coalitions. So we can write the apparent natural
formula of coalition imputation generalizing the strained formulas of imputa-
tion have been in the game theory till now. Those formulas of imputation we
call the strained formulas because it is unknown from where the characteristic
function of the game appears and because it is necessary to make additional
suppositions about a type of distributions of random coalitions. The reformu-
lated maximin theorem has both as its corollaries. The main outputs are two
results of the games theory were united and the type of characteristic function
of game defined by the game matrix was discovered.
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Slow and steady wins the race.
English saing

Introduction

Metaphysical systems. Neither economic, social nor political systems can be imagined
without a man. More over every such system can be defined as a set of ”small” in-
dividuals whose interactions are realizing in forming, existence and disintegration of
social, economical or political coalitions. These systems resemble systems of physical
particles in statistic mechanics excepting one: interactions of metaphysical particles
is defined by their intellect, feelings, social, economical and political state, never by
physical laws. So although metaphysical particles exist in usual physical space they
are showing themselves as elements of some virtual abstract metaphysical space essen-
tially. Great Von Neumann was the fist who noticed [1] that the classic mathematics
had been created mainly for solving problems of physics cannot be used for description
of these systems. A new theory is necessary to make a correct description of interac-
tions of particles in metaphysical systems. It is similar with statistic mechanics but
quite different from it. This new theory can be called the mathematical metaphysics.

Metaphysical particles are individuals or some material or non-material elements
that sets arise, support and disintegrate by participate of individuals. For example,
sets of everyday events, sets of financial instruments on financial markets, sets of
goods on good markets and etc. The metaphysical system can be consider as a set
of interacting metaphysical particles interaction of that shows by forming, supporting
and disintegrating random sets consist of these particles.

We are elements of metaphysical systems. The principle difference metaphysics
from physics is the possibility to imagine oneself as a metaphysical particle in the
true without any stretch, because a subject of metaphysics is statistical mutual de-
pendencies between individuals that are fastened them by random coalitions. This is
impossible chance in physics to look at the situations from inside to imagine oneself
as an element of random coalition with own variance and covariance with neighbours.
This possibility allows us to make new interpretation of many usual statistic ideas of
metaphysics.

Being among sets of metaphysical systems. Our being is a being inside and among
sets of metaphysical systems. The individual being combined with others always
recreates a diversity of metaphysical systems involving us into life process. We always
take part, enter and exit from set of different mutual dependent coalitions that raised
a metaphysics interaction between them on different levels and spheres. Levels of
metaphysical interactions: nation, ethnos, mass, society, crowd, group and others.
Spheres of metaphysical interactions: politics, economics, finance, insurance, science,
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education, history, psychology, sociology, philosophy and others.
Bases of mathematical metaphysics. There are a lot of reasons to think that modern

theory of games and utilities transformed to the theory of random coalition games
and the mathematical theory of needs and risks with the random set theory, statistic
mechanics of metaphysics, will found a theory never called the mathematical meta-
physics, perhaps. But its mathematical idea will be just defined by these three math-
ematical bases.

Mathematical theory of needs, utilities and risks. The leading idea of the utility and
making decision theory is an individual coming to a decision ruled by his own prefer-
ences. The aim of mathematical analysis of making decision is to choose such behavior
of the individual that consequences will be the most prefer and the probabilities of
states of metaphysical system will be the most acceptable for himself. Even the utility
theory formed in XVIII and XIX its main development had happened in the second
part of the XX century. The main contribution to that development made economics,
statistics, mathematics, psychology and cybernetics. The next development of the
utility theory is connected with the random set theory and especially with the integer
random set theory, that will be consolidated with the theory of risks to make a new
mathematical theory of needs based on the random set approach of description of a
structure of preferences of the individual as a metaphysical particle.

Random set theory. The theory of random finite abstract sets is the theory of
random elements with values of the set of all subsets of the finite abstract set. The
main idea of the modern random set theory is that structure of statistic mutual
dependencies of subsets of the finite set defined fully by random set distribution has
been given on the set of all its subsets. Distribution of a random set is a useful
mathematical instrument for description of all possible ways to combine elements into
coalitions other words all ways of interaction elements between each other. Although
the random set theory is connected with the multivariate statistical analysis but its
subject for examine is a random finite abstract set that differs from the random vector
because it belongs to abstract spaces had no usual linear structures. The random set
theory has been developed last years. This development was promoted by its use for
description of metaphysical systems.

Dependencies of events are the base of probability theory pyramid. Random sets keep
on our attention again and again to the intent examination of dependencies, a single
important subject of the probability theory. It differs the probability theory from the
general measure theory and turns up the pyramid of the probability theory, put it in
natural position. Therefore instead of examination of rare statistic independency on
the boundless underground of dependencies we will examine a diversity of statistic
dependencies on the pure independent underground.

Metric covariance and covariance analysis of events. Covariance analysis of events
is a part of the probability theory formed its base as a science has been destined to
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study structures of dependencies between events. Now in covariance analysis one can
formulate more problems than their decisions.

A notion of the covariance between random sets is introduced which didn’t exist up
to now but which is analogous to the usual notion of the covariance between random
variables. Seldom in the modern probability theory it is called an attention to the
metric interpretation of the covariance which is lied in a base of the new notion.

Game is a model of conflict. We are surrounded by world of conflicted random
coalitions, all of us participate in their game directly. Game is thought as the best
model of conflict and the game theory is thought as the best mathematical theory of
conflicts since Von Neumann times till now [1].

Random set coalitions theory. Forming, existence and disintegration of coalitions
of individuals is a metaphysical phenomenon. It is clear that the classical description
of game in characteristic form does not take into account any state for metaphysical
limitations that promote for development of coalitions. An absence of adequate math-
ematical instruments describing forming, existence and desintegration of coalitions as
consequence of metaphysical reasons is a main theoretical and practical gap in modern
theory of games. This theoretical gap can be supplied by the random set theory that
gives new ideas a random coalition and coalition imputation. These main ideas of the
random set games theory help to formulate and to prove a random set analogy of the
maximin theorem, that not only guarantees existence of equilibrium random strategies
(random coalitions) but find value of game for every gambler (coalition imputation).

Maximin theorem by Von Neumann in random set language. If in reasons by Von Neu-
mann brought him to the proof of the maximin theorem [1] we will consider random
coalitions of gamblers instead of separate gamblers then for this game we proved gen-
eralized maximin theorem, the theorem of existence of number of equilibrium random
coalitions.

So given the set simple defines characteristic function of every random coalition
as so called equilibrium coalition imputation generalizing value of characteristic game
by Shapley [3] and index of Banzaf [2] and probabilistic value of characteristic game
by Vilkas [5].

1 Theorem about maximin random coalitions

Let consider a finite set of gamblers

X = {x1, . . . , xN}
under which two independent random coalitions of gamblers are defined as two inde-
pendent random finite abstract sets (RFASs)

K : (Ω,F ,P) →
(
2X, 22X

)
, K ′ : (Ω,F ,P) →

(
2X, 22X

)
.
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Other words arbitrary subsets X ⊆ X are the values of these random coalitions, i.e.
each coalition has the same set 2X of pure strategies. A payoff function of the first
coalition K is defined on the set of all possible outcomes of game 2X×2X (the cartesian
product of sets of pure strategies)

g : 2X × 2X → R,

by a matrix of game

g =
{
g(X,X ′) : (X, X ′) ∈ 2X × 2X

}
.

Definition (game of two random coalitions with zero sum). A triple of objects

(K,g, K ′) ,

are forming by two random coalitions K and K ′ and a matrix of game g is called a
game of two random coalitions with zero sum.

It has no trouble to reformulate the main theorem of games theory (the maximin
theorem) for the game of two random coalitions with zero sum.

Theorem (about maximin for the game of two random coalitions with zero sum). For
any game (K,g, K ′) there are such random coalitions K and K ′ with distributions

p(K) =
{
p(X) : X ∈ 2X

}
, p′(K ′) =

{
p′(X) : X ∈ 2X

}
, (1)

that
max

K
min
K′

Eg(K, K ′) = min
K′

max
K

Eg(K,K ′),

where
Eg(K,K ′) =

∑

X∈2X

∑

X′∈2X

g(X, X ′)p(X)p′(X ′)

is an expectation of prize for the first random coalition. Other words it is an expecta-
tion of random variable g(K, K ′), which values are corresponded to elements g(X, X ′)
of the matrix g with probabilities

p(X)p′(X ′) = P(K = X, K ′ = X ′), (X, X ′) ∈ 2X × 2X.

Before proving the theorem let introduce some notation and formulate auxiliary
statements. Let

PX =

{
p =

(
p(X), X ∈ 2X

)
: p(X) ≥ 0,

m∑

X∈2X

p(X) = 1

}
=
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=
{

K : K is a RFAS under X
}

be a 2|X|-simplex or a space of all probabilistic distributions under X, or a space of all
random coalitions under X. Let introduce notation to the values

V (g) = max
K

min
K′

Eg(K, K ′), V ′(g) = min
K

max
K′

Eg(K, K ′),

describing the matrix of game g.

Statement 1. For a square matrix

g =
{
g(X,X ′) : (X,X ′) ∈ 2X × 2X

}

there is the RFAS K with distribution p(K) ∈ PX where4

g · pT (K) ≤ 0, (2)

or there is the RFAS K ′ with distribution p′(K ′) ∈ PX where

p′(K ′) · g ≥ 0. (3)

The vector form has been used in Statement 1 is equivalent to the next

g · pT (K) ≤ 0 ⇐⇒
∑

X∈2X

g(X, X ′)p(X) ≤ 0, X ′ ∈ 2X,

p′(K ′) · g ≥ 0 ⇐⇒
∑

X′∈2X

g(X, X ′)p′(X ′) ≥ 0, X ∈ 2X.

Statement 2. For any function ϕ on 2X × 2X

max
X

min
X′

ϕ(X,X ′) ≤ min
X′

max
X

ϕ(X, X ′).

Lemma 1. For any random coalition K with distribution p(K) ∈ PX

min
K′

Eg(K, K ′) = min
K′

∑

X∈2X

∑

X′∈2X

g(X, X ′)p(X)p′(X ′) = min
X′∈2X

∑

X∈2X

g(X, X ′)p(X),

(4)

4Here pT (K) is the transposed vector of distribution vector p(K).
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for any random coalition K ′ with distribution p′(K ′) ∈ PX

max
K

Eg(K,K ′) = max
K

∑

X∈2X

∑

X′∈2X

g(X, X ′)p(X)p′(X ′) = max
X∈2X

∑

X′∈2X

g(X, X ′)p′(X ′).

(5)

Proof of theorem. Firstly

max
K

min
K′

Eg(K, K ′) ≤ min
K′

max
K

Eg(K, K ′),

is going from the Statement 2. Or in our notation

V (g) ≤ V ′(g). (6)

If (3) of Statement 1 is true the random coalition K with distribution pK ∈ PX

will exist. And for this coalition
∑

X∈2X

g(X, X ′)p(X) ≥ 0, X ′ ∈ 2X,

therefore
min
X′

∑

X∈2X

g(X,X ′)p(X) ≥ 0.

Hence V (g) ≥ 0 because (4) and the definition of value V (g) take places.
If (2) of Statement 1 is true the random coalition K ′ with distribution pK′ ∈ PX

will exist. And for it
∑

X′∈2X

g(X,X ′)p′(X ′) ≤ 0, X ∈ 2X,

so
min

X

∑

X′∈2X

g(X,X ′)p′(X ′) ≤ 0.

Therefore V ′(g) ≤ 0 because (5) and the definition of value V ′(g) take places.
Evidently V (g) ≥ 0 or V ′(g) ≤ 0 has to be. Other words

V (g) < 0 < V ′(g). (7)

is impossible.

Let choose a value z and instead of the matrix g use the matrix

gz =
{
gz(X, X ′) : (X, X ′) ∈ 2X × 2X

}
=

{
g(X,X ′)− z : (X, X ′) ∈ 2X × 2X

}
.
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So there is

Egz(K,K ′) = Eg(K, K ′)− z
∑

X∈2X

∑

X′∈2X

p(X)p′(X ′) = Eg(K, K ′)− z.

So
V (gz) = V (g)− z, V ′(gz) = V ′(g)− z.

can be written in analogy. If we apply the same algorithm has been put to (7) to
V (gz) and to V ′(gz) we can see

V (g) < z < V ′(g) (8)

is right for any value z. Let V (g) < V ′(g) be true. We can find value z then (8) will
be true. But it is impossible. So only one possibility is going from (6) for the values
V (g) and V ′(g)

V (g) = V ′(g).

The theorem is proved.

Definition (optimal random coalitions). Random coalitions K and K ′ are called
optimal or maximin relatively game matrix g whenever they are satisfied to

max
K

min
K′

Eg(K, K ′) = min
K′

max
K

Eg(K,K ′).

Remark 1. If the game matrix g have no a saddle point, i.e. a strict inequality

max
X∈2X

min
X′∈2X

g(X,X ′) < min
X′∈2X

max
X∈2X

g(X, X ′)

is true then the optimal random coalitions exist and they are unique according the
maximin theorem.

In result according to the random set reformulation of maximin theorem for the
saddleless matrix of game of two coalitions with zero sum the two unique optimal
random coalitions K and K ′ provide an optimal game. A deviation of the optimal
game will result losses in prize of the coalition which behavior is not optimal.

2 Coalition imputation as corollary of the random

set reformulation of maximin theorem

Let consider a game of two random coalitions under the same finite set of gamblers
X. Each gambler x ∈ X can choose a one of four ways to enter into two random
coalitions:

{x ∈ K,x ∈ K ′}, {x ∈ K,x 6∈ K ′}, {x 6∈ K, x ∈ K ′}, {x 6∈ K, x 6∈ K ′}.
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Each coalition of gamblers X ∈ 2X has two mean prizes as outputs of games of two
random coalitions K and K ′. The first mean prize

w(X) = Eg(X, K ′) =
∑

X′∈2X

g(X,X ′)p′(X ′)

is for the participation in game on side of the first random coalition and the second
mean prize

w′(X ′) = Eg(K, X ′) =
∑

X∈2X

g(X, X ′)p(X)

is for the participation in game on side of the second coalition.
It is taking a curious situation when the maximin theorem only reformulated for

games of random coalitions not only asserts the existence of optimal coalitions but
also defines two functions

w(K) =
{
w(X), X ∈ 2X

}
, w(K ′) =

{
w′(X), X ∈ 2X

}
, (9)

where w(X) and w′(X) are the mean prizes of the coalition X ∈ 2X for its participation
on side of the first and the second random coalitions. These functions in the modern
games theory are called characteristic functions of game [4]. Basing ourselves on the
characteristic functions of game the existence of which follows from the random set
reformulation of maximin theorem we can make a formula of coalition imputation for
each gambler as a sum of coalition imputations for his participation in the first and
in the second random coalition:

ϕx = ϕx(K) + ϕx(K
′) =

= E
(
w(K ′)− w(K ′ \ {x})

)
+ E

(
w′(K)− w′(K \ {x})

)
(10)

This formula generalizes the formula of imputation by Shapley [?]:

ϕx[w] =
∑

{x}⊆X⊆X

(|X| − 1)!(N − |X|)!
N !

(
w(X)− w(X \ {x})

)
, x ∈ X, (11)

and the index of Banzhaf [2]:

ϕx[w] =
∑

{x}⊆X⊆X

1

2N−1

(
w(X)− w(X \ {x})

)
, x ∈ X, (12)

and the formula by Vilkas [5]:

ϕx[w] =
∑

{x}⊆X⊆X

πx(X)
(
w(X)− w(X \ {x})

)
, x ∈ X. (13)
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3 Comparison of coalition imputation with formu-

las by Shapley, Banzhaf and Vilkas

Let compare formulas of imputation by Shapley (11), Banzhaf (12) and Vilkas (13)
with the formula of coalition imputation (10) and let only indicate their suppositons.
In all formulas the authors suppose evident or non evident the existence of probabilistic
distribution of some random coalition we shall mark K. Vilkas makes an apparent
supposition of the existence of some random coalition. Shapley and Banzhaf make the
same but tacitly. Apparently they didn’t realize that the existence of some random
coalition is supposed by them really. In reality the random coalition itself is not needed
for them. Since they used instead of it its ”projections”, i.e. random coalitions like

Kx = K \ {x}, x ∈ X,

the distribution of which is defined by distribution of the random coalition K and
looks like

px =
{

px(X) = pK(X) + pK(X + x), X ⊆ {x}c
}

, x ∈ X,

where
pK =

{
pK(X), X ∈ 2X

}

is the distribution of random coalition K and {x}c = X \ {x} is a complement of {x}.
So axioms by Shapley are equivalent to an idea that ”projections” Kx of the random
coalition K have the same distributions for any x ∈ X:

px(X) =
|X|!(N − |X| − 1)!

N !
, X ⊆ {x}c.

Suppositions by Banzhaf are equivalent to an idea that ”projections” have the uniform
distribution

px(X) =
1

2N−1
, X ⊆ {x}c.

And only Vilkas say about arbitrary probabilistic distributions of ”projections” Kx:

px(X) = πx(X), X ⊆ {x}c,

but he entails the random coalition K generating ”projections” Kx and about types
of distributions of these ”projections”.
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