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Abstract

This paper explores a class of Stackelberg differential games in which the open-loop

strategies of the leader satisfies time consistency. We show that in this class of games

the open-loop equilibrium coincides with the corresponding feedback equilibrium. The

analytical framework used in this paper involves the models examined by the several

recent contributions to the time consistency issue as special cases.
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1 Introduction

It is well known that in the open-loop Stackelberg differential games, the optimal strategies

of the leader are in general time inconsistent. Namely, the sequence of the strategies of the

leader decided at the initial period will be suboptimal when they are re-evaluated at a later

period. Recently, Xie (1997), Lansing (1999) and Long and Shimomura (1999) present coun-

terexamples to this proposition. They examine a class of Stackelberg differential games in

which the open-loop equilibrium satisfies time consistency. Although those authors presented

a variety of models with different economic implications, their models have a common fea-

ture: the trajectories of the costate variables of the follower’s problem are independent of the

leader’s strategies. Precisely speaking, in their models the open-loop solution coincides with

the corresponding feedback solution. Focusing on this fact, the present paper clarifies the

conditions under which the open-loop Stackelberg strategies are time consistent. The ana-

lytical framework we use in this paper involves the models studied by the authors mentioned

above as special cases.

2 A Stackelberg Differential Game

2.1. The Analytical Framework

For expositional simplicity, we assume that the optimization problems of the leader and

the follower involve the same state variables and the same dynamic constraints. In addition,

both the leader and the follower are assumed to have an infinite time horizon with a common

discount rate. These assumptions are not essential for the main results derived below. Assume

that the follower maximizes

U =

Z ∞

0
e−ρtu (xt, ct, zt) dt

subject to

ẋt = g (xt, ct, zt) , (1)

where xt ∈ Rn × [0,∞] is the vector of state variables, and ct ∈ Ωc ⊆ Rm × [0,∞] and
zt ∈ Ωz ⊆ Rr × [0,∞] respectively denote vectors of control variables of the follower and
the leader. The initial value of xt is also given for the follower. In the case of open-loop
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Stackelberg game, the leader announces the whole sequence of its control variables, {zt}∞t=0 ,
which are functions of time. The follower takes this sequence as given and selects own optimal

strategy, {ct}∞t=0 . Then taking the optimal reactions of the follower into account, the leader
maximizes its objective functional

V =

Z ∞

0
e−ρtv (xt, ct, zt) dt

subject to the optimization conditions of the follower, the dynamic constraint (1), and the

initial condition on xt. Note that U and V may be identical, as in the case where the benev-

olent government (the leader) selects its policies to maximizes the welfare of the public (the

follower).

To derive the optimization conditions of the follower, set up the Hamiltonian function

such that

H (xt, ct, zt, pt) = u (xt, ct, zt) + ptg (xt.ct, zt) .

Assuming the existence of interior solutions, the necessary conditions for an optimum are:

uc (xt, ct, zt) + ptgc (xt, ct, zt) = 0, (2)

ṗt = pt [ρ− gx (xt, ct, zt)]− ux (xt, ct, zt) , (3)

together with (1) and the transversality condition:

lim
t→∞ e

−ρtptxt = 0. (4)

From (2) the follower’s control variables may be expressed as

ct = c (xt, zt, pt) . (5)

Accordingly, by use of (3) and (5), the leader’s optimization problem is given by

max
{zt}∞t=0

Z ∞

0
e−ρtv (xt, c (xt, pt, zt) , zt) dt

subject to

ẋt = g (xt, c (xt, pt, zt) , zt) , (6)

ṗt = pt [ρ− gx (xt, c (xt, pt, zt)) , zt]− ux (xt, c (xt, ptzt) , zt) , (7)
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together with (4) and the initial condition on xt. The optimal choice of {zt}∞t=0 for this
problem gives the open-loop Stackelberg strategies of the leader.

2.2. The Time-Consistency Condition

Let us define the value function of the leader’s problem as follows:

V̂ (xt, pt) = max
{zs}∞s=t

½Z ∞

t
e−ρ(t−s)v (xs, c (xs, ps, zs) , zs) ds s.t. (1), (4), (6), (7)

¾
.

Since pt is the vector of costate variable of the follower’s optimization problem, its initial

value may be selected by the leader. Hence, if we assume that V̂ satisfies concavity, the

initial value of the follower’s costate variables pt should be chosen to maximize V̂ (x0, p0)

under a given level of x0. The first-order condition is

μ0 = V̂p (x0, p0) = 0, (8)

where μt denote the vector of costate variables for pt. This gives one of the transverality

conditions for the leader’s problem.1 If the leader reoptimizes at period t > 0, by the same

reason it should hold μt = V̂p (xt, pt) = 0. However, the value of μt starting from μ0 (= 0) is

not generally zero, implying that the leader’s planning set at the initial period exhibits time

inconsistency.

The well-known result shown above can be restated in the following manner. First,

consider the value function of the follower:

Û (xt, Zt) = max
{cs}∞s=t

½Z ∞

t
e−ρ(s−t)u (xs, cs, zs) ds s.t. (1)

¾
,

where Zt denotes the sequence of leader’s control variables after t, i.e. Zt = {zs}∞s=t . Then
assuming that the value function is differentiable with respect to x, we obtain

pt = Ûx (xt, Zt) . (9)

This demonstrates that the levels of costate variables time t depend on the entire sequence

of the leader’s control variables after t. Thus the current levels of the follower’s control
1See Bryson and Ho (1975, pp56-57). Dockner et al. (2000) present a general discussion about the time

consistency issue in differential games.
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variables also depend on the future values of the leader’s control variables in such a way

that ct = c
³
xt, Ûx (xt, Zt) , zt

´
. By use of this relation, the dynamic equation that describes

behavior of the state variables is expressed as

ẋt = g
³
xt, c

³
xt, Ûx (xt, Zt) , zt

´
, zt

´
. (10)

As a result, the leader’s optimization problem can be rewritten as:

max
{zt}∞t=o

Z ∞

0
e−ρtv

³
xt, c

³
xt, zt, Ûx (xt.Zt)

´
, zt

´
dt

subject to (10) and the initial level of xt. It is now obvious that the instantaneous value

of v (xt, ct, zt) depends not only on the control variable of the leader at time t but also on

the entire sequence of the leader’s strategies after t, Zt = {zx}∞s=t . Therefore, the optimiza-
tion planning of the leader does not generally have a recursive property, and thus the time

consistency fails to hold in the open-loop Stackelberg equilibrium.

As emphasized above, the source of time inconsistency is that the vector of costate vari-

ables for the follower’s problem, pt,depends upon the values of the leader’s control variables

after t. Considering this fact, we immediately obtain the following proposition:

Proposition 1 The open-loop solution of a Stackelberg differential game satisfies time con-

sistency, if the follower’s value function is additively separable between the state variables and

the control variables of the leader, that is, Û (xt, Zt) is written as

Û (xt, Zt) = φ (xt) + ψ (Zt) . (11)

Proof. If the value function of the follower is expressed as (11), from (9) we obtain

pt = φx (xt) . (12)

In this case, the costate variables in the follower’s optimization are independent of the leader’s

strategies. Hence the initial level of pt is determined by x0 alone, so that the transversality

condition (8) cannot hold. When (11) is satisfied, the follower’s control variables are free

from the future values of strategies of the leader and thus they are functions of the current
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levels of xt and zt such as ct = c (xt,φ (xt) , zt) . Hence, the optimization problem the leader

solves is to maximize Z ∞

0
e−ρtv (xt, c (xt,φ (xt) , zt) , zt) dt

subject to

ẋt = g (xt, c (xt,φ (xt) , zt) , zt) (13)

and the initial condition on xt. Since in this setting the objective functional of the leader

satisfies time additive separability, the optimization problem of the leader has a recursive

property. Accordingly, the leader’s value function depends on xt alone and it is given by

V̂ (xt) = max
{zs}∞s=t

½Z ∞

t
e−ρ(t−s)u (xs, c (xs,φ (xs) , zs)) ds s.t. (13)

¾
.

This function should satisfy the Hamilton-Jacobi-Bellman equation:

ρV̂ (xt) = max
zs∈Ωz

n
u (xt, c (xt,φ (xt) , zt) , zt) + V̂x (xt) g (xt, c (xt,φ (xt) , zt) , zt)

o
.

The first-order condition for maximization yields

uccz + uz + Ŵx [gccz + gz] = 0.

Using the above condition, the optimal strategies of the leader may be expressed as zt =

z (xt) , which is the feedback strategy of leader. Since the leader’s planning is a ’game against

the nature’, the feedback strategies coincide with the open-loop strategies. ¤

Although this proposition presents a sufficient condition for establishing a time-consistent

Stackelberg equilibrium, the separability assumption of the follower’s value function is too

broad for practical applications. In the next section we examine narrower conditions in the

context of a simple example.

3 A Simple Example

In what follows, we assume that xt, ct and zt are scalers. The instantaneous objective function

of the follower is assumed to be additively separable between ct and zt, and it does not involves

the state variable:

u (xt, ct, zt) = v (cr) + w (zt) , (14)
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In addition, g (.) is specified as

ẋt = g (xt, ct, zt) = α (zt) f (xt) + β (ct)h (xt) , (15)

where α (zt) and β (ct) are monotonic and strict concave functions. Then the follower’s

optimal conditions (2) and (3) respectively become

v0 (cr) + ptβ0 (ct)h (xt) = 0, (16)

ṗt = pt
£
ρ− α (zt) f (xt)− β (ct)h

0 (xt)
¤
. (17)

Given the above specifications, the condition under which the follower’s value function is

additively spareable between xt and Zt (= {zs}∞s=t) may be summarized as follows:

Proposition 2 Suppose that the instantaneous objective function of the follower and the

dynamic constraint are respectively given by (14) and (15). Then the value function of the

follower is additively separable between xt and Zt, if the following holds:

β (ct) =
ρ

f 0 (xt)

∙
h0 (xt)
f 0 (xt)

− h (xt)
f (xt)

¸−1
. (18)

Proof. In view of (15) and (17), the trajectory of (xt, pt) on the x-p space satisfies the

relation below:2

dpt
dxt

=
pt [ρ− α (zt) f

0 (xt)− β (ct)h
0 (xt)]

α (zt) f (xt) + β (ct)h (xt)
, (19)

where ct fulfills (16). Since (9) holds for any feasible xt, we obtain dpt/dkt = Ûkk (xt, Zt) on

the optimal trajectory of the follower’s problem. This means that if the right hand side of

(19) is written as a function of xt alone, then pt also depends only on xt. Rewriting (19) as

dpt
dxt

.
1

pt
=
f 0 (xt)
f (xt)

∙
ρ

f 0 (xt)
− α (zt)− β (ct)h

0 (xt)
f 0 (xt)

¸ ∙
α (zt) +

β (ct)h (xt)

f (xt)

¸−1
,

we find that if (18) holds, the above becomes

dpt
dxt

.
1

pt
= −f

0 (xt)
f (xt)

. (20)

2 If the model involves a feasigle steady state where ṗ = ẋ = 0, condition (19) is defined out of the steady

state.
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This shows that pt is a function of xt. Denoting pt = φ0 (xt) , (20) is expressed as

φ00 (xt)xt
φ0 (xt)

= −ε (xt) , (21)

where ε (xt) (= f 0 (xt)xt/f (xt)) denotes the elasticity of f (xt) function. By solving (21) with

respect to φ0 (xt) , we obtain

φ0 (x) = exp
µ
−A

Z
ε (x)

x
dx

¶
, (22)

which means that the value function of the follower may be expressed as

Û (xt, Zt) =

Z
exp

µ
−A

Z
ε (x)

x
dx

¶
dx+ ψ (Zt) +B,

where A and B are constants.¤

When (18) is fulfilled so that the separability condition holds, (16) becomes

v0 (ct) + φ0 (xt)h (xt)β0 (ct) = 0.

As a result, by use of (18) we obtain

φ0 (xt) = − v0 (∆ (xt))
β0 (∆ (xt))h (xt)

, (23)

where

∆ (xt) = β−1
Ã

ρ

f 0 (xt)

∙
h0 (xt)
f 0 (xt)

− h (xt)
f (xt)

¸−1!
.

In the simplest case where β (ct) = ct and h (xt) = −1, (18) reduces to

ct =
ρf (xt)

f 0 (xt)
. (24)

Thus (23) becomes

φ0 (xt) = v0
µ
ρf (xt)

f 0 (xt)

¶
.

This means that by (22) v (ct) and ε (x) functions must satisfy:

v0
µ

ρxt
ε (xt)

¶
= exp

µ
−A

Z
ε (x)

x
dx

¶
. (25)

In this example, the Hamilton-Jacobi-Bellman equation for the leader’s problem is given by

ρV̂ (xt) = max
zt

½
v

µ
xt,

ρf (xt)

f 0 (xt)
, zt

¶
+ V̂ 0 (xt)

∙
α (zt) f (xt)− ρf (xt)

f 0 (xt)

¸¾
.
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Therefore, the optimal choice of zt must satisfy

vz

µ
xt,

ρf (xt)

f 0 (xt)
, zt

¶
+ V̂ 0 (xt)α0 (zt) f (xt) = 0.

This gives the stationary feedback solution of zt = z (xt).

If the elasticity of f (xt) is constant (φ00 (x)x/φ0 (x) = −ε), then (25) becomes

v0
³ρxt

ε

´
= eAx−εt .

Hence, v (ct) should take a CES form such that

v (ct) =
Bc1−ε − 1
1− ε

.

The is the case corresponds to the finding by Xie (1997)3.

Finally, it is to be noted that Lansing (1999) and Long and Shimomura (1999) examine

the models in which v (ct) = log ct and f (xt) = xt, and thus their examples are special case of

the above with ε = 1.4 In this case, from (24) the optimal choice of ct is ct = ρxt. Therefore,

the behavior of xt is ẋt = [α (zt)− ρ]xt, which yields xs = xt exp
¡R s
t (α (zξ)− ρ) dξ

¢
. The

value function of the follower is thus given by

Û (xt, {zs}∞s=t) = log xt +
Z ∞

t
e(t−s)ρ

∙Z s

t
[α (zξ)− ρ] dξ +w (zs)

¸
ds+ log ρ.

4 A Concluding Remark

This paper studies the conditions under which the open-loop equilibrium in a Stackelberg

differential game coincides with the corresponding feedback equilibrium so that the open-loop

solution holds time consistency. The separability condition on the follower’s value function

3Xie (1997) considers a dynamic optimal taxation problem in a representative agent economy which is

close to Chamley’s (1986) model. The instantaneous utility function of the household is assumed to be

u (c) + w (z) , where c is consumption and z is the government spending. Capital accumulation is described

by ẋ = (1− τ) f (x)− c, where x is capital stock and τ denotes rate of income tax that satisfies z = τf (x) .

The main example analyzed by Xie (1997) is the case where u (c) = c1−ε/ (1− ε) and f (x) = xε.
4By assuming a logarithmic utility, Lansing (1999) re-examines the optimal income redistribution issue

addressed by Judd (1985). Long and Shimomura (1999) applies a model with logarithmic utility to international

economics.
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shown above is obviously a restrictive one. Even in a simple model with a single state variable,

it needs specific forms of functions involved in the model. However, this special class of

models would be very helpful to consider what will happen if the time consistency condition

is imposed on the Stackelberg dynamic games. The feedback solution of the differential games

is generally hard to examine analytically except for the linear-quadratic models. Therefore,

our special examples may serve to clarify the difference between the time inconsistent and

time consistent policies in a dynamic game setting.5

5See also Kemp, Long and Shimomura (1993) for further applications.
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