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Technological Spillovers and Patterns of Growth with

Sector-Specific R&D

Junko Doi∗and Kazuo Mino†

September 2004

Abstract

This paper studies a two-sector model of endogenous technical change in which ex-

pansion of each production sector is associated with sector-specific R&D investment. It

is shown that the pattern of growth is sensitive to the specification of intersectoral tech-

nological spillover as well as to the preference structure. If technological spillovers and

preferences of consumers are represented by CES functional forms, the balanced-growth

equilibrium may not exhibit a well-behaved saddlepoint property: it is possible that the

balanced-growth path is locally indeterminate or unstable. In addition, a slight modifi-

cation of technological spillover effects easily yields multiple balanced-growth paths. In

contrast, Cobb-Douglas specifications present a unique and determinate balanced-growth

path.

∗Department of Economics, Kyoto Sangyo University
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1 Introduction

The last decade has witnessed extensive investigations on the R&D-based growth models

developed by Romer (1990), Grossman and Helpman (1991a) and Aghion and Howitt (1992).

The standard analytical framework of this literature has assumed that the whole economy

shares a stock of homogenous technological knowledge. The knowledge stock is enhanced by

R&D activities, which in turn raises the total factor productivity of the aggregate production

technology of final goods. However, if we consider the presence of heterogenous final goods,

it is plausible to assume that producing a specific type of final good needs a specific kind of

technological knowledge. This means that R&D investment would be sector specific rather

than homogeneous activity in a single R&D sector. In addition, if there are heterogenous

knowledge stocks, we should explicitly specify the forms of spillover effects among the different

kinds of knowledge. The micro-oriented, empirical literature on technical progress has paid

much attention to industry or firm specific R&D and the forms of technological spillovers1.

The purpose of this paper is to examine the role of technological spillovers among different

kinds of knowledge in a multisector economy with sector-specific R&D. We develop a two-

sector model of endogenous technical change in which each production sector uses sector-

specific technical knowledge. Our main concern is to examine equilibrium dynamics in the

presence of sector-specific R&D and interindustry technological diffusion. More specifically,

we extend one of the base models of endogenous technical change presented by Grossman

and Helpman (1991a, Chapter 3) and Romer (1990) by introducing two types of consumption

goods. Each consumption good is produced by use of a specific set of intermediate goods.

R&D activities in each sector expand the variety of intermediate goods used in its own sector.

We assume that productivity of research scientists in each R&D sector is positively related to

the existing stock of knowledge of their own as well as to one accumulated by the other sector.

The forms of technological interactions between the two R&D sectors are thus expressed by

the manner how knowledge of the one sector affects the other sector’s R&D.

Our main finding is that dynamic behavior of the economy is highly sensitive to the

pattern of technological diffusion as well as to the preference structure. In the base model

we assume that the utility and knowledge production functions are of CES type. We find

that the balanced-growth equilibrium can be locally indeterminate so that there may exist

a continuum of equilibria around the balanced-growth path. If this is the case, the economy

may display sunspot-driven fluctuations around the balanced-growth path. Additionally, un-
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der certain conditions, the balanced-growth equilibrium could be locally unstable. Moreover,

given a slight modification of form of technological diffusion, the economy may have multiple

balanced-growth paths, and hence the global behavior of the economy would be quite dif-

ferent from its local behavior around the long-run equilibrium. Those complexities are not

generally observed in the standard R&D-based models of growth with homogeneous technical

knowledge.2 On the other hand, if we assume that the utility and production functions take

Cobb-Douglas forms, then there exists a unique balanced-growth equilibrium and it satisfies

saddlepoint stability. In this case, the equilibrium path converging to the long-run equilibrium

is uniquely determined and the transitional process is monotonic. Therefore, the model of het-

erogenous R&D activities with Cobb-Douglas functional forms dynamically behaves like the

model with homogeneous technical knowledge. Since Cobb-Douglas functions are frequently

employed in the growth economics, our findings demonstrate that the well-behaved dynamics

established in the standard models may critically depend on the restrictive specifications of

the functional forms.

It is to be noted that several authors have investigated the growth models with multiple

R&D sectors. Smulders and van de Klundert (1995) examine a growth model in which each

monopolistic competitive firm engages in its own R&D. Although their model considers the

presence of spillover effect among different R&D activities, in the symmetric, macroeconomic

equilibrium, differences among the stocks of technical knowledge disappear and spillover effect

depends on the number of firms alone.3 Li (2000) develops a model of two-dimensional quality

upgrades in which each upgrade needs different R&D effort. Additionally, Li (2001) considers

n-sector version of the base model. In a similar vein, Segerstorm (1998), Dinopolus and

Thompson (1998) and Young (1998) examine the models with two R&D sectors, one expands

variety and the other upgrades quality of goods. The main concern of those authors is to

explore the conditions for the absence of scale effect in the long-run equilibrium. Therefore,

they do not discuss dynamic behavior of the models out of the steady state. Acemoglu

(2002) assumes that labor and capital augmenting technical progress are respectively realized

by specific R&D activities. Xie (1998), on the other hand, constructs a model with two

R&D sectors in which variety expansions in intermediate inputs and consumption goods need

different kinds of researches. Those studies, however, do not consider intersectoral technical

spillovers.4

In the existing literature, Starz (1998) is most closely related to our study. He also

examines a two-sector model with sector-specific technical knowledge and shows that the
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economy may have multiple balanced-growth paths. The main purpose of his contribution

is to construct a model that exhibits large fluctuations of long-term growth rate generated

by exogenous disturbances. To concentrate on this issue, Starz (1998) uses a simple model

where the microeconomic structure of R&D investment is not fully specified. Additionally,

the model does not consider forward-looking behaviors of economic agents. In this paper,

following the standard modelling, we explicitly specify the optimizing behaviors of agents and

analyze the equilibrium dynamics with rational expectations.5

The rest of the paper is organized as follows. The next section constructs the base model.

Section 3 characterizes the balanced-growth equilibrium and explores dynamic properties of

the model. Intuitive implication of the stability results is also given in this section. Section 4

discusses an example in which there exist multiple balanced-growth paths. Section 5 concludes

the paper.

2 The Model

2.1 Production

There are two types of consumption goods, C1 and C2. We assume that each consumption

good is produced by using a set of intermediate goods. The production function of each final

good is specified as:

Ci =

µZ Ai

0
ci (j)

αi−1
αi dj

¶ αi
αi−1

, αi > 1, i = 1, 2, (1)

where ci (j) is the intermediate good of type j devoted to produce i-th consumption good

and αi represents the elasticity of substitution among the intermediate inputs. Ai denotes

the range of intermediate goods used in the i-th consumption good sector.6 The consumption

good markets are assumed to be competitive. Letting Pi be the price of Ci and pi (j) be the

price of ci (j) , profit maximization behavior of producers yields the inverse demand function

for ci (j):

pi (j) = Pi

µ
Ci
ci (j)

¶ 1
αi

, i = 1, 2, j ∈ [0, Ai] . (2)

By cost minimization, the relation between Pi and pi (j) satisfies

Pi =

µZ Ai

0
pi (j)

1−αi dj
¶ 1

1−αi
, i = 1, 2. (3)
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Each intermediate good is produced by a monopolistically competitive firm. We assume

that one unit of intermediate good is produced by use of one unit of physical labor. Denoting

the wage rate by w, we assume that the firm producing ci (j) maximizes its profits

πi (j) = pi (j) ci (j)− wci (j)

subject to the inverse demand function given by (2). As a result, the optimal price is deter-

mined by the simple mark-up formula such that

pi (j) =
αi

αi − 1w, i = 1, 2, j ∈ [0, Ai] . (4)

Equation (4) means that we can focus on the symmetric equilibrium where ci (j) = ci and

pi (j) = pi for all j ∈ [0, Ai] , and hence the profits of intermediate good producers are given
by

πi =
wci

αi − 1 , i = 1, 2. (5)

2.2 R&D Activities

In formulating R&D, we basically follow Romer (1990): R&D expands the range of available

variety of intermediate goods. The R&D activities are assumed to be sector specific and

creation of new knowledge is described by

Ȧi = δiS
θi
i H

1−θi
i Xi, 0 < θi < 1, δi > 0, i = 1, 2. (6)

In the above, Si denotes the number of research scientists who work to create new varieties

of intermediate goods used for producing i-th consumption good. Hi is the sector-specific

human capital that is necessary for developing new intermediate goods used in sector i. The

difference between Si and Hi is that the research scientists employed by sector i can work

at sector j (6= i) , while the sector-specific human capital can be used by sector i alone. For
simplicity we assume that Hi is constant over time, so that it may be considered a fixed

input.7 Finally, Xi expresses external effects on R&D activities. We consider that Xi consists

of intersectoral as well as intrasectoral effects of technological diffusion. More specifically, in

the base model we set

Xi =

µ
φ
1
η

i A
η−1
η

i + (1− φi)
1
η A

η−1
η

j

¶ η
η−1

, η > 0, 0 < φi < 1, i 6= j, i, j = 1, 2. (7)

where φ
1
η

i A
η−1
η

i and (1− φi)
1
η A

η−1
η

j respectively express the intrasectoral and intersectoral

effects of knowledge spillovers. Equation (7) means that sector-specific knowledge stocks are
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substitute each other for η > 1, while they are complement each other for η < 1.When η = 1,

the spillover function takes a Cobb-Douglas form, while Xi is a linear function of Ai and Aj

if η =∞.
The R&D sectors are assumed to be competitive. The instantaneous profits of the research

firms are given by viȦi−wSSi−wHHi, where vi is the patent price of i-th knowledge and wS
and wH respectively denote the wage rates for the scientists and the sector-specific researchers.

Since Hi is assumed to be fixed, in what follows, we normalize Hi to one. Consequently, the

profit maximization condition yields the following:1

wS = viθiδiS
θi−1
i

µ
φ
1
η

i A
η−1
η

i + (1− φi)
1
η A

η−1
η

j

¶ η
η−1

, i, j = 1, 2. (8)

On the other hand, if the patent duration is infinite, free-entry to the monopolistic competitive

markets of intermediate goods equates the price of patent with the present value of monopoly

profits. Hence, letting r (s) be the interest rate, it holds that

vi(t) =

Z ∞

t
exp(−

Z τ

t
r (s) ds)πi (τ) dτ , i = 1, 2.

As a consequence, the following no-arbitrage condition holds in each moment:

r =
v̇i
vi
+

πi
vi
, i = 1, 2. (9)

2.3 Consumption

The household sector consists of a continuum of identical consumers. The representative

household consumes two types of consumption goods and supplies L units of physical labor,

S units of research time and 2 units of human capital in each moment8. The household

maximizes a discounted sum of utilities given by

U =

Z ∞

0
log u (C1, C2) e

−ρt dt, ρ > 0.

We assume that the instantaneous felicity function is of a CES form:

u (C1, C2) =

µ
γ
1
εC

ε−1
ε

1 + (1− γ)
1
ε C

ε−1
ε

2

¶ ε
ε−1
, ε > 0, 0 < γ < 1, (10)

1Similarly, we obtain

wH = viiδiS
θi
i φ

1
η

i A
η−1
η

i + (1− φi)
1
η A

η−1
η

j

η
η−1

.

This condition, however, plays no essential role in the subsequent analysis.
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where ε is the elasticity of substitution between the first and second consumption goods.

When ε = 1, the function reduces to a Cobb-Douglas one. The optimal choice condition gives

C2
C1

=

µ
μ
P2
P1

¶−ε
, (11)

where μ = [(1/γ)− 1]−1/ε (> 0) .
Let us denote the total consumption expenditure by E = P1C1 + P2C2. The optimal

choice of each good is as follows:

C1 =
E

P1 + P2

³
μP2P1

´−ε , C2 =
E

P1

³
μP2P1

´ε
+ P2

. (12)

As a result, the instantaneous indirect utility function is written as

û (E,P1, P2) ≡ log ε

ε− 1+log
Ã
γ
1
ε

µ
E

P1 + μ−εP ε
1P

1−ε
2

¶ ε−1
ε

+ (1− γ)
1
ε

µ
E

μεP 1−ε

1 P ε
2 + P2

¶ ε−1
ε

!
.

The flow budget constraint for the consumer is

V̇ = rV + wL+ wsS + 2wH −E,

where V denotes the asset holding of the household. Since the household maximizes the dis-

counted sum of indirect utilities by controlling E, the optimal level of consumption spending

should satisfy the Euler equation,
Ė

E
= r − ρ,

together with the transversality condition: limt→∞ e−ρt (V/E) = 0.

Following Grossman and Helpman (1991), we take E as a numeraier for analytical sim-

plicity. Thus in what follows, every price is expressed in terms of E. Given this normalization,

the interest rate always equals the discount rate:

r = ρ, for all t ≥ 0. (13)

2.4 The Market Equilibrium Conditions

Since physical labor is only input for intermediate good production, the aggregate labor used

to produce Ci is determined by

Li =

Z Ai

0
ci (j) dj = Aici, i = 1, 2. (14)
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By use of (1), we find that in the symmetric equilibrium Ci = A
αi/(αi−1)
i ci, so that the reduced

form of the production function of i-th consumption good is

Ci = A
1

αi−1
i Li, i = 1, 2. (15)

Similarly, from (3) and (4) the price of i-th consumption good is

Pi = A
1

1−αi
i

αiw

αi − 1 , i = 1, 2. (16)

Notice that by (15) and (16), together with the normalization condition, P1C1 + P2C2 = 1,

it holds that µ
α1

α1 − 1L1 +
α2

α2 − 1L2
¶
w = 1. (17)

This equation gives the relation between the wage rate of physical labor and employment

levels in the final good sectors.

Finally, the full employment conditions for physical labor and research work are respec-

tively given by

L1 + L2 = L, (18)

S1 + S2 = S, (19)

where L and S are assumed to be fixed. In the main text, we assume that production and

R&D respectively use different types of labor. This assumption is made only for analytical

simplicity. Appendix 1 of the paper shows that the main results will not be altered, when

production and R&D employ the same type of labor.

3 Equilibrium Dynamics

3.1 The Dynamic System

In this section we derive a complete dynamic system that summarizes the behavior of the

base model. It is to be noted that since we use the CES utility function, we should assume

that α1 = α2 to obtain a feasible balanced-growth equilibrium. To see why this condition is

necessary, notice that if the preference has a CES structure, both consumption goods, C1 and

C2, should grow at a common rate on the balanced-growth equilibrium: otherwise, the utility

level cannot grow at a constant rate on the balanced-growth equilibrium. Hence, considering
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that from (11) the consumption demand for each good depends on the relative price, we see

that P2/P1 should stay constant on the balanced-growth path. The equations in (16) give

P2
P1
=

α2 (α1 − 1)A
1

α2−1
2

α1 (α2 − 1)A
1

α1−1
1

,

which means that A
1

α2−1
2 /A

1
α1−1
1 should be constant as well. As a result, since the balanced-

growth requires that A1 and A2 grow at the same rate, we must assume that α1 = α2. In

what follows, we denote α1 = α2 = α (> 1) .9

Form (15) and (16) the optimal condition (11) yields:

L2
L1
= μ−ε

µ
A2
A1

¶ ε−1
α−1

= μ−εx
ε−1
α−1 , (20)

where x = A2/A1. Thus L2/L1 increases (resp. decreases) with x if ε > 1 (resp. ε < 1).

As shown above, if the consumption goods are complement each other (i.e. ε < 1), a rise in

x (= A2/A1) lowers L2/L1. A larger x enhances C2. Since C1 and C2 are complementary, a

rise in C2 requires an increase in product of C1 as well. This yields a relative increase in L1

to raise C1.

In view of the R&D functions, the growth rates of stocks of knowledge are given by

Ȧ1
A1

= δ1s
θ1Sθ1

µ
φ
1
η

1 + (1− φ1)
1
η x

η−1
η

¶ η
η−1

, (21)

Ȧ2
A2

= δ2 (1− s)θ2 Sθ2
µ
φ
1
η

2 + (1− φ2)
1
η x

1−η
η

¶ η
η−1

, (22)

where s ≡ S1/S and x ≡ A2/A1. For analytical simplicity, we assume that θ1 = θ2 = θ. This

simplification is not critical for obtaining the main results shown below. Denoting z ≡ v2/v1,
we find that (8) presents the following condition:

µ
1− s
s

¶θ−1
=

δ1
xzδ2

⎡⎣φ 1
η

1 + (1− φ1)
1
η x

η−1
η

φ
1
η

2 + (1− φ2)
1
η x

1−η
η

⎤⎦
η

η−1

. (23)

Since the left-hand side of (23) monotonically increases with s, we can express the temporary

equilibrium level of s as a function of x (= A2/A1) and z (= v2/v1) in such a way that s =

s (x, z) . It is shown that s (x, z) satisfies

sign sx = sign
½
1− φ

1
η

1 − φ
1
η

2

¾
and sz < 0. (24)
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Using (21), (22) and ẋ/x = Ȧ2/A2 − Ȧ1/A1, we obtain:

ẋ = ∆̂ (x, z)

µ
1

s (x, z)
− 1− xz

¶
, (25)

where

∆̂ (x, z) = xδ2s (x.z) (1− s (x, z))θ−1 Sθ
∙
φ
1
η

2 + (1− φ2)
1
η x

1−η
η

¸ η
η−1

> 0.

Equation (9) shows that the relative patent prices z (= v2/v1) changes according to ż/z =

π1/v1 − π2/v2. Thus denoting v1A1 = q, we see that (5), (14) and (15) yield

ż = zΛ̂ (x, q)

"
1− μ−εx

ε−α
α−1

z

#
. (26)

where Λ̂ (x, q) = wL1/ (α− 1) q. Note that the normalization condition, P1C1 + P2C2 = 1,

and (20) present

wL1 =
α− 1
α

h
1 + μ−εx

ε−α
α−1
i−1 ≡ β (x) .

Namely, the total wage paid for producing the first consumption good, wL1, can be expressed

as a function of x. This is why wL/ (α− 1) q is written as a function of x as well as q. Finally,
the dynamic equation of q is given by

q̇

q
= δ1s (x, z)

θ Sθ
µ
φ
1
η

1 + (1− φ1)
1
η x

η−1
η

¶ η
η−1

+ ρ− β (x)

(α− 1) q . (27)

To sum up, a complete dynamic system consists of (25), (26) and (27). The system is

locally block recursive in the sense that motions of x and z are independent of the level of q

around the balanced-growth equilibrium where ẋ = ż = q̇ = 0.

3.2 Balanced-Growth Equilibrium

We first consider the existence of the balanced-growth path. Since the balanced-growth

equilibrium is established when x (= A2/A1), z (= v2/v1) and q (= v1A1) stay constant over

time, it is easy to see that A1 and A2 grow at a common rate, while v1 and v2 decrease

at the same rate of technical progress. A sufficient condition for the existence of unique

balanced-growth equilibrium is the following:

Proposition 1 If ε ≤ 1, there is a unique balanced-growth equilibrium.

Proof. In (26) ż = 0 means that

z = μ−εx
ε−α
α−1 . (28)
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When ẋ = 0, (25) yields

xz =
1− s
s

=

⎧⎪⎨⎪⎩ δ1
xzδ2

⎡⎣φ 1
η

1 + (1− φ1)
1
η x

η−1
η

φ
1
η

2 + (1− φ2)
1
η x

1−η
η

⎤⎦
η

η−1
⎫⎪⎬⎪⎭

1
θ−1

.

The above equation is rewritten as

z =

µ
δ1
δ2

¶ 1
θ 1

x

⎡⎣φ 1
η

1 + (1− φ1)
1
η x

η−1
η

φ
1
η

2 + (1− φ2)
1
η x

1−η
η

⎤⎦
η

θ(η−1)

. (29)

Now define

F (x) ≡ μ−εx
θ(ε−1)
α−1 − δ1

δ2

⎡⎣φ 1
η

1 + (1− φ1)
1
η x

η−1
η

φ
1
η

2 + (1− φ2)
1
η x

1−η
η

⎤⎦
η

η−1

.

If F (x) = 0 has a positive solution, there exists a steady-state value of x. Once the steady-

state level of x is given, we can confirm that the steady-state levels of z and q are also uniquely

determined. If ε ≤ 1, then F (x) monotonically decreases with x. In addition, F (0) = +∞
and limx→∞ F (x) = −∞ for ε ≤ 1, and hence there is a unique level of x̄ satisfying F (x̄) = 0.

When ε > 1, F (0) = 0 and F (x) is not monotonic. Hence, the balanced-growth path may

not exist or there may be multiple long-run equilibria. We examine the presence of multiple

balanced-growth paths in Section 4. Proposition 1 states that if we use the Cobb-Douglas

utility function (i.e. ε = 1), there is a unique balanced-growth equilibrium. It is also to

be noted that if ε = 1, the balanced-growth equilibrium does not need the assumption that

α1 = α2. In contrast to the model with the CES utility function. if the utility function takes

the Cobb-Douglas form, the level of utility may grow at a constant rate even though C1

and C2 grow at different rates on the balanced growth path. Therefore, we can assume that

α1 6= α2. Appendix 2 of the paper discusses the balanced-growth characterization for the case

of ε = 1 and α1 6= α2.

3.3 Patterns of Dynamics

As shown below, in this model local dynamics of the economy around the balanced-growth

equilibrium may not satisfy well-behaved saddle-point stability. Before discussing various

patterns of dynamics, we present the necessary and sufficient conditions under which the

balanced-growth equilibrium is saddle stable and the equilibrium path is uniquely determined.

10



Proposition 2 Suppose that the dynamic system consisting of (25), (26) and (27) has a

feasible steady state. Then the balanced-growth equilibrium is locally saddle stable, if and only

if
z̄θ (ε− α)

(α− 1) (1− θ)
<
sx
s2
+ z̄,

where s and sx = ∂s (x̄, z̄) /∂x are evaluated at the steady state.

Proof. The dynamic system linearized at the steady state is:⎡⎢⎢⎣
ẋ

ż

q̇

⎤⎥⎥⎦ =
⎡⎢⎢⎣
∆ (x̄, z̄) 0 0

0 z̄Λ (q̄) 0

0 0 q̄

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
−sx
s̄2
− θ2

θ1
z̄ −sz

s̄2
− θ2

θ1
x̄ 0

−
³
ε−α
α−1

´
1
x̄ 1/z̄ 0

∂q̇
∂x

∂q̇
∂z

β(x̄)
(α−1)q̄

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
x− x̄
z − z̄
q − q̄

⎤⎥⎥⎦ ,
where (x̄, z̄, q̄) denote the steady-state values of (x, z, q) . It is easy to see that the coefficient

matrix of the right hand side of the above has a positive eigenvalue, β (x̄) / (α− 1) q̄. In
addition, due to the block recursiveness of the system, we may examine the local behavior of

x and z around the steady state without considering the motion of q. Denoting the coefficient

matrix of the subsystem with respect to x and z by J̄ , we obtain

J̄ =

⎡⎣ ∆̂ 0

0 z̄Λ̂

⎤⎦⎡⎣ −sx
s2
− z̄ −sz

s2
− x̄

−
³
ε−α
α−1

´
1
x̄

1
z̄

⎤⎦ . (30)

Note that (23) gives
∂

∂z

µ
1− s
s

¶
=

µ
1

1− θ

¶
1− s
sz̄

.

Hence, in the steady state the following holds:

−sz
s2
− x̄ = 1

z̄

∙µ
1

1− θ

¶
1− s
s
− x̄z̄

¸
=

θ (1− s)
z̄s (1− θ)

> 0.

Using the above, we find

sign det J̄ = sign
½
−
³sx
s2
+ z̄

´ 1
z̄
+

θ (ε− α)

(α− 1) (1− θ)

¾
.

Thus J̄ has one stable and one unstable eigenvalues, if and only if

z̄θ (ε− α)

(α− 1) (1− θ)
<
sx
s2
+ z̄. (31)

Since one of the eigenvalues of the entire system is β (x̄) /αq̄2 > 0, the above argument

shows that there is one stable and two unstable roots. Accordingly, considering that only
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x (= A2/A1) is non-jumpable variable in our system, we confirm that the balanced-growth

equilibrium is locally determinate.

For example, (31) is satisfied if φ1/η1 + φ
1/η
2 < 1 (sx > 0 from (24)) and ε < α. That is,

there may exist a unique, stable path around the balanced-growth equilibrium, if both ε and

η have low values.10

By use of above result, we can easily display the necessary and sufficient conditions under

which the balanced growth path is locally indeterminate so that there is a continuum of

equilibria.

Proposition 3 The steady-state equilibrium of (25), (26) and (27) is locally indeterminate,

if and only if
Λ̂

∆̂
<
sx
s2
+ z̄ <

z̄θ (ε− α)

(α− 1) (1− θ)
.

Proof. If the above conditions are met, J̄ in (30) has a positive determinant and a

negative trace, so that all the characteristic roots of J̄ have negative real parts. Thus the

entire system have two stable and one unstable roots, implying that the initial levels of q and

z cannot be determined uniquely under a given level of x.

Consequently, a set of necessary conditions for indeterminacy are φ1/η1 +φ
1/η
2 < 1 (sx > 0)

and ε > α. This means that high substitutability between the final goods increases the

possibility of multiple converging equilibria. Such kind of indeterminacy of equilibrium may

produce expectation driven, sunspot fluctuations: the economy exhibits cyclical growth even

in the absence of exogenous disturbances to the fundamentals.

Finally, let us consider two special cases. First, suppose that utility and knowledge

production functions take the Cobb-Douglas forms, that is, ε = η = 1. In this case we obtain

the following simple result:

Corollary 1 If ε = η = 1, then the dynamic system is locally saddle stable.

Proof. It is easy to see that when ε = 1, the determinant of submatrix (30) satisfies

signdet J̄ = sign {sz z̄ − sxx̄} .

In addition, when η = 1, (23) is replaced with

(1− s)θ−1
sθ−1

=
δ1x

1−(φ1+φ2)

δ2z
.

12



As a result, we find

sz z̄ − sxx̄ = sθ+2δ1x̄
1−(φ1+φ2)

(1− θ) (1− s)θ δ2z̄
(φ1 + φ2 − 2) < 0.

This implies that J̄ has one stable and one unstable roots. Therefore, the entire system has

one stable and two unstable roots, which ensures that there is a locally unique stable path

converging to the steady state.

Proposition 1 has shown that the balanced-growth path is uniquely given if ε = 1. There-

fore, Corollary 1 states that if both utility and knowledge production functions are Cobb-

Douglas ones, we obtain a well-behaved dynamic system in which a unique equilibrium path

monotonically converges to the uniquely determined balanced-growth equilibrium.

Next, assume that there is no technological spillovers, so that φ1 = φ2 = 1 in (7) . If this

is the case, dynamic behavior of the economy depends entirely on the preference structure:

Corollary 2 Suppose that technological spillovers are intrasectoral alone. Then the balanced-

growth equilibrium is saddle stable if ε < 1, while it is totally unstable if ε > 1.

Proof. When φ1 = φ2 = 1, (23) becomes

1− s
s

=

µ
δ1
xzδ2

¶ 1
θ−1

.

Using this relation, we can rewrite (25) as

ẋ = ∆̂ (x, z)

"µ
δ1
xzδ2

¶ 1
θ−1
− xz

#
, (32)

where ∆̂ (x, z) = xδ2s (x.z) (1− s (x, z))θ−1 Sθ > 0. The sub-dynamical system of x and z

consists of (26) and (32) . Hence, in view of the steady-state conditions, the coefficient matrix

of the linealized sub-system is expressed as

Ĵ =

⎡⎣ ∆̂ 0

0 Λ̂

⎤⎦⎡⎣ 1
x̄

³
θ
1−θ
´

1
z̄

³
θ
1−θ
´

−
³
ε−α
α−1

´
1
x̄

1
z̄

⎤⎦ .
The determinant of Ĵ satisfies

sign det Ĵ = sign
½
ε− 1
α− 1

¾
.

As a consequence, if ε < 1, matrix Ĵ has a negative determinant and thus the entire system

has one stable and two unstable roots, which implies that the local saddle stability holds.
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Since the trace of Ĵ has a positive value, both eigenvalues of Ĵ have positive real parts when

ε > 1. This means that the entire system has three unstable roots, and thus there is no

converging path towards the balanced-growth equilibrium.

3.4 Intuitive Discussion

As for the stability conditions shown above, we can give intuitive implications. To obtain

economic intuition, it is useful to focus on the two elasticity parameters, ε and η. As shown

in the proof of Proposition 2, the balanced-growth path is locally determinate if and only if

−
³sx
s2
+ z̄

´ 1
z̄
+

θ (ε− α)

(α− 1) (1− θ)
< 0,

where sign sx = sign
n
1− φ

1/η
1 − φ

1/η
2

o
, α > 1 and 0 < θ < 1. A set of sufficient conditions

for saddle-point stability thus include ε < α and sx > 0. Since 0 < φi < 1 (i = 1, 2), sx

tends to be positive if η has a small value. In words, when both consumption goods and

stocks of technical knowledge have low elasticities of substitution, the economy may exhibit

a well-behaved, saddlepoint property. For example, let us assume that ε < 1 and η < 1 and

that own effect of technological spillovers is small enough to satisfy sx > 0. Now suppose

that the economy initially stays on the balanced-growth path and there is an unanticipated

increase in x (= A2/A1) . Such a disturbance takes the economy out of the balanced-growth

equilibrium. Since η is low, the stocks of technical knowledge, A1 and A2, are complement

each other. Additionally, the own effect of technical diffusion is also low due to small values of

φ1 and φ2. Therefore, a rise in x (that is, a relative increase in A2) will enhance R&D activity

in the first sector so that the researchers shift from the second to the first R&D sector. At

the same time, (20) shows that if ε < 1, an increase in x reduces L2/L1. Thus the labor forece

engaging in production also shifts from the second to the first final good sector. Therefore,

in the presence of low substitutability among the consumption goods as well as among the

knowledge stocks, an increase in A2/A1 enhances both production and innovation activities

in the first sector. As a result, accumulation of A1 is accelerated and hence x (= A2/A1)

starts decreasing. Namely, x displays self-stabilizing motion. On the other hand, (26) shows

that dż/dz > 0 around the steady state, implying that the relative patent price, z, exhibits

self-destabilizing behavior. This means that stable behavior of x serves to sustain the saddle

stability of the sub-dynamical system with respect to x and z.

Next, consider the case of multiple converging equilibria. The necessary conditions for

14



the local asymptotic stability of the sub-dynamical system are:

−
³sx
s2
+ z̄
´ 1
z̄
+

θ (ε− α)

(α− 1) (1− θ)
> 0 and

sx
s2
+ z̄ > 0.

Those conditions are met, if ε > α, sx > 0 (i.e. η is small) and if sx/s2 + z̄ is not so large as

the first condition above fails to hold. Therefore, multiplicity of converging paths tends to

emerge, when the substitutability among the consumption goods is high and that among the

knowledge stocks is low. As in the case of saddlepoint stability, an increase in x expands the

R&D activities in the first sector by shifting researchers from the second to the first R&D

sector. On the other hand, since ε > α (> 1) , an increase in x raises L2/L1 so that production

of the second final good rises. Hence, the initial increase in x yields two opposing effects on the

final goods production: the reallocation of researchers between the R&D sectors increases the

variety of intermediate goods devoted to the first consumption good, while the reallocation

of production workers raises the second consumption good. If the second consumption good

sector grows faster than the first one, then the intermediate goods production used by the

second final good sector also increases. As a consequence, x (= A2/A1) rises further. In

contrast, if the first consumption good sector grows faster than the second consumption

good sector, then x will decrease and thus it shows self-stabilizing behavior. During the

transition process, x may display cyclical motion depending on which consumption good

sector grows faster than the other. Since x eventually converges to its steady-state level, the

initial value of the relative price of patents, z0, can be selected arbitrarily at least around

the balanced-growth path. Hence, we can find a continuum of converging trajectories near

the balanced-growth equilibrium. This implies that sunspot-driven, non-fundamental shocks

may enhance economic fluctuations.

Finally, assume that η > 1, ε > α (> 1) and sx < 0. Under those conditions, (31) may

fail to hold. In particular, if sx is small enough to yield sx/s2 + z̄ < 0, then the trace of J̄ is

positive and thus the balanced-growth path is totally unstable. This is because the motion

of x is unstable when ε > α and sx < 0. In this case, both consumption goods and stocks of

technical knowledge have high substitutability. Again, suppose that there is an unanticipated

rise in x in the economy that initially stays in the steady state. Since A1 and A2 are highly

substitutable, a rise in x (= A2/A1) shifts researchers from the first to the second R&D sector,

which reduces s (= S1/S) . In addition, the high substitutability between C1 and C2 yields a

relative increase in C2, because from (20) a rise in x yields a shift of the production labor form

the first to the second consumption good sector. Thus R&D as well as production activities

15



expand in the second sector, which produces a further increase in x. Considering unstable

behavior of z, the diverging motion of x establishes total instability of the balanced-growth

path. Notice that if ε = +∞ and η = +∞, both A1 and A2 as well as C1 and C2 are
perfectly substitutable each other, so that heterogeneity in our model disappears. In this

case, (31) cannot be satisfied and the trace of J̄ is positive, that is, the balanced-growth path

is unstable. In fact, if ε = +∞ and η = +∞, then the model becomes the same one studied
by Grossman and Helpman (1991a, Chapter 3). In the absence of technological heterogeneity,

the model satisfies the Ak property and the total instability means that the economy always

stays in the balanced-growth equilibrium.

4 Multiple Balanced-Growth Paths

As pointed out by Proposition 1, if ε > 1, the economy may have multiple balanced-growth

equilibria. A more detailed inspection of function F (x) defined in the proof of the proposi-

tion reveals there is little possibility of the presence of multiple steady states under plausible

parameter values. However, it is not difficult to obtain multiple steady states in our frame-

work, if we slightly modify the form of knowledge production functions. For example, suppose

that φi = 1 in (7) and that there are additional external effects in an additive form. More

specifically, following Starts (1998), let us assume:

Ȧi = δiS
θ
iAi + ϕiAi + λiAj , ϕi > 0, λi > 0, i, j = 1, 2, i 6= j. (33)

Namely, R&D effort represented by research work is magnified by own knowledge stock, but

there are additive effects of knowledge spillovers.11 By use of (33) , we obtain:

Ȧ1
A1

= δ1S
θ
1 + λ1x+ ϕ1,

Ȧ2
A2

= δ2S
θ
2 + λ2

1

x
+ ϕ2.

In this case, (23) becomes

1− s
s

=

µ
δ1
xzδ2

¶ 1
θ−1

.

Given (33) , the model is close to the case of no intersetoral technical spillovers examined

above. Only key difference is that the dynamic behavior of x is replaced with

ẋ = Sθ
h
δ2 (1− s (x, z))θ − δ1s (x, z)

θ
i
x+ λ2 − λ1x

2 + (ϕ2 − ϕ1)x, (34)
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where

s (x, z) =
1

1 +
³

δ1
xzδ2

´ 1
θ−1
.

We can examine local dynamics by use of (26) and (34) . The steady-state values of x and z

satisfy ẋ = ż = 0 in (26) and (34) so that we obtain the following conditions:

Sθ

⎡⎢⎢⎣δ2
⎛⎜⎝

³
δ1
xzδ2

´ 1
θ−1

1 +
³

δ1
xzδ2

´ 1
θ−1

⎞⎟⎠
θ

− δ1

⎛⎜⎝ 1

1̄ +
³

δ1
xzδ2

´ 1
θ−1

⎞⎟⎠
θ
⎤⎥⎥⎦+ λ2

x
− λ1x+ ϕ2 − ϕ1 = 0, (35)

z − μ−εx
ε−α
α−1 = 0. (36)

Condition (36) gives xz = μ−εx
ε−1
α−1 = 1−γ

γ x
ε−1
α−1 . Substituting this into (35) presents

Sθδ2

"
(δ1γ/δ2(1−γ))

1
θ−1 x

ε−1
(α−1)(1−θ)

1+(δ1γ/δ2(1−γ))
1

θ−1 x
ε−1

(α−1)(1−θ)

#θ
− Sθδ1

"
1

1+(δ1γ/δ2(1−γ))
1

θ−1 x
ε−1

(α−1)(1−θ)

#θ
−λ1x+ λ2

x − ϕ1 + ϕ2 = 0.

(37)

The positive roots of this equation present the steady-state levels of x.

To examine a numerical example, we use the following parameter values:

α = 8, ε = 10, δ1 = 0.012, δ2 = 0.022, ϕ1 = 0.03, ϕ2 = 0.08,

λ1 = 0.05, λ2 = 0.03, θ = 0.8, γ = 0.5, S = 75.

In this example, the elasticity of substitution among intermediate goods is high (α = 8) , and

thus the mark up ratio α/(1−α) is sufficiently low as 1.125. Given the above parameter values,
(37) has three roots. One of them that gives the highest value of x yields an implausibly

high rate of balanced growth, so that it violates the transversality condition for the household

optimization under a plausible level of time discount rate, ρ. Hence, we focus on the other two

roots whose values are: x = 0.0178 and 0.5693. The balanced-growth rates of consumption

corresponding to those steady-state values of x are g = 0.0469 and 0.0704, respectively.

Moreover, the steady state with a higher growth rate exhibits local saddlepoint property,

while the steady state with a lower growth is locally unstable.12 This means that the stable

saddle path that converges to the high-growth steady state does not span the entire (x, z)

space. Hence, the economy whose initial value of x is sufficiently small cannot converges to

any balanced-growth path.
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5 Conclusion

This paper has examined a model of endogenous technical change with two R&D sectors.

We have assumed that each final good needs sector-specific technical knowledge so that each

R&D sector produces heterogenous knowledge. The central message of our analysis is that

dynamic property of the economy heavily depends on the form of intersectoral technical

spillovers as well as on the preference structure. This is in contrast to the standard R&D

based growth models with homogenous technical knowledge in which well-behaved saddle-

point stability generally holds. In our model economy, if creation of new knowledge in each

R&D sector is subject to a Cobb-Douglas function of stocks of technical knowledge and if the

instantaneous utility of the representative family is logarithmic, then the economy exhibits

well-behaved dynamics: there is a unique balanced-growth equilibrium and it is at least

locally determinate in the sense that there is a unique converging path towards the balanced-

growth equilibrium. Such a well-behaved dynamic pattern may not hold, if we assume the

CES forms of preferences and knowledge production functions. In the generalized model, we

have shown that the balanced-growth equilibrium may be locally indeterminate or it would

be unstable. In the former case, we may have a continuum of converging paths, and hence

sunspot fluctuations may emerge. In the latter, there is no converging path towards the

balanced-growth equilibrium.

A limitation of our discussion is that we have treated technical diffusion as external

effects. As Romer (1990) claims, such a specification captures nonexcludability of technical

knowledge. However, in reality, at least part of technical knowledge is traded in the market

thorough transfers of patents and our formulation (and the formulations in the majority of

R&D based growth models) does not consider this aspect. Dynamic analysis on the models

with heterogenous R&D with a more detailed microeconomics structure of technical spillovers

deserves further investigation.

Appendix 1

In the main text we have assumed that production and R&D respectively use different

types of labor. In this Appendix, we show that the main conclusions of our analysis still hold

when the production and R&D activities employ homogenous labor. This appendix assumes

that the utility and knowledge production functions are of Cobb-Douglas types. The main

conclusion does not change, if we use the CES forms of utility and knowledge production

functions.
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If the homogenous labor is allocated between the production and the research sectors, the

labor market equilibrium condition is

L1 + L2 + S1 + S2 = N, (A1)

where N is the aggregate labor supply that is assumed to be fixed. As a result, we may

set w = wS. As shown in Section 3.1, if the utility function satisfies log-linearity, the labor

allocation satisfies L2 = ζL1, where ζ = (1−γ)α1(α2−1)
γ(α1−1)α2 . In addition, when we assume that

θ1 = θ2 to simplify the algebra, we obtain:

S2
S1
=

Ã
θ1δ1
θ2δ2

x1−(φ+φ2)

z

! 1
θ1−1

= χ (x, z) ,

Sθ2−12

Sθ1−11

=
θ1δ1
θ2δ2

Ã
x1−(φ+φ2)

z

!
.

Hence, (A1) may be written as

(1 + ζ)L1 + (1 + χ (x, z))S2 = N. (A2)

By use of E = P1C1 + P2C2, together with (12) and (13) in the main text, we obtain

E =
αw

α− 1L1 +
α2w

α2 − 1L2 =
µ

α1
α1 − 1 +

α2ζ

α2 − 1
¶
L2w.

Thus if we set E = 1, the above gives

L1 =
1

w

µ
α1

α1 − 1 +
α2ζ

α2 − 1
¶−1

= L1 (w) , L01 < 0.

This means that from (A2) S1 is determined by

S1 =
1

1 + χ (x, z)
(N − (1 + ζ)L1 (w)) . (A3)

Keeping in mind that we have assumed that θ1 = θ2, we can derive the following dynamic

equation of x :

ẋ

x
= x1−φδ1Sθ1

µ
S2
S1
− xz

¶
= ∆ (x, z,w) (χ (x, z)− xz) , (A4)

where from (A3) ∆ (.) is given by

∆ (x, z,w) = δ1x
1−φSθ1

= δ1x
1−φ

∙
1

1 + χ (x, z)
(N − (1 + ξ)L1 (w))

¸θ
.
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The behavior of z does not change so that

ż

z
=

wL2
(α2 − 1) v2A2 (1− ξxz) = Λ (x, z, w) (1− ξxz) , (A5)

where

Λ (x, z,w) =
wL2

(α2 − 1) v2A2
=

θ1δ2
α2 − 1

∙
χ (x, z)

1 + χ (x, z)
(N − (1 + ζ)L1 (w))

¸θ−1
ξL1 (w) .

Finally, by use of w = θ1δ1v1S
θ1−1
1 Aφ

1A2
1−φ, we obtain

ẇ

w
=
v̇1
v1
+ (θ1 − 1) Ṡ1

S1
+ φ

Ȧ1
A1

+ (1− φ)
Ȧ2
A2
.

Since E = 1 means that r = ρ for all t ≥ 0, the dynamic behavior of v1 is described by

v̇1/v1 = ρ−π1/v1. Hence, substituting (21) and (22) into the above and using (A3), it is easy
to see that dynamic equation of the real wage, w, can be expressed as

ẇ = Ω (x, z, w) . (A6)

The complete dynamic system with respect to x, z and w is thus given by (A4), (A5) and

(A6). Although function Ω (.) in (A6) is complex, as well as in the base model, the dynamic

behaviors of x and z near the steady state are independent of the motion of w. Therefore,

the patterns of growth in the case of homogenous labor are essentially the same as those in

the case of heterogenous labor examined in the main text.

Appendix 2

In this appendix, we briefly discuss how the main results of the model with Cobb-Douglas

functions would be modified if α1 6= α2 and θ1 6= θ2. Using (12), (14) and (15), we obtain:

L2
L1
=
A
1/(α1−1)
1 C2

A
1/(α2−1)
2 C1

=
(1− γ)A

1/(α1−1)
1 P1

γA
1/(α2−1)
2 P2

=
α1 (1− γ) (α2 − 1)

α2γ (α1 − 1) .

Since on the balanced-growth path x (= A2/A1) and z (= v2/v1) stay constant, A1 and A2

grow at the same rate and the market value of each knowledge, viAi, does not change.

Therefore, denoting the steady rate of technical change by ḡ
³
= Ȧi/Ai

´
, we see that v̇i/vi =

−g in the balanced-growth equilibrium. Additionally, from (15) and (16) the balanced-growth
rates of final goods and the relative price, P2/P1, are respectively given by

Ċi
Ci
=

ḡ

αi − 1 and
Ṗ2
P2
− Ṗ1
P1
=

µ
1

α2 − 1 −
1

α1 − 1
¶
ḡ.
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Since the relative share of consumption expenditure, P2C2/P1C1, is constant on the balanced-

growth path, the difference in the growth rates of the final goods is offset by the steady change

in the relative price. It is easy to see that the steady-state value of x and the balanced-growth

rate of technical progress are respectively given by

x̄ =

µ
θ2ξ

θ2ξ + θ1

¶ θ2−1
2−(φ1+φ2)

µ
θ1

θ2ξ + θ1

¶ 1−θ1
2−(φ1+φ2)

µ
δ2
δ1
ξ

¶ 1
2−(φ1+φ2)

S
θ2−θ1

2−(φ1+φ2) ,

ḡ =
θ1δ1

θ1 + θ2ξ

Ã
ξδ2 (1− s̄)θ2

δ1s̄θ1

! 1−φ1
2−(φ1+φ2)

S
(θ2−θ1)(1−φ1)
2−(φ1+φ2) +θ1 s̄θ1−1.
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Footnotes

1. See, for example, Grilichas (1992), Caballero and Jaffe (1993) and Branstetter (2001).

2. Grossman and Helpman (1991a, Chapter 3) shows that the variety expansion model

of technical change without physical capital may have the Ak property and hence the

economy has no transitional dynamics and it always stays on the balanced-growth path.

Arnold (2000) proves that Romer’s (1990) model, which involves physical capital and

transition processes, can display well behaved saddlepoint stability under mild restric-

tions on the model. Note that if the intermediate inputs in the final good production

are complement each other, even a model with homogenous technical knowledge could

produce multiple steady states and complex dynamics: see Benhabib et al. (1994) and

Evans et al. (1998).

3. See also Krusell (1998).

4. Although the number of studies on technical spillovers in closed economies is rather

small, there are many studies on the relationship between growth and technological

spillovers in the world economy. Well cited studies in this field include Rivera-Batiz

and Romer (1991 and 1992), Grossman and Helpman (1991b), and Barro and Sala-i-

Martin (1997). Most of those studies focus on the balanced-growth equilibrium analysis.

In addition, many of them treat one way technical spillovers from advanced economies

to developing ones rather than mutual spillovers.

5. In Section 4 we discuss Start’s (1998) formulation of R&D functions.

6. Alternatively, we can consider that ci (j) denotes a consumption good of type j in group

i and Ci is a composite good that consists of a variety of goods ranging from 0 to Ai.

7. In the standard modelling where there is only one R&D sector, it is usually assumed

that S and H are perfectly substitute each other, so that its production function is

Ȧ = δSX : see, for example, Romer (1990). If we assume that Ȧi = δiSiXi in our two-

sector setting, the research scientists generally work only one of the two sectors during

the transition process. Although the balanced-growth characterization is essentially the

same as that of our formulation, the bang-bang behavior of the model makes stability

analysis difficult. Introduction of the sector-specific human capital, Hi, is helpful for

avoiding such kind of analytical difficulty.
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8. Remember that we have assumed that H1 = H2 = 1.

9. This assumption can be dropped, if the utility function is of a Cobb-Douglas type

(ε = 1): see Section 3.2 and Appendix 2.

10. Remember that φ1/η1 + φ
1/η
2 increases with η, because 0 < φi < 1 (i = 1, 2).

11. As pointed out in Section 1, the following analysis presents a microfundation for Start’s

(1998) modelling.

12. It is possible to confirm this fact by analyzing the phase diagram of (26) and (34) in

(x, z) space.
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