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Abstract

This paper demonstrates that preference structure may play a pivotal role in generating

indeterminacy in the stylized model of endogenous growth. By examining two-sector models

of endogenous growth with human capital formation, we show that if the utility function of

the representative family is not additively separable between consumption and pure leisure

time, indeterminacy may hold even if production technologies satisfy social constant returns.

We also examine models with quality leisure in which leisure activities require human capital

as well as time. In contrast to the pure-leisure time model, we find that the quality-leisure

time model generally needs increasing returns to scale technologies to generate indeterminacy.

It is also shown that nonseparability of utility function is crucial for generating indeterminacy

in the quality leisure model as well.



1 Introduction

The last several years have seen extensive investigations on indeterminacy of equilibrium in

the representative agent models of economic growth. Most studies on this issue have exam-

ined models with external increasing returns. Early studies such as Benhabib and Farmer

(1994) and Boldrin and Rustichini (1994) reveal that the degree of increasing returns should

be sufficiently large to produce indeterminacy. The real business cycle theorists criticize this

result and they claim that empirical validity of the business cycle theory based on indeter-

minacy and sunspots is dubious.1 To cope with the criticism, the recent literature intends

to find out the conditions under which indeterminacy emerges without assuming strong de-

gree of increasing returns to scale: see, for example, Benhabib and Farmer (1996), Harrison

(2001), Perli (1998) and Wen (1998).

The purpose of this paper is to make a contribution to such a research endeavour. In

finding indeterminacy conditions, we put more emphasis on the role of preference structure

rather than on that of production technologies. More specifically, we introduce sector-specific

externalities into the two-sector endogenous growth models à la Lucas (1988, 1990). It

is demonstrated that if the utility function of the representative family is not additively

separable between consumption and pure leisure time, then indeterminacy may hold rather

easily even if technologies of the final good and the new human capital production sectors

satisfy social constant returns. We also explore the models with quality leisure time in which

effective leisure units are defined as the amount of time spent for leisure activities augmented

by the level of human capital. In this formulation, we verify that at least small degree of

increasing returns is necessary to yield indeterminacy. We find that non-separability of the

utility function is also crucial for generating indeterminacy in the quality leisure model.

In the existing literature, Benhabib and Perli (1998) and Xie (1994) explore indetermi-

nacy in the Lucas model. Xie (1994) analyzes transitional dynamics of the Lucas model with

multiple equilibria. Since the model he examines does not allow labor-leisure choice, indeter-

minacy condition needs the presence of strong increasing returns. Benhabib and Perli (1994)

introduce endogenous labor supply and demonstrate that indeterminacy may emerge under

relatively small degree of increasing returns. They assume that the instantaneous utility

function is additively separable between consumption and leisure, and thus indeterminacy is

mainly generated by the production structure specified in their model. In contrast to those
1Schmitt-Grohé (1997) presents a detailed examination of empirical plausibility of those studies.
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contributions, the main discussion of this paper focuses on the role of non-separable utility

function.2

The central concern of this paper is also closely related to two recent developments in

the literature on growth models with human capital accumulation under constant returns.

The first is the investigation on the global dynamics of the Lucas model in the absence

of market distortion conducted by Ladrón-de-Guevara, Ortigueira and Santos (1997, 1999)

and Ortigueira (2000). Ladrón-de-Guevara, Ortigueira and Santos (1997, 1999) give detailed

studies of a pure-leisure-time version of the Lucas model. They reveal that in the pure leisure

time setting the balanced-growth equilibrium may be multiple so that the destiny of the

economy may hinge on the initial levels of physical and human capital. Ortigueira (2000),

on the other hand, shows that the Lucas model with quality leisure displays well behaved

dynamics in the sense that the balanced-growth equilibrium is uniquely determined and it

satisfies global saddle stability. Since the models discussed by those authors do not involve any

market distortion, there always exists a unique perfect-foresight competitive equilibrium even

though there are multiple long-run equilibria. Therefore, indeterminacy of the converging

path towards the balanced-growth equilibrium is not the issue in their studies.

The other development that is closely related to our analysis is made by Benhabib and

Nishimura (1998, 1999). These authors reveal that indeterminacy may hold in the neoclassical

multi-sector growth models with externalities and social constant returns. The key condition

for indeterminacy in their finding is that the capital good sectors use more capital intensive

technologies than the consumption good sector from the social perspective but they use more

labor intensive technologies from the private perspective. Benhabib, Meng and Nishimura

(2000) and Mino (2001) confirm that this conclusion also holds in the two-sector endogenous

growth models with externalities in which both final good and education sectors use human

as well as physical capital under social constant returns.3 Since the Lucas model used in

this paper assumes that the education sector employs human capital alone, there is no factor

intensity reversal between the social and the private technologies. Therefore, the cause of

indeterminacy with social constant returns in our discussion mainly comes from the preference

side rather than from the production side emphasized by Benhabib and Nishimura (1998,

1999).
2See also Mitra (1998) for indeterminacy of equilibrium in a discrete-time version of the Lucas model.
3 In the absence of externalities, the two-sector endogenous growth model of this type generally has a unique

equilibrium: see Bond, Wang and Yip (1996) and Mino (1996).
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The paper is organized as follows. Section 2 sets up the base model with pure leisure time.

Section 3 characterizes the dynamics of the model and presents indeterminacy results. Section

4 re-examines the base model by using an alternative specification of leisure activities. Section

5 explores models without physical capital and finds the global indeterminacy conditions.

Section 6 concludes the paper.

2 The Base Model

The analytical framework of this paper is essentially the same as that of Lucas (1988, 1990).

We introduce sector-specific externalities into the original model. Production side of the

economy consists of two sectors. The first sector produces a final good that can be used

either for consumption or for investment on physical capital. The production technology is

given by

Y1 = K
αH

β1
1 K̄

εH̄
φ1
1 , α, β1 > 0, α+ β1 + ε+ φ1 = 1, (1)

where Y1 denotes the final good, K is stock of physical capital and H1 is human capital

devoted to the final good production. K̄ε and H̄φ1
1 represent sector-specific externalities

associated with physical and human capital employed in this sector. The key assumption in

(1) is that the production technology satisfies social constant returns to scale.

Following the Uzawa-Lucas formulation, we assume that new human capital production

does not employ physical capital and its technology is specified as

Y2 = γH
β2
2 H̄

φ2
2 , γ,β2, φ2 > 0, β2 + φ2 = 1. (2)

Here, H2 is human capital used in the education sector, H̄
φ2
2 stands for sector specific ex-

ternalities. Again, the production technology of new human capital exhibits social constant

returns.

We assume that the total time available to the representative household is unity in each

moment. Thus denoting the time length devoted to leisure activities by l ∈ [0, 1] , the full
employment condition for human capital is

H1 +H2 = (1− l)H,

where H is the total stock of human capital. As a result, if we define v = H1/H, accumulation

of physical and human capital respectively given by

K̇ = Kα (vH)β1 K̄εH̄
φ1
1 −C − δK, 0 < δ < 1, (3)
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Ḣ = γ [(1− v − l)H]β2 H̄φ2
2 − ηH, 0 < η < 1. (4)

In the above, C denotes consumption, and δ and η are the depreciation rates of physical and

human capital.

The objective function of the representative household is

U =

Z ∞

0
u (C, l) e−ρtdt, ρ > 0,

where the instantaneous utility function is given by the following:4

u (C, l) =

⎧⎪⎨⎪⎩
[CΛ (l)]1−σ − 1

1− σ
, σ > 0, σ 6= 1,

lnC + lnΛ (l) , for σ = 1.
(5)

Function Λ (l) is assumed to be monotonically increasing and strictly concave in l. We also

assume that

σΛ (l)Λ00 (l) + (1− 2σ)Λ0 (l)2 < 0. (6)

This assumption, along with strict concavity of Λ (l) , ensures that u (C, l) is strictly concave

in C and l. Since we assume that leisure needs pure time alone, l× 100% of human capital is

not used for any activity.

The representative household maximizes U subject to (3), (4) and given initial levels of K

and H by controlling C, v and l. In so doing, the household takes sequences of external effects,n
K̄ (t) , H̄

φ1
1 (t) , H̄

φ2
2 (t)

o∞
t=o
, as given.5. The current value Hamiltonian for the optimization

problem can be set as

H =
[CΛ (l)]1−σ − 1

1− σ
+ p1

h
Kα (vH)β1 K̄εH̄

φ1
1 , −C − δK

i
+p2

h
γ (1− v − l)β2 Hβ2H̄

φ2
2 − ηH

i
,

where p1 and p2 are respectively denote the prices of consumption good and new human

capital. Under given sequences of external effects, the necessary conditions for an optimum
4As is well known, if the utility function involves pure leisure time as an argument, the functional form

should be (5) in order to define feasible balanced-growth equilibrium.
5 In this formulation we set up a pseudo-planning problem in which the planner (household) seeks to

maximize the discounted sum of utility under given sequences of external effects. Alternatively, we may find

the perfect-foresight competitive equilibrium by analyzing a decentralized economy. In such a setting, the

household maximizes U subject to the flow budget constraint under given sequences of prices and distributed

profits and the firms maximize their profits by taking the externalities as given. See Mino (2000) for the

details.
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are the following:

C−σΛ (l)1−σ = p1, (7)

C1−σΛ0 (l)Λ (l)−σ = γp2β2 (1− v − l)β2−1Hβ2H̄
φ2
2 , (8)

p1β1K
αvβ1−1Hβ1Kε

EH̄
φ1
1 = γp2β2 (1− v − l)β2−1Hβ2H̄

φ2
2 , (9)

ṗ1 = p1

h
ρ+ δ − αKα−1 (vH)β1 K̄εH̄

φ1
1

i
, (10)

ṗ2 = p2

h
ρ+ η − γβ2 (1− v − l)β2 Hβ2−1H̄φ2

2

i
(11)

−p1
h
β1K

α−1vβ1Hβ1−1K̄εH̄
φ1
1

i
,

together with the transversality conditions:

lim
t→∞ e

−ρtp1K = 0; lim
t→∞ e

−ρtp2H = 0. (12)

3 Equilibrium Dynamics and Indeterminacy Conditions

3.1 The Dynamical System

For analytical simplicity, in the following we specify Λ (l) as

Λ (l) = exp

µ
l1−θ − 1
1− θ

¶
, θ > 0, θ 6= 1, (13)

where Λ (l) = l for θ = 1. Given this specification, when σ = 1, the instantaneous utility

function becomes

u (C, l) = lnC +
l1−θ − 1
1− θ

,

which has been frequently used in the real business cycle literature. It is to be noted that,

under this specification, condition (6) reduces to

(1− σ) l1−θ − σθ < 0. (14)

If we assume that the number of firms is normalized to one, in equilibrium it holds that

K̄ (t) = K (t) and H̄i (t) = Hi (t) for all t ≥ 0. Thus, keeping in mind that α+β1+ε+φ1 = 1

and β2 + φ2 = 1, from (7) and (8) we obtain

CΛ0 (l)
Λ (l)

=
p2γβ2H

p1
.

Given (13), the above becomes

C = (p2/p1) γβ2l
θH. (15)
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Letting x = K/vH, (9) is written as

p2
p1
=

β1
γβ2

xα+ε. (16)

Equations (15) and (16) give C = β1l
θxα+εH. Hence, using x = K/vH, the commodity

market equilibrium conditions (3) and (4) yield the following growth equations of capital

stocks:
K̇

K
= xα+ε−1 − β1l

θxα+ε

k
− δ, (3’)

Ḣ

H
= γ

µ
1− l − k

x

¶
− η. (4’)

On the other hand, (10) gives the following:

ṗ1/p1 = ρ+ δ − αxα+ε−1, (10’)

Additionally, in view of (9), equation (11) becomes

ṗ2/p2 = ρ+ η − γβ2 (1− l) . (11’)

As a result, by use of (10’), (11’) and (16), x changes according to

ẋ

x
=

1

α+ ε

£
η − δ + αxα+ε−1 − β2γ (1− l)

¤
. (17)

Under (13), equation (7) is expressed as

C−σl−θ exp
µ
(1− σ)

l1−θ − 1
1− θ

¶
= p1.

Thus combining (15) with the above equation and conducting logarithmic differentiation with

respect to time, we obtainh
(1− σ) l1−θ − σθ

i l̇
i
= (1− σ)

ṗ1
p1
+ σ

Ã
ṗ2
p2
+
Ḣ

H

!
. (18)

Note that if the utility function is additively separable (σ = 1), the above presents

l̇

l
= −1

θ

Ã
ṗ2
p2
+
Ḣ

H

!
.

Namely, the optimal change in leisure time is negatively proportional to the change in aggre-

gate value of human capital.

Using (4’), (10’) and (11’), equation (18) yields the dynamic equation of leisure time:

l̇

l
= ∆ (l)

½
α (1− σ)xα+ε−1 + σγ

k

x
− σγ (1− β2) (1− l)− ρ− (1− σ) δ

¾
, (19)
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where ∆ (l) =
£
σθ − (1− σ) l1−θ

¤−1
, which has a positive value under the assumption of

(14). Finally, (3’) and (4’) mean that the dynamic equations for the behavior of k (= K/H)

is shown by
k̇

k
= xα+ε−1 − β1l

θxα+ε

k
− δ + η − γ

µ
1− l − k

x

¶
. (20)

Consequently, we find that (17), (19) and (20) constitute a complete dynamic system with

respect to k (= K/H) , x (= K/vH) and l.

3.2 Non-Separable Utility

Since the nonlinear dynamic system derived above is three dimensional, the precise analytical

conditions for generating indeterminacy are hard to obtain. The common strategy to deal

with such a situation is to find out numerical examples exhibiting indeterminacy by setting

parameter values at empirically plausible magnitudes. In the following, rather than depending

entirely on the numerical experiments, we impose some restrictions on the parameter values

in order to obtain analytical conditions for indeterminacy. Following Xie’s [30] idea, we focus

on the special case where σ = α and θ = 1.6 As shown below, these conditions enable us

to reduce the three-dimensional dynamic system to a two-dimensional one. Additionally, we

also assume that δ = η, that is, physical and human capital depreciate at the identical rate.

This assumption is made only for notational simplicity and the main results obtained below

are not altered when δ 6= η.

The assumptions that σ = α and θ = 1 simplify the dynamical system in the following

sense:

Lemma 1 If σ = α and θ = 1, the consumption-physical capital ratio, C/K, stays constant

over time.

Proof. Let us define z = β1x
α+εl/k (= C/K) . If σ = α, θ = 1 and δ = η, then (19) and

(20) respectively become

l̇

l
= (1− α)xα+ε−1 + γ

k

x
− γ (1− β2) (1− l)−

α+ (1− α) δ

α
, (190)

k̇

k
= xα+ε−1 − z − γ (1− l) + γ

k

x
. (200)

6Xie [30] examines a model with fixed labor supply in which the consumption-capital ratio stays constant

over time if σ = α.
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Therefore, by (17), (190) and (200) we obtain:

ż

z
= (α+ ε)

ẋ

x
+
l̇

l
− k̇
k

= z − α+ (1− α) δ

α
.

Since this system is completely unstable, on the perfect-foresight competitive equilibrium

path the following should hold for all t ≥ 0:

z

µ
=
C

K

¶
=

ρ+ (1− α) δ

α
.

Hence, consumption and physical capital change at the same rate even in the transition

process.

The above result means that on the equilibrium path x is related to k and l in such a way

that

x =

µµ
ρ+ (1− α) δ

α

¶
k

l

¶ 1
α+ε

.

Substituting this into (190) and (200), we obtain the following set of differential equations:

k̇

k
=

µ
λ
k

l

¶1− 1
α+ε

+
γ

λ

µ
λ
k

l

¶1− 1
α+ε

l − γ (1− l)− λ,

l̇

l
= (1− α)

µ
λ
k

l

¶1− 1
α+ε

+
γ

λ

µ
λ
k

l

¶1− 1
α+ε

l − γ (1− β2) (1− l)− λ,

where λ = [ρ+ (1− α) δ] /α. To simplify further, denote q = (λk/l)1−
1

α+ε . Then the above

system may be rewritten as follows:

q̇

q
=

µ
1− α− ε

α+ ε

¶
[γβ2 (1− l)− αq] , (21)

l̇

l
=
³
1− α+

γ

λ
l
´
q − γ (1− β2) (1− l)− λ. (22)

Under the conditions where σ = α and θ = 1, this system is equivalent to the original dynamic

equations given by (17), (19) and (20).

By inspection of (21) and (22), we find the following results:

Lemma 2 If the dynamic system consisting of (21) and (22) has a stationary point with

a saddle-point property, then the original dynamic system exhibits local determinacy. If a

stationary point of (21) and (22) is a sink, then the original system holds local indeterminacy.
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Proof. If the dynamic system consisting of (21) and (22) has a saddle-point property, there

(at least) locally exists a one-dimensional stable manifold around the steady state. Hence, the

relation between q and l on the stable manifold can be expressed as q = q (l) . By displaying

phase diagrams of (21) and (22), it is easy to confirm that if the stationary point is saddle,

the stable arms has negative slopes. By definition of q, it holds that

k = lq (l)
α+ε

α+ε−1 (23)

Since on the saddle path q is negatively related to l, the right hand side of the above monoton-

ically increases with l. This implies that under a given initial level of k, the initial value of

l is uniquely determined to satisfy (23). Thus converging path in the original system with

respect to (k, x, l) is uniquely given as well. In contrast, if the steady state of (21) and (22)

is a sink, there locally exist an infinite number of converging paths in (q, l) space Thus we

cannot specify a unique set of initial values of l and x under a given initial level of k.

As for existence of the balanced-growth equilibrium, we find the following conditions:

Lemma 3 (i) There is a unique, feasible balanced growth equilibrium, if and only if

γ (β2 − α) > ρ+ (1− α) δ. (i)

(ii) There may exist dual balanced-growth equilibria, if

γ (β2 − α) < ρ+ (1− α) δ. (ii)

Proof. Condition q̇ = 0 in (21) yields q = (γβ2/α) (1− l) . Thus conditions l̇ = q̇ = 0 are
established if the following equation holds:

Γ (l) =
γβ2
α

³
1− α+

γ

λ
l
´
(1− l)− γ (1− β2) (1− l)− λ = 0. (24)

Note that

Γ (0) = (γβ2/α) (1− α)− γ (1− β2)− λ

= (1/α) [γ (β2 − α)− ρ− (1− α) δ]

Γ (1) = −λ = − (1/α) [ρ+ (1− α) δ] < 0

If condition (i) is met, Γ (0) > 0 and Γ (l) is monotonically decreasing with l for l ∈ [0, 1] .
Hence, Γ (l) = 0 has a unique solution in between 0 and 1. If (ii) is satisfied, then Γ (0) < 0.
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Since Γ (l) = 0 is a quadratic equation, if Γ (l) = 0 has solutions for l ∈ [0, 1] , there are two
roots.

Using the results shown above, we obtain the indeterminacy results for the special case

of σ = α and θ = 1:

Proposition 1 Suppose that σ = α and θ = 1. Then the balanced-growth equilibrium is

locally indeterminate, if and only if the following conditions are satisfied:µ
1− β2 −

β2 (α+ ε− 1)
α+ ε

¶
l̄ +

β2 (α+ ε− 1)
α+ ε

+
ρ+ (1− α) δ

α
< 0, (25)

β2 − α+
αγβ2

ρ+ (1− α) δ

¡
2l̄ − 1¢ > 0, (26)

where l̄ denotes the steady-state value of leisure time.

Proof. Linearizing (21) and (22) at the stationary point and using the steady-state con-

ditions that satisfy l̇ = q̇ = 0, we find that signs of the trace and the determinant of the

coefficient matrix of the linearized system fulfill the following:

sign {trace}
= sign

½µ
1− β2 −

β2 (α+ ε− 1)
α+ ε

¶
l̄ +

β2 (α+ ε− 1)
α+ ε

+
ρ+ (1− α) δ

α

¾
,

sign {det} = sign
½
β2 − α+

αγβ2
ρ+ (1− α) δ

¡
2l̄ − 1¢¾ .

Therefore, if (25) and (26) hold, then the trace and the determinant respectively have neg-

ative and positive values. This means that the linearized system has two eigenvalues with

negative real parts, and thus in view of Lemma 2, the balanced-growth equilibrium is locally

indeterminate.

This proposition is useful to characterize patterns of the local dynamics around the

balanced-growth equilibrium. The results may be summarized by the following proposition:

Proposition 2 If there is a unique balanced-growth equilibrium, it is either locally indeter-

minate or totally unstable. If there are dual balanced-growth equilibria, the one with a higher

growth rate is locally determinate, while the other with a lower growth rate is either locally

indeterminate or totally unstable.
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Proof. If the system involves a unique steady state, Lemma 1 shows that Γ0
¡
l̄
¢
< 0, where

l̄ satisfies Γ
¡
l̄
¢
= 0. It is easy to verify that this holds if and only if (26) is satisfied at l = l̄.

This means that the steady state is not a saddle point, which shows that it is a sink if (25)

holds and it is a source if (25) is violated. Similarly, if the system has two stationary points,

from Lemma 1 we see that Γ0
¡
l̄1
¢
> 0 and Γ0

¡
l̄2
¢
< 0, where l̄1 and l̄2 denote two roots of

Γ (l) = 0 with l̄1 < l̄2. Hence, (26) does not hold at l = l̄1. As a result, the steady state with

a lower l (so a higher growth rate) is a saddle point, while the steady state with a higher l (a

lower growth rate) is a sink if (25) holds or it is a source if (25) does not hold. Consequently,

in the case of dual steady states, the balanced-growth path with a higher growth rate is

locally determinate and the one with a lower growth rate is either locally intermediate or

totally unstable.

Since the indeterminacy conditions (25) and (26) contain an endogenous variable, l̄, we

consider some numerical examples. In the first example, we assume that α = σ = 0.3, ε = 0.1,

β2 = 0.7, ρ = 0.03, δ = 0.04 and γ = 0.15. Given those values, equation (24) has a unique,

positive solution, l̄ = 0.37317. Substituting this and the parameter values specified above

into (25) and (26), we find that both (25) and (26) are met. Thus the unique balanced-

growth equilibrium is locally indeterminate. If we raise the value of β2 up to 0.8, we obtain

l̄ = 0.55233. Similarly, when β2 = 1, (24) has l̄ = 0.69564. In both cases, (25) and (26) are

still satisfied, so that indeterminacy emerges around the balanced-growth equilibrium. Note

that when β2 = 1, there is no external effect in the new human capital producing sector.

Thus when the utility function is not separable between consumption and pure leisure time,

the Lucas model with social constant returns may produce indeterminacy if there is small

external effect in the final good producing sector.

To present examples of dual balanced-growth equilibria, let us now assume that α = σ =

0.3, ε = 0.1, ρ = 0.03, δ = 0.04, γ = 0.2 and β2 = 0.6. Except for γ and β2, the parameters

have the same magnitudes as before. In this example, (24) has two positive solutions: l̄ =

0.118 and 0.608. It is confirmed that in the balanced-growth equilibrium associated with

l̄ = 0.118 does not satisfy (26). Hence, the balanced-growth equilibrium with a lower leisure

time establishes well behaved saddle-point stability so that local determinacy holds. On the

other hand, the balanced-growth equilibrium with l̄ = 0.608 fulfills both (25) and (26). Thus

the low-growth steady state yields indeterminacy of equilibrium. If we set α = 0.4 and do not

change other parameter values, we obtain l̄ = 0.12028 and 0.65472. In this case, the steady
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state with a lower l̄ holds determinacy. However, the steady state with a higher l̄ violates

(25) so that it is totally unstable: we cannot find any converging path out of the balanced

growth equilibrium.7

3.3 Separable Utility

In this section, we examine the model with a separable utility function that has been fre-

quently used in the literature. To simplify the algebra, in what follows we assume that the

production technology of education sector is not associated with externalities, that is, β2 = 1.

Although the magnitude of β2 would be relevant for evaluating the dynamic behaviors of the

model quantitatively, it can be shown that the value of β2 does not yield essential effects on

the analytical results.

Let us define y = xα+ε−1 and remember that k/x = (K/H) (vH/K) = v. Then assuming

that σ = θ = β2 = 1, in the case of separable utility the dynamic system consisting of (17),

(19) and (20) can be written as the following:

ẏ

y
=
1− (α+ ε)

α+ ε
[γ (1− l)− αy] , (27)

v̇

v
= y

µ
1− β1l

v

¶
− γ (1− l − v)− 1

α+ ε
[αy − γ (1− l)] , (28)

l̇

l
= γv − ρ. (29)

It is to be noted that by definition, it holds that k = vy
1

ᾱ+ε−1 , and thus that the initial values

of v and y must satisfy this equation under a given initial level of k. Hence, as before, if the

linearized system of (27), (28) and (29) has more than two stable roots, the balanced growth

equilibrium is locally indeterminate.

We first examine existence of the balanced-growth equilibrium:
7Recently, several authors have examined the role of nonseparable utility in growth models. Bennett and

Farmer [8] introduce a non-separable utility function into the model in Benhabib and Farmer [2] and show

that indeterminacy may emerge under relatively small degree of increasing returns. Pelloni and Waldmann

[24 and 25] examine Romer’s [27] model with labor-leisure choice. They reveal that indeterminacy may hold

one-sector endogenous growth model if the utility function is nonseparable. Using a one-sector, exogenous

growth model with perfect markets, de Hek [13] points out that the nonseparable utility would yield multiple

steady states.

12



Lemma 4 Suppose that σ = θ = β2 = 1 and ρ < γ. Then the economy involves a unique,

feasible balanced-growth equilibrium if

ρ

γ
− β1

µ
1− ρ

γ

¶
< 0, (i)

while there may exist dual balanced-growth equilibria if

ρ

γ
− β1

µ
1− ρ

γ

¶
> 0. (ii)

Proof. Since the steady-state value of v is uniquely given in such a way that v = ρ/γ,

the feasible steady-state level of l must satisfy l ∈ [0, 1− ρ/γ.] . Hence, using the steady-state

conditions that satisfy ẏ = ẇ = l̇ = 0, we find that if

(1− l)
∙
1

α
− 1− γβ1

αρ
l

¸
+

ρ

γ
= 0 (30)

has a solution for l² [0, 1− γ] , a feasible balanced-growth equilibrium may exist. Define

Ω (l) =
γβ1
αρ
l2 +

µ
1− 1

α
− γβ1

αρ

¶
l +

1

α
− 1 + ρ

γ
. (31)

Then we see that

Ω (0) =
1

α
− 1 + ρ

γ
> 0,

Ω

µ
1− ρ

γ

¶
=
1

α

∙
ρ

γ
− β1

µ
1− ρ

γ

¶¸
.

Therefore, if Ω (1− ρ/γ) < 0, equation Ω (l) = 0 has a root in between 0 and 1 − ρ/γ. If

Ω (1− ρ/γ) > 0, then either Ω (l) = 0 has no root or it has two roots for l ∈ [0, 1− ρ/γ] .

As for the stability of balanced-growth equilibrium, we can establish the following results:

Proposition 3 Suppose that σ = θ = β2 = 1 and ρ < γ. Then if there is a unique balanced-

growth equilibrium, it is locally determinate. If there are dual balanced-growth equilibria, one

with a lower leisure time (a higher growth rate) is locally determinate, while the other with a

higher leisure time (a lower growth rate) is either locally indeterminate or totally unstable.

Proof. The coefficient matrix of the dynamic system linearized at the steady state is given

by

J =

⎡⎢⎢⎢⎣
γ
³
1− 1

α+ε

´ ¡
1− l̄¢ 0 γ2

α

³
1− 1

α+ε

´¡
1− l̄¢³

ε
α+ε

´
ρ
γ − β1l̄

β1γ
2

αρ

¡
1− l̄¢ l̄ + ρ −γβ1

α

¡
1− l̄¢+ ³1− 1

α+ε

´
ρ

0 γ l̄ 0

⎤⎥⎥⎥⎦ ,
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where l satisfies (30). By (30) it holds that

trace J = γ

½¡
1− l̄¢ ∙1 + γβ1

αρ
l̄ − 1

α+ ε

¸
+

ρ

γ

¾
> γ

½¡
1− l̄¢ ∙1 + γβ1

αρ
l̄ − 1

α

¸
+

ρ

γ

¾
= 2ρ > 0

On the other hand, the determinant of J is

detJ = γ2l̄

µ
1

α+ ε
− 1
¶¡
1− l̄¢ ∙γβ1

α

¡
2l̄ − 1¢+ ρ− ρ

α

¸
From (31) we obtain

Ω0 (l) =
1

ρ

∙
γβ1
α

¡
2l̄ − 1¢+ ρ− ρ

α

¸
.

If the economy involves a unique steady-state values of l̄, it satisfies Ω0
¡
l̄
¢
< 0. This means

that det J < 0. Since trace J > 0, the system has one negative and two positive (possibly

complex) eigenvalues, which shows that the balanced-growth equilibrium is locally determi-

nate. On the other hand, if there are dual steady-state levels of l̄1 and l̄2
¡
l̄1 < l̄2

¢
, we have

Ω0
¡
l̄1
¢
< 0 and Ω0

¡
l̄2
¢
> 0. Thus, as well as the case of unique steady state, the equilib-

rium path is determinate at l = l̄1. When l = l̄2, it holds that detJ > 0. The sum of the

second-order principal minors of J is given by

J2 = γ

µ
1− 1

α+ ε

¶¡
1− l̄¢ ∙β1γ2

αρ

¡
1− l̄¢ l̄ + ρ

¸
+ γ l̄

∙
γβ1
α

¡
1− l̄¢−µ1− 1

α+ ε

¶
ρ

¸
The Routh theorem states that the number of eigenvalues of J with positive real parts equal

to the number of changes in signs of the following sequence:8

−1, trace J, −J2 + detJ

trace J
, detJ

Since detJ > 0 and trace J > 0, the above sequence changes sign once if J2 < 0. This means

that J has two eigenvalues with negative real parts, so that local indeterminacy holds around

l = l̄2. In contrast, if −J2 + det J
trace J < 0, the sign changes three times and hence all of the

eigenvalues of J have positive real parts. If this is the case, the economy is totally unstable

at l = l̄2.

A relevant difference between the model with nonseparable and one with separable utility

is that indeterminacy will not emerge if the model with a separable utility function involves

a unique balanced-growth equilibrium. If the separable utility model has a dual balanced-

growth equilibria, there still remains the possibility of indeterminacy in the low-growth steady
8See p.180 in Gantmacher [11].
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state. However, since the dual long-run equilibria condition (ii) would not hold under the

empirically plausible parameter values, it is safe to say that indeterminacy of equilibrium is

hard to observed in the Lucas model with a separable utility function and social constant

returns. In section 5.1, we see this point more clearly in the context of a simpler model.

4 Quality Leisure Time

So far, we have assumed that utility of the household depends upon consumption and pure

leisure time. An alternative formulation suggested by Becker [1] is to assume that leisure

activities need human capital as well as time. The simplest form of utility function capturing

this idea is9

u (C, lH) =

⎧⎪⎪⎨⎪⎪⎩
h
Cψ (lH)ζ

i1−σ − 1
1− σ

, σ > 0, σ 6= 1, ψ, ζ ∈ (0.1) ,
ψ logC + ζ log (lH) , for σ = 1.

(32)

Given this specification, the necessary conditions for an optimum for the base model (7), (8)

and (11) are respectively replaced with

ψCψ(1−σ)−1 (lH)ζ = p1, (33)

ζCψ(1−σ)lζ(1−σ)−1Hζ(1−σ) = p2β2γ (1− v − l)β2−1Hβ2H̄
φ2
2 , (34)

ṗ2 = p2 (ρ+ η − β2γ (1− v − l))− p1β1vβ1+φ1Hβ1+φ1−1

−ζCψ(1−σ)lζ(1−σ)Hζ(1−σ)−1. (35)

The other conditions, (9), (10) and (12), are also necessary for an optimum.

Noting that α+ β1 + ε+ φ1 = 1 and β2 + φ2 = 1, equations (33) and (34) present

C

lH
=

ψ

ζ

µ
p2
p1

¶
=

β1ψ

γβ2ζ
xα+ε. (36)

Using (33) and (34), equation (35) reduces to

ṗ2/p2 = ρ+ η − β2γ. (37)
9 In order to establish the balanced-growth equilibrium, the utility function should have the particular form

given by (32). Ladròn-de-Guevara et al. [14 and15] compare dynamic property of a two-sector endogenous

growth model under (5) with that under (32).
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Thus the price of new human capital changes at a constant rate. Compared to the pure

leisure time model, this property simplifies the analysis of the quality leisure time model. By

(34) and (36), we obtain:

ζ (lH)(ψ+ζ)(1−σ)−1
µ
β1ψ

γβ2ζ

¶ψ(1−σ)
xψ(α+ε)(1−σ) = p2γβ2.

This shows that the dynamics of l is described by

l̇

l
=
1

σ
(β2γ − ρ− η)− Ḣ

H
+

ψ (α+ ε) (1− σ)

σ [1− (ψ + ζ) (1− σ)]

ẋ

x
.

Based on the conditions obtained above, if we assume that δ = η, the complete dynamic

system is given by the following set of differential equations:

k̇

k
= xα+ε−1 − γ

µ
1− l − k

x

¶
− β1ψ

γβ2ζ

xα+εl

k
, (38)

ẋ

x
=

1

α+ ε

¡
αxα+ε−1 − β2γ

¢
, (39)

l̇

l
=

β2γ

σ
− γ

µ
1− l − k

x

¶
+

ψ (α+ ε) (1− σ)

σ [1− (ψ + ζ) (1− σ)]

¡
αxα+ε−1 − β2γ

¢
−ρ+ (1− ρ) δ

σ
. (40)

Observe that since (39) exhibits self stabilizing behavior, the system has at least one stable

root. Thus if the balanced growth equilibrium exists, the local stability of the economy is

ensured.

Unlike the pure leisure time model, the quality leisure time model with social constant

returns has simpler properties. The results may be summarized in the following manner:

Lemma 5 If the quality leisure time model with social constant returns involves a feasible

balanced-growth equilibrium, it is uniquely given.

Proof. In (39) ẋ = 0 yields a unique steady-state value of x such that x̄ = (γβ2/α)
1/(α+ε−1) .

By substituting x̄ into l̇ = 0 condition in (40), we see that γ (1− l − k/x̄) = a constant.

Therefore k̇ = 0 condition in (38) shows that l/k = a constant. Since these two conditions

are linear functions of k and l, the steady-state values of k and l are uniquely determined as

well.

If a feasible balanced-growth exists, we can easily verify the following:
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Proposition 4 If the quality leisure time model with social constant returns involves the

balanced-growth equilibrium, it is locally determinate.

Proof. Letting ξ be the eigenvalue of the coefficient matrix of the linearized system of (38),

(39) and (40) evaluated the steady state, we find that one of the characteristic root of the

linearized system is

ξ =

µ
α+ ε− 1
α+ ε

¶
β2γ,

which has a negative value. The other two eigenvalues satisfy the following equation:½
ξ2 −

µ
γk̄

x̄
+ π

l̄

k̄
+

γ l̄

x̄

¶
ξ + γ l̄

µ
γk̄

x̄
+ π

k̄

k̄
+ π

γ l̄

x̄

¶¾
= 0,

where π = β1ψx̄
α+εl̄/γβ2k̄ > 0. Since both roots of the above equation have positive real

parts, the balanced-growth equilibrium is locally determinate.

As a result, the simple formulation of quality leisure excludes indeterminacy under socially

constant returns technologies. Indeterminacy in this model thus requires that production

technology exhibits some degree of increasing returns. For example, suppose that external

effects in the final good sector depend on the aggregate level of human capital in such a way

that

Y1 = K
αH

β1
1 K̄

εH̄φ1 ,

where H̄ = H in equilibrium. In this case, we can verify that the model with a nonseparable

utility function may yield indeterminacy under a small degree of increasing returns, that is,

α+ β1 + ε+ φ1 is close to one. A simpler model discussed in the next section confirms this

result.

5 Global Indeterminacy in Models without Physical Capital

In this section we briefly examine models without physical capital. Although the endogenous

growth model that does not involve physical capital may lack reality, it is helpful for analyzing

the global behavior of the economy without imposing any restrictions on the parameter values

involved in the model. The production and preference structure are the same as before.

Only difference is that there is no physical capital: both final good and new human capital

producing sectors use human capital alone. Since in this setting the final good is used only

for consumption, the market equilibrium condition for the first good is

C = (vH)β1 H̄
φ1
1 , β1 ∈ (0, 1) , φ1 > 0. (41)
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The production function of new human capital is (2) in the base model.

5.1 Pure Leisure Time

We first consider a model with pure leisure time where the utility function is given by (5).10

Again, we assume that the consumption good sector has a socially constant returns to scale

technology so that β1 + φ1 = 1. The Hamiltonian function for the household’s optimization

problem is

H =
[CΛ (l)]1−σ − 1

1− σ
+ p1

h
(vH)β1 H̄

φ1
1 −C

i
+ p2

h
γ (1− v − l)β2 Hβ2H̄

φ2
2 − ηH

i
,

where p1 is the price of the consumption good. Keeping in mind that H̄1 = vH and H̄2 =

(1− l − v)H when β1 + φ1 = β2 + φ2 = 1, the necessary conditions for optimization are:

C−σ exp
µ
(1− σ)

l1−θ − 1
1− θ

¶
= p1, (42)

C1−σl−θ exp
µ
(1− σ)

l1−θ − 1
1− θ

¶
= γp2β2H, (43)

β1p1 = γβ2p2, (44)

ṗ2 = p2 [ρ+ η − γβ2 (1− l)] . (45)

In addition, the transversality condition is given by limt→∞p2e−ρtH = 0.

Using (42), (43) and (44), we obtain

C = β1l
θH. (46)

On the other hand, in the presence of socially constant returns to scale technologies, (41)

becomes C = vH. Thus (46) gives the relation between l and v:

v = β1l
θ. (47)

Substituting (46) into (43) and taking logarithmic differentiation with respect to time, we

obtain

−σθ l̇
l
− σ

Ḣ

H
+ (1− σ) l1−θ

l̇

l
=
ṗ2
p2
.

Accordingly, from (4’), (45) and (47), the above yields a complete dynamic equation of leisure

time l:

l̇ = l∆ (l)
h
γ (β2 − δ) (1− l) + σγβ1l

θ − ρ− (1− σ) η
i
, (48)

10Mino (1999) considers this type of model that assumes a different form of nonseparable utility function.
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where ∆ (l) = σθ − (1− σ) l1−θ > 0 by the concavity assumption (14). Equation (48) sum-

marizes the entire model. Since the initial level of l is not specified, if (48) is stable around

the stationary point, local indeterminacy emerges.

Inspection of (48) reveals the following results:

Lemma 6 (i) There is a unique balanced-growth equilibrium, if either (i-a) or (i-b) below is

satisfied:

σ > max

½
β2,

ρ+ η

γβ1 + η

¾
, (i-a)

σ < min

½
β2,

ρ+ η

γβ1 + η

¾
. (i-b)

(ii) There may exist dual balanced-growth equilibria, if either (ii-a) or (ii-b) below holds:

ρ+ η

γβ2 + η
< σ < β2, γ (β2 − σ) > ρ+ (1− σ) η and θ < 1, (ii-a)

ρ+ η

γβ2 + η
< σ < β2, γ (β2 − σ) < ρ+ (1− σ) η and θ ≥ 1. (ii-b)

Proof. Define

Φ (l) = γ (β2 − σ) (1− l) + σβ1l
θ − [ρ+ (1− σ) η] .

The balanced growth equilibrium level of l is a solution of Φ (l) = 0. Note that

Φ (0) = γ (β2 − σ)− [ρ+ (1− σ) η] ,

Φ (1) = (γβ1 + η)σ − (ρ+ η) .

If condition (i-a) is held, it is easy to see that Φ (l) is monotonically increasing and Φ (1) >

0 > Φ (0) . Thus Φ (l) = 0 has a unique solution l ∈ (0, 1). In the case of condition (i-b),
we see that Φ (0) > 0 > Φ (1) and Φ (l) is monotonically decreasing. Hence, Φ (l) = 0 has

only one solution in between 0 and 1. If (ρ+ η) / (γβ2 + η) < σ < β2, then Φ (0) and Φ (1)

have the same sign. This means that if the balanced-growth path exists, there are at least

two equilibria. Under conditions (ii-a), Φ (0) < 0, Φ (1) < 0 and Φ (l) is strictly convex in l.

Therefore, if Φ (l) = 0 has solutions, there are two solutions in between 0 and 1. Conversely,

under conditions (ii-b), we find that Φ (0) > 0, Φ (1) > 0 and Φ (l) is strictly concave, and

hence Φ (l) = 0 also have dual solutions for l ∈ (0, 1) .

Those results immediately yield the following proposition:
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Proposition 5 Given condition (i-a), the balanced-growth equilibrium is globally determi-

nate, while it is globally indeterminate if condition (i-b) holds. If conditions in (ii-a) are

satisfied, the balanced-growth equilibrium with a lower level of l is locally indeterminate,

while the other with a higher level of l is locally determinate. In case of (ii-b), the opposite

results hold.

Proof. Since condition (i-a) ensures that dl̇/dl > 0 for all l ∈ [0, 1] , the balanced-growth
equilibrium is globally determinate. Given condition (i-b), dl̇/dl < 0 for all l ∈ [0, 1] , so that
global indeterminacy is established. In the similar way, it is easy to see that results for the

cases of (ii-a) and (ii-b) can be held.

We should note that if the utility function is additively separable between consumption

and leisure (σ = 1) and β2 < 1, then only condition (i-a) can be satisfied because it should

hold ρ < γβ1
11. Therefore, we never observe indeterminacy if we assume a separable utility

function. In addition, if θ = 1 but σ 6= 1, then Φ (l) function in the proof of Lemma 5 becomes
Φ (l) = γ (σβ1 + δ − β2) l+γ (β2 − δ)−ρ− (1− σ) η. Therefore, if σ < (β2 − δ) /β1, then the

balanced-growth equilibrium is globally indeterminate. Otherwise, it is globally determinate.

5.2 Quality Leisure Time

As suggested by the model in Section 4, we can verify that the quality leisure time model

without physical capital will not yield indeterminacy if the production technologies satisfy

social constant returns. Furthermore, it is shown that, given our specification, if externalities

in the consumption good sector are sector specific, indeterminacy does not exist regardless

of the degree of returns to scale. We, therefore, assume that production function of the

consumption good sector is

C = (vH)β1 H̄φ1 , β1 ∈ (0, 1) , φ1 > 0. (49)

In equilibrium, it holds that H̄ = H. That is, external effects for the consumption good

sector are associated with the aggregate human capital rather than the sector-specific human
11 If σ = 1, the steady-state conditions mean that Ḣ/H = γ (1− l− v)−η = −ṗ2/p2 = γβ2 (1− l)−ρ. Thus

noting that β2 < 1 and l
θ < 1, from (47) we obtain

ρ = γβ1l
θ + γ (β2 − 1) < γβ,

implying that (ρ+ η) / (γβ1 + η) < 1.
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capital. In this case, optimization with respect to C, l and v yield:

ψCψ(1−σ)−1 (lH)ζ(1−σ) = p1, (50)

ζCψ(1−σ) (lH)ζ(1−σ)−1 = p2γβ2, (51)

p1β1v
β1−1Hβ1+φ1−1 = p2γβ2. (52)

In view of (51), changes in the price of new human capital is

ṗ2 = p2 (ρ+ η − γβ2) . (53)

By use of (36), (50), and (51), we find:

ζC

ψlH
=

γβ2p2
p1

= β1v
β1−1Hβ1+φ1−1. (54)

Substituting (49) into (54)the above gives

v =
β1ψ

ζ
l. (55)

From (51), (54) and (55), we obtain the following equation:µ
β1ψ

ζ

¶β1ψ(1−σ)
l(1−σ)β1ψ+ζ(1−σ)−1H(β1+φ1)(1−σ)+ζ(1−σ)−1 =

β2γp2
ζ

.

Consequently, taking logarithmic differentiation of both sides of the above with respect to

time and using (4’) and (52), we obtain a complete dynamic equation of l as follows:

l̇
l =

1− ψ(β1 + φ1) (1− σ)− ζ (1− σ)

ψβ2 (1− σ) + ζ (1− σ)− 1
½
γ

µ
1−

µ
1 +

β1ψ

ζ

¶
l

¶
− η

¾
+

ρ+ η − β2γ

(1− σ)β1ψ + ζ (1− σ)− 1
. (56)

Inspection of this equation gives the following results:

Proposition 6 The quality leisure time model without physical capital is globally indetermi-

nate, if and only if

1− 1

ψ (β1 + φ1)
< σ < 1− 1

ψ (β1 + φ1) + ζ
. (57)

Proof. Since the right hand side of (56) is a linear function of l, if the system has a

stationary point in between l = 0 and 1, it should be uniquely given. Thus if dl̇/dl < 0

holds, global indeterminacy is established. We see that dl̇/dl < 0 for all l ∈ [0, 1], if and
only if (1− σ)β1ψ+ ζ (1− σ)− 1 and 1−ψ(β1 + φ1) (1− σ)− ζ (1− σ) have the same sign.
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If both of them are positive, it should hold that φ1β1 (1− σ) < 0 so that σ > 1. However,

(1− σ)β1ψ + ζ (1− σ)− 1 > 0 cannot be satisfied for σ > 1. In contrast, if

(1− σ)β1ψ + ζ (1− σ)− 1 < 0 and 1− ψ(β1 + φ1) (1− σ)− ζ (1− σ) < 0,

then ψφ1 (1− σ) > 0 and thus σ ∈ (0, 1) . The above conditions can be expressed as in the
proposition statement.

Condition (57) makes three points. First, if the utility function is separable (σ = 1), then

(57) cannot be met and indeterminacy will not emerge. Second, indeterminacy needs social

increasing returns in the consumption good sector, that is, β1 + φ1 > 1. Third, magnitude

of external effects in the new human represented by φ2 does not affect indeterminacy condi-

tion, which means that the model may exhibit indeterminacy when the new human capital

producing sector has no external effects. Finally, it is seen that, when indeterminacy holds,

there is a trade-off between magnitude of returns to scale, β1 + φ1, and the value of σ: the

smaller the degree of returns to scale, β1+φ1, is, the larger the intertemporal substitutability

in felicity, 1/σ, should be.

6 Conclusion

This paper has demonstrated that preference structure may play a pivotal role in generating

indeterminacy of equilibrium in the Lucas model, which is one of the prototype models of

endogenous growth. Unlike the existing studies on indeterminacy in the Lucas model that

empathize the role of external increasing returns, we have demonstrated that the Lucas model

with nonseparable utility between consumption and leisure time may yield indeterminacy even

in the absence of social increasing returns. Since our model precludes the possibility of reversal

of social and private factor intensity conditions emphasized by Benhabib and Nishimura (1998,

1999), indeterminacy in our setting mainly stems from the preference structure.

We have also shown that indeterminacy results depend upon specification of leisure. If

effective leisure is defined as the length of time spent for leisure activities, the economy

may involve multiple balanced-growth paths and indeterminacy tends to emerge rather easily

under socially constant returns to scale technologies. If we assume that effective leisure

depends on the level of human capital as well as on time, the economy has a unique balanced-

growth equilibrium. In this setting indeterminacy will not emerge under social constant

returns. Additionally, it is shown that nonseparable utility may also be relevant for generating
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indeterminacy in the quality leisure model with social increasing returns. These results

suggest that if we consider leisure as a home good produced by a more general technology

than that we assume in the paper, the possibility of emergence of indeterminacy would

increase even in the absence of increasing returns to scale technologies.
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