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1 Introduction

This chapter provides a general overview of theories anld toanodel individual and
collective decision-making. In particular, stress is lai the interaction of several
decision-makers.

A substantial part of this chapter is devoted to utility rmaization and its appli-
cation to collective decision-making, Game Theory. Howegtlee pitfalls of utility
maximization are thoroughly discussed, and the radic#t#yraative approach of view-
ing decision-making as constructing narratives is preskenith its emerging compu-
tational tools. In detail, the chapter is structured asfod.

Section (2) presents utility maximization and Game Theaith s Nash equilib-
ria. The most important prototypical games are expoundékisnsection. Section (3)
presents games that are not concerned with Nash equillbeietion (4) illustrates the
main paradoxes of utility maximization, as well as the patcthat have been pro-
posed. Section (5) expounds the vision of decision-makéngpastructing a narrative,
supported by a rare empirical case-study. Section (6) airmeogiding computational
tools for this otherwise literary vision of decision-maffinFinally, section (7) con-
cludes by assessing the pros and cons of competing appsoache

This chapter touches so many issues that a complete listevkrees to the rele-
vant litterature would possibly be longer than the chaptalfi. Instead of references,
the names of the most important scholars in each field have megle, so the in-
terested reader should be able to reconstruct the relellaiddgoaphy by herself. A
few exceptions have been made for very specific works, thag haen mentioned in
footnotes.

2 Utility and Games

Let {a1,ap,...am} be a set ofilternatives Let a; denote a generic alternative, hence-
forth called thd-th alternative where=1,2,...m.

By selecting an alternative, a decision-maker obtains arieobseveral possible
consequenced.et {Ci1,Ci2,...Cin} be the set of possible consequences of alternative
a;. Letcj denote a consequence&fwherei =1,2,...mandj=1,2,...n;.



Theexpected utilityf alternatives; is:

N
u(a) =3 p(aj)u(cj) 1)
=1
wherep(cij) is the probability of obtaining consequenggandu(cij) is the utility of
consequence;.

It is suggested that the one alternative should be chosenithiximizes expected
utility. Frank Ramsey, Bruno De Finetti and Leonard Savagaahstrated that this is
the only choice coherent with a set of postulates that thegguted as self-evident.

Among these postulates, the following ones are mentioné&usrchapter:

Transitivity Transitivity of preferences means thaajf- a; anda; > ay, thena; > a.

Independence Independence of irrelevant alternatives meansahata; iff a; Uay >
aj Uay, Va.

CompletenessCompleteness means thdig;, a;), a preference relation is defined.

Utility maximization is neither concerned with conceivialernatives, nor with the
formation of preferences, which are assumed to be given aoglisned by the utility
function. Probabilities may eventually be updated by mesHrfsequency measure-
ment, but at least their initial values are supposed to bengas well. Thus, utility
maximization takes as solved many of the problems with wiitgkcritics are con-
cerned.

Utility maximization takes a gambler playing dice or rotdess its prototypical
setting. In fact, in this setting the set of alternativesiiseqg, utilities coincide with
monetary prizes and probabilities can be assessed indepiyndf utilities. For some
critics of this decision theory, gambling is not an adequmeteotype of most real-life
situations.

The interaction of several utility-maximizing decisiorakers is covered b§ame
Theory Game Theory assumes that collective decision-makingdasctimbination
of several individual decision processes, where each ithad maximizes its utility
depending on the alternatives selected by the other ingilsd Since selecting an
alternative implies considering what alternatives otHaygrs may select, alternatives
are generally calledtrategiesn Game Theory.

Utility takes the namgpayoff in Game Theory. Games in which one player does
better at another’s expense are caltetb-sum gamessames may be played once, or
they may be repeated.

In general, Game Theory attempts to find out equilibria in gamnif each player
knows the set of available strategies and no player can bdxyethanging his or her
strategy while the other players keep theirs unchanged tktigecurrent choice of strate-
gies and the corresponding payoffs constitutdash equilibrium Since this implies
stepping in another player’s shoes in order to figure out W&)te would do if one
selects a particular strategy, Nash-equilibria are fixadtpan self-referential loops of
the kind “I think that you think that | think ...".

Note that being at a Nash equilibrium neither implies thahgalayer reaches the
highest possible payoff that (s)he can attain, nor that statl payoffs of all players



is the highest that can be attained. This is a concern foranms, for it implies that
individual interest may not produce the common good.

If agame is repeated a Nash equilibrium may be either rehizeh pure strategies
meaning that players choose consistently one single alieen ormixed strategies
meaning that players select one out of a set of availableegies according to a prob-
ability distribution. Accepting the idea of mixed strategioften allows to find Nash
equilibria where there would be none if only pure strategies allowed. However,
the realism of random decision-makers choosing strategiesrding to a probability
distribution may be questioned.

Most of the games analysed by Game Theory involve two, oryrcase a very lim-
ited number of players. On the contragyolutionary gamesoncern large populations
of players playing different strategies, that are subgetrt evolutionary dynamics reg-
ulated byreplicator equationsSuccessful strategies replicate and diffuse, unsuadessf
strategies go extinct. Occasionally, new strategies migynate by random mutation.

The equilibrium concept of evolutionary games is thategblutionarily stable
strategies An evolutionary stable strategy is such that, if almostrgwvaember of
the population follows it, no mutant can successfully ireadlternatively, evolution-
ary games may be played in order to observe typical dynarimicshich case they
become akin to the influence games that will be handled in&idlkuenceGames).

The following games propose prototypical modes of humaeraation. Games
used by experimental economics in order to evince humatu@es do not pertain to
this list.

2.1 The Battle of Sexes

Imagine a couple. The husband would most of all like to go &ftotball game. The
wife would like to go to the opera. Both would prefer to go te tame place rather
than different ones. If they cannot communicate, where Ishibey go?

The payoff matrix in figure (1) is an example of Battle of thex&e where the wife
chooses a row and the husband chooses a column. Aside, acgepeesentation of
the game where < M.

This representation does not account for the additionahtihat might come from
going to different locations and going to the wrong one, he.goes to the opera while
she goes to the football game, satisfying neither. Takiragpact of this effect, this
game would bear some similarity to the Game of Chicken of B)(2.

This game has two pure-strategy Nash-equilibria, one wbetle go to the opera
and another where both go to the football game. Furtherntioees is a Nash equilib-
rium in mixed strategies, where the players go to their prefeevent more often than
to the other one.

None of these equilibria is satisfactory. One possiblelptiem involves a com-
monly observed randomizing device, e.g., the couple mageatyr flip a coin in order
to decide where to go.



Opera

Football

Opera Football
3,2 0,0 M, L 0,0
0,0 2,3 0,0 L, M

Figure 1: A payoff matrix for the Battle of the Sexes (leftjldts generic representation
(right). The left number is the payoff of the row player (wWiféhe right number is the
payoff of the column player (husband). In this generic reprgationl is the payoff of
the least preferred alternative wher®éss the payoff of the most preferred alternative.

Stag Hare
Stag 3,3 0,1 C.C S,B
Hare 1,0 1,1 B, S D,D

Figure 2: A payoff matrix for the Stag Hunt (left) and its geoeepresentation (right).
The left number is the payoff of the row player, the right nemis the payoff of
the column player. In this generic representatiornis the payoff that accrues to both
players if they cooperatd) is the payoff that accrues to both players if they defect
from their agreemengis the sucker’s payoff an8l is the betrayer’s payoff.

2.2 The Stag Hunt

Rousseau described a situation in which two individualeago hunt a stag, which
none of them would be able to hunt alone. Each hunter may eaiynotice a hare
and shoot at it. This would destroy the stag hunt, so the ditneter would get nothing.

An example of the payoff matrix for the stag hunt is picturedigure (2), along
with its generic representation. The stag hunt requirgsGhaB > D > S

This game has two pure-strategy Nash-equilibria, one whette hunters hunt the
stag, the other one where both hunters hunt a hare. The fugibeigm maximizes
payoff, but the second equilibrium minimizes risk. Therestxalso a mixed-strategy
Nash-equilibrium, but no payoff matrix can make the hunpay “stag” with a prob-
ability higher than 12.

In addition to the example suggested by Rousseau, Humeda®wa series of ex-
amples that are stag hunts. One example addresses twadimalviwho must row a
boat. If both choose to row they can successfully move thé lht@avever if one does
not, the other wastes his effort. Hume’s second examplévasdwo neighbours wish-
ing to drain a meadow. If they both work to drain it they will fieccessful, but if either
fails to do his part the meadow will not be drained.

Several animal behaviours have been described as stag Hemtexample, the



Cooperate Defect

Cooperate 3,3 0,5 C,C S,B

Defect 5,0 1,1 B, S D, D

Figure 3: A payoff matrix for the Prisoner’s Dilemma (left)chits generic representa-
tion (right). The left number is the payoff of the row playeght number is the payoff
of the column player. In this generic representati@ris the payoff if both players
cooperateD is the payoff if both defect from their agreeme8is the sucker’s payoff,
B is the betrayer’s payoff.

coordination of slime molds. In times of stress, individualcellular protists will ag-
gregate to form one large body. Here if they all act togethey tcan successfully
reproduce, however the success depends on the cooperatizeing individual pro-
tozoa. Also, the hunting practices of orca are an examplestag hunt. Here orcas
cooperatively corral large schools of fish to the surfacestand them by hitting them
with their tails. Since this requires that fish do not have svi@yescape, it requires the
cooperation of many orcas.

2.3 The Prisoner’s Dilemma

The Prisoner’s Dilemma is a central subject in economiast Bppparently contradicts
its basic assumption that common good arises out of selfested individuals. This
difficulty is eventually overcome by repeating the game.

The basic formulation of the Prisoner’'s Dilemma is as fodowwo suspects, A
and B, are arrested by the police. The police has insuffieieidence for a conviction,
and, having separated both prisoners, visits each of thfarirgf the same deal: if one
testifies for the prosecution against the other and the o#imeains silent, the betrayer
goes free and the silent accomplice receives the full 10-geatence. If both stay
silent, both prisoners are sentenced to only six monthsilifiolaa minor charge. If
each betrays the other, each receives a five-year senteacé. peisoner must make
the choice of whether to betray the other or to remain sildotvever, neither prisoner
knows for sure what choice the other prisoner will make.

The Prisoner’s Dilemma describes any situation where iddals have an interest
to be selfish, though if everyone cooperates a better staihkbe attained. Examples
may include unionising, paying taxes, not polluting theiesmment, or else. Fig-
ure (3) illustrates a payoff matrix for the Prisoner’s Dilea, as well as its generic
representation. The Prisoner’s Dilemma requiresBatC > D > S

The Prisoner’s Dilemma has only one Nash equilibriuniatD). All individual
incentives push towards this equilibrium. Nevertheldss, équilibrium is not socially
optimal.

Eventually, the difficulty raised by the Prisoner’s Dilemoza be overcome if play-



ers can repeat the game (which requir€s2B+ S). In particular, by playing the Pris-
oner’s Dilemma as an evolutionary game with large numbegayfers and strategies
it is possible that islands of cooperation sustain theneselv a sea of selfish choices.
Robert Axelrod pioneered this line of research in 1984, figdiut that a “tit-for-tat”
strategy was the most efficient: start with cooperating velkenyou meet a new player,
but defect if the other does.

2.4 The Traveller's Dilemma

The Traveler’s dilemma is a non-zero-sum game in which tvageis attempt to max-
imize their own payoff, without any concern for the otheryaes payoff. The game
was formulated by Kaushik Basu and goes as follows.

An airline loses two suitcases belonging to two differeavéllers. The suitcases
contain identical antiques. An airline manager tasked tibesine claims of both trav-
ellers explains that the airline is liable for a maximum of1® per suitcase, and in
order to determine a honest appraised value of the antigeesdnager separates both
travellers and asks each of them to write down the amounteif tlalue at no less
than 2 $ and no more than 100 $. He also tells them that if boite wWown the same
number, he will treat that number as the true value of botitasés and reimburse both
travellers that amount. However, if one writes down a smalienber than the other,
this smaller number will be taken as the true value, and battetiers will receive that
amount along with a bonus/malus: 2 $ extra will be paid to thedller who wrote
down the lower value and a 2 $ deduction will be taken from teess@n who wrote
down the higher amount. The challenge is: what strategyldhmih travellers follow
in order to decide what value they should write down?

If this game is actually played, nearly all the times evergyohooses 100 $ and gets
it. However, rational players should behave differently.

Rational players should value the antique slightly less thair fellow traveller, in
order to get the the bonus of 2 $. For instance, by pricing & 88e would get 101
$, whereas the opponent would get 97 $. However, this triggerinfinite regression
such that 2 $ is the only Nash-equilibrium of this game. Thoesng rational does not
pay.

The Traveller's Dilemma suggests that in reality peoplerdoate and collaborate
because of their bounded rationality. If they would be seraftan they are, they would
obtain less.

2.5 The Dollar Auction

The dollar auction is a non-zero sum sequential game deasigypdvartin Shubik to
illustrate a paradox brought about by rational choice thdarthis game, players with
perfect information are compelled to make an ultimatelgtional decision based on a
sequence of rational choices.

The game involves an auctioneer who offers a dollar bill wtfité following rule:
the dollar goes to the highest bidder, who pays the amounitise Bhe second-highest
bidder also must pay the highest amount that he bids, buhgéting in return.



Suppose that the game begins with one of the players biddicent, hoping to
make a 99 cent profit. He will quickly be outbid by another jglalyidding 2 cents, as a
98 cent profit is still desirable. Similarly, another biddeay bid 3 cents, making a 97
cent profit. Alternatively, the first bidder may attempt taveert their loss of 1 cent into
a gain of 97 cents by also bidding 3 cents. In this way, a sefibils is maintained.

However, a problem becomes evident as soon as the biddiolge®89 cents. Sup-
posing that the other player had bid 98 cents, they now havehbice of losing the
98 cents or bidding a dollar even, which would make their pa#io. After that, the
original player has a choice of either losing 99 cents orinigl$1.01, and only losing
one cent. After this point the two players continue to bidvakie up well beyond the
dollar, and neither makes a profit.

2.6 Pure Coordination Games

In 1960 Thomas Schelling introducedire coordination gamesvhich are a sort of
a puzzle for Game Theory ever since. Pure coordination gamesne-shot games
where players face a set of alternatives knowing that aipesitiyoff will only accrue
to them if they coordinate on the same choice. For instamee,subjects may be
shown a city map and asked, independently of one anothegld¢otsa meeting point.
Or, subjects may be asked to select a positive integer. Ififdtecase they obtain a
positive payoff if they select the same meeting point; ingheond case, if they select
the same integer.

The difficulty of pure coordination games derives from thet faat players cannot
communicate and that the game is not repeated. The astagifstuit about pure coor-
dination games is that players make an agreement much mire thian they would
do if they would play randomly.

In general, the explanation is that pure coordination gageeerally entail cues
that single out one choice as more “salient” than othersirf@ance, subjects asked to
select a meeting point generally end up with the railwayi@tatvhereas the majority
of those asked to name a positive integer select the number 1.

However, this suggests that coordination may eventuallatt@ned because of
conventions, habits or values that do not enter the desmmigf decision settings.
People may not even be aware of what makes them coordindtendtanother.

2.7 The Game of Chicken

The game of Chicken models two drivers, both headed for desiage bridge from
opposite directions. One must swerve, or both may die in tagshc However, if one
driver swerves but the other does not, he will be called aclam”. Figure (4) depicts
a typical payoff matrix for the Chicken Game, as well as itsege form.

Chicken is an anti-coordination game with two pure-stratégsh-equilibria where
each player does the opposite of what the other does. Whidhbegum is selected
depends very much on the effectiveness in signaling presdoment before the game
is played. For instance, a driver who disables brakes armtistewheel in front of
the other driver may induce him to swerve. One real-world@a is a protester who



Swerve Straight

Swerve 0,0 -1, +1 V/2, VI2 o,V

Straight +1, -1 -10, -10 V, 0 (V—C), (V-C)
2 2

Figure 4: A payoff matrix for the Game of Chicken (left) anslgieneric representation
(right). The left number is the payoff of the row player, tight number is the payoff

of the column player. In this generic representatiois the value of power, prestige, or
of the available resource to be obtain€ds the cost if both players choose “straight”.

handcuffs himself to an object, so that no threat can be médtehwvould compel him
to move

Betrand Russell remarked that the nuclear stalemate wakh fikecthe Game of
Chicken:!

As played by irresponsible boys, this game is considereddist and
immoral, though only the lives of the players are risked. ®ben the
game is played by eminent statesmen, who risk not only theirlives but
those of many hundreds of millions of human beings, it is gidwn both
sides that the statesmen on one side are displaying a higbedefyvisdom
and courage, and only the statesmen on the other side ashessible.
This, of course, is absurd. Both are to blame for playing surcimcredibly
dangerous game. The game may be played without misfortieve tirhes,
but sooner or later it will come to be felt that loss of face isrendreadful
than nuclear annihilation. The moment will come when neigide can
face the derisive cry of 'Chicken!” from the other side. Wheattmoment
is come, the statesmen of both sides will plunge the worlndesstruction.

John Maynard Smith and G. Price re-interpreted the Game wk€h in the con-
text of animal behaviour. Their Hawk-Dove game has the saayefp matrix as in
figure (4), where “swerve” and “straight” correspond to tb#dwing strategies, re-
spectively:

Dove Retreat immediately if one’s opponent initiates aggresbihaviour;

Hawk Initiate aggressive behaviour, not stopping until injuceduntil the opponent
backs down.

Whilst the original Game of Chicken assun@s- V and cannot be repeated, the
Hawk-Dove game lacks this requirement and is generallyeioad as an evolutionary
game.

The strategy “Dove” is not evolutionary stable, becauseait be invaded by a
“Hawk” mutant. IfV > C, then the strategy “Hawk” is evolutionarily stable Mf< C

1Bertrand W. RusselCommon Sense and Nuclear Warfarendon, George Allen and Unwin, 1959.



there is no evolutionarily stable strategy if individuate aestricted to following pure
strategies, although there exists an evolutionarily staltdategy if players may use
mixed strategies.

2.8 The War of Attrition

The war of attrition is a game of aggression conceived by Mhagnard Smith in
which two contestants compete for a resource of Vilig persisting while constantly
accumulating costs. Equivalently, this game can be seem asicion in which the
prize goes to the player with the highest Idgl and each player pays the loser’s low
bid B;.

The war of attrition cannot be properly solved using its ghgmatrix. In fact, the
players’ available resources are the only limit to the maximvalue of bids. Since bids
can be any number if available resources are ignored, theffpagtrix has infinite size.
Nevertheless, its logic can be analysed.

Since players may bid any number, they may even exceed theWahat is con-
tested over. This may appear irrational at first sight. Hawegach bidder payB.
Therefore, it would seem to be in each player’s best intéoeistd the maximum pos-
sible amount rather than an amount equal to or less than the whthe resourc¥.

However, if both players bid higher thaf the high bidder does not so much win
as lose less, in the sense thdB) <V — B < 0 — a Pyrrhic victory. In contrast, if
each player bids less thaf) the player biddindg, will lose, and the other player will
benefit by an amount — B;.

Since there is no value to bid which is beneficial in all catiesy,e is no dominant
strategy. However, this does not preclude the existencashMquilibria. Any pair of
strategies such that one player bids zero and the otherrfdadseany value equal ¢
or higher, or mixes among any valuéor higher, is a Nash-equilibrium.

The War of Attrition is akin to a Chicken or Hawk-Dove game —e $(2.7) —
where if both players choose “swerve”/“Dove” they obtaim8tead oW/ /2 as in fig-
ure (4).

The evolutionarily stable strategy when playing it as anl@i@anary game is a
probability density of random persistence times which came predicted by the op-
ponent in any particular contest. This result has led to timeluision that, in this game,
the optimal strategy is to behave in a completely unprebietmanner.

3 Influence Games

The following games are not concerned with Nash-equililiPiayers are not assumed
to figure out which alternatives other players might choosigjnating infinite regres-
sions that can only stop at Nash-equilibrium points.

Rather, boundedly rational players are assumed to follotaicerules, that may be
quite simple but need not be necessarily so. The game therecenwhat collective
behaviours can be generated by mutual influence.

Evolutionary games reach this approach when they repotlatians of the inter-
action of given rules rather than predicting evolutionagbte strategies. Such is the



case, for instance, of Axelrod’s simulations of the Pris@Bilemma — see § (2.3).

This section aims at providing formal tools for this apptoadn particular, two
prototypical games have been investigated.

The Ising model(originally developed in physics, where it is also knownsam
glassmodel) is concerned with imitation. Theinority game also known as th&l
Farol bar problem is about the opposite of imitation, i.e., about doing thpagite of
what others do.

3.1 The Ising Model

The Ising model was originally developed in physics in orestudy the interaction
between atoms in a ferromagnetic material. For this reds@gents can only take two
states, or opinions — originally, and— — and are fixed in space. However, although
many imitation models are generally more complex than theyImodel, the closed-
form solutions of the Ising model may guide the builder of moomplex models in
the process of understanding their behaviour.

In general, the Ising model is not presented as a game. Itie Here in order to
stress its symmetry with the minority game.

Let N players be denoted by means of an index1,2,...N. Players must choose
between an alternative= —1 and an alternativA = 1.

The payoff of a player does not only depend on the altern#tigehe has chosen,
but also on the average of the alternatives chosen by the pidngers. Letm denote
this average.

Since we want to reproduce situations where the individolidws the herd, the
effect ofmshould be the stronger, the more homogeneous the groupe Sn¢—1; 1}
and consequentl;me {—1;1}, we can reach this goal by requiring that payoff depends
on a termAm This term may eventually be multiplied by a coefficidnt 0.

A stochastic terng is necessary in order to understand our game as a system jump-
ing between many equilibria. This term will disappear whgpeeted values will be
taken.

In the end, let us choose the following functional form fog frayoff of a player:

u(A) =v(A)+JAm+e 2)

whereu(A) is the total payoff of a player andA) is its individual component.
Furthermore, let us assume that this individual comporadats the following form:

—h fA=-1
V(A):{ h ifA=1 @
whereh € 00, h > 0.
By assuming that the stochastic tergyare Gumbel-distributed, we can apply the

logit model. By combining eq. (2) and eq. (3) we derive théofming expressions for
the probability that a player selects one of the two altéveat

ep(—h—J MH-£)
plA=-1} = GH—h—Jmre) 1 g+ Ime) (4)

10



ep(h+J mH-€)

p{A = 1} = ei(—h—Jmie) + gi(h+Imte) ()

The expected value of the selected alternative{a} = —1-p{A= -1} +1-
p{A=1}. Since itis als&E{A} = mwe obtain the following expression:

m = tanh(ph+ pJm (6)

where tanlx) = (e — e ) /(e +€7) is the hyperbolic tangent.

Eq. (6) provides an analytic description of a game with hestldviour on two
alternatives described by means of a mean-field approxdmatlt admits a closed
form solution that provides the following findings:

If uJ < 1 andh = 0 there exists one single solutionrat= 0. Consider that this
is a discrete-time system, so its attractors are stabledigénvalues of the state
transition function are ifj—1,1). Intuitively, pJ < 1 means that this system is
globally stable. Furthermoré,= 0 means that the individual component of util-
ity is zero so the players have no incentive to choose onexafith alternatives.
Consequently, the stochastic term makes 0 the only solution.

If uJ < 1 andh # 0 there exists one single solution with the same sigh.as
In fact, as in the previous case the system is globally steblé admits one
single solution. However, since in this case there existadimidual component
in their utility function, this component determines whgudibriun arrives to.
If players generally prefeA = —1 the equilibrium will bem = —1, if players
generally prefeA = 1 the equilibrium will bem~ 1.

If uJ> 1 andh = 0 there exist three solutionsn= 0 andm = +m(pJ). In
fact, the system is globally unstable but locally stablelédayia may exist. Since
the individual component of utility is zero, the system miher tend towards
m=0,orm~ —1, orm=~ 1.

If uJ > 1 andh # 0, the following subcases must be distinguished:

— If, for any givenp andJ, there exists a threshold(h) > 0 such that h | <
H, then three solutions exist, one with the same sigmasd the other two
with opposite sign. Conditioph |< H means that the individual component
of utility is limited even if not zero. Therefore, resultseasimilar to the
previous case.

— If, for any givenp andJ, there exists a thresholdi(h) > 0 such that h |>
H, then there exists one single solution with the same sigm da fact,
if the individual component of utility can take any valuegththe whole
system is force into its direction.

In the Ising model, each player observes the average bahraiall other players.
If each player observes only the behaviour of his neighhams obtains Schelling’s
model of racial segregation.

11



History Prediction
00 0
01 1
10 1
11 1

Figure 5: An example of a strategy based on the two previegsstf the minority
game. The first column lists all possible stories. The seamidmn, depending on
past history, makes a prediction.

3.2 The Minority Game

The minority game originates from a consideration inspiceelconomist Brian Arthur
by theEl Farol bar in Santa Fe, New Mexico (USA). Arthur remarked that peaul
to the bar in order to meet other people, but they do not wagbtavhen all other
people go, because the bar is too crowded on such occasious, they want to do the
opposite of what most people do — go to the bar when most patgyeat home, stay
at home when most people go to the bar. Evidently, the “ElIR@pproblem” cannot
have a stable equilibrium. In fact, once the majority obsdnwhat the minority did, it
wants to imitate it, which turns the minority into majorignd so on endlessly.

Physicists Yi-Cheng Zhang and Damien Challet remarkedlimis the essence of
the dynamics of the stock market. In fact, in the stock mattkese traders gain, who
buy when stocks are low (because most traders are sellish¥@hwhen stocks are
high (because most traders are buying). So all traders warglong to the minority,
which, being impossible, generates instability. Amongghegsicists, the “El Farol bar
problem” became “the minority game”.

Let us consideN players who either belong to a group denoted 0 or a group denot
1. Players belonging to the minority group receive a posipislyoff. Players belonging
to the majority group have a payoff zero.

Strategies are functions that predict which will be the mitgogroup in the next
step given the minority group in tha previous steps. Thus, a strategy is a matrix with
2™ rows (dispositions with repetition of two elements of clagsand two columns.
The first column entails all possible series of minority grein the previousn steps,
hencefortthistories The second column entails the group suggested for the tegxt s
As an example, figure (5) illustrates a strategy witk- 2.

Each player owns strategies. |6 = 1, the game is trivial because the time series
of the minority group is periodical.

If s> 1, players choose the strategy that cumulated the greatestrd of payoffs.
Thus, a number of feedbacks may arise between what strategiechosen and their
capability to predict the minority. In this game, playersshadapt to an environment
that they themselves create.

An important magnitude in this game is the variance of theti@ries of the num-
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Figure 6: Efficiency of coordinatioe. as a function of the number of histories in a
strategy 2'/N, for different values of the number of available strategie3he hori-
zontal line ake; =& marks the efficiency level when player select a strategyratamn.
The vertical dashed line marks the point whegean be greater thag.

ber of players belonging to group 1 (or, equivalently, gr@upHenceforth, this mag-
nitude will be denoted bg?.

The average of the number of players belonging to each geogenierally close to
N/2. If g is small, then the distribution of the number of players hglag to group 1
is concentrated arourid/2. This implies that the minority is large, eventually cldge
its maximum(N /2 — 1). On the contrary, i6? is large the number of players belonging
to group 1 tends to be either much smaller or much larger iy implying that the
minority is often very small.

Let us consideo?/N in order to normalize to the number of players. Let us define
theefficiency of coordinatione= N/a? as the reciprocal of the extent to which players
behave differently from one another.

Figure (6) depicts numerical simulations&fas a function of the number of his-
tories in a strategy™/N. Graphs are shown for different valuesfThe horizontal
line marks the value thag; attains if players would make a random choice among the
strategies available to them.

With low mthe efficiency of coordination is low. This happens becafiseemory
is short, then players have greater difficulties to adapih¢éochanging features of the
game.

If only few strategies are availabls = 2,s = 3,s = 4), at intermediate values of
m many players guess the correct strategyesincreases above the level that can

13



be attained if strategies are chosen randomly. This thtéstionarked by the dashed
vertical line. However, this effect disappears if manytegées are availables=8,s=
16). In this case the decision process becomes similar to a namtioice so even at
intermediate values oh the efficiency of coordination is close to the level attaiifed
strategies are chosen randomly.

Independently of the number of available strategies, witihdasingn the value of
e tends to the level attained when strategies are chosenmdndin fact, a history
of lengthm occurs again after™ steps on average, so a strategy that is successful
with a particular history needs™steps in order to be successful again. With very
high values ofm, no strategy can present itself as particularly succestfetefore, a
nearly-random dynamics ensues.

Let us consider what information is available to players.e Tmly information
available to them is what group was the minority in previdoetsteps. Let this in-
formation be carried by a variabiéf, whereW = 0 means that at timethe group 0
has been minoritw{ = 1 otherwise. The issue is whether this information is used ef
ficiently; if it is not, there may exist exist arbitrage pdskiies for players who utilize
information more efficiently than their peers.

Let us considevy andW_, 1 as distinct signals. Let us compute their mean mutual
informationl (W, W 1). 2

Mean mutual information measures whether the informatiotaiked in the out-
comes of two steps of the game, taken together, is greatertiieasum of the infor-
mation entailed in the outcomes of the two steps indepefydehbne another. Thus,
mean mutual information says whether a player, by obsertringime series of the
outcome of the game, could do better than his peers. If thenityrgame is describing
a stock market, (W, W 1) > 0 means that a trader could gain from arbitrage.

Let us introducenformation efficiencyie= 1/1(W,W_1). Being the reciprocal of
mean mutual information, information efficiency is high whmean mutual informa-
tion is low, i.e., when information is efficiently exploitdxyy the player so there is little
room for arbitrage.

Figure (7) depicts numerical simulationsepfs a function of the number of stories
in a strategy 2/N. Graphs are shown for different valuessof

One may observe in figure (7) a sudden drogadh the [0.3,1] interval. This is
entailed in the interval0.1,1] wheree; was observed to rise above the level corre-
sponding to random choice in figure (6). Thus, we may subsheé¢haviour of the
minority game as in table (1):

Table (1) shows that the minority game has two large behavitades, one in-
efficient in coordination but efficient in the exploitatiohinformation, the other one
efficient in coordination but inefficient in the exploitatiof information. In between,

a tiny space where the efficiency of coordination and theieffay of information ex-
ploitation may change dramatically dependings@ndm.

2Given a source of binary symboksy, ap,...am} issued with probabilitiegs, p2,... pu, the aver
age information that they convey is defined léA) = Y™, p(a)lg,1/p(a) and it is calledinforma-
tion entropy Suppose that there is a second source issuing synfbelb,, ...bx} with information en-
tropy H(B). Let H(A,B) denote the information entropy of the whole systeliean mutual information
H(A)+H(B) — H(A,B) measures to what extent the two sources interact to cortéleitemessages. Mean
mutual information is zero if the two sources are independeate another.
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Figure 7: Efficiency of exploitation of information as a fdiom of the number of
stories in a strategy, normalized to the number of players.

2"/N<0.1 2"/N>1
inefficient coordination efficient coordination
low e, highe;
efficient information exploitation| inefficient information exploitation
high g low g

Table 1: Efficiency of coordination and efficiency of infortioa exploitation in the
minority game.
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Since the minority game is a stylised representation okstoarkets, we may ask
in which region stock markets operate. It is well known theyvmany traders operate
in stock markets, so we may assume tNas very high. Human bounded rationality
suggests that traders do not make use of complicated dlgwrithat take account of
events far back in the past, soshould be in the order of a few units. Consequently,
2M/N is likely to be very small.

This suggests that financial markets are characterisedvibgdordination, which
implies irregular oscillations where large majorities @maall minorities may appear.
At the same time, financial markets are efficient in explgitimformation. Thus, the
observation of its time series offers few possibilities xtr&polate its future courses.

4 Some Pitfalls of Utility Maximization

Utility maximization strikes its adepts for its elegandeyglicity and beauty. Unfortu-
nately, empirical tests have have shown that in many s@natilecision-makers do not
follow its prescriptions.

The situations where decision-makers typically do not kel utility maximizers
are generally known agaradoxes Some paradoxes can be reduced to utility maxi-
mization by means of special additions to the basic theamthis section the main
paradoxes will be discussed, together with their eveniesolution within the utility
maximization framework.

4.1 Elisberg’s Paradox and Sub-Additive Probabilities

Suppose that a decision-maker is placed in front of two Uresceforth denoted A and
B. The decision-maker is informed that urn A entails whitel &hack balls in equal
proportion, e.g., urn A may contain 10 white balls and 10 blaalls. Regarding urn
B, the decision-maker knows just that it entails white arathklballs. Suppose to ask
the decision-maker to evaluate the probability to extrashie ball from urn A and
the probability to extract a white ball from urn B.

Since urn A entails white and black balls in equal propogijahe probability to
extract a white ball from urn A is 0.5. On the contrary, nothis known regarding the
proportion of white to black balls in urn B. In cases like thise so-called “principle
of insufficient reason” — i.e. the fact that there is no reagpthink otherwise —
suggests to imagine that also urn B entails white and blalt& ineequal proportions.
Thus, also in this case the probability to extract a whité isahssessed at 0.5. And
yet, something is not in order: intuitively, urn B should beatacterized by a greater
uncertainty than urn Al

Ellsberg’s paradox actually deals with the size of the samplwhich probabilities
are evaluated. In fact, Ellsberg’s paradox places two mérsituations aside.

In the case of urn A, since we know that it entails white andatllalls in equal
proportions we are able to compute probability with infifhtecision. It is just like ex-
tracting a ball (and replacing it afterwards) infinite tim@¢e are measuring probability
on a sample of infinite size.
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In the case of urn B, lack of knowledge on the proportion ofte/id black balls
is equivalent to estimating the probability of extractingvhite ball prior to any ex-
traction. It means that the probability must be measured san#ple of size zero. We
guess its value at 0.5, but the reliability of our estimateeis low.

One possibility for overcoming Ellsberg’s paradox is reygmting uncertainty by
means of two magnitudes. The first one is probability whiist$econd one is sample
size. In general, the size of the sample is expresseddogasion indicator

Another possibility is to resort to the theory of sub-additprobabilities as exem-
plified by ltzhak Gilboa and David Schmeidler. While accogdin classical probabil-
ity theory the sum of the probabilities of an exhaustive $etvvents must be equal to 1,
according to the theory of sub-additive probabilities thiéds only if probabilities are
measured on a sample of infinite size. In all other cases thgapilities take values
such that their sum is smaller than 1.

Let us consider the following example: We are playing dica tlandestine gam-
bling room. Since we fear that we are playing with an unfaé, dée may not assign
probability 1/6 to each face, but rather less, e.¢g81Thus, the sum of the probabili-
ties of all faces is & 1/8 = 3/4, which is smaller than 1. Subsequently, if we have a
possibility to throw the die many times — i.e. if we can ingedhe size of our sample
— we may find out that the die is unfair in the sense that, eage 12” comes out with
probability 1/3 while the other faces come out with probigpi2/15. The sum of all
these probabilities is 5 2/15+1/3=2/3+1/3=1.

Let us return to Ellsberg’s paradox. In the case of urn A, ttebdability to extract
a white ball is 0.5 and the probability to draw a black ball i5.0The sum of these
probabilities is 1. In the case of urn B, the decision-makay fudge that the proba-
bility to extract a white ball is, for instance, 0.4, and ttta probability of extracting a
black ball is also 0.4. The sum of these probabilities is BB this does not constitute
a problem for the theory.

4.2 Allais’ Paradox and Prospect Theory

The following experiment was carried out by Maurice Allags/ing Leonard Savage as
a subject, who was a major advocate of expected utility mezdtion and nevertheless
did not behave according to its prescriptions. Subjectasked to choose between the
alternatives A and B reported on the rows of table (2). It ipeitally observed that
most people choose alternative (B).

Subsequently, the same subjects are confronted with tematives C and D re-
ported on the rows of table (3). It is empirically observedttmost people choose
alternative (C).

Let us now examine the expected utilities of two pairs ofraliéives (A,B) and
(C,D). Preferring (B) to (A) means that2,400) > 0.33x u(2,500) + 0.66x u(2,400),
which can be written as.84 x u(2,400) > 0.33x u(2,500). Unfortunately, preferring
(C) to (D) implies the opposite, i.e. that3B x u(2,500) > 0.34x u(2,400). Soitturns
out that most people do not behave rationally if they maxénoislity.

Allais’ paradox is due to the presence of a tiny probabilitpat obtaining anything
in alternative (A). Thus, it is due to aversion to risk.
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Consequence 1} Consequence 2 Consequence ?4

Alternative | receive $ 2,500 receive $ 2,400| receive nothing
A with prob. 0.33| with prob. 0.66| with prob. 0.01
Alternative | receive $ 2,400
B with prob. 1.00

Table 2: The first choice in Allais’ experiment.

Consequence 1 Consequence 2

Alternative receive $ 2,500 receive nothing
C with probability 0.33| with probability 0.67

Alternative receive $ 2,400 receive nothing
D with probability 0.34| with probability 0.66

Table 3: The second choice in Allais’ experiment.

Daniel Kahneman and Amos Tversky introduced non-lineassfamations of util-
ities and probabilities in order to balance risk aversiohe Transformed utilities and
probabilities can describe the observed behavior as eaghetility maximization. This
is called Prospect Theory.

A prospect is a set of paifgcy, p1), (C2, p2), ...}, wherec; is a consequence that
will obtain with probability p;. As a preliminary step, prospects with identical conse-
guences are summed, dominated prospects are eliminateiskleds components are
ignored.

Prospects Theory prescribes that the utilities and thegtritites of the above
prospects be transformed according to the following rules:

1. Utility is transformed by means of a non-linear functies= f(u) such that
f’(u) >0 andf”(u) <0 foru> 0, f'(u) > 0 and f”(u) > 0 for u < 0, with
[ £7(U) uco > [ £7(U) [uso-

2. Probabilitiesp are transformed into “weights¥ by means of a non-linear func-
tion w = g(p) such thag(0) = 0 andg(1) = 1 but3p € (0,1) such thatvp < P
itis g(p) > pandvp > pitis g(p) < p.

3. Weightsw are transformed into coefficientsby means of the following rules:
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ap = W (p-n) for j=-h

G = W (pht.+p)-W (Pht...+p-2) for —h<j<O

g = wi(pi+...+p)—W(Pirrt...+ P for  0<j<k
(

6 = wi(m for =k

wherew™ andq~ refer to prospects with negative utility, denoted with atder
j € [-h,0], whereasv™ andq* refer to prospects with positive utility, denoted
with an indexj € [0,K].

Thev andq obtained at the end of this procedure can be used much likesstand
probabilities, respectively. Prospect Theory succeeddintinate the inconsistencies
highlighted by Allais’ paradox, but it does not explain wiwirks. It should be called
a heuristic, rather than a theory.

4.3 Preference Reversal in Slovic’'s Paradox

Let us consider a series of bets with different charactesist For instance, a series
of bets on different horses, or playing on a series of diffesbot machines, or a series
of unfair dice different from one another. The game consi$tshoosing to bet on a
specific horse, choosing to play on a specific slot machinelecsng a specific die to
throw. In other words, the game consists of choosing oneltatfa series of bets.

In order to simplify matters, let us consider series comgdsetwo bets. More
specifically, let us consider the four pairs of bets in tadle (

For any pair of bets, subjects are asked to select either betat B. On average,
the number of subjects who prefer A to B is slightly greatantthe number of subjects
who prefer B to A.

At this point, a different game is played. Subjects are askdthagine that they
own a lottery ticket for each bet, and that they have a pdggito sell it. That is, they
can either wait for the outcome of each bet, where they mayowioose with a certain
probability, or they can sell the ticket. In order to comptre willingness to play to
the willingness to sell the ticket, subjects are asked to fixirimum selling price for
each bet.

In general, it is empirically observed that most people akigher price for bets B
than for bets A.

However, for each pair of bets, bet A has the same expectiityfutalue than bet
B. Thus, utility maximizers should be indifferent betweeraAd B. On the contrary,
subjects have a slight preference for A if they are askedayp phe of the two bets but
they definitely prefer B if they are asked to fix a selling price

The distinguishing feature of bets A is that the first consege has a much higher
probability than the second one. Thus, one assumes thahi idifference of proba-
bility values that orientates decision-making.

The distinguishing feature of bets B is that the first consega concerns a much
larger amount of money than the second one. Probabilitreth@contrary, are some-
times very similar, sometimes very different from one aeatfhus, one assumes that
it is the difference of money values that orientates degisiaking.

3A comprehensive introduction to this topic is: Paul Slovid &arah Lichtenstein (edsThe Construc-
tion of PreferenceCambridge, Cambridge University Press 2006.
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PAIR OF BETS |

Consequence 1

Consequence 2

Bet A win $ 4.00 loose $1.00
with probability 0.99| with probability 0.01
Bet B win $ 16.00 loose $ 2.00
with probability 0.33| with probability 0.67
PAIR OF BETS I
Consequence 1 Consequence 2
Bet Ay win $ 3.00 loose $ 2.00
with probability 0.95| with probability 0.05
Bet B, win $ 6.50 loose $ 1.00
with probability 0.50| with probability 0.50
PAIR OF BETS I
Consequence 1 Consequence 2
Bet Ay win $2.00 loose $1.00
with probability 0.80| with probability 0.20
Bet By win $ 9.00 loose $ 0.50
with probability 0.20| with probability 0.80
PAIR OF BETS IV
Consequence 1 Consequence 2
Bet Ay win $ 4.00 loose $ 0.50
with probability 0.80| with probability 0.20
Bet By win $ 40.00 loose $ 1.00

with probability 0.10

with probability 0.90

Table 4: Slovic’s experiment.
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If subjects are asked to play the bets their attention is lialg probabilities, so
either they are indifferent or they prefer A. If subjects asied to sell lottery tickets
their attention is caught by money values, so they prefer B.

Slovic’s paradox shows that preferences change if the ideeimaker focuses on
the probability of a consequence or, rather, on its utilitgré, money value). This
means that human beings are unable to evaluate probabgitid utilities indepen-
dently of one another.

Slovic’s paradox — often known as “preference reversal” -ddstructive for util-
ity maximization. In fact, it undermines the assumptiont thautility function and a
probability function can be defined, independently of onetler. Slovic’s paradox
suggests that uncertain belief cannot be split into wegitind probabilities.

Obviously, several attempts to reconcile preference saVvavith the theory of ra-
tional choice have been made. Preference reversal can benammated with the
theory of rational choice if either violations of transitiy or of independence, or of
completeness of preferences are accepted. While the ageopconcile preference
reversal with the theory of rational decision by relaxingnsitivity or independence
of preferences did not receive much attention because freperties are essential for
our idea of rationality — see § (2), the more recent idea opping completeness
deserves some discussion. In fact, allowing preferencks iaocomplete amounts to
accept the idea that a utility function can be defined, at nfostsomealternatives.
Possibly, just the simplest and most repetitive ones.

4.4 Arrow’s Paradox

The following paradox of social choice is due to Kenneth surbet A, B and C denote
three alternatives, and let 1, 2 and 3 denote three indilsdluat us assume that:

¢ Individual 1 prefers alternative A to alternative B and aitgive B to alternative
C. Thus, he prefers alternative A to alternative C.

¢ Individual 2 prefers alternative B to alternative C andraédive C to alternative
A. Thus, he prefers alternative B to alternative A.

o Individual 3 prefers alternative C to alternative A and radtgive A to alternative
B. Thus, he prefers alternative C to alternative B.

If these three individuals constitute a democratic comityunith a majority rule,
then this community prefers A to B (individuals 1 and 3) artdriative B to alternative
C (individuals 1 and 2). Thus, if the community wants to hae@sitive preferences, it
must prefer A to C. But, the majority of its members (indivédiai2 and 3) prefers C to
Al

The setting of Arrow’s paradox can be seen as a game, whergdudl utility
maximizers are set together. Arrow’s paradox shows thaethee conditions where
the outcome contradicts a basic assumption of utility méation, even if individuals
do not.

Several proposals have been made in order to overcome Arparadox. The most
common way out is to allow individuals to have different greinces if all alternatives
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are presented to them, or if they are presented with pairerhatives. Or, one may
limit voters to two alternatives presented in tournamentg\rrew’s paradox would
disappear, but the final choice is not necessarily the orievihiald be preferred by the
largest possible majority.

5 Logic of Consequence and Logic of Appropriateness

As we have seen in § (4), utility maximization is not a goodadiggor of decision
processes. Its proponents — notably, Leonard Savage — Hyeeted that utility
maximization is not meant to be a faithful description of whaople actually do, but
rather a prescription of what they should do. It pretendsaanormative theory,
although it is not a descriptive theory.

However, the preference reversals highlighted by Sloviotgo such a huge dis-
tance between theory and reality, that the normativenesslibf maximization might
be questioned. If utilities do not exist, it may make littense to tell decision-makers
that they should maximize them. Furthermore, if evolutibaped human reasoning
along patterns that are different from utility maximizatjave ought to be careful to
declare these patterns “illogical”, or “irrational”. Rath it may make sense to ob-
serve how human beings actually make their decisions, statet the rationale, and
eventually revise our theories.

James March traced a distinction between the “logic of cpmseces” that under-
lies utility maximization, and a “logic of appropriaten&ssere human beings behave
according to what they deem appropriate depending on pagriexces and social
pressures to conformity in specific settings. Note thatdlyéclof appropriateness does
not separate an individualistic step (Utility) from sodrateration (Game Theory).

Human minds are viewed as coherence-seeking machines #kat use of avail-
able information in order to construct a plausible intetgtion of reality, be it social
roles, scientific theories, or else. By drawing causal imbahips and eliminating in-
consistencies a decision-maker tells herself a story ti@ams why certain facts are
the way they are and why certain people did what they did. Stoig/, a founding story
that suggests a decision-maker what it is appropriate tsaalled anarrative

The construction of a narrative may require that issueghabt fit into the picture
are ignored, downplayed or forgotten. It may require thatiops are changed even
dramatically, and yet their purporters candidly claim tthaty have always been coher-
ent throughout their lives, or that they have been coherespite of having changed
their opinion, if their story is seen from a particular poifitview.

Albeit disturbing for our idea of rationality, the extentcheasiness with which hu-
man beings distort previous experiences is proven by a nuoflexperiments in psy-
chology. Daryl Bem and Michael Ross have shown that it is éa8yduce the subjects
of experiments to change opinion while they are still conethto have been coher-
ent throughout the whole experiment. Anthony Greenwald;hdel Ross, Kenneth
Gergen and Eugene Winograd have shown that people constituetent narratives of
their past, and that they remember past events to the extanthey fit these narra-
tives. Other experiments by Michael Ross, Anthony Greedw&hthy McFarland and
Michael Conway have shown how they may eventually change ititerpretation of
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the past and construct a new narrative if new evidence muatbemmodated. The
empirical evidence tells us that human beings are readg to lihemselves in order to
build coherent narrative$.

This attitude is puzzling, because distorting reality idearto construct a coherent
narrative is at odds with our idea of rationality. So eithaman nature is inherently
irrational, or our idea of rationality is incorrect.

According to James March, re-inventing the past is a cruatidlity that enables
decision-makers to conceive new goals and figure out a gyratean uncertain future.
Later, a similar argument has been made by Karl Weick undgelatiel of “sensemak-
ing”. Essentially, these authors suggest that in order tkentkecisions in the face of
an uncertain future it is good to have a narrative that erpl#ie past as if previous
decisions had been made along a coherent line. This lineeguite decision-maker
into the future, providing a rationale for action even ifte@mties are very few.

So here comes a straightforward argument for normativefesseking coherence
has the purpose of constructing a narrative, and if nagstre useful, then a decision
theory based on constructing narratives should be regaadesdtional, and openly
prescribed.

In business, politics and other fields, narratives may dmstthe bulk of strate-
gies. David Lane and Robert Maxfield have made a years-loltgdiEservation of the
elaboration and modification of the narrative of a Siliconl&afirm. > This study is
worth reporting, because it is very clear in making us undeds that narratives are
useful precisely because they provide a guidance in thedae® uncertain future,
and that their usefulness is not impaired by the fact that toherence is based on an
arbitrary interpretation of reality.

5.1 A Real Story

In 1990, Echelon a Silicon Valley company, launchéanWorks an innovative tech-
nology for distributed control. Previously, control wasitalized into one main pro-
cessing unit. WitH.onWorks each electrotechnical device is endowed with a micro-
processor and can communicate with all other devices, stewdite control each other.
Distributed control is more resilient than centralized tcoh and easily implements
modular architectures to which additional devices can liedd

Distributed control is particularly suited to the autoroatof office spaces in large
buildings, post-Fordist productive plants, as well as atiirsg where a large number
of heterogeneous devices must coordinate their operatibile retaining some flexi-
bility. Thus, in its early day&chelonfocused on partnerships with large producers of
the devices to be automated, e.g., a producer in the fieldaifrfgeand air condition-
ing was offered a possibility to integrate a microchip initltevices, as well on lifts,
doors and windows in order to integrate all controls in adangilding, from lighting
to heating to theft protection.

“Detailed references to this litterature can be found in GFibretti, Either, Or. Exploration of an
emerging decision theoryWorking paper available SSRN.

SDavid A. Lane and Robert R. Maxfield, “Ontological Uncertgiand Innovation”.Journal of Evolu-
tionary Economicsl5 (1) 2005: 3-50.
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With some disappointmeriEchelonhad to recognize that theonWorkgechnology
was not exploited in its full potentialities. In fact, eaenge producer was specialized
in one tiny sector so it had neither the power nor the cagghbdiimplement.onWorks
on all devices. For instance, a producer in the field of hgatind air conditioning
found it difficult to installLonWorkson doors, windows, lights and lifts, for the au-
tomation of these devices was covered by other firms. Indéed]ifficulty was that
Echelonwas attempting to create a new market — one may call it a méwvkatitoma-
tion — in a marketplace that was covered by producers of akphysical devices at a
time.

Echelonwas conscious of the enormous difficulties connected witctieation of
a new market. Nevertheless, it deemed that long-term oelaitvith a few special-
ized producers would pay in the long ruBchelonhad a narrative, saying that large
specialized producers would slowly but persistently adogtimposé.onWorks Con-
sequently, it invested all of its resources in these rafatio

By 1994,Echelonwas loosing confidence in this narratiiechelonstarted to ap-
proach large system integrators of ICT, suctQdisetti and Ameritech However, the
crucial move was that of hiring a person for this job, who dad come from Silicon
Valley as all other executives did. Through this employsshelonapproached smaller
companies, that integrated devices from different procdiic&ome people dche-
lon conceived the idea of embeddihgnWorksin a box that could be attached to any
electrotechnical device, of whatever producer.

Scholars of technological innovation know how difficultgtfor visionary employ-
ees to convince their boss of the value of their idea. In tlse adEchelonthe CEO
embraced enthusiastically the new idea, because it agb&arf@ with his previous
experience.

Echelors CEO had been the successful entrepreneur of a small firnexipéoited
digital technologies to produce PBX (private branch exdgedsystems with innovative
features. This firm had been able to displace giants sué&fT&3 by providing small
independent installers with a superior product. When thi®@tet small independent
integrators of electromechanical devices, he mapped theidea onto his previous
experience.

In 1996, and within a few monthEchelonchanged its narrativé=chelonpresented
itself as a provider of an innovative microchip for indepentlsystem integrators, a
microchip that could be installed on any electrotechnie&ice, of whatever producer.

Most importantly,Echelontold itself that it had always pursued this strategy. No-
body in the firm seemed to be aware that the firm'’s strategy hadged. According
to the narrative that they had developed, they had always divat they were doing.

Moreover, when faced with evidence that the firm had adoptdifferent strat-
egy, management wished that the final publication by LaneMaxfield would not
stress this aspect (Lane: personal communication). Thiessense, for according to
our idea of rationality narratives should reflect “objeetinformation”, and decision-
makers should stick to it. Thus, management did not want peapirrational.

However, the case @&chelorhighlights that constructing a narrative by re-interpreti
the past may be good and useful for decision-makers. Intfaeteported case reveals
that by re-interpreting its missidachelonwas able to direct its investments. If the fu-
ture is uncertain, as it is often the case, interpreting tet m order to find a direction
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for the future is a sensible activity.

Rather, the trouble is with our idea of rationality. Sincdamerpreting the past is
regarded as irrational, then it must be done in secrecy.dlitygif re-interpreting the
past has positive effects, then it should be prescribed.

6 Tools for the Logic of Appropriateness

Although the logic of appropriateness cannot proposefitsith a ready-made and
ready-to-use formula such as utility maximization, thexistesome tools that can be
used to reproduce its building blocks. These are essentitsification tools, that
form concepts out of information, and coherence tools, dnange concepts into co-
herent stories.

In particular, the following tools will be reviewed in thisgtion:

1. Unsupervised neural networks;
2. Evidence Theory;
3. Constraint Satisfaction Networks.

Unsupervised neural networks reproduce the formation oftaieategories out of
a flow of information. Evidence Theory assumes that an aetoeives information
on possibilities and arranges them into coherent hyposhe€®nstrain Satisfaction
Networks arrange concepts into coherent explanationioAlih they have not been
integrated into one another, they all concern the processletting some items from
the flow of experiences, arranging them in a coherent naeeradind deciding accord-
ingly.

The logic of consequence makes sense in the restricted ségames of chance,
where it is possible to overview an exhaustive set of po##gisi and enlist all of the
consequences of any alternative. On the contrary, the Wwigappropriateness makes
sense precisely because quite often such conditions doatdt fhus, this review
does not cover tools concerned with classification givenset of categories, such as
Case-Based Decision Theory and supervised neural networks

6.1 Unsupervised Neural Networks

Human mental categories are not defined by pre-specifiedasityicriteria that the
objects to be classified should fulfil. Rather, mental catiegaare continuously con-
structed and modified according to the similarity of a juestaived piece of information
to the pieces of information that have already been storexisting categories. For
instance, a child observing house chairs may start with @a ad “chair” as an object
having four legs, then observe an office chair with one leg takd away the num-
ber of legs from its definition of “chair”. The point here isathdefinitions are made
oncemental categories exist. Mental categories are not cartstitaround existing
definitions.
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In some cases, definitions are not even possible, becausetal wategory entails
objects that do not have any common featreFor instance, the mental category
expressed by the word “game” refers to children amusing siebras with toys, adults
involved in a serious competition on a chess board and asawellset of wild animals.
One may speculate that man transposed the emotions involemting into the more
intellectual context of chess, and that the fact that chessam amusement suggested
some similarity to what children were supposed to do. Sonpsérintersections of the
meanings of the word “game” exist, but this does not implyt tlhmeanings have a
common intersection. Therefore, a definition of “game” it passible.

Unsupervised neural networks are able to reproduce thdlhdéaental categories
arise out of adding examples. In fact, these networks coctstategories around the
most frequent input patterns, mimicking the idea that edotrieates a category “chair”
upon observation of many such objects.

Neural networks are composed by a senefironswhich produce an outpyte 0
by summing inputs, Xo, ... Xy € O by means of coefficienta, ap, ... an:

N
y = i;am (7

For any set of coefficients;, this simple device is able to classify inputs in a cat-
egory by yielding the same outputfor several input vectorg. In fact, there exist
several vectorg whose weighted sum yields the samé-or instance, i/ itis g = 1,
then e.g.y =10 can arise out of’ = [9 1], X" =[2.5 7.5], as well as many other
vectors. In this sense, the neuron classifies the input iei@al] and[2.5 7.5] in the
same category.

Note that a neuron has no difficulty to classify input vectiid do not perfectly
fit its categories. For instance, if there is a categogy 10 and a category = 11, an
input vectorx” = [2.1 §| is classified in the categogy= 10 just as< andx”.

The shape of the categories implemented by a neuron deperttie coefficients
a;. For instance, ify = 0.5 anda, = 20 the input vectox’ = [9 1] yieldsy = 24.5 and
may not lie in the same category 5= [2.5 7.5], which yieldsy = 15125.

The coefficientss; may be chosen by the user of the network during a training
phase, in which case we are dealing witlswpervisednetwork. Alternatively, the
coefficientsa; may be initialised at random and subsequently changed byetveork
itself according to some endogenous mechanism. In thiswe$ave amnsupervised
network, of which the Kohonen network is the best known insta’.

In unsupervised networks, the ability of a neuron to chamgeategories stems
from a feed-back from outpytand a feed-forward from inpw, towards coefficients
a:

%at, = @@ y)x—v(@yaVi (8)

6See George LakoffWomen, Fire, and Dangerous Thing€hicago, The University of Chicago Press
1987.

"The basic reference is Teuvo Kohon&eJf-Organization and Associative MemoBerlin-Heidelberg,
Springer 1989.
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Figure 8: The neuron of an unsupervised network. The fee#isband -forwards are
responsible for the most notable properties of unsupetviséworks, including the ab-
sence of a training phase. In a sense, the “training phaseipsrvised neural networks
may be seen as a feed-back and -forward passing through aatopaeator.

where(a,y) andy(a,y) may be linear or non-linear functions.

In equation 8, the termp(a, y)x enables the neuron to learn input patterns. It entails
both a feed-back (frory) and a feed-forward (froms;). Thislearning termmakesa;
increase wheroth yandx; take high values, thereby enhancing those coefficients
that happened to yield a highwhen a particulax; was high. Thus, the structure of
coefficients vector ultimately depends on which vectoxsappeared most often as
inputs.

The learning term is such that the neuron learns the patteatst receives most
often. This is sufficient to make the network work, but makasniable to construct
different categories if different patterns appear. Furti@e, since the learning term
works by multiplying inputs and outputs, it may produce aplegive output. This
should be curbed in order to use the network.

For both reasons, forgetting termthat makes the coefficients decay towards
zero is in order. In equation 8 the forgetting terny(ia,y)a;. It depends on a feed-back
from outputy and, most importantly, on coefficieatitself.

Figure 8illustrates the feed-backs and -forwards withie@ran of an unsupervised
network.

Simple, but non trivial examples of equation 8 age:= puyx — va, a = Px — vya,

a = Jyx — Vya, a = Uyx — vy?a, wherep andv are constants. Each functional form
corresponds to different strengths of the learning andsfiirgg terms.

In general, a network of neurons is able to discriminatetiimformation according
to much finer categories than a single neuron can do. As athdeayreater the num-
ber of neurons, the finer the categories that a network asetstr However, a neural
network is useful precisely because it is able to classifugehramount of information
into a few broad categories. If categories are so fine thatttlaek input information
exactly, then a neural net becomes useless. Thus, the nafieurons that a network
should possess depends on the variability of the input dsaswen user needs.

However, the behaviour of a neural network does not only déma the number
of its neurons, but also on the structure of the connectietsden them. In fact, just
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like the capabilities of neurons depend on feed-backs amdiairds, the capabilities of
a neural network depend on linkages that eventually enafdennation to circulate in
loops. Ifinformation can circulate within the network, thiae whole network acquires
amemory

It is a distributedmemory, fundamentally different in nature from the morealsu
localisedmemories. Localised memories such as books, disks, tapestetre infor-
mation at a particular point in space. This information caly de retrieved if one
knows where its support is (e.g. the position of a book in &y or the address of a
memory cell on a hard disk).

On the contrary, in a neural network each neuron may be parteimber of in-
formation circuits where information is “memorised” as goas it does not stop to
circulate. Although thiss a memory, one cannot say that information is stored at any
particular place. Hence the name.

For obvious reasons, the information stored in a distrihutemory cannot be re-
trieved by means of an address. However, a piece of infoom#tiwing in a particular
loop can be retrieved by some other piece of informationighfibwing close enough
to it. Thus, in a distributed memory information can be esteid by means odisso-
ciationsof concepts, with a procedure that reminds of human “irdniti Indeed, the
connectionist idea of a distributed memory is a possibléasqiion for the existence in
both humans and animals of associative memoyy.e. the ability to establish an asso-
ciation between a particular stimulus and specific respoifiske stimulus is repeated
sufficiently often.

6.2 Evidence Theory

Evidence Theory is a branch of the mathematics of unceregasaning that, unlike
Probability Theory, does not assume that a decision-mai@w& the set of all possible
events® Rather than defining a “residual event” for anything thatrearbe clearly
expressed, Evidence Theory leaves a decision-maker'toflitgset open to novelties.

Evidence Theory makes use of a particular class of monotocertainty mea-
sures, Choquet capacities of infinite order. Furthermbessumes that no operation is
attached to the possibility set, which frees a decisionentikdefine a “residual event”
by complementation. Novel possibilities can appear in th&sjbility set in the course
of the calculations, and the possibility set is calfeaime of discernmerin order to
stress its cognitive nature.

Evidence Theory does not take a gambler as its prototypidgest, but a judge
or a detective. The reason is that a gambler playing with dicéhrowing a coin
knows what possibilities can occur. On the contrary, judiyes detectives know that
unexpected proves and testimonies may open up unexpecssiitiies. Possibly,
managers making investments, politicians steering tleeintries, or just anyone in the
important choices of her daily life is more akin to a judge atedective looking for
cues than to a gambler looking for luck.

Let us consider a frame of discernmédt Let us suppose that a person receives

8The basic reference is Glenn Shaf&iiathematical Theory of EvidencBrinceton, Princeton Univer-
sity Press 1976.
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testimonies, obodies of evidences numbers that to various extents support a set of
possibilitiesA1, Az, ... An, WhereA; C O, Ao C O... Ay C © and where the\s are

not necessarily disjoint set$.Let us denote these numbgmsi(A;), m(Az),...m(@)},
wherem(A;) measures the amount of empirical evidence that supportsabsbility

A.

Numbersm are exogenous to the person (the judge, the detective) whg tve
frame of discernment. They are not subjective measurefi®person, though they
may be subjective evaluations of those who provide thenesties. Numbersn are
cardinal measures of the amount of empirical evidence stipgeach possibility.

Since no operation is defined on the frame of discernmentydheberm that has
been assigned t® does not concern any specific possibility. Rather, it ingisdow
small the evidence is, that supports the possibilitiessamed in the testimony, or, in
other words, how strongly a person fears that the poss#silihat she is envisaging are
not exhaustive. The greater the ignorance of a person orhvguissibilities exist, the
greatem(©).

Note thatm(©) can be smaller than any of the Ajs that it entails. Indeed, this
applies to the\s as well: ifA; O Aj, this doeshotimply thatm(A) > m(A;).

Although it is not strictly essential for Evidence Theorynmbersm are generally
normalised by requiring that:

N
Zlm(Aa) +m©) =1 9)
i=

For instance, if the original format of the testimony is:
{5,32,12,3}

by applying eq. 9 we obtain:

{0.096,0.615,0.231,0.058}

whose numbers sum up to one.

Let us suppose that the decision-maker wants to evaluat@ab extent the avail-
able empirical evidence supports certain hypotheseshkas ®ntertaining in her mind.
Since a hypothesis concerns the truth of a possibility ot afggossibilities, hypothe-
ses are subsets of the frame of discernment just as pasghdie. A body of evidence
{m(A1),m(Az),...m(®)} supports a hypothesls to the extent that som&s are in-
cluded or at least intersekt.

Note that, whilst the possibilitied; entailed in the testimonies cannot be combined
with one another (intersected, complemented, etc.) to foosel possibilities, a hy-
pothesisH represents a free construct of the owner of a frame of disoent (the
judge, the detective, etc.). This person is absolutelytivemnceive any hypothesis, as
well as its opposite. Thus, althoud¥s are forbiddentH can be safely considered.

9For simplicity, the theory is expounded with respect to adimiimber of possibilities. No substantial
change is needed if an infinite number of possibilities is mered.
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Partially contradictory-
—coherent possibilities

Contradictory Possibilities Coherent Possibilities
Figure 9: Left, two contradictory possibilities. Centrgot coherent possibilities.
Right, two partially coherent, partially contradictorygsibilities.

Given atestimonym(A;),m(Az),...m(©)}, the beliefin hypothesid is expressed
by the followingbelief function

I _ .
Bel(H) ;\ZH m(A;) (10)

i C

By definition, Bel(0) = 0 andBel(®) = 1. However, this last condition does not
imply that any of the possibilities included in the frame farnment must necessarily
realise. It simply means that any possibility must be corezkiwithin the frame of
discernment, independently of what possibilities are saged at a certain point in
time.

The belief function takes account of all evidence includeéii The plausibility
functiontakes account of all evidence that intersddts

PI(H) = i 11
(H) H%ﬂ)m(A.) (11)

It can be shown that belief and plausibility are linked by tékationPI(H) = 1—
Bel(H), whereH denotes a hypothesis oppositeHolf m(®) > 0 these two measures
are not equivalent, so both of them need to be considerectrerglBel(H) < PI(H).

Let us suppose that some unexpected facts occur, that drieytal new testimony.
The new testimony must be combined with previous knowledgafirming it to the
extent that it is coherent with it. On the contrary, previbesiefs must be weakened if
the new evidence disconfirms them.

Let {m(B1),m(Bz),...m(®)} be the new testimony, which must be combined with
{m(A1),m(A2),...m(®)}. The new testimony may entail possibilities that are cafiiere
with those of the previous testimony, possibilities thattcadict those of the previous
testimony, and possibilities that partially support, jadist contradict the previous testi-
mony. Figure 9 illustrates contradictory, coherent andigir coherent/contradictory
possibilities on the frame of discernment. Contradictooggibilities appear as dis-
joint sets. A possibility is coherent with another if it isclnded in it. Finally, two
possibilities that are partially coherent, partially aawlictory, intersect one another.

Let us suppose that two testimonies

{Mm(A1),m(A2),...m(®)}
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and
{Mm(B1),m(By),...m(®©)}
that satisfy eq. 9, must be combined into a testimony

{M(Cy1),m(Cy),...m(®)}

that also satisfies eq. 9. Dempster-Shafer's combinatienyialds a combined testi-
mony {m(Cy)} where the coherent possibilities betwefgm(A;)} and {m(B;)} have
been stressed.

According to Dempster-Shafer combination rule, possibgi{Cy} are defined by
all intersections of each possibility {fi\;, Ay, . .. ©} with each possibility i B1, By, ... ©}.
For any possibilityCy, the amount of empirical evidence is:

_ 2AMB=C m(A)m(B;)
1- 3 anBj—oM(A)M(Bj)

The numerator of eq. 12 measures the extent to which bothrthefid the second
testimony support the possibiliG. In fact, for each possiblgy the sum extends to all
pairs of possibilities from the two testimonies that arearent onCy (see fig. 9). The
more the intersections between ths and theBjs that give rise t&@y, and the greater
their amounts of evidence, the larger the numerator.

The denominator is the complement to one of those elemeriteeafecond testi-
mony that contradict the first one. In fact, the complemerre is made on those
Ajs andBjs that are disjoint sets (see fig. 9). The denominator reptesemeasure of
the extent to which the two testimonies are coherent, in¢hsesthat all evidence that
supports contradictory possibilities is excluded.

Essentially, Dempster-Shafer combination rule says timatevidence supporting
possibilityCy is a fraction of the coherent evidence betwgerfA; ), m(Az),...m(O)}
and{m(B1),m(Bz),...m(®)}. The amount of this fraction depends on the sum of all
elements of the testimonies that suppxt

Dempster-Shafer’s rule can be iterated to combine any nuofliestimonies. The
outcome of Dempster-Shafer combination rule is independethe order in which
two testimonies are combinety.

The above description made clear that Evidence Theory gesvén algorithm for
handling an exogenous flow of new, unexpected possibilitleseed, the decision-
maker of Evidence Theory is not supposed to conceive pdiisihi She merely listens
to exogenous testimonies that consist of possibilitiesdagtees of evidence support-
ing them, and combines these testimonies into a coherenéwlianeans of Dempster-
Shafer theory. She does not conceive novel possibilitiesfaaicreative effort. Rather,
novel possibilities — th€C,} — arise out of combination of exogenous inputs.

On the contrary, Probability Theory ascribes its subjelts ability to conceive
novel possibilities by applying a set of operations (e.gipn, intersection, comple-
mentation) to a given set of elementary possibilities. Uritis respect, Probability
Theory with itso-algebras is conceptually akin to classical artificial liigence, in the

m(Ci) (12)

10A detailed numerical example can be found in Guido FiorettiitEEnce Theory as a Procedure for
Handling Novel Events"Metroeconomica60 (2) 2009: 283-301.
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sense that classical artificial intelligence assumed tfialligent behaviour, expressed
by the ability to generate higher-order concepts, restdts the application of logical
operations on a set elementary concepts. Both lines of measeuppose that complex
reasoning from the combination of given bricks with givetesu

6.3 Constraint Satisfaction Networks

Parallel constraint satisfaction networks (CSN) arrarggesepts into coherent theories.
Although they belong to the larger family of neural netwottk&y do not carry out any
classification process.

Constraint satisfaction networks are characterized by:

e Excitatory and inhibitory connections;
o Feedbacks between neurons.

Neurons represent possibilities, or concepts, or proposit Connections repre-
sent inferences: an excitatory connection from neuron Aetoon B means “A implies
B”, whereas an inhibitory connection from neuron A to neuBomeans “A implies-
B".

Let & denote the activation (the output) of neurorwith & < 0. Letw; € O
denote the weight by which neuromultiplies the input arriving from neurojp

The net excitatory input to neurans:

enet = ZWijaj if wija; >0 (13)
J
The net inhibitory input to neuronis:
enef = Zwijaj if wija; <0 (24)
J

At each time step, the activation of neurida increased by its excitatory inputs and
decreased by its inhibitory inputs:

Ay = enet(amax— &) +inet (& — amin) (15)
where, in generabmnax= 1 andapy, = —1.
Feedbacks between neurons make the network maximize camsgn

C =75 > wjaa (16)
T ]

or, equivalently, minimize enerdy = —C.

Consonance maximization means that those neurons argtsteeed, that repre-
sent possibilities, concepts or propositions that are restievith one another. Thus,
constraint satisfaction networks can be used to model agwitiee process character-
ized by a search for coherenéé In particular, researchers have emphasized the ability
of CSN to construct narratives, much like humans actually do

11The basic reference is Paul Thaga@hherence in Thought and Actioi€ambridge (MA), The MIT
Press 2000.
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Notable applications of CSN are the elaboration of scierttigories, which amounts
to arrange empirical findings in a network of coherent caredations, as well as the
evaluation of guilt or innocence in a trial, which amountditing testimonies in a
coherent frame. CSN have also been used to model postateiseduction of disso-
nance.

Furthermore, CSN can be used to model the process of empttatiz positive
aspects of one alternative and the negative aspects ohitgetiting alternatives until a
coherent frame is available and a decision can be made. $titation between com-
peting explanations reproduce at least one important asp€estalttheories, namely,
the idea that the human mind may shift among alternativepré¢ations of reality, as
exemplified by Rubin’s vase and other images where at leasiriterpretations are
possible1? Many cues suggest that this is the fundamental pattern dgidaemaking.

A clear limitation of CSN is that they work with given posditiés, concepts,
or propositions. In other words, CSN can reproduce the gaaent of possibilities
and concepts, not their arousal. In order to include thitufeat has been proposed
that CSN represent unconscious arrangement of availalsilplities and concepts,
whereas a conscious process running in parallel would daretéhe search and elab-
oration of novel ones.

7 Conclusions

This review presented tools to model decision-making atingrto two opposing paradigms,
namely, the logic of consequence and the logic of apprapress. The reader may feel
unease because scientists do not provide a univocal ans¥er demands of the mod-
eller.

However, a pragmatic attitude may suggest that tools shmeilgsed depending on
conditions. Utility maximization and Game Theory requinattall available alterna-
tives and all their possible consequences can be listeds, Tthuay be sensible to make
use of these tools when one such exhaustive list is avajlaltmntually releasing the
requirement of perfect rationality and the pursuit of Nasfulibria while assuming
some form of bounded rationality as influence games do. Wsmsiged neural net-
works, Evidence Theory and constraint satisfaction netsjarn the contrary, may be
used when more challenging decision settings must be neatdélhe modeller should
remember that constructing narratives makes sense bet@userld is uncertain even
in what possibilities may exist, so it is only when modellggch decision settings that
these tools make sense.

The trouble, in this last case, is that the tools mentioned@lhave not been inte-
grated into a unified framework. No simple formula is readgeaised, so the modeller
must resort to a higher degree of creativity and intuition.te other hand, here is an
exciting opportunity for modellers to participate to thedevelopment.

12The simplest picture of this kind is a cube depicted by its ediiés up to the observer to choose which
face stays in the front and which face stays in the rear. Rubase is white and stands against a black
background. The observer may see a white vase, or two blaéilegrim front of one another.
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