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Abstract 
Monitoring algorithms, such as the Shewhart and Cusum control 

charts, are often used for monitoring purposes in the chemical industry or 
within an environmental context. The statistical properties of these 
algorithms are known to be highly responsive to measurement errors. 
Recent studies have underlined the important role played by the two-
component measurement error model in chemical and environmental 
monitoring. In the present work, we study the effects of the two-
component error model on the performance of the X  and S Shewhart 
control charts. Results reveal that gauge imprecision may seriously alter 
the statistical properties of the control charts. We propose how to reduce 
the effects of measurement errors, and illustrate how to take errors into 
account in the design of monitoring algorithms. 
 
Keywords: Average run length, calibration curve, constant measurement 
error, Monte Carlo study, proportional measurement error, repeated 
measurements, Shewhart control charts. 
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1. Introduction 
 

Statistical monitoring algorithms, such as Shewhart control charts and 
cumulative sums control charts (CUSUM), are widely used in many 
industries, including the chemical and pharmaceutical industries 
Montgomery (2005). They are also employed in the environmental 
context to monitor, for example, pollutants Gibbons (1999), pollutant 
measurement devices Bordignon and Scagliarini (2000) and biological 
populations Anderson and Thompson (2004). 

In the industrial field, it is widely acknowledged that measurement 
errors may significantly alter the performance of statistical process 
control methodologies, as has been confirmed by the works of several 
authors including Kanzuka (1986), Mittag and Stemann (1998), Linna 
and Woodall (2001a), and Linna et al. (2001b). Since the pioneering 
research of Bennnet (1954), who studied the effects of measurement 
errors in chemical process control problems, further studies by Rocke et 
al. (2003) and Gibbons and Coleman (2001), have established that there 
are two types of measurement errors in chemical and environmental 
monitoring. The measurement error is constant over a range of 
concentrations close to zero; at higher concentrations, the measurement 
error is observed to be proportional to the concentration of the analyte, 
pollutant or toxic substance. Moreover, many measurement technologies 
require a linear calibration curve in order to estimate the actual 
concentration of a substance (pollutant, analyte, etc.) in a sample. This 
leads to the following model (Rocke and Lorenzato (1995))  
 
 eY eη

µ α µβ ε= + +  (1) 
 
where: eYµ  is the response at concentration µ ; α  and β  are the 
parameters of the calibration curve; 2(0 )N ηη σ,∼  represents the 
proportional error that is always present but is only noticeable at 
concentrations significantly above zero; and 2(0 )N εε σ,∼  represents the 
additive error that is always present but is only really noticeable at near 
zero concentrations.  
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In (1) µ  is non-random. This assumption is acceptable for a 
laboratory sample, but in a real world monitoring situation, one needs to 
assume that the concentration of a given substance, or a suitable 
transformation, constitutes a random effect that we assume to be normally 
distributed 2( )X N µ σ,∼ . Thus, we have  

 
 eY Xeηα β ε= + +  (2) 

 
Therefore the observable response eY  is a random variable consisting 

of the sum of a normal variable, ε , and the product of a normal variable, 
X, multiplied by a log-normal variable η . The mean and standard 
deviation of eY  are, respectively:  

 
2

( )eE Y e ησα βµ= +  (3) 
and  

 ( ) ( )( )2 2 2 2 2
1/ 2

2 2 2 2 2( 1) ( 1)eY
e e e e eη η η η ησ σ σ σ σ

εσ β σ µ σ σ⎡ ⎤= + − + − +⎢ ⎥⎣ ⎦
 (4) 

 
The present paper aims to study the effect of the two-component 

measurement error model on the Shewhart Control Charts used to 
monitor the level ( e

Y -chart) and the variability ( eY
S -chart) of the 

observable response eY . First of all we outline the performance of the 
monitoring algorithms in the presence of this kind of error. Then we 
study ways of reducing the effects of measurement errors, and of taking 
errors into account when designing the control chart. 

The paper is organised as follows. In the next section we study the 
behaviour of the usual Shewhart control chart used to monitor the process 
level when the two-component error model holds. In the third section the 
impact of the error model on the eY

S -chart is analyzed. In section 4 we 
suggest a way of taking account of measurement errors when evaluating 
the performance of control charts. Finally, section 5 contains the 
concluding remarks. 
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2. The e
Y  Control Chart 

 
In an error-free situation, the response Y Xα β= +  is normally 

distributed with mean and standard deviation given, respectively, by  
 
 ( )E Y α βµ= +  (5) 
and 
 Yσ βσ=  (6) 
 

In order to monitor the mean level of response Y  at time i, a sample of 
n observations from Y is collected and the mean of these measurements, 

iY , is plotted on the control chart (3σ -limits):  
 
 CL α βµ= +  (7) 

 3 YUCL CL
n

σ
= +  (8) 

 3 YLCL CL
n

σ
= −  (9) 

 
Linna and Woodall (2001a) studied the effects of an additive error ε  

on the performance of the above control chart. They noted that one of the 
effects of measurement errors is a loss of power in detecting parameter 
shifts. 

In the two-component error case, in order to monitor the mean level of 
response eY , the control chart is given by:  

 
2eCL e ησα βµ= +  (10) 

 3 ee e YUCL CL
n

σ
= +  (11) 

 3 ee e YLCL CL
n

σ
= −  (12) 

where eY
σ  comes directly from (4).  

In order to study the effect of the two-component error model, we 
examined the chart’s behaviour when the process is under statistical 
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control (H0), and in the out-of-statistical-control state (H1). Since the 
distribution of eY  cannot be treated analytically, we adopted a simulation 
approach. 

In designing the Monte Carlo study, we considered the case of a 
pseudo-population representing a real situation by developing the toluene 
example reported in Rocke and Lorenzato (1995), where 11 51α = . , 

1 524β = . , 5 698εσ = . , 0 1032ησ = . , and concentration ranges from 5 
picograms to 15 nanograms in 100mL. The under control (H0) and out of 
control (H1) conditions were simulated for several values of the 
coefficient of variation (c.v.(X)) and several values of the mean 
( ( )E X µ= ) of the unobservable X. In this way, for a given precision 
structure ( εσ  and ησ  fixed) we reproduce a set of different working 
conditions for the measurement device. We fixed the samples size n=5 
and generated 10000 samples for each condition. We built the mean 
control chart with the 3 -sigma limits. For the out of control situations we 
considered shifts of standardized magnitude equal to ±0.5, for which the 
theoretical value of the Average Run Length (ARL) function is 33.4. The 
standard deviation chart has been designed with a false alarm probability 
of 0.01. The out of control situations were studied for a relative variation 
in standard deviation 1.1, for which the theoretical value of the ARL 
function is 37.2.  

 
2.1. State of Statistical Control (H0) 
 

We first examined the effects of measurement errors on the false-
alarm rate. The results are summarized in Figures (1) and (2), where the 
bold line, denoted as "no errors", corresponds to 

0 00 00135 Pr Y LCL H Pr Y UCL H⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. = ≤ | = ≥ | , i.e. the probability, 

under H0 and in the error-free case, of a signal below the LCL (or above 
the UCL).  
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Figure 1. False alarm rates below the LCL ( εσ =5.698, ησ =0.1032) 

 

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

5 10 50 100 1000 10000 15000

E(X)

c.v.(X)=0.01
c.v.(X)=0.05
c.v.(X)=0.1
c.v.(X)=0.2
c.v.(X)=0.3
c.v.(X)=0.4
c.v.(X)=0.5
no err.

 
Figure 2. False alarm rates above the UCL ( εσ =5.698, ησ =0.1032) 
 
The control chart reveals asymmetric behaviour: the false alarm rates 

below the LCL tend to be lower than the false alarm rate in the error-free 
case (0.00135), while the false alarm rates above the UCL show a clear 
pattern of values slightly greater than 0.00135.  
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2.2. Out of Control Situation (H1) 
 
Let us consider the case of a shift in the mean of the non-observable X 

from µ  to 1µ , which corresponds to a standardized shift of magnitude  
 

 1 0 1( ) ( )E X H E X H µ µδ
σ σ

| − | −
= =  (13) 

Under this hypothesis the expected value of the response eY  is  
 

 
2

1 1( )eE Y H e ησα βµ| = +  (14) 
 

and the corresponding standardized shift in the monitored eY  is given by  
 

 

( ) ( )2 2 22

2 2
2 2

1 0

1 1 1

e

e

e e

Y
Y

e

E Y H E Y H

e eη η ε
ση

σ σ σµ
σ β σ

δ
σ

δ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

| − |
= =

=
+ − + − +

 (15) 

 
We note that, for non-zero ησ  and εσ , the denominator in (15) is 

greater than 1, therefore eY
δ δ< . The consequence is that measurement 

errors lead to a smaller shift in the observed response Ye, which means 
that the change is more difficult to detect. Table (1) shows the values of 
δY

e corresponding to a shift |δ|=0.5 (in the mean of X) for the E(X) and 
c.v.(X) values considered in the simulations.  
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µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5 0.007 0.033 0.066 0.129 0.185 0.235 0.277 
10 0.013 0.064 0.125 0.230 0.306 0.359 0.394 
50 0.039 0.182 0.308 0.420 0.458 0.474 0.482 

100 0.045 0.207 0.336 0.436 0.467 0.480 0.486 
1000 0.048 0.217 0.346 0.442 0.470 0.482 0.487 

10000 0.048 0.217 0.347 0.442 0.470 0.482 0.487 
15000 0.048 0.217 0.347 0.442 0.470 0.482 0.487 

Table 1. Values of δY
e corresponding to a standardized shift of magnitude 

|δ|=0.5 
 
Table 1 reveals that the reduction in the shift is particularly evident for 

small values of E(X) and c.v.(X). 
For the purpose of evaluating the statistical properties of the control 

chart in the out of control situation, one of the most commonly-used 
measures is the ARL. For the e

Y -chart the theoretical ARL for shifts of 
magnitude δY

e can be calculated as 
 
 ( ) ( )( )( ) 3 3e e eY Y Y

ARL n nδ δ δ= Φ − + + Φ − −  (16) 

Table 2 shows the ARL values corresponding to the δY
e in Table 1. 

 
µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5  369.99 360.58 334.17 260.05 193.02 145.49 114.00 
10  368.87 335.93 264.18 149.80 96.04 71.14 58.34 
50  356.90 196.11 95.02 50.74 41.44 38.13 36.60 

100  352.51 170.99 81.13 46.50 39.51 37.04 35.90 
1000  350.35 161.07 76.27 45.08 38.87 36.68 35.67 

10000  350.33 160.96 76.23 45.07 38.87 36.68 35.66 
15000  350.33 160.96 76.22 45.07 38.87 36.68 35.66 

Table 2. Theoretical values of ARL for the δY
e in Table 1 

 
Expression (16) is based on the normality assumption of the sample 

statistic used in the chart. However, we noticed that measurement errors 
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lead to departures from the Normal distribution. Therefore, in order to 
study the effects of the two-component measurement error, we chose to 
perform a simulation study of the out-of-control situations: for known 
change instants t0 we imposed shifts of magnitude δ=±0.5 (n=5) in the 
variable X, and we observed the alarm times in the e

Y -control-chart. The 
simulations were designed to evaluate the mean detection delay time, 
which is an approximation of the ARL function. Once again, each 
condition was replicated 10000 times and the results thereof summarized 
in Table 3, in case of a positive shift, and in Table 4 in cases of a negative 
shift. 

 
µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5 359.83 350.34 330.29 254.49 182.68 138.77 107.29 
10 353.57 321.53 254.37 138.03 86.45 63.53 53.09 
50 320.56 144.59 69.10 41.63 35.08 32.84 32.95 

100 287.46 116.04 58.18 37.36 33.65 32.07 32.63 
1000 264.98 104.01 53.91 35.84 32.27 32.35 32.15 

10000 272.10 105.93 53.84 35.95 32.74 32.06 32.08 
15000 272.05 106.07 54.21 35.88 32.36 32.17 31.49 

Table 3. Mean detection delay for δ=0.5 
 

µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5  369.04 355.33 335.56 266.23 197.05 148.33 118.01 
10  366.76 349.75 275.15 161.83 101.10 76.01 61.96 
50  377.04 265.54 128.30 61.74 47.98 41.88 39.61 

100  383.25 263.54 119.70 59.65 46.13 41.04 38.95 
1000  384.25 271.74 114.67 57.21 44.97 40.32 38.81 

10000  375.74 262.79 119.19 56.99 44.59 40.80 38.01 
15000  379.37 265.84 118.42 56.37 45.21 41.44 38.10 

Table 4. Mean detection delay for δ=-0.5 
 

Tables 3 and 4 confirm the asymmetric effect of the measurement 
errors. The mean detection delays for positive shifts are smaller than the 
corresponding mean detection delays for negative shifts. As one would 



 10

have expected, the values in Tables 3 and 4 often differ remarkably from 
the theoretical values of ARL reported in Table 2.  

 
 

3. The SY
e-chart 

 
The test statistic is the sample standard deviation  
 

 ( )2

1

1

n
ii

Y

Y Y
S

n
=

−
=

−
∑  (17) 

 
in a sample of size n. It follows that the control limit of the unilateral 
control chart used to monitor the variability of Y in the error-free case is  
 

 
2 2

1,1 1,1

1 1
n n

Y YUCL
n n

α αχ χ
σ βσ− − − −= =

− −
 (18) 

 
where 2

,1df αχ −  is the αth percentile of the chi-square distribution with df 
degrees of freedom, and α=Pr(SY ≥ UCLY|H0). Detailed studies of the 
effect of the additive measurement error on the S-chart have been made 
by Mittag and Stemann (1998) and Linna and Woodall (2001a). 

In the two-component measurement error case, the SY
e-chart has the 

same structure as (18) 
 

 
2 2

1,1 1,1

1 1e e e
n n

Y Y Y
UCL

n n
α αχ χ

σ βσ− − − −= =
− −

 (19) 

 
but with standard deviation σY

e given by (4). 
 

3.1. Effects of the two-component error model under H0  
 
We first checked the effects of measurement errors on the false alarm 

rate. The results are summarized in Figure 3, where the bold line, denoted 
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as "no errors", corresponds to α=0.01, i.e. the probability, under H0 and 
in the error-free case, of a signal above the UCL. 
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Figure 3. SY

e -Chart False alarm rates above the UCL ( εσ =5.698, 

ησ =0.1032) 
 
Increasing values of E(X) cause an increasing measurement error 

effect on the false-alarm rate, which tends to assume values greater than 
false-alarm probability in the error-free case. 

 
3.2. The effects of the error model under H1 

 
If the variability measure σ of X shifts to σ1 (σ1>σ), we can define the 

relative variation as  
 

 ( )
( )

1 1

0

|
|

Var X H
Var X H

σγ
σ

= =  (20) 

 
In the presence of a relative shift γ in the standard deviation of X, the 

standard deviation of Ye becomes  
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( )

( ) ( )
2 2

2 2 2

11

1/ 2
2

2
2 2 2

2 2

|

( 1)
( 1)

e
e

Y
Var Y H

e e
e e e

η η

η η η

σ σ

σ σ σ ε

σ

µ σγ β σ σ
γ γ

=

⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥= + + − +⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 (21) 

 
and the correspondent relative variation is given by  

 

 ( )
( )

1 1

0

|

|
e

e

e e

e
Y

Y e
Y Y

Var Y H A
Var Y H

σ γγ
σ σ

= = =  (22) 

where  

 ( ) ( )
2 2

2 2 2

1/ 2
2

2
2 2 2

2 2

( 1)
( 1)

e e
A e e e

η η

η η η

σ σ

σ σ σ ε
µ σβ σ σ

γ γ

⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥= + + − +⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 (23) 

 
Since A≤σY

e, it follows that γY
e≤γ. Once again, the presence of 

measurement errors lead to a reduction in the observed shifts in the 
variability, making such changes more difficult to detect. For a relative 
shift of magnitude γ=1.1, Table 5 shows the corresponding values of γY

e 
for the E(X) and (c.v.(X)) values used in the Monte Carlo studies. 
 

µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5 1.000 1.000 1.002 1.007 1.014 1.023 1.032 
10 1.000 1.002 1.007 1.022 1.039 1.053 1.064 
50 1.001 1.014 1.039 1.072 1.085 1.091 1.094 

100 1.001 1.018 1.047 1.078 1089 1.093 1.096 
1000 1.001 1.020 1.050 1.080 1.090 1.094 1.096 
10000 1.001 1.020 1.050 1.080 1.090 1.094 1.096 
15000 1.001 1.020 1.050 1.080 1.090 1.094 1.096 

Table 5. Values of γY
e corresponding to γ=1.1  
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The ARL function of the SY
e-chart, assuming the normality of Ye, is 

 

 
1

2
1,1
21 1

e

n

Y

ARL Ch nαχ
γ

−

− −
⎛ ⎞⎛ ⎞
⎜ ⎟= − −⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (24) 

 
where Ch(x|p) denotes the distribution function of a χ2 with p degrees of 
freedom evaluated in x. 

The ARL computations corresponding to the γY
e values in Table 5 are 

reported in the following Table 6, and can be used as a benchmark for the 
chart’s performance studied by means of simulation.  
 

µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5 99.978 99.462 97.898 92.326 84.942 77.325 70.430 
10 99.918 98.008 92.693 78.134 65.493 56.864 51.291 
50 99.254 85.355 65.186 47.484 42.187 40.098 39.085 

100 99.002 81.740 60.624 45.163 40.983 39.382 38.615 
1000 98.877 80.123 58.853 44.355 40.576 39.143 38.459 
10000 98.876 80.105 58.834 44.347 40.572 39.141 38.457 
15000 98.876 80.105 58.834 44.347 40.572 39.141 38.457 

Table 6. Theoretical values of ARL for the γY
e in Table 5  

 
Also for the SY

e-chart we simulate the out of control situations for a 
relative variation γ in the variability of X; the mean detection delays 
obtained are summarized in Table 7. 

 

µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5  100.04 99.10 97.09 90.69 83.19 75.47 67.45 
10  99.36 96.72 91.07 77.88 63.13 55.33 48,39 
50  88.16 74.70 56.59 41.31 37.91 36.15 34.84 

100  81.45 67.13 50.28 39.86 36.43 35.24 34.89 
1000 79.65 63.91 48.39 38.26 35.04 35.02 34.12 
10000 79.17 63.78 48.17 38.18 35.27 34.23 34.22 
15000 78.22 63.11 48.70 38.65 35.54 34.74 34.96 

Table 7. Mean detection delay for γ=1.1 
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The results given in Table (7) indicate that the effects of measurement 

errors are particularly evident for small values of c.v.(X) and large values 
of E(X). In such situations, the mean detection delays are much smaller 
than the corresponding ARL values. This result is in keeping with the 
increased false alarm rates observed under H0.  

 
 

4. Dealing with Measurement Errors  
 
The results seen in the previous sections show that the presence of 

measurement errors causes dramatic modifications in the detection ability 
of the control charts, leading to difficulties in the practical uses of such 
monitoring algorithms.  

The present section is going to show how to reduce the effects of 
errors, and how to take errors into account when designing control charts.  

As suggested by Linna and Woodall (2001a), repeated measurements 
enable us to reduce the effects of measurement errors. Let us suppose that 
for each sampled unit (i=1,2,…,n) we take k measures; as a consequence, 
the generic observation is 

 
 ije

ij i ijY X eηα β ε= + +  (25) 
 

with j=1,2,…,k. 
Therefore the monitored variable is the mean of k-repetitions of the i-

measure: 
 

 .
1

1 ke e
i ij

j

Y Y
k =

= ∑  (26) 

with expected value and standard deviation given by 

 ( ) 2

.
e
iE Y e ησα βµ= +  (27) 

and by 



 15

 
( ) ( )

( ) ( )
.

2 2 2 2

2

1/ 2
2

2 2
1 1

1/ 2
2 2 2 2

2
2 2

1 1

1 1

ij
e iji

k k

iY
j j

Var X e Var
kk k

e e e e
e

k k k

η η η η

η

η

σ σ σ σ

σ ε

βσ ε

β µ β µ σβ σ

= =

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
= + =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞− −⎜ ⎟= + + +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
 (28) 

respectively. 
 

4.1. Mean Control Chart 
 
We examined the effects of errors under H1 first. When monitoring the 

mean level of .
e
iY , the sample statistic is 

 .. .
1

1 ne
e

i
i

Y Y
n =

= ∑  (29) 

and the "new" control chart is  
 eCL e ησα βµ= +  (30) 

 .3
e

iYe eUCL CL
n

σ
= +  (31) 

 .3
e

iYe eLCL CL
n

σ
= −  (32) 

 
Therefore a shift of standardized magnitude δ in X corresponds, in the 

monitored variable .
e
iY , to a shift of magnitude 

 
 

( ) ( )2 2.

2

1/ 2
2

2

2 2 2

1 1
1

e
iY

e e

k k k e

η η

η

σ σ

ε
σ

δδ
µ σ

σ β σ

=
⎛ ⎞− −⎜ ⎟+ + +⎜ ⎟
⎜ ⎟
⎝ ⎠

 (33) 

 
Equation (33) shows that repeated measurements, k>1, increase the 

shift 
.
e e

iY Y
δ δ>  which means a quicker change detection. As an example, 
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the values of 
.
e

iY
δ  for k=4 corresponding to a shift of magnitude |δ|=0.5 in 

the variable X are reported in Table (8). In comparing Table (8) with 
Table (1), we notice that the effect of k is particularly evident for small 
values of E(X) and c.v.(X). 

 
 
 

µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5 0.013 0.066 0.129 0.235 0.312 0.364 0.399 
10 0.026 0.125 0.230 0.360 0.420 0.450 0.466 
50 0.078 0.309 0.421 0.476 0.488 0.493 0.495 

100 0.089 0.336 0.438 0.482 0.491 0.495 0.496 
1000 0.095 0.347 0.444 0.483 0.492 0.495 0.497 

10000 0.095 0.347 0.444 0.483 0.492 0.495 0.497 
15000 0.095 0.347 0.444 0.483 0.492 0.495 0.497 

Table 8. Values of 
.
e

iY
δ  corresponding to a standardized shift of 

magnitude |δ|=0.5 
 
In order to evaluate the improving effect of repeated measurements in 

the shift-detection ability of the control chart, we repeated the simulation 
for both positive and negative shifts (δ=±0.5) for k=4. 
 

µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5 360.37 337.91 270.40 151.98 97.33 72.75 58.72 
10 357.57 285.12 163.42 74.09 52.36 45.98 41.25 
50 351.78 109.86 54.41 39.30 36.51 36.10 35.52 

100 346.21 95.16 51.41 39.21 36.78 35.19 34.90 
1000 345.04 88.83  49.18 38.14 35.58 35.79 35.10 
10000 343.46 88.05 49.56 38.18 36.40 35.32 35.23 
15000 343.44 85.74 49.76 39.10 36.12 35.63 35.19 

Table 9. Mean detection delay for 0 5δ = .  and 4k =  
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µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5 355.98 319.96 248.40 141.07 92.76 68.83 56.43 
10 347.99 247.70 141.06 68.31 49.45 42.94 40.07 
50 281.46 84.88 48.24 36.97 34.85 34.82 33.95 

100 268.67 72.01 44.48 35.78 35.07 34.54 33.98 
1000 265.16 68.80 42.36 35.19 34.53 34.31 33.10 
10000 264.71 69.50 42.28 35.52 34.74 34.29 33.63 
15000 267.60 68.42 43.26 35.93 34.77 34.09 34.30 

Table 10. Mean detection delay for 0 5δ = − .  and 4k =  
 
The results summarized in Tables (9) and (10) indicate that in the case 

of repeated measurements, the differences between performance in cases 
of a positive shift and that in cases of a negative shift, are less evident 
than the differences between Tables (3) and (4). This would suggest the 
feasibility of normal approximation when repeated measurements are 
adopted.  

Table (11) shows ARL values, calculated using  
 

 
1

( ) 3 3e e e
i i iY Y Y

ARL n nδ δ δ
. . .

−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
= Φ − + + Φ − −  (34) 

 
that correspond to the shifts in Table (8). 

 
 

µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5 368.79 334.17 260.01 145.31 92.91 68.98 56.76 
10 364.38 264.14 149.63 70.85 50.74 43.29 39.79 
50 322.03 94.77 50.41 37.78 35.42 34.59 34.20 

100 308.39 80.85 46.17 36.70 34.93 34.31 34.02 
1000 302.03 75.99 44.75 36.34 34.77 34.22 33.97 
10000 301.96 75.94 44.74 36.34 34.77 34.22 33.97 
15000 301.96 75.94 44.74 36.34 34.77 34.22 33.97 

Table 11. Theoretical values of ARL for the e
iY

δ
.
 in Table 8  
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If we compare these values with the estimates in Tables (9) and (10), 

we will now see that the differences are small. More precisely, for 
positive shift, the mean of the relative absolute difference between the 
estimated mean detection delay, Table (9), and the theoretical ARL 
values, Table (11), is 6.93%. In the case of a negative shift, the mean of 
the relative absolute difference falls to 3.92%.  

Therefore, repeated measurements can be said to constitute a robust 
approach: after calculating the standardized shift e

iY
δ

.
 the adoption of the 

normal approximation enables approximate assessments of the chart’s 
performance (useful for practical purposes) to be made. 

Multiple measurements reduce the effects of measurement error also 
under H0 . Figures (4) and (5) summarise the false alarm rates, for k=4, of 
a signal below the LCL (or above the UCL). The plotted points now 
follow a random pattern around the theoretical value 0.00135.  
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Figure 4. False alarm rates below the LCL ( εσ =5.698, ησ =0.1032) 
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Figure 5. False alarm rates above the UCL ( εσ =5.698, ησ =0.1032) 
 
 

4.2. The e
iY

S
.
-Control Chart 

In the case of an increase of σ to σ1=γσ, the relative variation in the 
monitored e

iY .  is defined by  
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 (35) 

 
It is easy to see that e e

i YY
γ γ

.
>  for k>1. This result once again confirms 

that multiple measurements reduce the effects of measurement errors. 
Table (12) gives the values of e

iY
γ

.
 corresponding to γ=1.1, while Table 

(13) summarises the results of the Monte Carlo study for the e
iY

S
.
-Chart 

with k=4, the focus being on out of control situation.  
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µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5 1.000 1.002 1.007 1.023 1.040 1.054 1.065 
10 1.000 1.007 1.022 1.053 1.072 1.082 1.088 
50 1.003 1.039 1.072 1.091 1.096 1.098 1.098 

100 1.003 1.047 1.078 1.093 1.097 1.098 1.099 
1000 1.004 1.050 1.080 1.094 1.097 1.098 1.099 

10000 1.004 1.050 1.080 1.094 1.097 1.098 1.099 
15000 1.004 1.050 1.080 1.094 1.097 1.098 1.099 

Table 12. Values of e
iY

γ
.
 corresponding to γ=1.1 

 
µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5 98.46 96.00 92.02 77.41 65.50 56.18 50.62 
10 98.97 92.92 78.69 57.94 47.43 43.87 41,92 
50 97.32 65.89 47.13 40.63 37.87 38.02 38.04 

100 96.00 60.22 44.45 38.27 38.24 38.25 37.71 
1000 94.77 57.19 44.84 39.44 38.51 37.98 37.67 
10000 94.61 57.40 44.03 38.81 37.66 37.49 37.68 
15000 93.74 58.05 43.59 39.17 38.47 38.06 37.67 

Table 13. Mean detection delay for γ=1.1 and k=4 
 

Once again, in order to provide a suitable tool with which to evaluate 
the chart’s performance, we have adopted the normal approximation 
approach. The theoretical ARL values  

 

 

1
2

1 1
21 1

e
i

n

Y

ARL Ch nαχ
γ

.

−

− , −
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − −
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (36) 

 
are shown in Table (14).  
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µ    c.v.(X)    
 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5 99.91 97.91 92.38 77.43 64.74 56.21 50.77 
10 99.68 92.74 78.25 56.97 47.72 43.55 41,40 
50 97.14 65.31 47.55 40.12 38.53 37.96 37.69 

100 96.21 60.74 45.22 39.40 38.20 37.77 37.57 
1000 95.75 58.97 44.41 39.16 38.09 37.71 35.53 

10000 95.75 58.95 44.40 39.16 38.09 37.71 35.53 
15000 95.75 58.95 44.40 39.16 38.09 37.71 35.53 

Table 14. Theoretical values of ARL for the e
iY

δ
.
 in Table 13  

 
The differences between Table (13) and Table (14) are negligible: the 

mean of the relative absolute difference is 0.949%. 
Once again, multiple measurements reduce the measurement error 

effect also under H0 . Figure (6) summarises the false alarm rates, for 
k=4, of a signal above the UCL. 
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Figure 6. False alarm rates above the UCL for k=4 ( εσ =5.698, 

ησ =0.1032) 
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5. Discussion 
 
The two-component error model is particularly well-suited to 

chemical and environmental monitoring activities, since it provides an 
accurate approximation of error across the entire usable range of a 
measurement technology. Hence the importance of studying the role of 
this error structure in monitoring algorithms. 

In the present work, we have studied the effects of the two-component 
error model on the Shewhart control charts. We noted that the two-
component measurement error model leads to a reduction in the detection 
ability of the control charts. While the additive error basically inflates the 
variance of the observable response eY , the proportional error component 
η leads to a remarkable asymmetry in the performances of the mean 
control chart. Under H0 , the false alarm rate above the UCL is greater 
than the theoretical false alarm probability, while the false alarm rate 
below the LCL is smaller. This is an important issue, since false alarms 
could lead to a series of expensive, unnecessary actions or regulations. 
Moreover, asymmetry can complicate monitoring management. The 
effects of the two-component error model are also evident under H1: the 
mean detection delay for negative shifts is always greater than the 
corresponding mean detection delay for positive shifts, and in some cases 
is twice as large. In monitoring chemical plant or environmental 
phenomena, the consequences of such delays can be very serious.  

As far as variability is concerned we have considered a unilateral S-
chart, since it is usually important to avoid any increase in the spread of 
the monitored variable. Once again, in this case we discovered increases 
in false-alarm rates and altered performances for the detection of 
increments in the variability of the variable. Another important point, 
which can be put down to the nature of the two-component error model, 
is that the performance of the control charts is strongly responsive to the 
values of E(X). 

We have also suggested how to reduce the effects of measurement 
error to provide robustness, and how to take errors into account when 
designing  control charts, showing that multiple measurements reduce the 
asymmetric effects of measurement errors. Therefore, once obtained an 
evaluation of the shift magnitude, e

iY
δ

.
 or e

iY
γ

.
, it is possible to get 
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approximate assessments, through (34) and (37), of control chart 
performance which may be of use for practical purposes.  
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