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Abstract

This paper considers dynamic time series binary choice models. It proves
near epoch dependence and strong mixing for the dynamic binary choice
model with correlated errors. Using this result, it shows in a time series
setting the validity of the dynamic probit likelihood procedure when lags
of the dependent binary variable are used as regressors, and it establishes
the asymptotic validity of Horowitz’ smoothed maximum score estimation
of dynamic binary choice models with lags of the dependent variable as re-
gressors. For the semiparametric model, the latent error is explicitly allowed
to be correlated. It turns out that no long-run variance estimator is needed
for the validity of the smoothed maximum score procedure in the dynamic
time series framework.

1 Introduction

For a dynamic linear time series model

yn =

p∑
j=1

ρjyn−j + γ′xn + un, (1)

n = 1, . . . , N , it is well-known that a sufficient condition for consistency as N →∞
of the least squares estimator is that E(un|yn−1, . . . , yn−p, xn) = 0, and that even if
un is weakly dependent, consistency can be proven as long as this condition holds,
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without the assumption of normality on un. In this paper, we analyze maximum
likelihood estimation of the dynamic probit model of order p, and maximum score
estimation of dynamic binary choice models of order p, and we explicitly allow the
error to be correlated. We define the dynamic binary choice model of order p as

yn = I(

p∑
j=1

ρjyn−j + γ′xn + un > 0), (2)

where I(·) denotes the indicator function, xn is predetermined, and un can be
correlated and heteroskedastic. We first show near epoch dependence and strong
mixing for this model. We then impose identifying assumptions to ensure identifi-
cation of the probit model and the binary choice model. For conditional maximum
likelihood estimation of the dynamic probit model, the key condition that is needed
will turn out to be

E(yn|xn, yn−1, yn−2, . . .) = Φ(

p∑
j=1

ρjyn−j + γ′xn), (3)

while in the smoothed maximum score setting, we will need the condition

Median(un|yn−1, . . . , yn−p, xn) = 0. (4)

Therefore, this paper analyzes the dynamic time series binary choice model at a
level of generality that is comparable to the level of generality at which linear
dynamic time series models can be analyzed.
Manski (1975) uses the sign function to develop the first semiparametric estimator
for the binary choice model. Cosslett (1983) and Ichimura (1993) derive alterna-
tive estimators for the binary choice model. Imbens (1992) and Matzkin (1992)
also develop estimators for the semiparametric binary choice model. Finally, in his
seminal paper, Horowitz (1992) smooths the sign function of Manski (1975, 1985)
and derives an estimator that is asymptotically normally distributed. However,
all these estimators assume that one has a random sample. Thus, none of these
estimators allows for lagged dependent explanatory variables. Park and Phillips
(2000) assume that one of the regressors in a binary choice model is integrated, and
they assume that all regressors are exogenous, thereby excluding predetermined
variables and lagged yn as possible regressors. Other recent papers that consider
multinomial choice models in the presence of an integrated regressor are Hu and
Phillips (2004) and Moon (2004).
In this paper we consider the binary choice model in a time series setting and we
allow for lagged dependent variables and predetermined regressors as explanatory
variables. For the semiparametric case, we only impose a median assumption.
Thus, we allow the variance (and other moments of the error distribution) to
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depend on lagged error terms, lagged dependent variables as well as regressors.
Moreover, the median assumption allows for heterogeneity that is caused by ran-
dom coefficients, e.g. a data generating process whose parameters are random and
symmetrically distributed around (ρ′, γ′)′.
Binary choice models in a time series context have been used in a number of set-
tings. Eichengreen, Watson, and Grossman (1985) considered a dynamic binary
choice model

yn = I(y∗t > 0) where φ(L)y∗n = β′xn + εn.

The stationarity of this model simply requires that the roots of φ(z) are outside
the unit circle. This model does not allow for the actual state yn to impact yn

and we can view yn as a form of imperfect measurement of y∗n. In a setting where
yn represents the presence in time period n of an intervention by a monetary au-
thority, or a change in the Federal Funds rate, it seems natural to presume that
lagged values of yn will have a direct impact on yn, which is ruled out by this
specification. Dueker (1997) discusses how US recessions can be predicted using
the slope of the yield curve and estimates the dynamic binary choice model that is
considered in this paper. Kauppi and Saikkonen (2005) use binary choice models
to predict recessions in the US and note that lagged dependent variables improce
the predictions. Hahn and Kuersteiner (2005) use the geometric mixing results
derived in this paper in a panel data logit model to show asymptotic properties of
their estimator. Other work on discrete-valued dependent variables is for example
Hamilton and Jorda (2002), who analyzed how the Federal Reserve determines the
level of the Federal Funds target, and the Autoregressive Conditional Multinomial
(ACM) model of Russell and Engle (1998). Furthermore, Ruud (1981) and Poirier
and Ruud (1988) have considered the probit model with correlated errors. Robin-
son (1982) considered the tobit model with correlated errors.
However, no formal stationarity properties for dynamic probit models are derived
in these papers, nor anywhere else in the literature as far as the authors are aware.
Other potential applications include finance models concerning the likelihood of
a financial transaction in a given time period as well as models concerning labor
market participation decisions in which the relative importance of wealth versus
welfare effects are studied.
The setup of this paper is as follows. In Section 2, the weak dependence proper-
ties of yn are analyzed. Section 3 of this paper will analyze the dynamic probit
procedure when lagged values of yn have been included among the regressors and
normality of un is assumed. In Section 4, we consider consistency of the smoothed
maximum score estimator of the dynamic time series binary choice model. The
smoothed maximum score estimator was first suggested in Horowitz (1992). Sec-
tion 5 establishes asymptotic normality of the smoothed maximum score estima-
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tor1.

2 Properties of the dynamic time series binary

choice model

A key aspect of the analysis below is to show that yn satisfies the appropriate
“fading memory” property when generated through a general dynamic binary
choice model with regressors and possibly correlated errors. For the analysis of
the smoothed maximum score estimator, this “fading memory” property that is
proven for yn needs to be strong enough to allow a proof of an equivalent of the
Hoeffding inequality, and in addition, it needs to allow for a proof of a central
limit theorem (CLT) for a function of yn and xn that depends on N in a situation
where no martingale difference CLT can be applied. For a proof of validity of the
dynamic probit model, the “fading memory” property only needs to support laws
of large numbers and uniform laws of large numbers.
The “fading memory” property that we will prove for yn is that of near epoch
dependence. The idea of the proof is similar to that of proofs for showing fading
memory properties of processes yn of the form

yn = f(yn−1) + εn, (5)

where f(.) is such that |f(x) − f(y)| ≤ L|x − y| for some L < 1. Functions
f(.) satisfying this condition are called contraction mappings. Such proofs can be
found in Bierens (1981) and Pötscher and Prucha (1997), for example. Pötscher
and Prucha (1997, Section 6.4) contains a thorough discussion of these types of
results, but the approach in the proof of this paper is different from the techniques
discussed there. The differences are that the f(.) function in the dynamic binary
choice case is not continuous, depends on εn, is not strictly less than 1, and de-
pends on more than one lagged value of yn. These problems are essentially solved
by smoothing the response function by the expectations operator, by using the
fact that yn is a binary random variable, and by the use of the appropriate metric
on the arguments of the f(.) function.
Near epoch dependence of random variables yn on a base process of random vari-
ables ηn is defined as follows:

Definition 1 Random variables yn are called near epoch dependent on ηn if

sup
n∈Z

E|yn − E(yn|ηn−m, ηn−m+1, . . . , ηn)|2 = ν(m)2 → 0 as m→∞. (6)

1In addition, some corrections to Horowitz’ proof of the validity of the smoothed maximum
score procedure are provided.
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The idea behind the near epoch dependence condition is that given the last m
error terms ηn, yn should be predictable up to arbirary accuracy. The base process
ηn needs to satisfy a condition such as strong or uniform mixing or independence.
For the definitions of strong (α-) and uniform (φ-) mixing see e.g. Gallant and
White (1988, p. 23) or Pötscher and Prucha (1997, p. 46). The near epoch
dependence condition functions as a device that allows approximation of yn by a
function of finitely many mixing or independent random variables ηn. An intuitive
explanation of the NED concept is that for large m, the conditional expectation
of yn given the last m elements of the base process ηn is close to yn.

Note also that for strictly stationary (yn, ηn), the “sup” in the above definition
can be removed, because in that case

E|yn − E(yn|ηn−m, ηn−m+1, . . . , ηn)|2 (7)

does not depend on n. The reader is referred to Gallant and White (1988) for a
detailed account of the near epoch dependence condition. See also Pötscher and
Prucha (1997) for a more up-to-date treatment of dependence concepts such as
near epoch dependence.
The main results of the paper are the conditions under which yn is stationary and
near epoch dependent (Theorem 1) and the conditions under which yn is strong
mixing (Theorem 2). Unlike the linear model autoregressive model, no restrictions
on the parameter space are needed for stationarity, near epoch dependence or
strong mixing.
For establishing near epoch dependence of yn, we have the following result. Define
S as the set of all 2p possible p -vectors s such that its elements si are 0 or 1, and
define

Φ = {φ : φ =

p∑
i=1

ρisi, s ∈ S}. (8)

Let φmin denote the smallest element of Φ, and let φmax denote the largest element.

Theorem 1 Consider the model yn = I(
∑p

j=1 ρjyn−j + ηn > 0). Let ηn be strong
mixing and strictly stationary. Assume that there is some δ > 0 and a positive
integer K such that

P (φmax + max
i=1,...,p

ηn−i > 0|ηn−p−K , ηn−p−K−1, . . .)

−P (φmin+ min
i=1,...,p

ηn−i > 0|ηn−p−K , ηn−p−K−1, . . .) < 1−δ almost surely.

(9)
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Then there exists a strictly stationary solution yn = f(ηn, ηn−1, . . .) to the model
that is near epoch dependent on ηn, and its near epoch dependence sequence ν(.) sat-
isfies ν(m) ≤ C1 exp(−C2m) for positive constants C1 and C2. Also, f(ηn, ηn−1, . . .)
is unique in the sense that if g(ηn, ηn−1, . . .) is also a strictly stationary solution
to the model, then f(ηn, ηn−1, . . .) = g(ηn, ηn−1, . . .) almost surely.

Note that if ηn = γ′xn + un for strong mixing and strictly stationary (x′n, un),
clearly ηn is mixing as well. This observation will be used below.

The formulation of the above theorem can be compared to what can be shown
for a simple AR(1) model yn = ρyn−1 + ηn. In that case,

∑∞
j=0 ρ

jηn−j + Cρn

will solve the model for any value of C, but the strictly stationary solution is
obtained for C = 0. In addition, for our model our uniqueness statement has to
rule out forward-looking solutions that are functions of ηn+1, ηn+2, . . ., which are
also possible.

The assumption of Equation (9) limits the predictability of yn given the distant
past. If ηn is M -dependent (i.e. ηn and ηn+M are independent for some value of
M), then the required condition is

P (φmax + max
i=1,...,p

ηn−i > 0)− P (φmin + min
i=1,...,p

ηn−i > 0) < 1− δ. (10)

This condition is implied by the assumption of full support on Rp for (ηn−1, . . . , ηn−p).
It also follows from the definition of uniform mixing that the assumption of Equa-
tion (10) suffices for the verification of the assumption of Equation (9) if ηn is
uniform mixing. Furthermore, if p = 1 and ηn is an invertible MA(∞) process, i.e.
ηn =

∑∞
i=0 biζn−i where bi is deterministic and the ζn−i are i.i.d., then we have

P (φmax + ηn−1 > 0|ηn−2, ηn−3, . . .)− P (φmin + ηn−1 > 0|ηn−2, ηn−3, . . .)

= P (φmax + b0ζn−1 >
∞∑
i=1

biζn−1−i|ζn−2, ζn−3, . . .)

−P (φmin + b0ζn−1 >

∞∑
i=1

biζn−i|ζn−2, ζn−3, . . .)

≤ sup
x∈R

|F ((φmax − x)/b0)− F ((φmin − x)/b0)|,

where F (·) denotes the distribution of ζn, and the latter expression is less than 1
if b0 6= 0, F (·) is strictly increasing, and φmax > φmin.

The proof of Theorem 1 is substantially easier for the case where ηn is i.i.d.,
only one lagged yn is used as regressor, and no other regressors are included. In
that case, we can write

yn = yn−1I(ρ1 + ηn > 0) + (1− yn−1)I(ηn > 0), (11)
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implying that

νm ≡ sup
n∈Z

E|yn − E(yn|ηn−m, . . . , ηn)|2

= sup
n∈Z

E|(I(ρ1 + ηn > 0)− I(ηn > 0))(yn−1 − E(yn−1|ηn−m, . . . , ηn−1)|2

= |P (ρ1 + ηn > 0)− P (ηn > 0)| sup
n∈Z

E|yn−1 −E(yn−1|η(n−1)−(m−1), . . . , ηn−1)|2

= |P (ρ1 + ηn > 0)− P (ηn > 0)|νm−1, (12)

which implies that the ν(m) sequence decays geometrically under the condition of
Equation (9). The proof of Theorem 1 should be viewed as an extension to the
above reasoning.
The fact that yn is a 0/1-valued near epoch dependent random variable can now
be exploited to show that (yn, x

′
n) is also strong mixing. Note that this is an

observation that apparently has not been made in the literature before. The result
is as follows:

Theorem 2 Suppose that yn = f(ηn, ηn−1, . . .) is a sequence of 0/1-valued random
variables that is near epoch dependent on (un, x

′
n) with near epoch dependence

coefficients ν(m), where ηn = γ′xn + un and (un, x
′
n)′ is strong mixing with mixing

coefficients α(m). Then (yn, x
′
n)′ is strong mixing with strong mixing coefficients

is an invertible linear MA(∞) process and p = 1, i.e. the case N(0, 1), we have
C(ν(m) + α(m)) for some C > 0.

The mixing property of (yn, x
′
n) will be used in the proofs for consistency and

asymptotic normality of the next sections.

3 The dynamic probit model

This section examines the behavior of the dynamic probit model estimator that
results from including lagged yn among the regressors. Let β = (ρ′, γ′)′ denote
the true parameter and let b = (r′, c′)′, ρ, r ∈ Rp and γ, c ∈ Rq, and let R and
Γ denote the parameter spaces for r and c respectively, and let B = R × Γ. We
assume normality of the errors so that the normalized loglikelihood conditional on
y1, ..., yp has the following form,

LN(b) = (N − p)−1

N∑
n=p+1

ln(b)

= (N−p)−1

N∑
n=p+1

[yn log(Φ(

p∑
j=1

rjyn−j+c
′xn))+(1−yn) log(1−Φ(

p∑
j=1

rjyn−j+c
′xn))]. (13)
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Given the result of Theorem 2, it is now straightforward to find standard conditions
under which the maximum likelihood estimator bML

N is consistent.

Assumption A

1. xn is a sequence of strictly stationary strong mixing random variables with α-
mixing numbers α(m), where xn ∈ Rq for q ≥ 0 and γ ∈ Rq, and the second
absolute moment of xn exits. The distribution of wn = (x′n, yn−1, . . . , yn−p)

′

is not contained in any linear subspace of Rq.

2. un|xn, yn−1, yn−2 . . . , yn−p ∼ iid N(0, 1).

3. yn = I(
∑p

i=1 ρiyn−i + γ′xn + un > 0).

4. β is an element of the interior of a convex set B.

The assumption that the distribution of wn is not contained in a linear subspace of
Rq is used in Manski (1975, 1985) and is equivalent to the assumption that Ewnw

′
n

has full rank.

Theorem 3 Under Assumption A, bML
N

p−→ β. If in addition (i) the strong mix-
ing coefficients satisfy α(m) ≤ Cm−η for positive constants C and η and (ii)
E|ln(b)|1+δ < ∞ for some δ > 0 and all b ∈ B, and (iii) B is compact, then
bML
N

as−→ β.

Let I = −E(∂/∂b)(∂/∂b′)ln(β). For asymptotic normality, we need an additional
assumption.

Assumption B

1. un|(xn, yn−1), (xn−1, yn−2) . . . ∼ iid N(0, 1).

Theorem 4 Under Assumptions A and B, N1/2(bML
N − β)

d−→ N(0, I−1).

Under the above Assumptions A and B, it also follows that the usual estimators
of I, using either the outer product or Hessian approach, will both be weakly
consistent for I.
Note that given the weak dependence property of Theorem 2, it is also possible to
set forth conditions such that for weakly dependent un with arbitrary distribution,

N1/2(bML
N − β∗)

d−→ N(0, J) for some matrix J and a β∗ that uniquely minimizes
the objective function. Here of course β∗ does not necessarily equal the true
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parameter value β. However, in order to show that the probit objective function
is uniquely maximized at β, we need that a first order condition of the type

E(yn − Φ(

p∑
i=1

ρiyn−i + γ′xn))m(yn−1, . . . , yn−p, xn) = 0 (14)

holds for some function m(., . . . , .). This condition is implied by

E(yn|yn−1, . . . , xn) = Φ(

p∑
i=1

ρiyn−i + γ′xn), (15)

and the latter condition is equivalent to assuming that un is i.i.d. and standard
normal if lagged values of yn are included.

4 Consistency of the smoothed maximum score

estimator

The smoothed maximum score estimator is defined as argmaxb∈BSN(b, σN), where

SN(b, σN) = (N − p)−1

N∑
n=p+1

(2 · I(yn = 1)− 1)K((

p∑
j=1

rjyn−j + c′xn)/σN) (16)

and σN is a bandwidth-type sequence such that σN → 0 as N → ∞, where K(.)
is a function such that K(−∞) = 0 and K(∞) = 1. This objective function is a
smoothed version of the maximum score objective function

S∗N(b) = (N − p)−1

N∑
n=p+1

(2 · I(yn = 1)− 1)I(

p∑
j=1

rjyn−j + c′xn ≥ 0). (17)

In addition, let S(b) = ES∗N(b). This notation is justified because we will use
conditions under which (yn, xn) will be proven to be strictly stationary. See Manski
(1985) and Kim and Pollard (1990) for more information and results regarding the
maximum score estimator.

Horowitz’ maximum score estimator can reach the optimal rate of convergence
(Horowitz (1992, 1993)). Kim and Pollard (1990) showed that the maximum score
estimator in general is consistent of order N−1/3, the optimal rate for that model.

The following five assumptions are needed for the proof of our consistency result:
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Assumption 1 (x′n, un)′ is a sequence of strictly stationary strong mixing random
variables with α-mixing numbers α(m), where xn ∈ Rq for q ≥ 1 and γ ∈ Rq, and

yn = I(

p∑
i=1

ρiyn−i + γ′xn + un > 0). (18)

The following assumption is simply the assumption of Equation (9) in Theorem 1
for ηn = γ′xn + un.

Assumption 2 For φmax and φmin as defined before, for some δ > 0 there exists
a positive integer K such that

P (φmax + max
i=1,...,p

(γ′xn−i + un−i) > 0|yn−p−K , yn−p−K−1, . . .)

−P (φmin + min
i=1,...,p

(γ′xn−i +un−i) > 0|yn−p−K , yn−p−K−1, . . .) < 1− δ. (19)

By Theorem 1 and the discussion following that theorem, (yn, xn)′ is strictly sta-
tionary under the above two assumptions. This justifies the formulation of the
assumptions below in their current forms2. Define xnj as the elements of xn, i.e.
x′n = (xn1, xn2, . . . , xnq)

′, and define x̃n = (yn−1, . . . , yn−p, xn2, . . . , xnq).

Assumption 3 The support of the distribution of (xn1, x̃
′
n)′ is not contained in

any proper linear subspace of Rp+q. (b) 0 < P (yn = 1|xn1, x̃n) < 1 almost surely.
(c) γ1 6= 0, and for almost every x̃n, the distribution of xn1 conditional on x̃n has
everywhere positive density with respect to Lebesgue measure.

Assumption 4 Median(un|xn, yn−1, . . . , yn−p) = 0 almost surely.

Assumption 4 allows for heteroskedasticity of arbitrary form, including heteroskedas-
ticity that depends on lagged values of yn. If all regressors are exogenous, Assump-
tion 4 allows for correlated errors, e.g. the errors could follow an ARMA process.

Assumption 5 |γ1| = 1, and β̃ = (ρ1, . . . , ρp, γ2, . . . , γq) is contained in a compact
subset B̃ of Rp+q−1.

We need some form of scale normalization; we set |b1| = 1 here, as in Horowitz
(1992). Therefore, the estimator bN is defined as

bN = argmaxb:|b1|=1SN(b, σN). (20)

The following result shows the consistency of bN :

Theorem 5 Under Assumptions 1,3,4,5 and 2, bN
p−→ β. If in addition the

strong mixing coefficients satisfy α(m) ≤ Cm−η for positive constants C and η,
then bN

as−→ β.

2Assumptions 1-5 imply the assumptions of Theorem 1
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5 Asymptotic normality of the smoothed maxi-

mum score estimator

Define, analogously to Horowitz (1992), b̃ = (r1, . . . , rp, c2, . . . , cq), and let

TN(b, σN) = ∂SN(b, σN)/∂b̃, (21)

QN(b, σN) = ∂2SN(b, σN)/∂b̃∂b̃′. (22)

Also, define

zn =

p∑
j=1

ρjyn−j + γ′xn, (23)

and let p(zn|x̃n) denote the density of zn given x̃n, let P (.) denote the distribution
of x̃n, let F (.|zn, x̃n) denote the cumulative distribution of un conditional on zn

and x̃n. For each positive integer i, define

F (i)(−z, x, x̃) = ∂iF (−z|z, x̃)/∂zi (24)

Let h denote a positive integer that satisfies the conditions of Assumptions 8, 9
and 10 below, and let

αA =

∫ ∞

−∞
vhK ′(v)dv (25)

αD =

∫ ∞

−∞
K ′(v)2dv. (26)

Also analogously to Horowitz (1992), define

A = −2αA

h∑
i=1

{[i!(h− i)!]−1E[F (i)(0, 0, x̃n)p(h−i)(0|x̃n)x̃n]}, (27)

D = αD · E[x̃nx̃
′
np(0|x̃n)], (28)

Q = 2 · E[x̃nx̃
′
nF

(1)(0|0, x̃n)p(0|x̃n)]. (29)

The following assumption is the analogue of Horowitz’ Assumption 5, which is the
assumption below for s = 4. It appears that Horowitz’ truncation argument is in
error (see also notes 2, 3, 4 and 5), but that his argument is correct for bounded
data. This explains the presence here of a condition that is stronger than that of
Horowitz.

Assumption 6 For all vectors ξ such that |ξ| = 1, E|ξ′x̃|s <∞ for some s > 4.
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We need to strengthen the fading memory conditions of Assumption 1 in order to
establish asymptotic normality:

Assumption 1’ (x′n, un) is a sequence of strictly stationary strong mixing random
variables with α-mixing numbers α(m) such that α(m) ≤ Cm−(2s−2)/(s−2)−η for
some η > 0, where xn ∈ Rq for q ≥ 1 and γ ∈ Rq, and

yn = I(

p∑
i=1

ρiyn−i + γ′xn + un > 0). (30)

The assumption below is needed in lieu of Horowitz’ Assumption 6.

Assumption 7 For some sequence mN ≥ 1,

σ
−3(p+q−1)
N σ−2

N N1/sα(mN) + σ
−2(p+q−1)/β
N N2/sα(mN)

+| log(NmN)|(N1−4/sσ4
Nm

−2
N )−1 → 0 as N →∞. (31)

For the case of independent (xn, un), α(m) = 0 for m ≥ 1, and we can set mN = 1
for that case. The condition of Assumption 7 then becomes

(log(N))(N1−4/sσ4
N)−1 → 0 as N →∞, (32)

implying that for bounded data, we can set s = ∞ and obtain Horowitz’ condition

(log(N))(Nσ4
N)−1 → 0 as N →∞. (33)

The following assumptions are identical to Horowitz’ Assumptions 7-11:

Assumption 8 (a) K(.) is twice differentiable everywhere, |K(.)| and K ′′(.) are
uniformly bounded, and each of the following integrals over (−∞,∞) is finite:∫

[K ′(v)]4dv,
∫

[K ′′(v)]2dv,
∫
|v2K ′′(v)|dv. (b) For some integer h ≥ 2 and each

integer i (1 ≤ i ≤ h),
∫
|viK ′(v)|dv <∞, and∫ ∞

−∞
viK ′(v)dv =

{
0 if i < h,
d (nonzero) if i=h.

(34)

(c) For any integer i between 0 and h, any η > 0, and any sequence {σN} con-
verging to 0,

lim
N→∞

σi−h
N

∫
|σNv|>η

|viK ′(v)|dv = 0 (35)

and

lim
N→∞

σN

∫
|σNv|>η

|K ′′(v)|dv = 0. (36)
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Assumption 9 For each integer i such that 1 ≤ i ≤ h−1, all z in a neighborhood
of 0, almost every x̃n, and some M < ∞, p(i)(zn|x̃n) exists and is a continuous
function of zn satisfying |p(i)(zn|x̃n)| < M . In addition, p(zn|x̃n) < M for all z
and almost every x̃.

Assumption 10 For each integer i such that 1 ≤ i ≤ h, all zn in a neighbor-
hood of 0, almost every x̃n, and some M < ∞, F (i)(−zn, zn, x̃n) exists and is a
continuous function of zn satisfying |F (i)(−zn, zn, x̃n)| < M .

Assumption 11 β̃ is an interior point of B̃.

Assumption 12 The matrix Q is negative definite.

In addition to the above equivalents to Horowitz’ assumptions, we will also need
the following two assumptions. The first assumption is needed to assure proper
behavior of covariance terms.

Assumption 13 The conditional joint density p(zn, zn−j|xn, xn−j) exists for all
j ≥ 1 and is continuous at (zn, zn−j) = (0, 0) for all j ≥ 1.

The next condition on K ′′(.) is needed to formally show a uniform law of large
numbers for the second derivative of the objective function.

Assumption 14 K ′′(.) satisfies, for some µ ∈ (0, 1] and L ∈ [0,∞) and all
x, y ∈ R,

|K ′′(x)−K ′′(y)| ≤ L|x− y|µ. (37)

To prove asymptotic normality, we need an inequality in the spirit of Hoeffding’s
inequality, but for weakly dependent random variables. We derive such an inequal-
ity in the Appendix as Lemma 10. The inequality of Lemma 10 also allows for
martingale difference sequences so that it covers both the random sample case of
Horowitz (1992) as well as the dynamic case.
Our asymptotic normality result now is the following. This result, of course, is
nearly identical to Horowitz’ in the non-dynamic cross-section case.

Theorem 6 Let Assumptions 1’ and Assumptions 3-14 hold for some h ≥ 2.
Then

1. If Nσ2h+1
N →∞ as N →∞, σ−h

N (b̃N − β̃)
p−→ −Q−1A.
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2. If Nσ2h+1
N has a finite limit λ as N →∞,

(NσN)1/2(b̃N − β̃)
d−→ N(−λ1/2Q−1A,Q−1DQ−1). (38)

In order to estimate the matrices A, D and Q, we need an additional result, the
analogue of Horowitz’ (1992) Theorem 3.

Theorem 7 Let bN be a consistent smoothed maximum score estimator based on
σN such that σN = O(n−1/(2h+1)). For b ∈ {−1, 1} × B̃, define

tn(b, σ) = (2 · I(yn = 1)− 1)(x̃n/σN)K ′((

p∑
j=1

rjyn−j + c′xn)/σ). (39)

Let σ∗N be such that σ∗N = O(N−δ/(2h+1)), where 0 < δ < 1. Then: (a) ÂN ≡
(σ∗N)−hTN(bN , σ

∗
N) converges in probability to A; (b) the matrix

D̂N ≡ σN(N − p)−1

N∑
n=p+1

tn(bN , σN)tn(bN , σN)′ (40)

converges in probability to D; (c) QN(bN , σN) converges in probability to Q.

6 Simulations

In this section, we conduct a limited Monte Carlo simulation experiment in order
to evaluate the performance of the maximum likelihood estimator and the smooth
maximum score estimator for the dynamic binary choice model. In order to achieve
an empirically relavant setup for conducting our simulations experiment we set our
parameters as the estimates that were obtained from a probit regression as sug-
gested in Kauppi and Saikkonen (2005). Kauppi and Saikkonen (2005) estimated
the dynamic binary choice model and then draw several conclusions and make sev-
eral predictions. We use the estimates to generate 2000 datasets and then study
the performance of the maximum likelihood estimator and the smooth maximum
score estimator. The dependent variable in Kauppi and Saikkonen (2005)’s setup
is a dummy that indicates whether the US economy was in recession during a par-
ticular quarter. The explanatory variables are a dummy that indicates whether a
recession occurred during the previous quarter, a dummy that indicates whether
a recession occurred in the quarter before that, and the slope of the yield curve.

14



The slope of the yield curve is approximated by the difference between the yield
of the ten year treasury bond and the yield of the three month treasury bill3.

The first model that we consider corresponds to Table 1, column 2 of Kauppi
and Saikkonen (2005) and assumes that the probability of a recession in the US
depends on the slope of the yield curve and on whether there was a recession in
the previous quarter. In particular,

P (yt = 1|yt−1, xt−1) = Φ(ρyt−1 + β1xt−1 + c),

where Φ(·) is the standardnormal distribution function, yt−1 denotes a dummy that
indicates whether there was a recession in the previous period, and xt−1 denotes
the slope of the yield curve in the previous period. Estimating this model yields

Probit Model Estimate Std.Error
ρ 2.899 0.663
β1 −0.496 0.253
c −1.256 0.343

We now take the above estimates as parameters for our data-generating process,
generate 2000 datasets, and estimate the parameters repeatedly. We find the
following:

Probit Model Mean estimate Bias RMSE
ρ 3.052 0.153 0.712
β1 −0.549 −0.053 0.178
c −1.309 −0.053 0.389

Also, the simulated recession probabilities closely matched the recession proba-
bilities that were estimated in the sample. For the smoothed maximum score
estimator, we find

SMSE Estimate Bias RMSE
ρ 2.887 −0.0123 0.719
c -1.235 0.020 0.513

We also calculated the median of the estimate, the median bias and the median

3The sample is 1981:01 - 2005:04 (100 time observations). The dummy variable for recessions
and expansions has been constructed using the official NBER dating of US recessions (1 for
periods of recession; 0 for periods of expansions). The variable yt denotes the dummy variable
constructed in this way; xt is the interest rate spread and is constructed as the difference between
the 10 year treasury bond yield and the 3 month treasury bill yield and averaged over three
months.
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absolute error.

Probit Model Median estimate Median bias Median absolute error
ρ 2.947 0.048 0.349
β1 −0.524 −0.028 0.092
c −1.280 −0.024 0.219

Similarly, for the smoothed maximum score estimator, we find4

SMSE Median estimate Median bias Median absolute error
ρ 2.860 −0.039 0.479
c -1.220 0.036 0.350

The second model that we consider corresponds to Table 2, column 3 of Kauppi
and Saikkonen (2005) and uses a lag of the yield curve; this specification assumes
that the yield curve can help predicting recessions 6 months ahead. The model
now is

P (yt = 1|yt−1, xt−2) = Φ (ρyt−1 + β1xt−2 + c) ,

where xt−2 denotes the slope of the yield curve in period t − 2. The parameter
estimates now are

Probit Model Estimate Std.Error
ρ 2.987 0.711
β1 −0.791 0.292
c −1.140 0.344

Again taking these values as the parameters for our data-generating process, we
generate 2000 datasets and find

Probit Model Mean estimate Bias RMSE
ρ 3.24 0.253 0.862
β1 −0.891 −0.100 0.273
c −1.218 −0.078 0.437

and

Probit Model Median estimate Median bias Median absolute error
ρ 3.097 0.110 0.438
β1 −0.850 −0.059 0.131
c −1.181 −0.041 0.250

4Note that the parameter vector is normalized such that |β1| = 1.
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For the smoothed maximum score estimator, we find

SMSE Estimate Bias RMSE
ρ 2.970 −0.017 0.723

and

SMSE Median estimate Median bias Median absolute error
ρ 2.960 −0.027 0.467

The simulations show that the estimators performs reasonably well in a re-
alistic setting. The standard errors are also reasonably close to the RMSE that
is derived using simulations. Given Theorem 1 and 2, one may have expected
that the performance of the estimators is reasonably close to the performance of
these estimators in an i.i.d. setting; after all, the data generating process has ex-
ponentially decreasing near epoch dependence sequence, which suggests that the
dependence properties of the process are not severe. The simulations support this
view.

7 Conclusions

This paper proves near epoch dependence and strong mixing for the dynamic
binary choice model with correlated errors. Using this result, it shows in a time
series setting the validity of the dynamic probit likelihood procedure when lags
of the dependent binary variable are used as regressors, and it establishes the
asymptotic validity of Horowitz’ (1992) smoothed maximum score estimation of
dynamic binary choice models with lags of the dependent variable as regressors.
For the semiparametric model, the latent error is allowed to be correlated. Unlike
the linear autoregressive model, no restrictions on the parameter space are needed
for the stationarity, near epoch dependence or strong mixing properties of the
data.
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Proof of Theorem 1:

The dynamic binary choice model of order p can be written as

yn = I(

p∑
i=1

ρiyn−i + ηn > 0) = g(yn−1, yn−2, . . . , yn−p, ηn).

This g(., . . . , .) satisfies, for all 0-1 valued y1, y2, . . . , yn−p and ỹ1, ỹ2, . . . , ỹn−p,

|g(y1, y2, . . . , yp, ηn)− g(ỹ1, ỹ2, . . . , ỹp, ηn)| ≤ L(ηn) max
j=1,...,p

|yj − ỹj|,

where

L(ηn) = sup
φ,φ′∈Φ

|I(φ+ ηn > 0)− I(φ′ + ηn > 0)|

and Φ was defined in Equation (8). The idea of the proof is to show that the
process yn can be approximated arbitrarily well by using a function of a finite
number of ηn - this is the content of the near epoch dependence concept. We
do this by using for our approximation ŷm

n the y that would have resulted if the
process had been started up using 0 values for the yn and ηn that occurred m
periods or longer ago. Formally, for all n define ŷm

n = 0 for m ≤ 0. Then for all
m ≥ 1 recursively define

ŷm
n = g(ŷm−1

n−1 , ŷ
m−2
n−2 , . . . , ŷ

m−p
n−p , ηn).

Note that by construction, ŷm
n = fm(ηn, ηn−1, . . . , ηn−m). Define maxj∈A cj = 0 if

A is empty. Next, note that by assumption there exists positive integer K and
δ > 0, such that for φmax and φmin as defined below Equation (8),

|E( max
j=1,...,p

L(ηn−j+1)|ηn−pK , ηn−pK−1, . . .)|

≤ |P (φmax + max
j=1,...,p

ηn−j+1 > 0|ηn−pK , ηn−pK−1, . . .)

−P (φmin + min
j=1,...,p

ηn−j+1 > 0|ηn−pK , ηn−pK−1, . . .)| < 1− δ

for some δ > 0. Then for the approximators ŷm
n we have, using 0 ≤ L(·) ≤ 1, for

any k ≥ 0,

max
j=1,...,p

|ŷm+k−j−1
n−j+1 − ŷm−j+1

n−j+1 |

= max(|g(ŷm+k−1
n−1 , ŷm+k−2

n−2 , . . . , ŷm+k−p
n−p , ηn)−g(ŷm−1

n−1 , ŷ
m−2
n−2 , . . . , ŷ

m−p
n−p , ηn)|, max

j=2,...,p
|ŷm+k−j+1

n−j+1 −ŷm−j+1
n−j+1 |)
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≤ max(L(ηn) max
j=1,...,p

|ŷm−j+k
n−j − ŷm−j

n−j |, max
j=2,...,p

|ŷm−j+1+k
n−j+1 − ŷm−j+1

n−j+1 |)

≤ max(L(ηn)|ŷm−p+k
n−p − ŷm−p

n−p |, max
j=2,...,p

|ŷm−j+1+k
n−j+1 − ŷm−j+1

n−j+1 |)

≤ max(L(ηn)|ŷm−p+k
n−p −ŷm−p

n−p |, L(ηn−1) max
j=1,...,p

|yn−j−1−ŷm−j−1
n−j−1 |, max

j=3,...,p
|yn−j+1−ŷm−j+1

n−j+1 |)

≤ max(L(ηn)|ŷm−p+k
n−p − ŷm−p

n−p |, L(ηn−1)|ŷm−p−1+k
n−p−1 − ŷm−p−1

n−p−1 |,

L(ηn−1)|ŷm−p+k
n−p − ŷm−p

n−p |, max
j=3,...,p

|ŷm−j+1+k
n−j+1 − ŷm−j+1

n−j+1 |)

≤ max
j=1,...,p

L(ηn−j+1) max
j=1,...,p

|ŷm−p−j+1+k
n−p−j+1 − ŷm−p−j+1

n−p−j+1 |,

and again using 0 ≤ L(·) ≤ 1, we also have by repeating this reasoning K times,
for all K ≥ 1,

an,m,k ≡ max
j=1,...,p

|ŷm+k−j+1
n−j+1 − ŷm−j+1

n−j+1 |

≤ max
j=1,...,p

L(ηn−j+1) max
j=1,...,p

|ŷm+k−pK−j+1
n−pK−j+1 − ŷm−pK−j+1

n−pK−j+1 | ≡ Lnan−pK,m−pK,k.

Therefore,

an,m,k ≤ LnLn−pKLn−2pK . . . Ln−[m/(pK)]pKan−[m/(pK)]pK,m−[m/(pK)]pK,k

≤ 2

[m/(pK)]∏
i=0

Ln−ipK a.s.

where [x] denotes the integer part of x. Next, note that by assumption there
exists positive integer K and δ > 0, such that for φmax and φmin as defined below
Equation (8),

|E( max
j=1,...,p

L(ηn−j+1)|ηn−pK , ηn−pK−1, . . .)|

= |P (φmax + max
j=1,...,p

ηn−j+1 > 0|ηn−pK , ηn−pK−1, . . .)

−P (φmin + min
j=1,...,p

ηn−j+1 > 0|yn−pK , yn−pK−1, . . .)| < 1− δ

for some δ > 0. Therefore, by successive conditioning it follows that

Emax
k≥0

|ŷm+k
n − ŷm

n |2 ≤ 2(1− δ)[m/(pK)].

By the Cauchy criterion it now follows that ŷm
n converges a.s. as m → ∞. Also,

limm→∞ ŷm
n satisfies

ψ(r, n) = E exp(i
h∑

j=1

rj lim
m→∞

ŷm
n−j) = lim

m→∞
E exp(i

h∑
j=1

rj ŷ
m
n−j)
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by the dominated convergence theorem. Because ŷm
n = fm(ηn, . . . , ηn−m) and by

the strict stationarity of ηn, it follows that E exp(i
∑h

j=1 rj ŷ
m
n−j) does not depend

on n, implying that limm→∞ ŷm
n is strictly stationary. A similar argument shows

that the pair (yn, xn) is strictly stationary. In addition,

E| lim
m→∞

ŷm
n − ŷm

n |2 ≤ E sup
k≥0

|ŷm+k
n − ŷm

n |2 ≤ 2(1− δ)[m/(pK)],

which shows the asserted property of the near epoch dependence numbers. Finally,
if g(ηn, ηn−1, . . .) would be an alternative solution to the model, then for any m > 0

E|g(ηn, ηn−1, . . .)− ŷm
t |2 ≤ 2(1− δ)[m/(pK)]

by the same argument as before, implying that f(., . . .) = g(., . . .) a.s.. �

Proof of Theorem 2:

Let Xa,b denote the σ-algebra generated by ((xa, ya), . . . , (xb, yb)). The definition
of the strong mixing coefficients is

sup
n∈Z

sup
F∈X−∞,t,G∈Xt+m,∞

{|P ((xn, yn) ∈ F, (xn+m, yn+m) ∈ G)−P ((xn, yn) ∈ F )P ((xn+m, yn+m) ∈ G)|},

see for example White (2001, page 47). Because yn is a 0/1-valued random vari-
able, there are only four possibilities for the possible values of the (yn, yn−m) pair.
Therefore,

P ((xn, yn) ∈ F, (xn+m, yn+m) ∈ G)

= E

1∑
i=0

1∑
j=0

I((xn, yn) ∈ F, (xn+m, yn+m) ∈ G)I(yn = i)I(yn+m = j)

= E

1∑
i=0

1∑
j=0

I((xn, i) ∈ F, (xn+m, j) ∈ G)I(yn = i)I(yn+m = j)

and

P ((xn, yn) ∈ F ) = EI((xn, yn) ∈ F )
1∑

i=0

I(yn = i),

implying that

|P ((xn, yn) ∈ F, (xn+m, yn+m) ∈ G)− P ((xn, yn) ∈ F )P ((xn+m, yn+m) ∈ G)|

22



≤
1∑

i=0

1∑
j=0

|EI((xn, i) ∈ F, (xn+m, j) ∈ G)I(yn = i)I(yn+m = j)

−EI((xn, i) ∈ F )I(yn = i)EI((xn+m, j) ∈ G)I(yn+m = j)|.

For the case yn = 1, yn+m = 1, we now have, defining Fn = σ(vn, vn−1, . . .) for
vn = (un, x

′
n)′,

|EI((xn, 1) ∈ F )ynI((xn+m, 1) ∈ G)yn+m−EI((xn, 1) ∈ F )ynEI((xn+m, 1) ∈ G)yn+m|

= |EI((xn, 1) ∈ F )yn[E(I((xn+m, 1) ∈ G)yn+m|Fn)−EI((xn+m, 1) ∈ G)yn+m]|

≤ E|E((I(xn+m, 1) ∈ G)yn+m|Fn)− E(I((xn+m, 1) ∈ G)yn+m)|,

and convergence to zero with m of the last expression constitutes the L1-mixingale
condition for I((xn, 1) ∈ G)yn with respect to Fn; see for example Pötscher and
Prucha (1997) for a definition on an L1-mixingale. Now I((xn, 1) ∈ G)yn is a
sequence that is bounded and near epoch dependent on vn, implying that it is an
L1-mixingale, which in turn implies that

E|E(I((xn, 1) ∈ G)yn|Fn−m)− E(I((xn, 1) ∈ G)yn)|

≤ C(ν(m) + α(m)).

The cases yn = 1, yn+m = 0; yn = 0, yn+m = 1; and yn = 0, yn−m = 0 are analo-
gous, which then proves the result. �

For the proof of Theorem 3, we need the following two lemmas. Let wn =
(yn−1, ..., yn−p, x

′
n)′.

Lemma 1 Under the conditions of Theorem 3, and B being compact, E supb∈B |ln(b)| <
∞.

Proof of Lemma 1:

Note that Ewnw
′
n exists by Assumption A1. Existence of Ewnw

′
n and the probit

specification imply the result. The reasoning is similar to the result for cross-
section probit, see Newey and McFadden (1994, page 2125, Example 1.2). �

Lemma 2 Under the conditions of Theorem 3, (i) Ewnw
′
n is positive definite and

(ii) Eln(b) is uniquely maximized at b = β.
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Proof of Lemma 2:

Note that Ewnw
′
n exists by Assumption A1. The assumptions of Theorem 1 are

satisfied so that (x′n, yn)′ is strongly stationary. The assumption that distribution
of wn is not contained in any linear subspace of Rp+q implies that Ewnw

′
n is

nonsingular so that Ewnw
′
n is positive definite. Let b 6= β so that E[(w′n(b−β))2] =

(b − β)′Ewnw
′
n(b − β) > 0, implying that w′n(b − β) 6= 0 on a set with positive

probability, implying that w′nb 6= w′nβ on a set with positive probability. Both
Φ(z) and Φ̄(z) = 1−Φ(z) are strictly monotonic, and therefore w′nb 6= w′nβ implies
that both Φ(w′nb) 6= Φ(w′nβ) and Φ̄(w′nb) 6= Φ̄(w′nβ). Thus, the density

p(yn|wn, b) = Φ(w′nb)
ynΦ̄(w′nb)

1−yn 6= p(yn|wn, β)

on a set with positive probability. Note that Eln(b) is concave so that it is uniquely
minimized at b = β.

�

Proof of Theorem 3:

For convergence in probability, we check the conditions of Theorem 2.7 of Newey
and McFadden (1994). The objective function Ln(b) is concave. The stationar-
ity and strong mixing assumptions imply ergodicity, see White (2001, theorem

3.44). This implies pointwise convergence, Ln(b)
p−→ Eln(b) for all b. Lemma

1 proves that Eln(b) is uniquely maximized at β. Therefore, all conditions of
Theorem 2.7 of Newey and McFadden (1994) are satisfied and consistency fol-
lows. For almost sure convergence, note that it is easily seen from Lemma 1 and
Lemma 2 that all the conditions of Theorem A1 of Wooldridge (1994) are satis-
fied, except for the condition of uniform convergence in probability of LN(b). Note
that Wooldridge’s Theorem A1 can be extended to include a strong convergence
result if instead of uniform convergence in probability of LN(b), uniform almost
sure convergence LN(b) is assumed. To show this uniform convergence, we use
the generic uniform law of large numbers of Andrews (1987). To show strong
uniform law of large numbers, this theorem requires compactness of the param-
eter space, and in addition it needs to be verified that the summands qn(wn, b)
are such that qn(wn, b), q

∗
n(wn, b) = sup{qn(wn, b̃) : b̃ ∈ B, |b̃ − b| < ρ} and

qn∗(wn, b) = inf{qn(wn, b̃) : b ∈ B, |b̃ − b| < ρ} are well-defined and satisfy a
strong law of large numbers, and that for all b ∈ B,

lim
ρ→0

sup
n∈Z

|N−1

N∑
n=1

Eq∗n(wn, b)− Eq∗n(wn, b)| = 0.
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The latter condition follows from stationarity of (yn, xn), continuity, and the enve-
lope condition of Assumption A. In addition, qn(wn, b), q

∗
n(wn, b) and qn∗(wn, b) are

well-defined and strong mixing random variables, so that we can apply the strong
law of large numbers of Theorem 4 of de Jong (1995), from which it follows that
if α(m) + ν(m) ≤ Cm−η for some positive constants C and η, these variables will
satisfy a strong law of large numbers. This is because under the condition that
E|ln(b)|1+δ <∞, the summands will be an L1+δ/2-mixingale. �

Lemma 3 Under the conditions of Theorem 4,

(N − p)1/2(∂LN(b)/∂b)|b=β
d−→ N(0, I).

Proof:

Note that by assumption, E((∂Ln(b)/∂b)|b=β|wn) = 0 so that E(∂Ln(b)/∂b)|b=β =
0. Moreover, (∂Ln(b)/∂b)|b=β is a martingale difference sequence that is strong
mixing and strictly stationary. In particular, the version of Bierens (2004, Theo-
rem 7.11) of a central limit theorem of McLeish (1974) yields asymptotic normality.
Applying the information matrix equality yields the result. �

Proof of Theorem 4:

We prove Theorem 4 by checking the conditions of Newey and McFadden (1994,
theorem 3.1). Consistency was shown in Theorem 3. Condition (i) was assumed.
Condition (ii), twice differentiability of the log likelihood, follows from the pro-
bit specification. Condition (iii) was shown in Lemma 3. Note that stationarity
and strong mixing imply ergodicity, see White (2001, theorem 3.44). Condition
(iv) then follows from the probit specification and reasoning similar to Newey and
McFadden, page 2147, example 1.2. Nonsingularity follows from the probit speci-
fication and Ewnw

′
n being positive definite so that condition (iv) is satisfied. �

For the proof of Theorem 5, we need the following lemmas.
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Lemma 4 For all a ∈ R, if 0 ≤ zn ≤ 1 and (zn, xn) is strictly stationary and
strong mixing, then

sup
b∈B

|N−1

N∑
n=1

(znI(b
′xn ≤ a)− EznI(b

′xn ≤ a))| p−→ 0.

In addition, if α(m) ≤ Cm−η for positive constants C and η, the convergence is
almost surely.

Proof of Lemma 4:

We will apply the generic uniform law of large numbers of the Theorem of An-
drews (1987). It requires compactness of the parameter space B (which is as-
sumed), and in addition it needs to be verified that the summands qn(wn, b)
are such that qn(wn, b), q

∗
n(wn, b) = sup{qn(wn, b̃) : b̃ ∈ B, |b̃ − b| < ρ} and

qn∗(wn, b) = inf{qn(wn, b̃) : b ∈ B, |b̃ − b| < ρ} are well-defined and satisfy a
(respectively weak or strong) law of large numbers, and for all b ∈ B,

lim
ρ→0

sup
n∈Z

|N−1

N∑
n=1

Eq∗n(wn, b)− Eq∗n(wn, b)| = 0.

To show the last result, note that (zn, xn) is strictly stationary under the conditions
of the theorem, and therefore

lim
ρ→0

sup
n∈Z

|N−1

N∑
n=1

Eq∗n(wn, b)− Eq∗n(wn, b)|

= lim
ρ→0

sup
n∈Z

|EznI( sup
b̃:|b−b̃|<ρ

b′xn < a)− EznI( inf
b̃:|b−b̃|<ρ

b′xn < a)|

≤ lim sup
K→∞

lim
ρ→0

sup
n∈Z

|Ezn(I(b′xn < a+ ρ|xn|)− I(b′xn < a− ρ|xn|))I(|xn| ≤ K)

+ lim sup
K→∞

lim
ρ→0

sup
n∈Z

|Ezn(I(b′xn < a+ρ|xn|)−I(b′xn < a−ρ|xn|))I(|xn| > K))|

≤ lim sup
K→∞

lim
ρ→0

|P (b′xn < a+ρK)−P (b′xn < a−ρK)|+lim sup
K→∞

P (|xn| > K) = 0,

because x1n has a continuous distribution. Furthermore, note that qn(zn, b),

q∗n(wn, b) = znI( sup
b̃:|b−b̃|<ρ

b′xn < a)

and

q∗n(wn, b) = znI( inf
b̃:|b−b̃|<ρ

b′xn < a)
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are well-defined and strong mixing random variables, implying that weak law of
large numbers for mixingales of Andrews (1988) applies; or alternatively we can
apply the strong law of large numbers of Theorem 4 of de Jong (1995), from which
it follows that if α(m) + ν(m) ≤ Cm−η for some positive constants C and η, these
variables will satisfy a strong law of large numbers (note that because of bound-
edness of the summands, the summands are L2-mixingales). �

Lemma 5 Under Assumptions 1,3, 4, 5 and 2,

sup
b∈B

|SN(b, σN)− ESN(b, σN)| p−→ 0.

In addition, if α(m) ≤ Cm−η for positive constants C and η, the convergence is
almost surely.

Proof of Lemma 5:

First note that Horowitz’ proof of his Lemma 4 (i.e. supb∈B |SN(b, σN)−S∗N(b)| as−→
0 ) goes through as it stands, except for the proof of uniform convergence of the
term in his Equation (A4), which uses a uniform law of large numbers for i.i.d.
random variables. To show that

sup
b∈B

|N−1

N∑
n=1

(I(|
p∑

j=1

rjyn−j + c′xn| < α)− EI(|
p∑

j=1

rjyn−j + c′xn| < α))|

satisfies a strong or weak law of large numbers, we can use Lemma 4. To do so,
note that

N−1

N∑
n=1

I(|
p∑

j=1

rjyn−j + c′xn| < α)

=
1∑

j1=0

. . .
1∑

jp=0

N−1

N∑
n=1

I(yn−1 = j1) . . . I(yn−p = jp)I(|
p∑

i=1

riji + c′xn| < α)

and note that I(yn−1 = j1) . . . I(yn−p = jp) is strong mixing, because it is the
product of strong mixing random variables. It now only remains to be proven that

sup
b∈B

|S∗N(b)− S(b)| p−→ 0 or
as−→ 0,
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which Horowitz shows by referring to Manski (1985). This can be shown by noting
that

S∗N(b) = N−1

N∑
n=1

(2 · I(yn = 1)− 1)I(b′xn ≥ 0)

= 2N−1

N∑
n=1

ynI(b
′xn ≥ 0)−N−1

N∑
n=1

I(b′xn ≥ 0),

and by Lemma 4, both terms satisfy a (weak or strong) uniform law of large num-
bers. �

Lemma 6 Under Assumptions 1,3, 4 and 5, S(b) ≤ S(β) with equality holding
only if b = β.

Proof of Lemma 6:

This result follows by noting that all conditions from Lemma 3 of Manski (1985)
are satisfied. �

Proof of Theorem 5 :

The proof of the theorem now follows from Theorem A1 of Wooldridge (1994) and
the results of Lemma 5 and Lemma 6. �

Let zn =
∑p

j=1 ρjyn−j + γ′xn. The following lemma shows that Horowitz’ Lemma
5 holds as it stands in our setting:

Lemma 7 Under Assumptions 1’ and Assumptions 3-14,

lim
N→∞

E[σ−h
N TN(β, σN)] = A;

lim
N→∞

Var[(NσN)1/2TN(β, σN)] = D.
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Proof of Lemma 7:

The only adjustment to Horowitz’ Lemma 5 that needs to be made is to show that
the covariance terms in Var[(NσN)1/2TN(β, σN)] are asymptotically negligible. To
prove this, we show that for all vectors ξ such that |ξ| = 1,

lim
N→∞

σN

∞∑
m=1

|cov(ξ′(x̃n/σN)K ′(zn/σN), ξ′(x̃n−m/σN)K ′(zn−m/σN))| = 0.

By the covariance inequality for mixingales, for the same s as in Assumption 6,
(see Davidson (1994, p. 212, Corollary 14.3)),

σNcov(ξ′(x̃n/σN)K ′(zn/σN), ξ′(x̃n−m/σN)K ′(zn−m/σN))

≤ σNCα(m)1−2/s(E|ξ′(x̃n/σN)K ′(zn/σN)|s)1/s(E|ξ′(x̃n−m/σN)K ′(zn−m/σN)|s)1/s

= σ−1
N Cα(m)1−2/s(

∫
|ξ′x̃|s|K ′(z/σN)|sp(z|x̃)dzdP (x̃))2/s

= Cα(m)1−2/sσ
2/s−1
N (

∫
|ξ′x̃|s|K ′(ζ)|sp(σNζ|x̃)dζdP (x̃))2/s

by substituting ζ = z/σN . The last term is smaller than C ′σ
2/s−1
N α(m)1−2/s for

some constant C ′. In view of the fact that summing the latter expression over m
will give a term that diverges as N →∞, we also need to use a second bound. To
obtain this second bound, note that by Horowitz’ arguments, under the conditions
of the theorem,

σNEξ
′(x̃n−m/σN)K ′(zn−m/σN) = O(σN),

implying that

σNcov(ξ′(x̃n/σN)K ′(zn/σN), ξ′(x̃n−m/σN)K ′(zn−m/σN))

= O(σN) + σNE(σNξ
′(x̃n/σN)K ′(zn/σN)ξ′(x̃n−m/σN)K ′(zn−m/σN))

= O(σN) + σ−1
N

∫
ξ′x̃nK

′(zn/σN)ξ′x̃n−mK
′(zn−m/σN)dP (xn, xn−m, zn, zn−m)

= O(σN)+σ−1
N

∫
ξ′x̃nK

′(zn/σN)ξ′x̃n−mK
′(zn−m/σN)dp(zn, zn−m|xn, xn−m)dzndzn−mdP (xn, xn−m)

= O(σN)+σN

∫ ∫
K ′(ζn)K ′(ζn−m)p(σNζn, σNζn−m|xn, xn−m)dζndζn−mξ

′x̃n−mξ
′x̃ndP (xn, xn−m)

= O(σN)
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under the assumptions of the theorem. Therefore for any κ ∈ (0, 1),

∞∑
m=1

|cov(ξ′(x̃n/σN)K ′(zn/σN), ξ′(x̃n−m/σN)K ′(zn−m/σN))|

≤ C
∞∑

m=1

(σN)κ(α(m)(1−2/s)σ
2/s−1
N )1−κ,

and by choosing κ = (s − 2)/(2s − 2) + η and η > 0 small enough, the last term
can be bounded by

C(
∞∑

m=1

α(m)(s−2)/(2s−2)−η(s−2)/s)σ
(2s−2)η/s
N = O(σ

(2s−2)η/s
N ) = o(1),

where the finiteness of the summation follows from the assumptions. �

Horowitz’ Lemma 6 now holds as follows:

Lemma 8 Under Assumptions 1’ and Assumptions 3-14, (a) If Nσ2h+1
N →∞ as

N → ∞, σ−h
N TN(β, σN)

p−→ A. (b) If Nσ2h+1
N has a finite limit λ as N → ∞,

(NσN)1/2TN(β, σN)
d−→ N(λ1/2A,D).

Proof of Lemma 8:

The modification of Horowitz (1992) that is needed is to show that for all vectors
ξ such that |ξ| = 1,

(σN/N)1/2ξ′
N∑

n=1

(tNn − EtNn)
d−→ N(0, ξ′Dξ),

where

tNn = (2yn − 1)(x̃n/σN)K ′(zn/σN).

Since tNn is strong mixing, Theorem 2 of de Jong (1997) for strong mixing arrays
can now be applied to show this result under the conditions of the lemma. Note
that the condition α(m) ≤ Cm−s/(s−2)−η from that theorem follows from the as-
sumptions of the lemma. �

For reproving Horowitz’ Lemma 7 for the case of strong mixing data, we need the
following lemmas:
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Lemma 9 (Azuma(1967)) If ηn is a martingale difference sequence with respect
to
Fn and |ηn| ≤ CN , then

P (|N−1

N∑
n=1

ηn| > δ) ≤ 2 exp(−Nδ2/C2
N).

Proof of Lemma 9:

See Azuma (1967). �

An mN -fold application of the above lemma now gives the following result:

Lemma 10 If Fn is a sequence of sigma-fields such that ηn − E(ηn|Fn−1) is a
martingale difference sequence with respect to Fn and |ηn| ≤ CN , then for any
integer-valued sequence mN such that mN ≥ 1,

P (|N−1

N∑
n=1

(ηn − E(ηn|Fn−mN
))| > δ) ≤ 2mN exp(−δ2/(m2

NC
2
N)).

Proof of Lemma 10:

Obviously

N−1

N∑
n=1

(ηn − E(ηn|Fn−mN
)) =

mN−1∑
j=0

N−1

N∑
n=1

(E(ηn|Fn−j)− E(ηn|Fn−j−1)),

and therefore

P (|N−1

N∑
n=1

(ηn − E(ηn|Fn−mN
))| > δ)

≤
mN−1∑
j=0

P (|N−1

N∑
n=1

(E(ηn|Fn−j)− E(ηn|Fn−j−1))| > δ/mN)

≤ 2mN exp(−δ2/(m2
NC

2
N))
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by mN applications of Lemma 9. �

Analogously to Horowitz (1992), define

gNn(θ) = (2 · I(yn = 1)− 1)x̃nK
′(zn/σN + θ′x̃n)

The following result is now the analogue5 of Horowitz’ Lemma 7.

Lemma 11 If (yn, xn) is strong mixing with strong mixing sequence α(m), and
there exists a sequence mN ≥ 1 such that

σ
−3(p+q−1)
N σ−2

N N1/sα(mN) + (log(NmN))(N1−2/sσ4
Nm

−2
N )−1 → 0,

then

sup
θ∈ΘN

|(Nσ2
N)−1

N∑
n=1

(gNn(θ)− EgNn(θ))| p−→ 0.

Note that the second part of Horowitz’ Lemma 7 will hold without modification.
Also note that the case of i.i.d. (yn, xn) is a special case, because then α(m) = 0
for m ≥ 1, and we could set mN = 1 for that case.

Proof of Lemma 11:

Consider

gCN
Nn(θ) = (2 · I(yn = 1)− 1)x̃nK

′(zn/σN + θ′x̃n)I(|x̃n| ≤ CN)

and note that obviously,

gNn(θ)− EgNn(θ) = (gCN
Nn(θ)− EgCN

Nn(θ))

+(gNn(θ)− gCN
Nn(θ)− EgNn(θ) + EgCN

Nn(θ)). (41)

5Note that Horowitz’ Lemma 7 only holds for bounded regressors, and that the truncation
argument at the start of Lemma 8 appears to be in error. Horowitz does not explicitly consider
the remainder statistic containing the summation elements for which |x̃n| exceeds a. Horowitz’
Lemma 9 appears to have a similar problem in its proof. Therefore, Lemma 11 also serves to
correct this aspect of Horowitz’ proof. This is because the conditioning on the event Cγ does not
appear relevant; while Horowitz’ x̃ stands for a random variable distributed identically to any
x̃n, the conditioning should be with respect to every x̃n, n = 1, . . . , N , in order for this argument
to work. However, unless x̃n is almost surely bounded, such a conditioning set Cγ would depend
on N , and will not have the desired property that lim supγ→∞ lim supN→∞ P (Cγ) = 0.
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Now define CN = η−1/sN1/s(E|x̃n|s)1/s for any η > 0. Then because CN → ∞ as
N →∞, following the reasoning as in the proof of (A16) of Horowitz (1992, page
525-526), it follows that

sup
θ∈Θ

|EgNn(θ)− EgCN
Nn(θ)| → 0. (42)

In addition,

P (sup
θ∈Θ

|
N∑

n=1

(gNn(θ)−gCN
Nn(θ))| = 0) ≤ P (∃n : |x̃n| > CN) ≤ NE|x̃n|sC−s

N ≤ η, (43)

and we can choose η arbitrarily small. For the case s = ∞, it is trivial that these
two terms disappear asymptotically for some constant CN not depending on N .
To deal with the first part of Equation (41), note that

gNn(θ)−EgNn(θ) = (gNn(θ)−E(gNn(θ)|Fn−mN
))+(E(gNn(θ)|Fn−mN

)−EgNn(θ)). (44)

To deal with the first part of the right-hand side of Equation (44), we can copy
the argument on page 525 of Horowitz (1992), except that now, by Lemma 10,

ΓN∑
i=1

P ((Nσ2
N)−1|

N∑
n=1

(gNn(θNi)− EgNn(θNi))| > ε/2)

≤ 2ΓNmN exp(−ε24−1Nσ4
NC

−2
N m−2

N ).

where ΓN is as defined in Horowitz (1992). Since ΓN = O(σ
−3(p+q−1)
N ), this term

will converge to zero if

(log(NmN))(Nσ4
NC

−2
N m−2

N )−1 → 0, (45)

which is assumed. For dealing with the second part of the right-hand side of
Equation (44), note since gNn(θ) is strong mixing, it is also an L1-mixingale (see
for example Davidson (1994, p. 249, Example 16.3), implying that

E|E(gCN
Nn(θ)|Fn−mN

)− EgCN
Nn(θ)| ≤ 6CNα(mN).

Using Horowitz’ reasoning of page 525, it now suffices to show that for all ε > 0,

ΓN∑
i=1

P ((Nσ2
N)−1|

N∑
n=1

E(gCN
Nn(θNi)|Fn−mN

)− EgCN
Nn(θNi)| > ε) → 0.

By the Markov inequality,

ΓN∑
i=1

P ((Nσ2
N)−1|

N∑
n=1

E(gCN
Nn(θNi)|Fn−mN

)− EgCN
Nn(θNi)| > ε)
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≤
ΓN∑
i=1

ε−1σ−2
N N−1

N∑
n=1

E|E(gCN
Nn(θ)|Fn−mN

)− EgCN
Nn(θ)|

= O(σ
−3(p+q−1)
N σ−2

N CNα(mN)) = o(1)

by assumption. �

Lemma 12 Under Assumptions 1’ and Assumptions 3-14, (b̃N − β̃)/σN
p−→ 0.

Proof of Lemma 12:

This follows from Lemma 11 and the reasoning6 of Horowitz’ (1992) Lemma 8. �

The following lemma corresponds7 to Horowitz’ Lemma 9.

Lemma 13 Let {βN} = {βN1, β̃N} be such that (βN − β)/σN
p−→ 0 as N → ∞.

Then under Assumptions 1’ and Assumptions 3-14,

QN(βN , σN)
p−→ Q.

Proof of Lemma 13:

Remember that

QN(βN , σN) = [σ−2
N N−1

N∑
n=1

(2yn − 1)x̃nx̃
′
nK

′′((

p∑
j=1

rjyn−j + c′xn)/σN)]b=βN
.

Since P (b1 = β1) → 1 and by the assumption that (βN −β)/σN
p−→ 0 as N →∞,

it suffices to show that for all η > 0 and any vector ξ such that |ξ| = 1,

sup
|θ̃|≤η

|N−1

N∑
n=1

rnN(θ̃)−ErnN(θ̃)| ≡ sup
|θ̃|≤η

|σ−2
N N−1

N∑
n=1

(2yn−1)(ξ′x̃n)2K ′′(zn/σN+θ̃′x̃n)

6See footnote 2.
7We discuss Horowitz’ conditioning on XN in footnote 5. Note that when Horowitz uses his

Lemma 8 in the proof of his Theorem 2, a uniform law of large numbers appears to be needed
rather than the result of his Lemma 8.

34



−E(2yn − 1)(ξ′x̃n)2K ′′(zn/σN + θ̃′x̃n)| p−→ 0. (46)

Note that Horowitz (1992) shows the continuity of ErnN(θ̃) in θ̃ uniformly in N .
To show the result of Equation (46), note that

P (sup
|θ̃|≤η

|N−1

N∑
n=1

rnN(θ̃)I(|rnN(θ̃)| > CN)| = 0)

≤
N∑

n=1

P ((ξ′x̃n)2 > CN) ≤ NE|ξ′x̃n|sC−s/2
N

and the last term can be made smaller than ε by choosing C
−s/2
N = N−1ε(E|ξ′x̃n|s)−1.

In addition, it is easily verified that

sup
|θ̃|≤η

|N−1

N∑
n=1

E(rnN(θ̃)I(|rnN(θ̃)| > CN))| → 0.

Because of these two results, it suffices to show uniform convergence to zero in
probability of

RN(θ̃) = N−1

N∑
n=1

(rnN(θ̃)I(|rnN(θ̃)| ≤ CN)− ErnN(θ̃)I(|rnN(θ̃)| ≤ CN)

+CNI(|rnN(θ̃)| > CN)− ECNI(|rnN(θ̃)| > CN)).

Now note that since θ̃ ∈ Rp+q−1, we can cover the parameter space {θ̃ : |θ̃| ≤ η}
with O(σ

−2(p+q−1)/µ
N ) balls of size σ

2/µ
N and with centers θ̃j. Now note that, by

Assumption 14,

sup
N≥1

E sup
|θ̃−θ̃′|<δσ

2/µ
N

|RN(θ̃)−RN(θ̃′)|

≤ sup
N≥1

E(ξ′x̃n)2L sup
|θ̃−θ̃′|<δσ

2/µ
N

|θ̃ − θ̃′|µσ−2
N → 0 δ → 0.

Using Lemma 11 and following the same reasoning as in the proof of that lemma,
we can now argue

lim sup
n→∞

P (sup
|θ̃|≤η

|RN(θ̃)− ERN(θ̃)| > ε)

≤ lim sup
n→∞

P (max
j
|RN(θ̃j)− ERN(θ̃j)| > ε/2)
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≤ lim sup
n→∞

∑
j

P (|RN(θ̃j)− ERN(θ̃j)| > ε/2)

= O(σ
−2(p+q−1)/µ
N [2mN exp(−Nε2/(4σ4

NC
2
Nm

2
N)) + ε−1CNα(mN)])

and because CN = O(N2/s), the last term converges to 0 if

σ
−2(p+q−1)/µ
N N2/sα(mN) + (m−2

N σ−4
N N1−4/s)−1 log(NmN) → 0,

which is assumed. �

Proof of Theorem 6:

This proof is identical to the proof of Horowitz’ Theorem 2, where we need to use
our Lemma 12 and Lemma 13 instead of Horowitz’ Lemma 8 and Lemma 9. �
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Proof of Theorem 7:

Part (a) now follows exactly8 as in Horowitz’ proof of his Theorem 3, where our
Lemma 12 and Lemma 13 replace Horowitz’ Lemma 8 and Lemma 9. Part (c)
follows from Lemma 13.

�

8To show part (b), one can use a uniform law of large numbers result of the type

sup
|θ̃|≤η

|σ−1
N N−1

N∑
n=1

(ξ′x̃n)2K ′(zn/σN + θ̃′x̃n)− E((ξ′x̃n)2K ′(zn/σN + θ̃′x̃n)| p−→ 0

for all ξ such that |ξ| = 1. Under the conditions of our theorem, this result can be proven
analogously to the proof of Lemma 13, using the same CN and ball size sequences. Note that
K ′(.) is Lipschitz-continuous with µ = 1, since K ′′(.) is assumed to exist and to be uniformly
bounded.

37


