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Abstract

We develop a new estimation methodology for a dynamic optimization model with

unobserved shocks. We propose a pairwise-difference approach which exploits two com-

mon features of the dynamic optimization problem we consider: (1) the monotonicity

of the agent’s decision (policy) function in the shocks, conditional on the observed state

variables; and (2) the state-contingent nature of optimal decision-making which im-

plies that, conditional on the observed state variables, the variation in observed choices

across agents must be due to randomness in the shocks across agents. We illustrate

our procedure by estimating a dynamic trading model for the milk production quota

market in Ontario, Canada.
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1 Introduction

In this paper, we propose a new estimation methodology for a dynamic optimization model

with preference and/or payoff shocks which are unobserved to the econometrician (but

observed by agents when they make their dynamic choices). The two-step estimator we

propose relies on two common features of the dynamic optimization problem we consider.

First, we exploit the monotonicity of the agent’s decision (policy) function in the unobserved

shocks, conditional on the observed state variables. Second, we exploit the state-contingent

nature of optimal decision-making which implies that, conditional on the observed state

variables, the variation in observed choices across agents must be due to randomness in the

shocks across agents.

The two-step pairwise-difference estimator we propose represents a new approach to esti-

mating continuous-discrete choice dynamic models. To our knowledge, our approach rep-

resents the first application of pairwise-differencing methods, which have primarily been

used in static cross-sectional contexts (cf. Honore and Powell (1994)), to structural dy-

namic optimization problems. It complements the existing literature on identification and

estimation in discrete-choice dynamic optimization models (cf. Pakes and Simpson (1989),

Hotz and Miller (1993), Taber (2000), Magnac and Thesmar (2002), Aguirregabiria (2005)).

Our approach is related to some recent work which exploits monotonicity assumptions to

identify and estimate structural equations. Earlier, Olley and Pakes (1996) exploited such

an assumption in order to invert out the unobserved shock to derive a semiparametric es-

timator for production functions with serially correlated unobservables. Matzkin (2003)

exploited the quantile invariance implication of monotonicity to estimate nonparametri-

cally functions which are nonlinear in the error term. Bajari and Benkard (2005) also used

this principle in their study of hedonic discrete choice models of demand for differentiated

products.

One advantage of our approach over alternative methods for estimating continuous choice

dynamic optimization models, such as Euler Equation-based methods, is in accommodating

shocks which are observed by agents at the time they make their decisions, but unobserved

to the econometrician.1 Our approach also accommodates dynamic optimization models

1Conventional Euler Equation-based estimation methods generally have difficulties accommodating un-
observed shocks because the estimating moment conditions are derived from the rational expectations impli-
cation that deviations between predicted and observed actions are orthogonal to any information available
at time t, which includes all state variables which affect an agent’s period t choice. Therefore, to form the
sample analogs of these orthogonality conditions, the econometrician needs to know the value of all the state
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in which agents’ choices are both continuous and discrete, for which conventional Euler-

Equation methods are either not applicable or difficult.

The model considered in this paper can be applied to any investment or consumption prob-

lem where the accumulation equation of the asset variable is deterministic and does not con-

tain unobserved variables. The applications include the management of production quotas

(which is the empirical illustration presented later in this paper), hiring/firing of employees

by firms, and household consumption-savings problems. It does exclude cases where the

asset variable is stochastic (such as human capital investment) or consumption/investment

cases when all variables in the asset accumulation equation are not observed.

This paper is also related to a recent literature on the identification and estimation of dy-

namic game models (e.g., Magnac and Thesmar (2002), Pesendorfer and Schmidt-Dengler

(2003), Aguirregabiria and Mira (2007), Berry, Ostrovsky, and Pakes (2004), Bajari, Benkard, and Levin

(2007)). While we do not focus on dynamic games here, one contribution that we make

is the consideration of situations where agents have both continuous action spaces and

continuous state spaces.

The plan of the paper is as follows. In the next section, we present a single-agent dynamic

optimization problem and state our model assumptions. We describe our two-step estima-

tion approach in Section 3. In Section 4, we illustrate our methodology by estimating a

dynamic model of trading behavior in monthly exchanges operated by provincial regulatory

agencies in Ontario, Canada to allocate milk production quotas across milk farmers. We

conclude in section 5.

2 Empirical framework

Consider the following dynamic optimization problem of an agent i:

max
{qit}t

E

[

∞
∑

t=0

βtU (xit, sit, qit; θ) | {qit}t

]

(1)

subject to the Markov transition probabilities for the state variables

F (xi,t+1, si,t+1|xit, sit, qit). (2)

variables (including the shocks) at times t and t + 1. See Pakes (1994) (pp. 188–189) for a more thorough
discussion.
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In this problem, xit and sit are the two state variables, with the distinction that xit is

observed by the econometrician, but sit is not. qit denotes the agent’s choice variable. An

example of such a model is an investment model where xit can be interpreted as a stock and

the control qit as investment, or incremental additions to the stock which can be purchased

at some fixed price. sit would be a time-varying idiosyncratic shock which affects agent

i’s period-t investment decisions. (For convenience, we will sometimes refer to xit as the

“stock” and qit as “investment” in this paper, in reference to this example.)

U (· · · ; θ) is a per-period utility function, parameterized by the parameter vector θ. The

per-period utility depends on the current stock xit and the idiosyncratic shock sit, which is

known to agent i before he makes his choice of qit. We assume that the shock sit is observed

by the optimizing agent at the time she makes her period t decision, but not by the econo-

metrician.2 The presence of the unobserved shock sit induces, from the econometrician’s

point of view, randomness in the observed choices of the control qit. We also assume:

Assumption 1 (Independence) The Markov transition probabilities for the state vari-

ables can be factored as:

F (xi,t+1, si,t+1|xit, sit, qit) = F (xi,t+1|xit, sit, qit) · Fs(si,t+1; γ)

Specifically, the shocks sit are assumed to be drawn i.i.d. across (i, t) from the marginal

distribution Fs(·; γ), parameterized by γ. While this rules out the important case of serial

correlation in the unobserved shocks over time (arising perhaps from unobserved agent-

specific fixed effects), it is a common assumption made in the literature on estimation of

dynamic models. On the other hand, it is straightforward to extend the i.i.d. assumption

to one where heterogeneity in the distribution of the shock sit across agents and time is

explicitly parameterized to depend on observed conditioning covariates.

Assumption 2 (Deterministic accumulation) The stocks evolve in the following de-

terministic manner:

xit+1 = xit + qit, ∀i, t.

It turns out that this assumption is more restrictive than required for our estimation proce-

dure, but is convenient to make for explication purposes (and also natural for our empirical

2This usage differs from the macroeconomic literature, where a “shock” is often unobserved by both the
econometrician as well as the optimizing agent when she makes her decision.
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illustration below, and also in the investment example mentioned earlier). Later, we discuss

how this assumption can be relaxed.

Given these assumptions, and assuming stationarity, the agent’s optimal policy function

can be expressed as the maximizer of Bellman’s equation: for t = 1, 2, 3, . . . ,

q (xit, sit; θ, γ) = argmaxq
{

U (xit, sit, q; θ) + βExit+1,sit+1|xit,sit,qV (xit+1, sit+1; θ, γ)
}

= argmaxq
{

U (xit, sit, q; θ) + βEsit+1|xit,sit,qV (xit + q, sit+1; θ, γ)
}

(3)

where:

V (xi,t+1, si,t+1; θ, γ) ≡ max
{qiτ}τ

E
[

∞
∑

τ=t+1

βτ−t−1U (xiτ , siτ , qτ ; θ) | {qiτ}τ , xi,t+1, si,t+1

]

. (4)

In what follows, we simplify notation by defining

V (xit + qit; θ, γ) ≡
∫

V (xit + qit, s; θ, γ)Fs(ds; γ),

the ex ante value function at time t, where the expectation is over si,t+1, the future realiza-

tion of the shock.

2.1 Monotonicity and Quantile Invariance

We assume that the policy functions are monotonic in the unobserved state variable, con-

ditional on a particular value for the observed state variable.

Assumption 3 (Monotonicity) The policy functions q(xit, sit; θ, γ) are nondecreasing in

sit, conditional on xit.

Remark 1 Given Assumption 1 and 2, a sufficient condition for Assumption 3 is that U

is supermodular in (q, s), for all x.

Proof: The optimal policy q is given by

argmaxqŪ (x, s, q) ≡ {U (x, s, q; θ) + βV (x+ q; θ, γ)} . (5)

In order for q (s, x; θ, γ) to be non-decreasing in s given x, we require Ū (x, s, q; θ) to be

supermodular in (q, s), for all x. This is equivalent to supermodularity of U (x, s, q; θ) in
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(q, s) given x, because the expected continuation value function V (x+ q; θ, γ) does not

depend on s, from Assumption 1.

An important implication of Assumption 3 is quantile invariance: conditional on xit, the

τ -th quantile of q conditional on xit is q (xit, sτ ; θ, γ), where sτ is the τ -th quantile of Fs (·).
This implication of monotonicity was also exploited by Matzkin (2003) in her nonparametric

estimation methodology for non-additive (in the error term) random functions.

The independence assumption that the distribution function Fs does not depend on x al-

lows us to accommodate situations (such as atoms in F (q|x)) where we only have weak

monotonicity of q in s, given x. This allows the investment decision to be a mixed discrete-

continuous choice variable, with a point mass at zero (indicating no investment). This

accommodates models of non-convex adjustment costs (cf. Eberly (1994)), and is appropri-

ate for the empirical illustration we consider below.

3 Estimation approach

The parameters we wish to estimate are θ and γ, respectively the utility function and shock

distribution parameters. To simplify notation, we assume that our data are a balanced

panel: {qit, xit} , i = 1, . . . , N, t = 1, . . . , T . This is not critical, as our estimator also

applies to cases where the number of cross-sectional observations differs across time periods.

From the data, we can estimate the empirical distribution of q given x for each x. Denote

each element of this family of distributions (indexed by x) by F̂ (q|x). Therefore, F̂ (qit|xit)
denotes the estimated conditional probability of q ≤ qit, conditional on the observed state

variable being equal to xit.

Since the conditioning variable x is continuous, we employ a kernel estimator for these

conditional CDFs:

F̂ (q|x) =
1
T

1
N

1
h

∑T
t=1

∑N
i=1 1 (qit ≤ q)K

(

x−xit

h

)

1
T

1
N

1
h

∑T
t=1

∑N
i=1K

(

x−xit

h

)
(6)

where K(·) is a kernel weighting function and h is a bandwidth sequence. In computing

F̂ (q|x), we employ all the observations, including those for which q = 0 (i.e.,, for which the

agent remained at a corner solution and investment is zero).

We make the following assumptions on the kernel function:
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Assumption 4 1. K (·) is a r-th order kernel (with r ≥ 2) function: (i)
∫

K (u) du = 1;

(ii)
∫

uξK (u) du = 0 for ξ = 1, . . . , r − 1; and (iii)
∫

urK (u) du <∞.

2. As N → ∞, the bandwidth sequence (i) h→ 0; (ii) Nh
logN

→ ∞; and (iii)
√
Nhr → 0.

Furthermore, we also require smoothness assumptions on the shock distribution and the

per-period utility function:

Assumption 5 (i) The shock distribution Fs (s) has continuous derivatives up to order r

that are uniformly bounded. The shock density fs (s) is bounded away from 0 on any compact

set. (ii) The functions U(x, s, q; θ) and have continuous partial derivatives in (x, s, q) of

order r+ 1 (where r is the order of the kernel from the previous step). The expectations of

all derivatives with respect to x, s, q of order up to r+ 1 exist. (iii) The density f (x) of the

observed state is uniformly bounded, continuous and bounded away from 0 on any compact

set.

Conditions 1.(iii) and 2.(iii) of Assumption 4 above are standard conditions for reducing

the asymptotic bias in the kernel estimates. Assumption 5 ensures that the asymptotic

bias of the limit pairwise-differencing estimating function (described below) can be approx-

imated up to the r-th order (as in Powell, Stock, and Stoker (1989)). Next, we describe our

proposed two-step estimation approach.

3.1 First step: A Pairwise-differencing of First-order conditions

In the first step, we obtain estimates of γ, the parameters of the shock distribution, as well

as a subset of the parameters θ in the utility function, by exploiting the first-order condition

of the maximization problem in Eq. (3).3 This step exploits the state-contingent nature of

optimal decision-making which implies that, conditional on the observed state variables, the

variation in observed choices across agents must be due to randomness in the unobserved

state variables across agents.

First, the deterministic accumulation nature of stock evolution process implies that the

3Recently, Berry and Pakes (2000) also exploit the first-order condition to derive estimates of structural
parameters for models of multi-agent dynamic games. While we restrict our attention to single-agent prob-
lems, we focus on accommodating unobserved state variables, which are not present in the models considered
by Berry and Pakes.
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maximization problem for any agent i can be rewritten as

q (xit, sit; θ, γ) = argmaxq {U (xit, sit, q; θ) + βV (xit + q; θ, γ)} . (7)

For any agent i who invests a non-zero amount qit 6= 0, her choice of qit satisfies the first-

order condition

Uq (xit, sit, qit; θ) + βV ′ (xit + qit; θ, γ) = 0 (8)

where Uq (· · ·) refers to the derivative of U (· · ·) with respect to its third argument. For any

pair of agents i and j in period t such that xit + qit = xjt + qjt,

V ′ (xit + qit; θ, γ) = V ′ (xjt + qjt; θ, γ) .

Hence we can condition on such pairs of agents in order to control for the unknown form of

the expected value function.

Second, from the quantile invariance Assumption 3 and the assumption that s is distributed

independently of x, we know that any individual i with a (qit, xit) pair must have received

a shock sit equal to F−1
s

(

F̂ (qit|xit); γ
)

, the F̂ (qit|xit)-th quantile of the shock distribution.

This suggests that the cross-sectional variation in q given x for a collection of quantiles allows

us to recover the corresponding quantiles of Fs, and hence estimate the γ parameters.

The considerations above immediately suggest a pairwise difference estimator for the pa-

rameters. Consider a pair of individuals i and j in period t with the same xit+qit = xjt+qjt.

If we subtract the first-order conditions for these two observations, we obtain

{

Uq

(

xit, s
(

F̂ (qit|xit); γ
)

, qit; θ
)

− Uq

(

xjt, s
(

F̂ (qjt|xjt); γ
)

, qjt; θ
)}

= 0, (9)

where s (τ ; γ) ≡ F−1
s (τ ; γ), the τ -th quantile of Fs.

Let θ1 denotes the subset of the parameters θ which enter Eq. (9). Precisely, θ1 is the

subset of the parameters θ which are not eliminated by either (i) taking the derivative of the

utility function U with respect to its third argument; (ii) taking the difference of the utility

function derivative Uq between two individuals. The remaining parameters θ2 ≡ {θ \ θ1}
will be estimated in the second step of our procedure.

Let ψ ≡ (θ1, γ), the parameters estimated in the first step, and define Iit to be the indicator

1(qit 6= 0). Furthermore, we use zit ≡ (xit, qit) to denote the data variables observed for
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agent i in period t. The pairwise-difference estimator of ψ takes the following form:

min
θ1,γ

1

(NT )2

T
∑

t=1

N
∑

i=1

T
∑

t′=1

N
∑

j=1

1

h
K

(

(xit + qit) − (xjt′ + qjt′)

h

)

· IitIjt′ ·

[

Uq

(

xit, s
(

F̂ (qit|xit) ; γ
)

, qit; θ1

)

− Uq

(

xjt′ , s
(

F̂ (qjt′ |xjt′ ) ; γ
)

, qjt′ ; θ1

)]2

≡ 1

(NT )2

T
∑

t=1

N
∑

i=1

T
∑

t′=1

N
∑

j=1

{

1

h
K

(

(xit + qit) − (xjt′ + qjt′)

h

)

· IitIjt′ · m̂ (zit, zjt′ ;ψ)2
}

.

(10)

In the above m̂
(

zit, zjt′ ;ψ
)

denotes the differenced first-order condition:

m̂ (zit, zjt′ , ψ) ≡Uq

(

xit, F
−1
s

(

F̂ (qit|xit) ; γ
)

, qit; θ1

)

− Uq

(

xjt′ , F
−1
s

(

F̂ (qjt′ |xjt′ ) ; γ
)

, qjt′ ; θ1

)

.
(11)

The kernel function K (·) and bandwidth sequence {h} obey Assumption 4 above. More-

over, in computing the objective function (10) above, we only include observations with

non-zero investment (q 6= 0) because only for these observations is the first-order condition

(8) satisfied.4

Given an estimate γ̂ of the parameters in the shock distribution function, we can immedi-

ately derive an estimate of the optimal policy function

q̃ (x, s) ≡ F̂−1
q|x (Fs (s; γ̂)) , ∀s. (12)

Our estimate of the period t investment choice qt at a given state (x, s) is just the Fs(s; γ̂)-th

quantile of F̂ (q|x), the empirical conditional distribution of q given x.

3.1.1 Asymptotic theory for first-step

Ahn and Powell (1993) and Honore and Powell (1994) pioneered the use of pairwise-differencing

methods in econometrics. The objective function (10) resembles a weighted least squares

objective, where each pair of observations is weighted by a kernel function which takes on

small values when certain features of the pair of observations are very far apart.

4 Even though we only use observations where qit 6= 0, there is no selection issue here because, given

the monotonicity assumption, we control for the selection by substituting in estimates of the random shocks

(the st’s) in the first-order conditions (which was a similar device used by Olley and Pakes in their earlier

work). We thank a referee for pointing this out.
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From Eq. (10), we can alternatively express the pairwise-difference estimate for ψ as that

which solves the following sample score function:

WNT (ψ̂) ≡ 1

(NT )2

∑

i

∑

t

∑

j

∑

t′

r̂
(

zit, zjt′ , ψ̂
)

= 0 (13)

where

r̂
(

zit, zjt′ , ψ̂
)

≡1

h
K

(

xit+1 − xjt′+1

h

)

m̂
(

zit, zjt′ , ψ̂
) ∂

∂ψ

[

m̂
(

zit, zjt′ , ψ̂
)]

IitIjt′ . (14)

The limit objective function of the first-step estimator is

G0 (ψ) ≡ Ex,qEx′,q′

{

1
(

x+ q = x′ + q′, q 6= 0, q′ 6= 0
)

·

[

Uq
(

x, F−1
s (F (q|x); γ) , q, θ1

)

− Uq
(

x′, F−1
s

(

F (q′|x′); γ
)

, q′, θ1
)]2
}

.

Also define m
(

zit, zjt′ , ψ
)

and r
(

zit, zjt′ , ψ
)

analogous to m̂
(

zit, zjt′ , ψ
)

and r̂
(

zit, zjt′ , ψ
)

except that F̂ (qit|xit) in (11) is replaced by the unknown true F (qit|xit).

The regularity conditions required for the asymptotic results are collected in the following

assumption:

Assumption 6 Regularity conditions for first step:

i. ψ ∈ Ψ, a compact subset of RP , and true value ψ0 ∈ int(Ψ).

ii. G0(ψ) is uniquely minimized at ψ0.

iii. r
(

zit, zjt′ ;ψ
)

is twice continuously differentiable in ψ ∈ Ψ with probability 1.

iv. supψ∈Ψ |r(zit, zjt′ ;ψ)| < r̄(zit, zjt′) for some function r̄(·) with E
[

r̄(zit, zjt′)
]

<∞.

v. Define ṽ(zit, ψ) ≡ E
[

r(zit, zjt′ , ψ)|zit
]

and λ(ψ) ≡ Eṽ(zit, ψ).

v.i. λ(ψ0) = 0 and is differentiable at ψ0, with nonsingular Jacobian matrix A.

v.ii. The expectation E
[

||r(zit, zjt′ , ψ)||2
]

exists and is finite.

The conditions listed assumption 6 are standard identification, continuity, differentiability

and boundedness conditions on the limiting objective function. They are analogous to the

conditions required for Theorem 2 in Honore and Powell (1994).

The asymptotic normality of our first-step estimates of ψ is given in the following theorem,

the full proof of which is in the Appendix, Section A.1:
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Theorem 1 Given Assumptions 1, 2, 3, 4, 5, and 6,

√
NT

(

ψ̂ − ψ0
)

d−→ N
(

0, A−1ΩA−1
)

as N → ∞, where A and Ω are defined in Eqs. (31) and (37) in the Appendix.

Note that, if we had a perfect estimate of the conditional distributions F (q|x), the differ-

enced first-order condition m̂(zitzjt′ , ψ
0) (defined in Eq. (11)) would be identically zero for

all values of zit, zjt′ such that xit+1 = xjt′+1. Hence, the sampling variation in the esti-

mate of ψ will be determined completely from the sampling variation in the nonparametric

estimates of the conditional distributions F (q|x) (using Eq. (6)).

3.1.2 Remarks on first step

Discussion of assumptions Next, we discuss several of the assumptions we made pre-

viously, and how they could potentially be relaxed. First, our econometric framework is

parametric, in the sense that both the utility function and shock distributions are assumed

to be of known parametric form. In principle, the shock distribution Fs can be given a very

flexible parametric form. In our empirical work below, we consider a flexible piecewise-linear

specification for Fs, as follows:

Let sk ≡ F−1
s (τk) denote the τk-th quantile of the shock distribution Fs. Let κ denote

the total number of quantiles to be estimated (and the corresponding quantile values by

τ1 < τ2 < · · · < τκ). For any fixed κ, we approximate the distribution of the shocks Fs via a

piece-wise linear function tied down at the origin as well as the κ points {sk, τk}κk=1. That

is, we approximate the inverse CDF of Fs as

F̂−1
s (τ) ≡











τ s1
τ1

if τ ∈ [0, τ1]

si−1 + (τ − τi−1)
si−si−1

τi−τi−1
if τ ∈ (τi−1, τi], i = 2, . . . , κ− 1.

sκ−1 + (τ − τκ−1)
sκ−sκ−1

τκ−τκ−1
if τ ∈ (τκ−1, 1].

(15)

The parameters of this specification of the shock distribution which are to be estimated are

γ ≡ {s1, . . . , sκ}.

Second, we note that because the shock s is unobserved, we could also follow Matzkin (2003)

to assume that the shock is uniformly distributed on [0,1]. Since the shock s is distributed

according to Fs(·; γ), we could define ε = Fs(s; γ) and reparameterize the utility function

so that

U(x, s, q; θ) = U(x, Fs(ε; γ), q; θ) ≡ Ũ(x, ε, q; θ, γ).
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The monotonicity assumption 3 would be is a natural consequence of this reparametriza-

tion: holding x fixed, q is monotonic in ε.5 We do not do this for two reasons. First, an

important difference with Matzkin’s (2003) paper is that she considers the case where U is

nonparametric. In that case, the assumption that s is U [0, 1] is a normalization in the sense

that she would not be able to identify both U and Fs for some arbitrary unknown shock

distribution. For us, U (and, indeed, also Fs) is parametric, so such a normalization is not

necessary. Second, in the empirical application below, we are interested in interpreting the

magnitude of the shocks, which would not be so straightforward if the shock were assumed

to be uniformly distributed.

Third, the deterministic accumulation assumption (2) is simpler and more restrictive than

necessary, but we have made it for expositional convenience, and because it is a natural one

to make for the investment example (and later for our empirical application). More broadly,

however, it suffices to match on xit+1: in the pairwise-differencing step, the variation in

(xit, qit) conditional on xit+1 (and qit 6= 0) is the crucial variation which identifies the

utility function parameters. Therefore, more complicated laws of motion for x can be

accommodated, including nonlinear functions xit+1 = l(xit, qit, ζ) which include unknown

parameters ζ.6 Moreover, we can also introduce additional observable (and potentially

time-varying) characteristics zit specific to individual i and period t– these would simply

be additional variables which we need to match upon.7

The independence assumption (1), on the other hand, is crucial for the feasibility of the

procedure. For example, if the distribution of the shock st+1 were dependent on xt (so

that the conditional distribution F (st+1|xt) varies depending on xt), then the expected

value function V = Est+1|xt
V (xt+1, st+1) would also be a function of xt, and the pairwise-

differencing step would require matching individuals with the same xt+1 = xt + qt as well

as xt. These individuals would also have the same qt, leading to a degenerate estimating

equation (9).

5We thank a referee for pointing this out.
6 In this case, since xit+1, xit, and qit are observed, and the functional form of l is known, ζ can be

estimated separately, apart from the rest of the model parameters. We thank a referee for pointing this out.
7 Given the deterministic accumulation equation, we could reparameterize the problem so that the per-

period utility function is a function of xt and xt+1 (rather than xt and qt), and we take next period’s stock

xt+1 as the choice variable in period t. In that case, in order for the monotonicity assumption 2 to obtain,

it would suffice that the per-period utility function be supermodular in st and xt+1, which has the intuitive

economic interpretation that the shocks increase the marginal utility of xt+1.
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Discussion of identification Before proceeding to the second step, we also present some

discussion of identification. Particularly, we want to consider how the parameters γ of the

shock distribution are pinned down in the pairwise-differencing step. Since we focus on

identifying Fs, we assume for convenience that θ1 = {} (so that there are no θ1 parameters

to estimate). Consider how pairwise-differencing allows us to estimate γ. In order to do

pairwise-differencing, we need (at least) two individuals (i, j) such that

0 = Uq (xi, s(F (qit|xit); γ), qi) − Uq (xj , s(F (qjt|xjt); γ), qj) (16)

where s(τ ; γ) ≡ F−1
s (τ ; γ) denotes the τ -th quantile of Fs(·; γ). In order for Eq. (16) to not

be a trivial function, individuals i and j must satisfy two conditions: (i) xit+qit = xjt+qjt;

but (ii) xit 6= xjt (and hence qit 6= qjt).

The question of identification then relies crucially on the existence of such pairs of individ-

uals, which in turn depends on the model. For example, consider the linear-quadratic case,

where the policy function will be linear in its arguments: q = a + bx + cs. Conditions (i)

and (ii) from the previous paragraph require the existence of pairs (i, j) such that xi 6= xj

and also

xi + qi = xj + qj

⇔xi + a+ bxi + cs(τi; γ) = xj + a+ bxj + cs(τj ; γ),

where τi, τj ∈ [0, 1] denote the quantiles of the shock distribution. Clearly the equation

above admits multiple solutions of (xi, τi, xj , τj) with xi 6= xj and τi 6= τj. As long as

this set of values contains enough observations where qi ≡ F−1(τi|xi) 6= qj ≡ F−1(τj |xj),
then γ can be recovered, by essentially running the nonlinear regression (16) using these

observations.

Identification in our framework differs from other papers in the literature. For example,

Magnac and Thesmar (2002), Pesendorfer and Schmidt-Dengler (2003), and Aguirregabiria

(2005) all consider dynamic discrete choice models, and focus on the nonparametric identi-

fication of the utility functions using the observed choice probabilities. We focus on the case

where the agents’ choice variable (qt) has a continuous component, and where the utility

function takes an assumed parametric form. Because of these differences, identification is-

sues are different (and simpler) in our setting. The continuous component of agents’ choices

allows us to use pairwise-differencing methods to identify quantiles of the shock distribution,

while the identification of the utility function is facilitated by parametric assumptions.
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3.2 Second step

Not all model parameters can be identified from the first step pairwise-differencing approach.

In the second step, we use the first-order condition again to derive moment restrictions to

estimate parameters in θ which were not in the subset θ1 estimated in the first step. Recall

that θ2 ≡ {θ \ θ1} denotes the set of parameters which were not estimated in the first step.

Given γ̂ and θ̂1, (respectively) the shock distribution parameters and the subset of the utility

function parameters which were estimated in the first step, define the first-order condition

for observation (i, t) where the investment level qit 6= 0 as follows:

hit

(

xit, qit; ψ̂, θ2

)

≡ Uq

(

xit, s(F̂ (qit|xit); γ̂), qit; θ̂1, θ2
)

+ βV ′
(

xit + qit; ψ̂, θ2

)

= 0. (17)

In what follows, we will use F̂s as shorthand for Fs(·; γ̂).

Assume that we are able to compute the expected value function V(xit;ψ, θ2) for every

set of parameters ψ and θ2 (we delay discussion of how this can be done until later).

Due to sampling error from estimating θ1, γ and F (q|x) in the first step, the first order

condition hit(xit, qit; ψ̂, θ2) need not be identically zero, even at the true parameter vector

θ0. Therefore, we estimate θ2 via a least squares procedure:8

θ̂2 = argminθ2
1

NT

N
∑

i=1

T
∑

t=1

Iit ·
[

hit(xit, qit; ψ̂, θ2, F̂q|x (·|·))
]2

. (18)

As in the first step, we can only include observations with non-zero investment (q 6= 0) in

the objective function. Indeed, both step of our estimation procedure are based on agents’

first-order conditions, and thus only use the observations where qit 6= 0. In our estimation

procedure, the observations with qit = 0 are employed only in the construction of the

conditional distributions F̂ (q|x) (cf. Eq. (6)).

3.2.1 Computing the expected value function by simulation

The expected value function V(·;ψ, θ2) does not have a closed form solution and needs to be

evaluated numerically. Standard numerical dynamic programming methods for problems

with both discrete and continuous controls, as described in Rust (1996) and Judd (1998),

8The choice of a square norm is somewhat arbitrary; other norms, such as absolute deviation, may also
be used. Furthermore, weighting schemes could be introduced to improve the efficiency of the estimation
procedure. We have not considered these alternative possibilities.
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can be difficult since it involves solving for the optimal policy function q(x, s) at every point

(x, s) in the state space.

When the datasets available to the researcher are large (as in the dataset we consider

later), an attractive alternative is available to avoid numerical computation of the dynamic

programming problem. In this alternative, the value function is computed by a forward

integration procedure in the spirit of Hotz and Miller (1993). This procedure exploits the

representation of the value function at time t as the expected discounted sum of future

utilities (cf. Eq. (4)) rather than the more familiar recursive representation via the Bell-

man equation (cf. Eq. (3)) which underlies numeric dynamic programming algorithms.

Hotz and Miller (1993) recognize that, given enough data, and a particular parametric form

of the per-period utility function U(x, s, q; θ), the expectation over future states in equation

(4) can be represented as forward integration over the observed conditional probabilities

F̂ (q|x) (cf. Eq. (3.12) in Hotz and Miller (1993)).

Under the independence assumption 1, this approach can be used in the case where agent

i’s control variable is continuous. More precisely, the agent’s expected value function at a

particular initial point x1 is approximated as:

V
(

x1; ψ̂, θ2

)

=

∫ ∫

· · ·
∫
{

[

T
∑

z=1

βz−1U
(

xz, sz, F̂
−1
q|xz

(Fs(sz)); θ̂1, θ2

)

]

+ βTCV (xT+1)

}

dF (s1; γ̂) dF (s2; γ̂) · · · dF (sT ; γ̂) .

(19)

Here CV (xT+1) denotes the continuation value function, when the state after T periods

is xT+1. The sequence of stocks xz is given by the initial condition x1 and xz = xz−1 +

F̂−1
q|xz−1

(Fs(sz−1)) for z = 1, . . . , T .

More succinctly, let {τ} = {τ1, τ2, . . . , τT } denote a sequence of i.i.d. U [0, 1] random vari-

ables. The expected value function can be written as

V
(

x1; ψ̂, θ2

)

=E{τ}

{ T
∑

z=1

βz−1U
(

xz, s (τz; γ̂) , F̂−1
q|xz

(τz); θ̂1, θ2

)

+ βTCV (xT+1)

}

. (20)

In the above expression, given the starting value x1, the subsequent sequence of stocks

x2, x3, . . . is related to the uniform random draws τ ’s by the relation xz = xz−1+F̂
−1
q|xz−1

(τz−1).

In our implementation below, we treat the continuation value function CV (xT+1) as a nui-

sance parameter, and assume that it is approximated by a flexible finite-order polynomial

in xT+1. We will provide more details about this below.
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In practice, the multidimensional integration involved to compute the expected value func-

tion (Eqs. (19) or (20)) presents computational challenges, and so we simulate the expected

value function by following Hotz, Miller, Sanders, and Smith (1994). Let S denote the

number of simulation draws. Using the parameters ψ̂ and the conditional distributions F̂q|x

estimated from the first step, V
(

x1; ψ̂, θ2

)

(using Eq. (20)) can be simulated by

VS
(

x1; ψ̂, θ2

)

=
1

S

S
∑

l=1

{[

T
∑

z=1

βz−1U
(

xlz, s(τ
l
z; γ), F̂

−1

q|xl
z
(τ lz); θ

)

]

+ βTCV (xlT+1)

}

(21)

where

• τ lz, l = 1, . . . , S, z = 1, . . . , T are i.i.d. U [0, 1].

• xlz =

{

x1 for z = 1

xlz−1 + q
(

xlz−1, s(τ
l
z; γ)

)

for z = 2, . . . , T + 1.

In order to implement the second-step estimator, we must also compute the derivative of the

expected value function. This is most easily approximated by a numeric finite-difference:

VS′
(xit; ψ̂, θ2) ≈

VS(xit + ∆; ψ̂, θ2) − VS(x; ψ̂, θ2)

∆
(22)

for ∆ small. By plugging in Eq. (22) for V ′
(

xit + qit; ψ̂, θ2

)

in Eq. (17), we can estimate

θ2 by minimizing the objective function (18).

3.2.2 Asymptotic theory for second step

In this section, we present the limit distribution for the second-step estimator θ̂2. In de-

riving the asymptotics, we ignore the approximation error in simulating the expected value

function (as well as its derivative), and treat the expected function V(xit; ψ̂, θ̂2) as a known

function for all (ψ̂, θ2). For the simulation-based approximation of the expected value

function, we require that the number of simulation draws S increases quickly enough as

N → ∞ so that variation due to the simulation itself is small enough and does not affect

the asymptotic variance. From Gourieroux and Monfort (1996), a sufficient condition for

the asymptotic variance to be unaffected from simulation error is that S/
√
N → ∞.9

9For numeric dynamic programming methods, which usually are based on iterative function approxima-
tion algorithms, this generally requires that the accuracy of the function approximation (as measured in
terms of the order of an approximating polynomial, or number of knot points in an approximating spline)
increase as N → ∞.



17

The second step estimator θ̂2 solves the sample score function:

JNT (θ2) ≡
1

NT

N
∑

i=1

T
∑

t=1

h̄
(

xit, qit; ψ̂, θ2, F̂q|x (·|·)
)

Iit = 0. (23)

where

h̄
(

xit, qit, F̂q|x (·|·) , ψ̂; θ2

)

≡
[

Uq

(

xit, F
−1
s

(

F̂ (qit|xit) ; γ̂
)

, qit; θ̂1, θ2

)

+ βVS ′
(

xit + qit; ψ̂, θ2, F̂q|x (·)
)]

∗
∂

∂θ2

[

Uq

(

xit, F
−1
s

(

F̂ (qit|xit) ; γ̂
)

, qit; θ̂1, θ2

)

+ βVS′
(

xit + qit; ψ̂, θ2, F̂q|x (·)
)]

.

The notation F̂q|x (·) denotes the whole set of estimated conditional quota distributions,

estimated as in Eq. (6). The inclusion of the entire conditional distribution F̂q|x (·|·) as an

argument in h̄(· · · ) (in addition to F̂ (qit|xit)) recognizes that the expected value function

V(xit+1) (cf. Eq. (20)) depends on the entire set of functions F̂−1
q|x (·) ; ∀x, not just on any

one of these functions evaluated at a particular quantile.

Let P2 ≡ dim(θ2), and define

H0(θ2) ≡ E1(q 6= 0)
[

h(x, q;ψ0, θ2, Fq|x (·|·))
]2

as the limit objective function of the second-step estimator.

The regularity conditions required for deriving the asymptotic result of the second step

estimator are collected in the following assumption.

Assumption 7 1. θ2 ∈ Θ2, a compact subset of RP2 , and true value θ0
2 ∈ int(Θ2).

2. H0(θ2) is uniquely maximized at θ0
2.

3. h
(

x, q;ψ, θ2, Fq|x (·|·)
)

is twice continuously differentiable in θ2, ψ and Fq|x (·) with

probability 1. The function and its derivatives are uniformly bounded by an integrable

function.

4. The Jacobian Ā of µ(θ2) ≡ Eh̄
(

xit, qit;ψ
0, θ2, F

0
q|x (·|·)

)

Iit is nonsingular at θ0
2.

The full proof of the following is in the appendix, section A.2.
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Theorem 2 Given Assumptions 1 to 7, the sample score function satisfies a central limit

theorem:

√
NTJNT (θ0

2)
d→ N(0, Ω̄).

In addition,

√
NT

(

θ̂2 − θ0
2

)

d−→ N
(

0, Ā−1Ω̄Ā−1
)

as N → ∞, where Ā and Ω̄ are defined in Eqs. (39) and (41) of the appendix.

At the true values of ψ0, θ0
2, and F (q|x), the first-order condition (17) is identically zero

for all values of (xit, qit) which are optimally chosen. Hence, the second-step estimation

introduces no source of sampling variation beyond that which arises from the first-step

estimation of ψ, and the estimation of the conditional distributions F (q|x). This is made

explicit in the proof of Theorem 2.

In principle, given the parametric assumptions on Fs(·; γ), the parameters θ and γ could be

jointly estimated in the second step, without requiring the pairwise-differencing first-step.

However, by estimating θ1 and γ in the first step, we reduce the number of parameters

which must be estimated in the second step. Since the second step potentially involves

numeric dynamic programming in order to recover the value function, reducing the dimen-

sionality of the parameter space also reduces significantly the number of times that the

value function must be computed, therefore reducing the computational burden. Such a

“two-step” approach was also taken in Rust’s (1987) dynamic discrete-choice model of bus

engine replacement, in which the parameters describing the mileage Markov transition ma-

trix was estimated in a first-step to reduce the computational burden in the second-step,

which involved value function iteration.

4 Empirical Illustration: Markets for Milk Production Quota

As an illustration of our methodology, we estimate a dynamic trading model of the milk

production quota market. In Ontario, Canada, milk production is controlled via produc-

tion quotas which grant holders the right to produce a certain quantity of milk per year.

Since 1980, in the province of Ontario these quota have been traded among dairy farm-

ers in monthly double auctions administered by the Dairy Farmers of Ontario (DFO) (cf.

Biggs (1990)). This paper analyzes data from the eleven auctions between September 1997
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and July 1998. Our goal is to estimate the parameters of agents’ utility functions, and

the distribution of the unobserved state variables, using the two-step pairwise-differencing

methodology described earlier.

Each quota exchange is a double auction market. All producers who wish to sell quota

submit offers to the exchange indicating that they have a certain volume of quota for sale

and at a certain minimum price per unit. Producers who wish to buy quota submit bids

to the exchange indicating that they would like to buy a certain volume of quota and that

they are willing to pay a specific maximum price per unit. Units are traded at a market

clearing price (MCP) at which the total quantity demanded (approximately) equals the

total quantity supplied.

In order to fit the milk-quota trading market into our dynamic framework, we consider

a dynamic, forward-looking model of the quota demand/supply process, in which each

individual trader faces a dynamic optimization problem. Timing is as follows. At the

beginning of month t, trader i owns xit units of production quota. She experiences a shock

sit and must decide the amount of quota qit to trade at any price pt. Generally, the optimal

amount is given by a function q (xit, sit, pt) which takes values in (−∞,∞). For positive

values of q (· · ·), this can be interpreted as a demand function, and when negative it can be

interpreted as a supply function. The amount actually transacted would be q (xit, sit, p
∗
t ),

where p∗t denotes the realized market-clearing price for period t.

An important simplifying assumption that we make is that the market-clearing price p∗t is

taken as given and known by bidders when they are deciding how much quota qt to buy.

In the appendix (section B), we show that this assumption is consistent with the dynamic

competitive equilibrium path of a continuum market, on which agents will have perfect

foresight about the sequence of market-clearing prices, even though at the individual trader

level there is uncertainty about the shocks received by other traders. As a result, equilibrium

strategies in this market can be characterized as optimal policies of a nonstationary dynamic

optimization problem solved by each trader individually. The problem is nonstationary

because agents’ quota decisions in period t will depend on p∗t , the market-clearing price in

period t, which we model as a deterministic time-varying covariate.10 The nonstationarity

10In principle, if we observed many more months of data, we could consider a stationary problem in which
the evolution of the monthly market-clearing prices could be estimated directly from the data. Estimation
would be more complicated, as we would also need to match on pt (in addition to xt + qt) in the first stage,
and then we also need to take draws of the price process in simulating the value function for the second stage.
We do not undertake this extension in the empirical application because we only have eleven observations
of the price process.



20

of the dynamic problem is the main difference between the model used in our empirical

application, and the stationary problem used in the previous sections in describing our

estimation procedure.

Specifically, we model each trader i as choosing a sequence {qit} to maximize the expected

discounted present value of its utility from its milk quota trading operations:

max
{qit}t

E0|{qit}

∞
∑

t=0

βtUt (xit, sit, qit, p
∗
t ; θ) (24)

subject to

xit+1 = xit + qit; sit+1 ∼ Fs; p∗0, p
∗
1 . . . known. (25)

Note the t subscript on the per-period utility function, which emphasizes that the dynamic

problem is non-stationary due to the presence of the market-clearing prices. The expectation

E0|{qit} is over the sequences of xit and sit induced by trader i’s chosen sequence {qit}. Each

trader i’s optimal policy in period t is given by a period-specific function qt (xit, sit) which

satisfies Bellman’s equation:

qt (xit, sit) = argmaxqU (xit, sit, qit, p
∗
t ; θ) + βVt+1 (xit + qit;ψ, θ2) (26)

where

Vt+1 (xit + qit;ψ, θ2) ≡ Esit+1
V (xit + qit, sit+1) .

Accommodating nonstationary in our estimation procedure requires several changes from

the procedure presented in the first part of this paper. First, because agents’ policy func-

tions will be period-specific in a nonstationary problem, we estimate the conditional quota

purchase distributions Ft(qt|xt) (cf. Eq. (6)) separately for each period t. Second, because

the expected value functions are no longer time-homogenous in a nonstationary problem,

we can no longer match agents across periods in the pairwise-differencing step. As a result,

the objective function used in this step is

min
θ1,γ

1

(N)2T

T
∑

t=1

[ N
∑

i=1

N
∑

j=1

{

1

h1

K

(

(xit + qit) − (xjt + qjt)

h1

)

· IitIjt·

[Uq (xit, ŝit, qit; θ1) − Uq (xjt, ŝjt, qjt; θ1)]
2

}]

which differs from the objective function for the stationary case (Eq. (9)) because we do

not match across agents (i, j) in different periods.
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Finally, given that we only observe 11 periods of data, we assume that agents solve a finite

horizon model with T = 11 but allow the continuation value of the problem (after the

eleventh month) to depend on x12 = x11 + q11, the stock that a given trader has after the

first eleven months. More specifically, for months t = 1, . . . , 11, we simulate the expected

value function as

VSt
(

xt+1; ψ̂, θ2

)

=
1

S

S
∑

l=1

{[

11
∑

z=t+1

βz−tU
(

xlz, s(τ
l
z; γ), F̂

−1

q|xl
z
(τ lz); θ

)

]

+ β12−tCV (xl12)

}

(27)

where

• τ lz, l = 1, . . . , S, z = t+ 1, . . . , T are i.i.d. U [0, 1].

• xlz =

{

xt for z = t+ 1

xlz−1 + q
(

xlz−1, s(τ
l
z; γ)

)

for z = t+ 2, . . . , 12.

• the continuation value function is a flexible (firth-order) polynomial in x12:

CV (x12) =

5
∑

j=1

ηj · xj12.

We estimate the polynomial coefficients η1, . . . , η5 are jointly with θ2 in the second step of

our procedure.

4.1 Data: summary statistics

Summary statistics are presented in Table 3. The trading unit for quota is expressed in

kilograms of butterfat, and one kilogram of quota purchased on the exchange allows a

producer to ship one kilogram of butterfat per day, in perpetuity, for as long as the unit

of quota is held.11 Over the eleven exchanges, we observe the bids placed by 2,574 distinct

producers. For each trader, we have data on her total quota stock in September 1997

(the first month in our sample), as well as her purchases/sales of quota in each subsequent

month, which we used to construct her total quota for each month.

11Prior to September 1997, a unit of quota conferred on its owner the right to produce milk containing
one kilogram of butterfat per year. In September 1997, however, the trading unit for quota was re-defined
in kilograms of butterfat per day.
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Column (E) in Table (3) shows that a large number of sellers and buyers participate in each

exchange, which suggests that there may not be much scope for strategic behavior, which

we have not accommodated in our empirical model.

Across all auctions, column (J) shows that about 90% of the producers submit zero-bids.

In our empirical application, given the assumption that traders have perfect foresight about

the market-clearing prices, a zero bid is attributed to two events: (i) nonparticipation in

an auction (which, on average, is attributed to 2000 potential bidders in each auction); and

(ii) submission of a non-zero bid, but not consummating a sale because it was either a sell

price higher than the MCP, or a buy price lower than the MCP. In Figure 1, we present

the empirical CDF of the quantity traded per month, across all the monthly auctions. This

shows clearly that over 90% of the observations are zero bids. Despite the large numbers of

zero bids, however, columns (G) and (I) of Table 3 also indicate that each bidder’s chance of

getting their order filled (i.e., submitting selling bids below the MCP, or submitting buying

bids above the MCP) is quite high across most of the exchanges.

Conditional on trading, there is a wide dispersion of trade amounts, ranging from about

-150 to 100. Given this large dispersion, we model a producer’s choice of q, conditional on

trade, as a continuous variable, even though trade is actually restricted to integer units.

4.2 Utility function parameterization

We assume a exponential CARA form for the utility function:

U(wit) = − exp (−rwit)

and the following linear specification for trader i’s period t payoff:

wit = xit · sit − pt · qit −K · 1 (qit 6= 0) . (28)

The per-period payoffs for each trader are as follows. Each period, trader i receives some

profits xit ·sit from producing and selling milk under its current stock of quota, but pays an

amount pt ·q (xit, sit, pt) to acquire additional quota. Furthermore, she incurs a fixed adjust-

ment cost K which is associated with any non-zero transaction of quota (and the magnitude

of which is not dependent on the amount of quota transacted): this would accommodate

not only bidding costs but also general fixed costs associated with expanding/contracting

the scale of milk production (and is required to rationalize the large number of zero bids,
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as summarized in column (J) of Table 3).12 Given this specification, sit can be interpreted

as stochastic production shocks which affect a trader’s profits from his milk production.

In this parameterization, the only parameters identified in the first pairwise-differencing

step are γ, the parameters of the shock distribution Fs. Too see this, note that Uq, the

marginal utility, is equal to −pr exp[−r(xs−pq−K)] for our exponential specification. When

we difference the marginal utilities for agents i and j, however, the pairwise-differencing

estimating equation (9) becomes

−prerK (exp (xis(Fs(qi|xi); γ) − pqi) − exp (xjs(Fs(qj|xj); γ) − pqj)) .

The constant proportion prerK does not have any sampling variation, and hence is not

identified in the first stage estimation using equation (9). The part that has sampling

variation contains only the shock distribution parameters γ as the parameters estimated

in the first step. Accordingly, the parameters which are identified in the second step are

θ2 ≡ (r,K).

While we have derived the asymptotic covariance matrix for our estimator in Theorems 1

and 2 above, it is fairly tedious and involved in practice to compute it. Therefore, in the

empirical implementation, we obtained standard errors for our estimates using a bootstrap

re-sampling procedure. Hence, the derivation of the asymptotic distribution in Theorems 1

and 2 serve to validate the use of bootstrap methods for our estimator.

For each specification, we used the bootstrap as follows: we re-sampled (with replacement)

sequences from the dataset, and re-estimated the model for each re-sampled dataset. The

reported bootstrap confidence intervals are therefore the empirical quantiles of the distribu-

tion of parameter estimates obtained in this fashion. We employed 50 bootstrap resamples

in computing each set of standard errors.

4.3 Estimation Results

Log-normal shock distribution parameterization First, we present results from a

tightly parameterized model, assuming a log-normal specification for Fs, whereby log s ∼
12 We may wish to allow the adjustment cost K to be a trader-specific fixed effect which varies across

traders, but is fixed across time. This could help explain the large number of qit = 0 observations in the data.

In principle, our estimation procedure can accommodate this, as we would amend the pairwise-differencing

step to only match on xt + qt using the across-time observations for each trader. While this is feasible in

applications where we observe a long time series for each agent, it is not practical here, because we only

observe 11 monthly observations for each trader.



24

N
(

µ, σ2
)

. The parameter estimates are shown in Table 1.

These magnitudes imply that the mean (and median) shock is 6.928. Given the specification

of the agents’ payoffs (Eq. (28)), this can be interpreted as the monthly return from a unit

of quota (in 1986 Canadian $’000). At a price of about $11,000 (again in 1986 CAD)

per unit of quota, these magnitudes imply that the median producer would “recoup” her

investment in less than two months (= 11,000
6,928

): this seems quite an unrealistically small figure.

The estimates of K and r indicate, respectively, very small adjustment costs (around 30

cents) and a very low level of risk aversion. In the top graph of Figure 2, we present our

estimate of the implied period 1 (September 1997) policy function q̃1(x, s) for the log-normal

distribution results. The policy function is estimated using Eq. (12) above.

Piecewise-linear shock distribution parameterization Second, we present results

using a more flexible piecewise-linear form for the shock distribution Fs, as described in

Eq. (15) above. In the first step, we jointly estimated the 0.15, 0.25, 0.5, 0.75, and 0.85

quantiles for Fs. The estimated CDF is graphed in Figure 3. The median shock is estimated

to be about 1.24, implying (using the same reasoning as in the previous paragraph) that

the median trader recoups his investment in about nine (= 11,000
1,240

) months: this appears

more realistic than the estimate obtained from the log-normal parameterization, reported

above.13

In the bottom graph of Figure 2, we present our estimate of the implied period 1 (September

1997) policy function q̃1(x, s) for the Fs (with linear interpolation) estimated in the first

step (and plotted in Figure 3). The estimate of K implies that the magnitude of fixed

adjustment costs are $119.70, which is much higher than the estimates obtained using the

log-normal specification. The estimate of r, the coefficient of absolute risk aversion, remains

very small (0.0072).

5 Conclusions and Extensions

In this paper, we proposed a new two-step pairwise-differencing procedure for structural

estimation of a dynamic optimization model with unobserved state variables. To our knowl-

edge, our estimator represents the first application of pairwise-difference methods, which

13We also considered another specification allowing Fs to vary across periods. However, we found that
the covariates had little effect, and left the results virtually unchanged. Therefore, we do not report those
results.
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have primarily been used in cross-sectional contexts (cf. Honore and Powell (1994)), to

structural dynamic optimization problems.

The most restrictive assumption made in this paper is that the unobserved state variables

are independent across time. In accommodating serial correlation, we would have to consider

carefully the problem of initial conditions which, in turn, is very closely related to the issue

of unobserved individual-specific heterogeneity (cf. Heckman (1981)). In future work, we

plan to explore extensions to our procedure to handle these issues.

The estimation procedure only accommodates univariate unobserved state variables in

agents’ policy functions. This rules out multi-agent models in which the unobserved state

variables of all the agents enter into each agent’s policy function, as in the dynamic oligopoly

model considered by Berry and Pakes (2000) where one firm’s optimal investment is affected

by the productivity state of every firm in the market, and all of these productivities are

unobservable to the econometrician. It will be interesting to investigate in future work

whether monotonicity and quantile invariance can be useful in these situations.
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A Proofs

A.1 Proof of Theorem 1

For convenience, we use ψ in this proof to denote ψ0, the true value. Also, let m(zit, zjt′ ;ψ)
and r(zit, zjt′ ;ψ) denote, respectively, Eqs. (11) and (14) evaluated at the actual (ie. error-free)
conditional distributions Fq|x.

Due to assumption 5.(i), the following approximation holds uniformly, up to op

(√
log N√
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(29)

Together with other smoothness conditions in assumption 5, uniform consistency of F̂ (q|x) implies
uniform convergence of the estimand (10) to the population limit G0 (ψ), which in turn implies the

consistency of ψ̂ due to assumption 6.(ii).

To derive the asymptotic distribution, using a standard first order Taylor expansion argument, we
can approximate the estimator by

√
NT

(

ψ̂ − ψ0
)

= −A−1
NT (1 + op (1))

1

(NT )3/2

N
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T
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T
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r̂
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zit, zjt′ , ψ
0
)

(30)

where the Jacobian term is defined as (ψ∗ is a set of intermediate values between ψ and ψ̂):

ANT ≡
1

(NT )2

X

i,t,j,t′

1

h
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«
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«

.

The Jacobian term ANT can be approximated successively, each time up to op (1), by replacing
ψ∗ with the true ψ0, m̂ (·) with m (·), and the double summation with double expectations. As a

consequence, ANT
p−→ A, where

A ≡ Ezjt′
Ezit

»

IitIjt′
∂

∂ψ
[m (zit, zjt′ , ψ)]

∂

∂ψ
[m (zit, zjt′ , ψ)] 1 (xit+1 = xjt′+1)

–

, (31)

is the same matrix as stated in condition v.i of Assumption 6. The form of A takes into account
the fact that

Ezjt′
Ezit

[

IitIjt′m (zit, zjt′ , ψ)
∂2

∂ψ∂ψ′m (zit, zjt′ , ψ) 1 (xit+1 = xjt′+1)

]

≡ 0, (32)

which follows from m (zit, zjt′ , ψ) ≡ 0 when xit+1 = xjt′+1 by assumption.
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Next, we address the terms which appear behind the quadruple summation in (30). Define

ŵ (zit, zjt′) ≡m̂
(
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0
) ∂
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Note that ŵ (zit, zjt′) can be approximated up to op (1) by the first order linearization
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where substituting in Eq. (29) above:
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Hence, we can approximate the linear term in equation (30) by a U-statistic representation:
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Given our assumptions on the kernel and bandwidth sequence (Assumption 4 in the main text),
the bias terms in the nonparametric kernel estimation are asymptotically negligible and the condi-
tions for Lemma 3.1 in Powell, Stock, and Stoker (1989) hold. Hence, we can invoke the projection
representation of (34). For the first term in Eq. (34), we have
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Both terms in the above display vanish asymptotically for the same reasoning that leads to (32). This
makes explicit the feature that the pairwise-differencing step introduces no additional variation to
the parameter estimate ψ̂. The nonparametric estimates of Fq|x produce all the first order variation,
which is reflected in the non-negligible limit for the second term of equation (34):
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The first inequality follows from Assumption 4 which implies that the other two projection terms
vanish. After tedious but straightforward calculations we can write ṽ (zlt′′) as:
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Therefore, we conclude that
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and A is defined as in (31) above. The asymptotic variance can be consistently estimated using
resampling methods or empirical analogs. �

A.2 Proof of Theorem 2

In this proof, we abstract away from approximation error in computing the value function. If the
value function is simulated, this requires that a sufficiently large number of simulation draws to
compute the value function so that the variation due to the simulation itself is small enough and
does not affect the asymptotic variance. However, the estimation error from the previous steps of
estimating ψ̂ = {θ̂1, γ̂} and F̂q|x (·|·) will be reflected in the variance of the second-step estimator.

First we recall the following linear approximation, for τ = F (q|x):
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Taking a Taylor expansion of (23) around θ̂2, one obtains
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A standard law of large numbers applies to the Jacobian term in the above expression:
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with Ā the same matrix as specified in Assumption 7. Hence,
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The recursive use of the nonparametric estimates F̂q|x (·| :) in the construction of the expected
value function in Eq. (20) makes it tedious to derive explicit analytic expressions for the asymptotic

linear representation of the nonlinear functional h̄
(

xit, qit, F̂q|x (·| :) , ψ̂, θ2

)

as a function of F̂q|x (·| :).

Hence, in the following we will denote a linear function in F̂q|x (·| :) by
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without explicitly writing out its lengthy analytic formula.

Given this notation, the following asymptotically linear representation holds
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In the above display,
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Using the linear approximation in (38), this can be further approximated as
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In the above display Gh is defined as in equation (38).

Next, we use the modeling assumption that
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)

where

Ω̄ =
1

T
E

{ T
∑

t=1

v∗
(

zlt′′ , ψ
0, θ02

)

T
∑

t=1

v∗
(

zlt′′ , ψ
0, θ02

)′
}

. (41)

Moreover Ω̄ is the matrix specified in Assumption 7. �
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B Remarks on empirical illustration

In our empirical application, we make the assumption that the price pt is taken as given and known
by bidders when they are deciding how much quota qt to buy. Here, we show that this assumption
is consistent with a perfect foresight equilibrium in a dynamic competitive market composed of
individually atomistic traders, similar to Jovanovic (1982) and Hopenhayn (1992). Prices each
period are determined by a market-clearing condition: given policies q (xit, sit, pt), ∀i,

pt :

∫ ∫

q (x, s, pt)Jt(dx)Ht(ds) = 0 , ∀t (42)

where Jt(·) and Ht(·) denote, respectively, the distribution of quota stocks and shocks in the cross-
section of traders during period t. Given our i.i.d. assumption on the shock distribution, it is
immediate that

Ht(s) = Fs (s) , ∀t. (43)

Similarly, the cross-sectional distribution of stocks Jt(x) evolves according to:

Jt(x) =

∫ ∫

1 (z + q(z, s, pt−1) ≤ x)Ht−1(ds)Jt−1(dz). (44)

Given any initial stock distribution J0, the sequences {Jt} and {Ht} are both deterministic, and
evolve according to (43) and (44). Therefore, by the market clearing conditions (42), the sequence
{pt}t is also deterministic. Hence, in competitive equilibrium in this market, all traders will have
perfect foresight about the evolution of prices.
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Table 1: Parameter estimates: log-normal specification for Fs
log s ∼ N

(

µ, σ2
)

Estimate Standard errora

K 0.0003 0.6750
r 0.0320 0.0101

µ -0.6706 0.0772
σ 2.2830 0.1268

a Obtained via bootstrap resamples.

Table 2: Parameter estimates: flexible piecewise-linear specification for Fs
Estimate Standard errorsa

Step 1 parameters

F−1
s (0.15) 0.0028 0.0066
F−1
s (0.25) 0.6994 0.2664
F−1
s (0.50) 1.2400 0.7377
F−1
s (0.75) 1.3344 0.4777
F−1
s (0.85) 1.6058 0.4253

Step 2 parametersb

K 0.1197 0.0351c

r 0.0072 0.0024

Fifth-order polynomial approximation employed for terminal value (cf. end of section 4).

aStandard deviation of parameter estimates obtained from 49 bootstrap resamples.
bNumber of simulation draws used to evaluate expected value function: L = 10.
cThese standard errors account for estimation error in the first-step estimates.
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Table 3: Summary statistics for each quota exchange
(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)
Year Month MCPa #non-b #participants: of which #zero bidsc #non-zero bidsd

participants #sellers (%success)e #buyers (%success)f

1997 9 15999.00 2065 509 219 63.4% 290 59.7% 2377 197
1997 10 15250.00 2178 396 248 57.2% 148 84.5% 2445 129
1997 11 15025.00 2103 471 253 84.6% 218 82.6% 2497 77
1997 12 15510.00 2155 419 163 94.4% 256 46.5% 2428 146
1998 1 16150.00 2146 428 126 91.2% 302 39.1% 2379 195
1998 2 16360.00 1995 579 182 85.7% 397 53.9% 2365 209
1998 3 16501.00 2042 532 214 93.0% 318 75.8% 2482 92
1998 4 15499.00 2127 447 212 27.4% 235 94.0% 2406 168
1998 5 14500.00 1999 575 247 52.2% 328 98.5% 2451 123
1998 6 14500.25 1949 625 178 86.5% 447 72.5% 2427 147
1998 7 15025.00 2128 446 105 88.6% 341 44.0% 2371 203

aCanadian dollars per kilogram of butterfat per day.
b Computed as 2574-(E), where 2574 is the number of producers who participated in at least one of the monthly quota exchanges between September 1997

and July 1998.
c ie. number of bidders who submitted zero bids, computed as (D)+(G)*(F)+(I)*(H).
d ie. number of bidders who submitted non-zero bids, computed as 2574-(J).
e % of sellers who sold in the exchange, i.e., who submitted bids at or below the MCP.
f % of buyers who bought in the exchange, i.e., who submitted ask prices at or above the MCP.
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Figure 1: Empirical CDF of quantity traded per trader/month
x-axis: quantity traded q

y-axis: % of producer/month observations where quantity traded ≤ q
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Figure 2: Estimated Policy Functions
Estimated policy function for September 1997.
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Piecewise-linear specification:
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x-axis: Log value of shock s
y-axis: quota transaction amount qt
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Figure 3: Estimated CDF of shock s
Estimated using equation (10).
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Five quantiles were estimated: 0.15, 0.25, 0.5, 0.75, 0.85.


