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Abstract

This paper o¤ers an explanation of rationally incomplete contracts where

incompleteness refers to unforeseen contingencies. Agents enter a relationship

with two-sided moral hazard in which a commitment to discard parts of the joint

resources may be ex ante e¢cient. This happens through costly legal dispute

which arises when contract terms are missing for the undesirable outcomes. We

show that an optimal contract needs only to specify the obligation for the more

litigious party to assure a certain output level - the threshold between foreseen and

unforeseen contingencies - and a linear sharing rule for the foreseen contingencies.

If litigation reveals some information about the e¤ort levels of the agents, less

costly dispute is typically needed and the allocation will improve.

Key words: incomplete contracts, unforeseen contingencies, burning money,

team production, contract law.

JEL classi…cation: D82, K12.



1. Introduction

A puzzling aspect about the simplicity of many contracts is their de…ciency or in-

completeness: terms are missing or contracts are silent about some contingencies.

Furthermore, incompleteness frequently leads to costly legal dispute. For legal

scholars, the phenomenon that legal contest arises because a contingency has not

been addressed in su¢ciently clear terms is the essence of contractual incomplete-

ness. Like other aspects of contract simplicity, this begs for an explanation. Why

are so many contracts open to con‡ict even though litigation-proof contracts are

not hard to write? This question seems pertinent to many types of contracts: to

contracts about commercial transactions like sales, franchises, patent leases and

joint ventures; to labor and executive compensation contracts; …nally, to con-

tracts in private life like marriage contracts and to many other situations where

explicit contracts are used. Take the case of a patent lease as an illustration. At

the outset of their relationship, the lessor and the tenant of a patent lease usually

set up a contract stating a …xed royalty and a (linear) user fee, but remain silent

about many contingencies. As an example for an unforeseen contingency, consider

the following event: the lessor sells a similar, but technically di¤erent device to

a competitor and the tenant unilaterally reduces the fee after the infringement.

It is startling that the parties do not choose to make provisions eliminating any

ensuing con‡ict in this case. It is not hard to come up with su¢ciently general

clauses encompassing all possible contingencies, e.g. a provision that assigns all

such risk to the tenant.

In this article, we propose an explanation of these phenomena stipulating

that there is an implicit agreement between the parties to remain silent about

bad outcomes. Undesirable outcomes are omitted because this raises the potential

for con‡ict, thereby serving as an incentive device against careless behavior or

free-riding.

The observation that unforeseen contingencies are typically undesirable out-

comes is a key element of this mechanism. If such a genuinely undesirable contin-

gency occurs, the question arises whether all parties have done enough to avoid it.

This question provides the backdrop against which con‡ict ensues. The dispute
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is about how to split the bill for the negative consequences. Dispute tends to be

wasteful, as has been shown in theory1; in practice, the single most prominent

form under which dispute destroys resources is through the legal system and its

costs.

The fact that destroying resources or “burning money” can be desirable for

incentives purposes has been recognized in the literature. This is in particular the

case in situations of team production or double moral hazard which is the frame-

work of the present paper. Incidentally, team production has played a prominent

role in incomplete contracts theory since the seminal contribution by Alchian

and Demsetz (1972). Alchian and Demsetz have argued that incentive problems

emanating from joint production are easier to solve within an organization than

via market-based contract solutions. Theoretical work since, however, has shown

that creating a common organization is not su¢cient to solve the team produc-

tion problem. Holmström (1979), Legros and Matsushima (1991) and Williams

and Radner (1988) show that the dilemma remains if the organization has to split

the joint surplus among the agents and their monitors. Therefore, one solution

which Holmström envisions is to discard a fraction of the surplus in some states.

Our model can be viewed as a direct follow-up on Holmström’s suggestion. The

original contribution of the present paper is to link the burning money motive to

contractual incompleteness.

To this end, we propose a general model of team production where parties

address their free-riding problem in contractual form. We show that the optimal

contract is characterized by (a) a linear sharing rule for good outcomes which are

the foreseen contingencies, and (b) a threshold between foreseen and unforeseen

contingencies and omission of the latter. In the patent lease example, an optimal

contract would be a contract which speci…es fee schedules if the contract is used,

but remains silent about the case where the contract is repudiated (the patent is

altered, is infringed or is insu¢ciently exploited). Implicitly, the contract contains

a break point, i.e. rational agents are aware of the fact that the contract will not

always be honored smoothly.

1Theoretical models demonstrating bargaining ine¢ciencies without refering to legal costs

are based on imperfections like bargaining externalities (e.g. Jehiel and Moldovanu (1994)) and

notably, asymmetric information (see the survey by Kennan and Wilson (1993)).
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The role of a court of law in this interpretation is to correct for the de…ciency of

a contract. By rendering a verdict on the con‡ict, the court “…lls in the contract”.

In doing so, the court “veri…es” the state of nature by establishing performance,

compliance, breach or negligence of the disputing parties. In our model, the court

tries to establish the unobservable e¤ort decision of the agents. This comes close

to what courts actually do when they “…ll in” an incomplete contract. To give

some examples, in labor contracts, “in an absence of a waiver of the breach, the

employer may recover damages from his employee ... for involving his employer in

loss through his negligence or wrongful act”2. Similarly, the “respondeat superior”

rule governing the liability of an employer, requires to establish whether or not

the employer was in control of the employee. Cooter and Ulen (1994) stipulate

in their textbook that for e¢ciency reasons, liability should be assigned “to the

party that was the cheaper preventer of, or insurer against, the contingency that

frustrated the contract”.3

In this regard, our model captures an element frequently overlooked in principal-

agent theory: unobservable actions or parameters need not automatically be ex-

cluded from contracting. However, if the agents decide to conditionalize their

contract on an unobservable variable, they implicitly leave it to the court to “…ll

in” the facts about the unobservables. Whether or not the court reveals informa-

tion about the liability of the parties is of secondary importance in our model.

We investigate the extreme case where the court takes random decisions with

respect to establishing e¤ort, in order to emphasize that it is the costliness rather

than the informativeness of the court decisions that constitutes the basis of the

incentive mechanism proposed here. This should not be misunderstood as a claim

that courts of law are ine¤ective when it comes to establishing the facts. On the

contrary, our paper shows that information production of the court is desirable.

This emerges from an extension to informative litigation. We show that the more

accurate the information that litigation reveals, the better for the contracting

parties because the discovery in court will be anticipated in the optimal contract

and enhance the incentive e¤ect of litigation.

An obvious question is why the constrained e¢cient arrangement should be
256 CJS 500.
3Cooter and Ulen (1988), p. 281.
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burning money in a legal dispute rather than, say, transferring them to a third

party. We suggest the following reason: the use of contentious contracts renders

the disposal of resources irrevocable, whereas allocating revenues to a third party

is vulnerable to coalition formation or renegotiation.

Besides the explicit contracts mentioned earlier, joint production or double

moral hazard is present in economic partnerships like law …rms and account-

ing …rms, in relationships with two-sided speci…c investments like upstream-

downstream relationships4, in employment contracts and in …nancial contracts5.

In all these cases, the following conditions seem to hold: (a) elements of two-sided

moral hazard are present; (b) there is a positive probability of the relationship

breaking up or costly con‡ict ensuing; (c) the threshold where such con‡ict is

expected to occur depends on the contract; (d) the consequences in this case are

not clearly speci…ed. These four properties are the basic ingredients of our model.

Whenever they occur jointly, then the implementation device analyzed out here

should be present in practice, consciously or unconsciously.

The comparison of our explanation of unforeseen contingencies to various

strands of the contracting literature reveals similarities and di¤erences. Incom-

plete contracts are often de…ned as contracts that do not conditionalize on “ob-

servable, but not veri…able” states of nature. The accepted explanation for this

type of contractual incompleteness is based on prohibitive transaction costs to

writing complete contracts or, which is equivalent, on bounded rationality.6 A

number of papers have formally endogenized the choice of incomplete contracts as

a rational response to transactions cost problems, notably by invoking complexity

costs.7

In our model, contingencies are both observable and veri…able. Veri…cation

costs are avoidable, but they occur as an artefact of the optimal contract. The
4For example, Hart and Moore (1988). The ensuing literature is surveyed in Hart (1995).
5For example, securities issues involve various parties (issuer, underwriter, rating agency).

Joint stockholdings of a family-dominated company is another example.
6Three di¤erent forms of transactions costs are generally invoked: …rst, complexity costs in

discerning large sets and intricately de…ned states of nature; second, legal veri…cation costs in

…guring out what the actual state is; third, costs of forecasting all possible contingencies. See

Grossman and Hart (1986) for the seminal contribution and Hart (1995) and Tirole (1994) for

surveys.
7Notably, Anderlini and Felli (1994)(1996) and MacLeod (1996).
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conventional view on incomplete contracts is one of bounded rationality (parties

know that a complete contract would serve them better). The papers explaining

incompleteness by means of complexity costs o¤er a boundedly rational explana-

tion of incomplete contracts. In our explanation, contractual incompleteness is

unboundedly rational : parties can deal with any complexity of the situation, but

they know that a complete contract (which they could draw up at no cost) would

be worse.8 Thus, the recent criticism of incomplete contracts models based on

unveri…ability9 does not extend to our model.10

There are some similarities with the costly state veri…cation (CSV) and au-

diting literature.11 In this work as well as in our model, veri…cation costs are

avoidable, but they occur for incentive reasons and only for bad outcomes. How-

ever, in the CSV literature, contracts are complete and there are adverse selection

problems about the outcome. In our model, contracts are incomplete and there

is no lack of observability of the outcome. The relationship to the literature on

the breach of contracts and breach remedies is similarly complex.12 On the one

hand, breach of contract is frequently a special case of the legal con‡icts that

our model addresses.13 On the other hand, not every breach of contract leads to

con‡ict, particularly not if the contract is su¢ciently complete about the breach

remedies.

The paper is organized as follows. The model is laid out in Section 2. Section

3 introduces to the role of dispute as an implementation device. In Section 4, the

optimal contracts are developed. In Section 5, we introduce informative litigation.

In Section 6, we discuss the robustness of our mechanism. Section 7 concludes.
8Segal (1995) is another paper where incompleteness is unboundedly rational.
9The criticism is whether unveri…ability, if modelled in a rational choice model, is a su¢cient

condition to explain incompleteness. See e.g. Tirole (1994).
10A similar di¤erence arises with respect to the dynamic properties of incomplete contracts:

within the transaction costs view, contracts which are initially incomplete may be dynamically

completed in a time consistent manner as events evolve and therefore not lead to a di¤erent

allocation than a complete contract. A formalization of this idea is in Maskin and Tirole (1997).

See also Hart (1987), p. 753.. In our model, there is no time consistent completion of incomplete

contracts.
11Townsend (1979), Diamond (1984) and Gale and Hellwig (1985).
12See Shavell (1984), Edlin and Reichelstein (1996) and Che and Chung (1996).
13Breach of contract is typically one-sided, the break-up of relationships often two-sided and

con‡ict may not lead to a break-up at all.
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2. The model

The model depicts two agents 1 and 2 concluding a contract about a joint pro-

duction e¤ort. There are two dates. At date 0, they sign the contract. The joint

output is determined by the agents’ e¤orts between date 0 and date 1. At date

1, the joint output is realized and distributed according to their agreement.

Let ai denote the level of e¤ort of agent i; i 2 f1; 2g, which is chosen from

the convex set Ai . The cost of e¤ort is expressed by the cost function c(ai)

which is increasing and strictly convex. The function c(ai) is the same for both

agents. The two agents are risk-neutral and utility is transferable. x 2 X = [0; ¹x]

will denote a generic level of output. The joint output function is stochastic

and characterized by the cumulative distribution function F (¢ja1; a2) and density

f(¢ja1; a2), with f(xja1; a2) > 0 over X for all (a1; a2) 2 A1 £ A2. Fi(xja1; a2) =

@F (xja1; a2)=@ai and fi(xja1; a2) = @f(xja1; a2)=@ai denote the partials. Let

E[xja1; a2] =
R
X x f(xja1; a2)dx denote the expected output. We assume that

E[xja1; a2] is concave in (a1; a2). With transferable utility, the e¢cient action

pro…le (ae1; a
e
2) solves:

(ae1; a
e
2) 2 arg max

(a1;a2)
E[xja1; a2] ¡ c(a1) ¡ c(a2):

Moreover, we assume:

Assumption 1. The joint output distribution function satis…es

f1(xja1; a2) = k(a1; a2) f2(xja1; a2)

for all x 2 X and (a1; a2) 2 A1 £ A2, where k(a1; a2) is a single-valued and

positive function.

This assumption says that the likelihood ratios of any e¤ort pro…le (a1; a2)

are collinear.14 Then, there is no way to infer the contribution of each agent in

terms of e¤ort from a particular level of output. This has been identi…ed as the

14This assumption comprises many standard production function with conventional speci…ca-

tions of stochastic shocks, including the class of functions of the form x = Q[g(a1; a2); "], where

" is an additive or a multiplicative productivity shock.
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key condition for a team problem to prevail.15

Assumption 2. E¤ort ameliorates the distribution function in the sense of

the monotone likelihood ratio property (MLRP):

@
³
f1(xja1;a2)
f (xja1;a2)

´

@x
> 0; 8x 2 X; (a1; a2) 2 A1 £ A2:

MLRP is a standard assumption in principal-agents models, which is typically

made to demonstrate the monotonicity of incentives contracts. It implies …rst-

order stochastic dominance of the output with respect to e¤ort.

The joint output of production is veri…able, but e¤ort is only privately ob-

servable by each of the agents. Contracts may be contingent on the output alone

or contain performance requirements. In the …rst case, contracts are enforceable

at no cost. In the second case, agents must rely on a mechanism which enforces

the revelation of the unobservable information. The only option16 is to legally

enforce provisions about the unobservable e¤ort level. If there is legal action, the

role of the court is to sort out whether there has been fault of the parties. The

court has to render a verdict, but is e¤ectively impeded from establishing the

facts as the actions are unobservable. We capture this by the assumption that

the verdict of a court is stochastically independent from the agents’ true choices

of e¤ort, i.e. agents have no impact on their chances to prevail in court if they

increase or reduce their e¤ort levels. This extreme case implies that the speci…ed

“required” e¤ort level plays no role for the allocation because the true e¤ort level

remains as unobservable in court as out-of-court.17

With the required e¤ort level being irrelevant, the contractual choice con-

cerning legal enforcement is about the states where contest is possible, e.g. states

where a performance requirement applies. For example, contest can be excluded
15Whenever Assumption 1 holds, then a balanced sharing rule leading to (ae1; a

e
2) does not

exist. See Williams and Radner (1988). A similar condition for the discrete case is contained in

Legros and Matsushima (1991).
16A self-enforcing contract giving incentives for voluntary revelation of private information is

not possible if Assumption 1 holds.
17This provides an additional insight on contractual incompleteness, because the parties will

do as well by remaining silent about required performance and to leave it to the court to “…ll

in” this requirement according to the law.
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by a water-tight provision for a certain outcome, like a waiver of one of the two

parties to ever claim damages under a certain outcome. Contest can also be ex-

cluded by a clause stating that a certain output level x is regarded as su¢cient

proof that both parties met their performance requirements. On the other hand,

contest can be included if the contract is insu¢ciently speci…c about a certain

state or is not tight enough to exclude litigation. Let S1 ½ X denote the set of

states where agent 1 can invoke a contestable performance requirement binding

agent 2 and bring an action against agent 2 for the payment of damages, and vice

versa for x 2 S2:
18 If x 2 S1 \ S2; then both agents could bring an action. We

assume that in this case, only one law suit is accepted in court, depending on a

chance move by nature: either law suit is accepted with probability 1
2 .

Let S = S1 [S2 denote the set of all states where at least one agent can bring

an action. We say that if x 2 S, then x is a contestable state. A contract where

S = ; is called a complete or litigation-proof contract. Whenever S non-empty,

the contract is called a contentious contract.

For any outcome state x 2 Si, the contract may specify the damages Di(x)

that the plainti¤ (agent i) recovers from the defendant (agent j) if the court rules

that performance was insu¢cient. We assume that there are legal or institutional

bounds to applicable damages which we denote by Dmax(x): For example, under

United States commercial law, punitive damages in contract disputes (damages

exceeding the monetary loss of the victim) are routinely denied in court even if

the contract expressly contains provisions for higher damages. We simply assume

that an e¤ective bound on damages exists somewhere, with @Dmax(x)=@x · 0.

Among the many prior models on pre-trial settlement and litigation, we choose

to adapt Schweizer’s (1989) because it is the simplest model with two-sided asym-

metric information.19 Only the essential features are summarized here, leaving a

complete account of this model to Appendix A. In any contestable state x 2 S,

both parties have private information regarding the merit of the case: each agent
18Note that, even if the contract is silent about the required performance, there will usually

be a commercial law imposing performance standards, either statutory law like the Uniform

Commercial Code or judicial precedents. This permits to contest each others e¤ort whenever

the contract does not exclude so, for example via waiver clauses.
19Two-sided asymmetric information is desirable because we want to endogenize the choice of

defendant and plainti¤ as a function of their litigiousness.
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observes a signal which has two possible outcomes, “strong” or “weak”. The sig-

nals are obtained at the same time when agents choose their actions. They are

independently distributed. Whether the case is won or not depends on the pair of

signals. After having received their signals, parties have the opportunity to settle

their dispute.20 There is no cost to settlement bargaining. The defendant makes

a settlement o¤er and the plainti¤ decides whether to accept or to reject the o¤er.

If she rejects, the case is going to court, at a cost which is a deadweight loss. We

assume that this cost is linear in Di(x) and denote it by l ¢Di(x). l ¢Di(x) is split

according to the English Rule, i.e. the loser pays all.

Of the equilibria of this game, we consider only one, the least-cost fully re-

vealing equilibrium.21 The logic of this separating equilibrium is that the plainti¤

uses the probability to reject an o¤er as a screening device inducing the two types

of the defendant to make truthful settlement o¤ers. In this equilibrium, only the

o¤er of a “strong” defendant is sometimes rejected while the o¤er of a “weak”

defendant is always accepted. Let p(1) ( p(2) ) denote the probability that agent

1 (agent 2) receives the “strong” signal. The higher p(1) or p(2), the more likely

is pretrial settlement bound to fail. Therefore, we refer to p(1) and p(2) as mea-

suring how litigious the agents are. Let p(i) ( p(j) ) denote the litigiousness of

the agent who is designated as plainti¤ (defendant). Let q(i) denote the (endoge-

nous) probability of acceptance by plainti¤ i of a settlement o¤er proposed by

the “good” defendant j. The expected payo¤s of plainti¤ and defendant for a

case brought by agent i in state x 2 Si will be denoted as ¦p(x; i) and ¦d(x; i),

respectively, where ¦p(x; i) ¸ 0 ¸ ¦d(x; i). C(x; i) will denote the expected net

cost of litigation in this case. Then:

C(x; i) = ¡
³
¦p(x; i) + ¦d(x; i)

´
= p(j)(1 ¡ q(i)) l Di(x) ¸ 0: (2.1)

20We exclude renegotiation prior to reception of the signals. The idea is that the signals

are a reduced form which really tries to capture pretrial discovery e¤orts. If agents can and

will acquire information prior to litigation, they can and will do so also prior to settlement

bargaining. It can be shown that asymmetric information obtains as an endogenous outcome of

costly discovery, but this would come at the expense of a considerably more complicated model

structure.
21This is the equilibrium where the o¤er of the defendant is fully revealing (concerning his

type) and where the probability of the plainti¤ accepting the o¤er is maximized (Riley outcome).

This is also the single outcome surviving all standard re…nements developed for signaling games

(universal divinity or stable outcome).
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In the expression of C(x; i), all transfers between the agents cancel out and

only the deadweight cost remains. This cost is equal to l ¢ Di(x) times the prob-

ability that the settlement o¤er is rejected which is p(j)(1 ¡ q(i)). A useful

observation is that C(x; i) is (linearly) increasing inDi(x). In Appendix A, we

show that C(x; i) is more sensitive to the litigiousness of the defendant than to the

litigiousness of the plainti¤. The intuition is simple: the plainti¤ adopts a mixed

strategy making the “weak” defendant indi¤erent between a truthful o¤er and

mimicking a strong type. The more likely it is that the defendant is strong, the

more often must a strong o¤er be rejected to keep the weak defendant’s incentives

in balance. Hence, if D1(x) = D2(x), we obtain

C(x; i)
>
=
<

C(x; j) , p(i)
<
=
>

p(j)

We summarize the instruments available for contracting. Recall that parties

can choose the set of contestable states S as well as a sharing rule and a function

of damages for contestable states. Thus, any feasible contract can be represented

as f¯(x); D1(x);D2(x); S1; S2g, where ¯(x) is a sharing rule of the joint output,

Di(x) is the (contingent) amount of damages that can be demanded by agent i in

state x 2 Si, and Si is the set of contestable states x where agent i is designated

as plainti¤.

3. Dispute as an implementation device

Let R1(x) denote agent 1’s and R2(x) denote agent 2’s ex-ante expected litigation

payo¤ in state x: That is, R1(x) = ¦p(x; 1) and R2(x) = ¦d(x; 1) if x 2 S1nS2

(agent 1 is plainti¤) and R1(x) = ¦d(x; 2) and R2(x) = ¦p(x; 2) if x 2 S2nS1

(agent 2 is plainti¤). Moreover, R1(x) = 1
2

³
¦p(x; 1) + ¦d(x; 2)

´
and R2(x) =

1
2

³
¦d(x; 1) + ¦p(x; 2)

´
if x 2 S1 \ S2. Of course, R1(x) = R2(x) = 0 for x 2

XnS since contest is excluded for these states. We denote agent 1’s and agent

2’s (date 0) expected utility by V 1(K; (a1; a2)) and V 2(K; (a1; a2)) respectively,

where K = f¯(x);D1(x);D2(x); S1; S2g is the contract. Taking into account

budget balancing, we have:

V 1(K; (a1; a2)) =
Z

X
¯(x) f(xja1; a2)dx ¡ c(a1) +

Z

X
R1(x)f(xja1; a2)dx

V 2(K; (a1; a2)) =
Z

X
(1 ¡ ¯(x)) f(xja1; a2)dx ¡ c(a2) +

Z

X
R2(x)f(xja1; a2)dx

10



Incentive compatibility of an action pro…le (a1; a2) requires that

ai 2 arg max
âi

V i(K; (â1; a2)); for i = 1; 2:

It is convenient to apply the …rst-order approach (FOA) to our analysis. The

FOA approach allows us to replace the set of incentive compatibility constraints

by a pair of …rst-order conditions.22 Technically speaking, this approach requires

additional assumptions ensuring that the expected utility function V i(K; (a1; a2))

is strictly concave in agent i’s action23. The following …rst order conditions are

then necessary and su¢cient for interior solution to the agents’ e¤ort problems:
Z

X
¯(x) f1(xja1; a2)dx ¡ c1(a1) +

Z

X
R1(x)f1(xja1; a2)dx = 0 (3.1)

Z

X
(1 ¡ ¯(x)) f2(xja1; a2)dx ¡ c2(a2) +

Z

X
R2(x)f2(xja1; a2)dx = 0 (3.2)

It is useful to begin with a complete contract as a benchmark. Let (ac1; a
c
2)

denote the action pro…le which is attainable under a complete contract. Recall

that for a complete contract, S = ; and hence,
R
X Ri(x)fi(xja1; a2)dx = 0; i =

1; 2: The …rst order equations (3.1) and (3.2) show then that (ac1; a
c
2) is determined

as the solution to the …rst-order conditions
R
X ¯(x) f1(xjac1; ac2)dx ¡ c1(ac1) = 0

and
R
X(1 ¡ ¯(x)) f2(xjac1; ac2)dx ¡ c2(ac2) = 0. The ine¢ciency of this allocation

can be seen from the fact that the optimal allocation (ae1; a
e
2) is determined by

the …rst-order conditions
R

xfi(xjae1; ae2)dx ¡ ci(aei ) = 0; i = 1; 2. Whatever

the splitting rule ¯(x); these conditions are incompatible. This is the well-known

result of the team production literature that a balanced sharing rule does not allow

to accomplish this task for both agents simultaneously if Assumption 1 holds24.

The attainable action pro…le (ac1; a
c
2) is inferior to the …rst best allocation.

22Regarding this approach, consult Mirrlees (1979), Rogerson (1985) and Jewitt (1988) for one-

dimensional principal agent models and Sinclair-Desgagné (1994) for multi-dimensional principal

agent problems. Su¢cient conditions for the validity of this approach for the partnership problem

are also provided by Williams and Radner (1988).
23 If p(1) = p(2), a su¢cient condition for the FOA to be valid here is the Mirrlees (1979)

- Rogerson (1985) convexity of the distribution function condition (CDFC), which says that

Fi(xja1; a2) is strictly increasing with ai: If p(1) 6= p(2), then an additional boundary condition

on the slope of Dmax(x) is needed. For example, the following condition is su¢cient: ¾ <
1
2

h
1¡ c1(a)¡kc1(0)

E1 [xja;a]

i
; where ¾ ¸ ¡@Dmax(x)=@x; a < ae is the highest implementable level of

e¤ort and k is the minimum value of function k(a1;a2) over [0; a]£ [0; a] :
24Using Assumption 1 and adding up the FOC, one can see that the attainable allocation

solves
R
xf1(xjac1; ac2)dx¡ c1(ac1) = kc2(ac2) and

R
xf2(xjac1; ac2)dx¡ c2(ac2) = c1(ac1)=k.
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What is the role of legal dispute? Suppose that the parties want to implement

an action pro…le (a1; a2) > (ac1; a
c
2): A contentious contract can achieve this by

introducing an additional marginal punishment into at least one of the two …rst

order conditions: either
R
X R1(x)f1(xja1; a2)dx > 0; or

R
X R2(x)f2(xja1; a2)dx >

0 or both.

It turns out that only the net costs of litigation are relevant for implementa-

tion. The reason for this is simple: since there is no way to determine the agents’

relative e¤ort levels from the observation of the joint output, all that matters

for incentives purposes is the sum of the punishment that can be in‡icted to the

parties and hence damages transfers between the agents cancel out. Let C(x)

denote this net cost of litigation which is equal to:

C(x) =

8
>>>>><
>>>>>:

0 for x 2 XnS
C(x; 1) for x 2 S1nS2

C(x; 2) for x 2 S2nS1

(12C(x; 1) + 1
2C(x; 2)) for x 2 S1 \ S2:

The additional punishment can be positive by an appropriate choice of the

set S. In short, litigation plays the role of a “budget breaker” allowing to impose

penalties for both agents simultaneously.

4. Optimal contracts

In this section, we characterize the optimal contracts. The relaxed optimization

problem can be written as:

max
¯(x); D1(x); D2(x);S1;S2

V 1(K; (a1; a2)) + V 2(K; (a1; a2)) (4.1)

s.t.
R
X

¡
¯(x) + R1(x)

¢
f1(xja1; a2)dx ¡ c1(a1) ¸ 0 (4.2)

R
X

¡
1 ¡ ¯(x) + R2(x)

¢
f2(xja1; a2)dx ¡ c2(a2) ¸ 0 (4.3)

Di(x) 2 [0;Dmax(x)] ; i = 1; 2; 8x (4.4)

Si ½ X; i = 1; 2; (4.5)

where constraints (4.2) and (4.3) are the incentive compatibility constraints

for the two agents and constraint (4.4) recalls the existence of legal limits on dam-
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ages. Moreover, individual rationality constraints of the form V 1(K; (a1; a2)) ¸ 0

and V 2(K; (a1; a2)) ¸ 0 must hold. These can w.l.o.g. be assumed to be satis-

…ed because there are no limited liability constraints.25 Note that the objective

function (4.1) is equal to the net surplus:

V 1(K; (a1; a2)) + V 2(K; (a1; a2)) =

E[xja1; a2] ¡
2X

i=1

c(ai) ¡
Z

X
C(x)f(xja1; a2)dx:

We denote by x̂(a1; a2) the (unique) output level such that f1(xja1; a2) · 0 for

all x · x̂ and f1(xja1; a2) > 0 otherwise26. The basic properties of the solution

are contained in Lemma 1:

Lemma 1. The following contract K¤ = f¯¤(x);D¤
1(x);D¤

2(x); S¤1 ; S
¤
2g is optimal

and leads to an action pro…le (a¤1; a
¤
2) such that a¤1 > ac1 and a¤2 > ac2 for S¤ 6= ;:

1. The sharing rule is linear: ¯¤(x) = ¯¤x + B¤; 8x, where B¤; ¯¤ 2 <:

2. Dispute occurs for all states below some threshold of dispute x¤ : S¤ =

fx 2 X : x < x¤g, where x¤ is such that 0 · x¤ < x̂(a¤1; a
¤
2).

3. A performance requirement applies only to the more litigious agent: S¤1 = ;
if p(1) > p(2); or S¤2 = ; if p(2) > p(1). If p(1) = p(2), then either of the

agents or both can be assigned the performance requirement.

4. In each contestable state x 2 S¤, damages are at the maximum feasible

level: D¤
i (x) = Dmax(x).

Proof. See the Appendix.

The characteristics of this contract are closely linked to the collinearity of the

likelihood ratios. This implies that there is no way to determine ex post which

agent has been more responsible for an observed output. On the one hand, this

is the reason why a linear sharing rule can do as well as any other (non-linear)

25 Individual rationality can always be satis…ed by adding or subtracting a constant to ¯(x):

The value of this constant will depend on the bargaining power of the agents.
26 If MLRP holds, then there exists, for each action pro…le (a1; a2), a unique output level

x̂(a1; a2); x < x̂(a1; a2) < x, such that fi(xja1; a2) · 0 8x · x̂(a1; a2).
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balanced splitting rule.27 On the other hand, the impossibility to tell who has

been the likely deviator is also the reason why an optimal incentive scheme relies

on extra punishment via a costly dispute. The most e¤ective impact on incentives

is brought about by invoking the dispute option for those states whose probability

of occurrence is most drastically increasing if one of the agents provides too

little e¤ort. Under MLRP, this is true for the outcomes in the lower tail of the

distribution. This explains why the contestable states should be chosen to be the

worst outcomes of the joint production e¤ort.

An important feature of the optimal contract K¤ is that the con‡ict thresh-

old x¤ is inferior to the value x̂, the point where the maximal increase in the

cumulative distribution induced by an agent’s deviation occurs: Intuitively, if the

dispute threshold were any higher than x̂; the incentive e¤ect would be lower

and the deadweight cost higher than at x̂; which cannot be optimal. This result

con…rms our interpretation of contestable states as undesirable outcomes, where

undesirable has two meanings: these outcomes represent the worst outcomes of

the joint production function and the probability of these outcomes increases if

an agent deviates. This corresponds to how legal scholars think about unforeseen

contingencies: they are described as outcomes which the parties should have tried

to avoid. Hence, in contract law, the response to an unforeseen contingency is to

search for the agent who caused the unwanted outcome or who would have been

best placed to avoid it. Our analysis vindicates this view.

The improvement in the e¤ort allocation depends on how much of the joint

product can be destroyed in each contestable state, i.e. the net cost of litiga-

tion. This net cost should be maximized in order to keep the threshold x¤ as

low as possible. This explains the last two items of Lemma 1. On the one

hand, the probability of a costly litigation increases with the contractual dam-

ages. Hence, maximal net costs of litigation are achieved by imposing maximal

penalties, Di(x) = Dmax(x): On the other hand, the probability of a litigation in-

creases with the chances to face a litigious defendant, i.e. a defendant more likely

to receive a “strong” signal. This explains why the assignment of the performance

27 Intuitively, any attempt to raise the slope of the incentive schedule for one agent with a

non-linear contract comes at the cost of symmetrically weakening incentives for the other agent.

See Bhattacharyya and Lafontaine (1995) for a demonstration for an output function which is

a special case of ours.
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requirement is asymmetric: di¤erences in the attitude of agents towards litigation

are optimally exploited. If such di¤erences do not exist, i.e. if p(i) = p(j), then

the choice of the defendant is indeterminate.28 It is always su¢cient to make

just a single agent liable, even though both parties are perfectly aware of the

two-sidedness of the moral hazard problem. Thus, one insight of our model is

that one-sided performance requirements do not mean that in reality, the moral

hazard problem is one-sided. It simply means that the contract is optimized by

exploiting perceived di¤erences.

We now turn to our main result which simpli…es the provisions for contestable

states:

Proposition 1. Let D̂i(x) be the damages awarded if the plainti¤ wins: Sup-

pose that D̂i(x) = minfDi(x); Dmax(x)g if Di(x) is speci…ed in the contract and

D̂(x) = Dmax(x) if not. Then, the optimal contract K¤ is equivalent to a contract

containing only the following provisions:

1. If p(1) 6= p(2), the more litigious of the agents commits to deliver an output

of x¤ or more. If p(1) = p(2), either of the agents or both commit to deliver

an output of x¤ or more.

2. A linear sharing rule for all x ¸ x¤:

Proof. See the Appendix.

The additional element of Proposition 1 over Lemma 1 is that, when max-

imal damages are una¤ected by the terms of a contract, the optimal contract

can remain silent about contestable states altogether and contestable states can

be viewed as truly unforeseen contingencies. In practice, many contracts ex-

hibit features like this: they impose a performance level for the agents and take

satisfactory performance for granted by not specifying what happens if the defen-

dant does not deliver. An optimal contract corresponding to Proposition 1 can

obviously be written in a very simple form, for example like this:

28The plainti¤ who is liberated from a performance requirement receives in turn incentives by

receiving a higher share of the joint surplus. There must be a compensation for this di¤erential

treatment: usually, the designated plainti¤ will make a lump-sum payment B to the designated

defendant:
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“Agent 2 has to deliver an output of x¤ (or better). After ful…llment, agent 1

makes a lump-sum payment of B¤ and retains a share of ¯¤ of the output x.”

No mention is made what happens if x < x¤. The rationale for this omission

is that …lling in by the court will be just as good as explicit penalties. This result

is based on the following two insights.

First, this conclusion depends of course on the assumption that the dam-

ages will be Dmax(x) if the contract is silent about contentious states. A ratio-

nal plainti¤ will always seek the maximum damages. This leads us to conclude

that nothing is to be gained by explicitly providing applicable penalties. For, if

Di(x) < Dmax(x), then the contract is not optimal. If Di(x) = Dmax(x), then

the penalty need not be mentioned in the contract. It follows that the optimal

contract can be silent about the function Di(x):

We illustrate the plausibility of the condition in Proposition 1 by means of

two examples. In commercial contracts, punitive damages are routinely denied in

court, even if a contract expressly grants higher damages, setting the maximum

amount which can be obtained at the full restitution of the defendant’s loss.

In terms of our model, this would amount to Dmax(x) = x¤ ¡ x. But then,

the plainti¤ can and will seek full restitution even if …nes are not mentioned in

the contract. Divorce law is the other example. There is an obvious limit on

the compensation that spouses can demand, namely …fty percent of their joint

wealth. Marriage contracts (like separation of goods) can only limit this amount

and thus reduce the potential for con‡ict, but not increase it.

Second, we consider what the contract should determine concerning the split-

ting rule ¯(x) in case of a bad outcome x < x¤: When rendering a verdict, the

court …xes also a splitting rule ¯(x): either by con…rming the rule in place, or by

modifying it, or by …lling in a splitting rule in case the contract does not mention

one. Recall that we de…ned the damages to be the di¤erence in the plainti¤’s

total revenue if she wins the trial as compared to the case where she loses it.

This di¤erence will be …xed at Dmax(x). It is straightforward to show that the

ine¢ciency in the settlement bargaining game depends only on the di¤erence in

the plainti¤’s payo¤ between a won and a lost case. The penalty depends on

what is at stake for the parties in the dispute which is the di¤erence between the
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payo¤s in both cases, not their absolute level.29

To complete our analysis, it is of interest to know when litigation would ac-

tually be part of an optimal contract, i.e. when x¤ > 0. In fact, this is the case

whenever the joint output distribution function is such that the likelihood ratio
f1(0jac1;ac2)
f (0jac1;ac2)

is small. More precisely, we …nd:

Corollary 1. The optimal contract will be contentious if
R
x x f1(xjac1; ac2)dx ¡ c1(a1)R
x xf11(xjac1; ac2)dx ¡ c11(a1)

f1(0jac1; ac2)
f(0jac1; ac2)

> 1 : (4.6)

Proof. See the Appendix.

In other words, if condition (4.6) holds, then there exists a non-empty set

S ½ [0; x̂(ac1; a
c
2)] for which the marginal return of an increase in e¤ort with

respect to saved litigation costs outweigh its marginal cost.

5. Informative litigation

In the model discussed so far, we have assumed that the prospect of agents to

prevail in court is independent of their e¤ort. This abstraction was made for

simplicity. Often, the court can reconstruct at least some indications about the

e¤ort. In short, the e¤ort choice should in‡uence the probability with which the

agents expect to prevail in court.

Recall that agents’ chances to prevail on court depend on private signals. In

the basic model, the signals were uncorrelated with the true performance levels

(see Appendix 9.9). By contrast, in this section, we capture the idea that the court

is partially successful in retrieving information by assuming that the probabilities

of the signals “strong” and “weak” depend on the agents’ unobservable actions.

Hence, the merit of the case is expected to be weaker for an agent who has

deviated. The signal probabilities are then functions of the e¤ort choices. We

denote by pI(ai) for agent i (the designated plainti¤) and by pI(aj) for agent

29There might be an additional reason to remain silent about damages, which is that it creates

uncertainty about what the parties perceive would be likely or realistic claims for damages. Thus,

a second element of asymmetric information about the amount of damages may come into the

play which, in a separating equilibrium, could increase the probability of a failure of pre-trial

settlement bargaining.
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j (the designated defendant) the probability to observe the strong signal if she

takes action ai and aj , respectively. We say that litigation is informative if the

signal pI(ai) is such that:

d pI(ai)

d ai
> 0 8 ai; i 2 f1; 2g

If litigation is informative, the conditions for incentive compatibility of a cer-

tain e¤ort level change.30 In fact, an agent who deviates to a worse action ai < a¤i
can expect to receive a worse signal that is indicative for the likely cost to be borne

by her. A deviation in‡icts an expected punishment upon the deviator. There-

fore, one may suspect that an increase in the correlation of the signals with actions

will make the use of contentious contracts a more e¢cient instrument. We restrict

attention to symmetric models, i.e. f(xja; a0) = f (xja0; a) 8 (a; a0) 2 A1£A2 and

pI(a1) = pI(a2) if a1 = a2. For our comparison in Proposition 2, we relate the

signal probabilities pI(ai) ( pI(aj) ) to corresponding probabilities in a model

which is identical except that signals are uninformative. For the latter, we keep

the notation p(i) ( p(j) ). We use the following notation: (aI ; aI) denote the

optimal allocation in the informative case, (a¤; a¤) in the uninformative case, and

SI and S¤ denote the corresponding optimal sets of dispute states.

Proposition 2. Suppose that pI(a¤) = p(i) = p(j). Then, the following results

hold for the comparison of the symmetric allocations (aI ; aI) and (a¤; a¤) :

1. The set of dispute states SI needed to implement (a¤; a¤) is smaller, SI <

S¤.

2. The allocation is pareto-superior in the informative case.

Proof. See the Appendix.

In short, having informative litigation is unambiguously good news if the

quali…cation in the Proposition hold. Note that, under these conditions, both

agents are equally litigious at the optimal solutions. Then, informed litigation

decreases the necessary scope of dispute states and makes implementation less

costly. As a consequence, higher e¤ort levels will be implemented.
30See Appendix.
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The intuition for the impact of information in litigation can also be explained

by the analogy to monitoring. An informed court retrieves information about

the e¤ort levels, which were hitherto unobservable. Because the verdict is condi-

tional on this information, the outcome compares to a situation where a monitor

(as in Alchian and Demsetz’ proposal) obtains information on the e¤ort levels

and rewards or punishes the agents accordingly. Obviously, this can improve the

situation even if monitoring is not very accurate, as long as the monitor obtains

some information in a statistical sense. The accuracy of jurisdiction is re‡ected

in the present model by the functions pI(aj) and pI(ai)31. Suppose for a mo-

ment that the court is a perfectly informed monitor. Relaxing the independency

assumption, it could then adjudicate as follows:

pI(a1) =

8
>>><
>>>:

1 if a2 < aI

0 if a2 ¸ aI if agent 1’s e¤ort is less than aI

1
2 if a2 ¸ aI if agent 1’s e¤ort is aI or higher

and correspondingly concerning agent 2.

In other words, the adjudication, as measured by these functions would be

discontinuous around the targeted e¤ort levels, for example the e¢cient levels aI .

It is not hard to see that this adjudication can implement the e¢cient allocation,

provided that damages Dmax(x) are large enough. This is of course only possible

if the court were a perfect monitor which is quite unrealistic. But the same

logic carries over: the better the court is informed, the steeper the expected

punishments and rewards that can be in‡icted upon agents as a statistical function

of their true e¤ort levels. It can be shown that the e¢ciency gain of the allocation

depends monotonically on feasible damages Dmax(x).

Another comparative statics question is how the e¢ciency gain depends on

the quality of information, i.e. on the slope of the functions pI(a1) and pI(a2)?

This amounts to the comparative statics analysis of the impact of an increase in

the of pI(a1) and pI(a2). We add an informal discussion of this question. It turns

out that an increase in the slope of d p
I (ai)
d ai

is not su¢cient to get a monotonicity

result. Similar to the condition stated in Proposition 2, an additional assump-

31To be precise, it is actually also measured by ®dp which is, for simplicity, kept con-

stant throughout the paper. Extending informativeness to ®dp would not change the results

qualitatively.
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tion concerning the absolute values of signal probabilities around a¤ is needed.

With this quali…cation, the comparative statics is actually monotonic. That is,

the higher the slope of the functions pI(aj) and pI(ai) etc., the smaller the

necessary set of contestable states, the higher the implementable e¤ort allocation

and welfare.32

6. The robustness of litigation

Dispute is an inherently wasteful implementation device. The reader is probably

wondering if there is not a less expensive way to achieve the same goal, for

example by transferring the resources to a third party. In this section, we propose

an explanation why wasteful legal dispute may be preferred. We argue that

any attempt to transfer these outlays may not be robust against renegotiation

or collusion. By contrast, the burning money mechanism created by contract

incompleteness appears to be well suited to withstand strategic opportunism. We

discuss renegotiation, coalition formation and …nally corruption of the judiciary.

6.1. Renegotiation-proofness

Imagine that agents envision the following solution. Instead of wasting surplus in

a costly dispute, they write a complete contract including the following provision:

an amount Dmax(x) is paid to a third person like a charitable fund whenever the

joint output x is less than the threshold x¤: Hence, if the expected donation is

equivalent to the wasted resources through litigation in the contentious contract,

then incentives should be the same. The important drawback, however, is that

the contractual promise would not be renegotiation-proof. Once a bad outcome

x < x¤ is realized, parties would quickly agree to renege on the promised donation.

Because the contribution is a gift, the bene…ciary has no legal title to sue.

To show this formally, one simply supposes that renegotiation is possible after

the actions (a1; a2) are sunk and agents observe their signals. An equilibrium is

renegotiation-proof if the initial contract remains in place after the renegotiation

stage, for all states x: However, for all states x < x¤, whoever is making the last

o¤er will …nd it bene…cial to propose a split of Dmax(x) rather than letting the

32A formal condition behind this comparative statics analysis, called co-monotonicity, can be

added and corresponding results are straightforward extensions of the proof of the Proposition.
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initial contract in place. Since the state is perfectly observable, the other party

will always accept.

By contrast, the separating equilibrium of the pre-trial settlement game with-

stands renegotiation, because the contract incompleteness forces renegotiation to

take place in a situation of asymmetric information. To see this, simply note

that the pre-trial settlement game is in itself a renegotiation stage. Because of

asymmetric information about the merit of a court case, ex post ine¢ciency is

unavoidable in a separating equilibrium.

6.2. Coalition-proofness

The renegotiation problem could be avoided by signing an explicit contract with

the third party. For example, the agents might …nd a third party agreeing to pay

them an amount of
R x¤ C(x)f(xja¤1; a¤2)dx up front, in exchange of the transfer of

C(x) in each state x < x¤. Not only is the
R x¤ C(x)f(xja¤1; a¤2)dx not wasted, it is

also redistributed to the agents. Hence, they should prefer this to a contentious

contract. The problem with this solution is that it is not coalitions-proof. Any

of the two agents, say agent i, could approach the third party with the following

proposal:

“Agent i chooses a lower e¤ort level than a¤i ; the probability of a bad outcome

increases marginally, which will bene…t the third party by
R x¤ C(x)fi(xja¤i ; a¤j )dx. Both agree on a split of this additional transfer such that

agent i is enticed to lower her e¤ort below a¤i and both parties are better o¤.”

In other words, agent i and the third party can pro…tably collude at the

expense of agent j.

To show this more rigorously, we invoke the concept of Coalition-Proof Nash

Equilibrium (CPNE) (Bernheim, Peleg and Whinston (1987)). Loosely speaking,

a Nash equilibrium is coalition-proof if no coalition of players would …nd it ben-

e…cial to undertake a joint deviation or if any such pro…tably deviating coalition

would itself be undermined by a pro…tably deviating sub-coalition. The set of

CPNE is a subset of the Nash equilibria of a game.
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To apply this concept, we extend the game in the following way. We assume

that the agents have the option to transfer resources either to “players” or to

“sinks” which are assumed not to be players of the game33. Concerning the

di¤erence between both transfer options, we assume that ex ante contracts (of

the sort that can contain a payment in exchange for the contingent transfer)

can only be written with “players” and coalitions can only be formed with these

agents. Note that coalitions will only be accepted if they are formed prior to

taking actions ai and aj. After actions are sunk, the reason to form coalitions has

gone. It is then possible to demonstrate that any equilibrium of the game where

resources are transferred to strategic players and where (a1; a2) > (ac1; a
c
2) is not

a CPNE.

Thus, agents face the following dilemma: if they transfer to players in order

not to waste resources, then the contract is prone to be undermined by collusion.

If they transfer to sinks, then the resources are lost for the agents. Furthermore,

in the latter case, the two agents are not better o¤ than if they squander resources

through costly legal dispute34, even though there might be recipients bene…ting

from the transfer which is not necessarily the case for legal disputes. We conclude:

there might be solutions which are socially preferable to the dispute solution

(as someone bene…ts from the transferred resources), but they are not privately

preferable for the agents. The court system may not be the socially optimal

device to squander resources, but the agents have little incentive to look for other

solutions.
33An example of sinks is the device the paper has focused on hitherto, legal fees and other

direct court costs: these are resources which are squandered without bene…ting anyone. Note

that even if the costs l ¢Di(x) increase the utility of someone, they fall in this category: judges

are often assigned in an unpredictable way and, even if they are not, the state budget - not the

judge - is recipient of l ¢ Di(x); a large organization like the state is not easily susceptible to

a collusive suggestion. There could be other examples of sinks, for example if bene…ciaries are

randomly chosen ex post in a way that the agents cannot in‡uence (by a lottery, for example).

A transfer to a strategic player, on the other hand, is any payment made to a player who is ex

ante identi…able, like the charitable fund introduced earlier.
34This is true as long as the transferable amount does not exceed C(x; i) in state x. If more

can be transferred, then a better solution than the legal dispute solution is feasible by reducing

the size of S¤.
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6.3. Corruption

Corruption is the attempt to buy the favor of the judge (or jury) and thus alter ex

ante incentives through the manipulation of the trial outcome. Could our mech-

anism be undermined by this possibility? Corruption is distinct from collusion.

The side payments ‡ow in opposite directions in both cases: in a coalition, a

bene…ting third party bribes one of the agents to increase the probability of the

bad outcome. In corruption, one of the agents pays the judge. Also, coalitions

need to be formed before actions are taken. Corruption can be attempted before

or after the action (and in fact there is no advantage to bribing a judge ex ante).

We want to argue that there is no reason why our mechanism should be any

less e¤ective if the judge is corrupt compared to a situation where she is not. On

the contrary, corruption could even improve the allocation by adding to the net

litigation costs. To see this, assume that one of the agents has access to bribing the

judge. If this is bene…cial for the agent, the agent will do so. Ex ante, the bribery

is anticipated, and this will be built into the optimal contract: the agent who has

access to the judge has a higher expected probability to receive a “strong” signal,

or is more litigious. The other agent is more likely to receive a “weak” signal. The

aggregate e¤ect on the probability of litigation is ambiguous. However, the cost

of legal dispute have now increased by the amount of the bribe which makes it

likely that the net cost of litigation C(x) increases. A similar reasoning applies if

both agents are competing to bribe the judge: neither is necessarily more likely to

win the judge’s vote but both expect to spend on trying to gain the judges favor.

Net litigation costs have increased and the overall e¤ect is again ambiguous.

7. Conclusion

The main conclusion of our analysis is that the prospect of dispute can be inter-

preted as a deterrence device against lack of e¤ort or care. We identify condi-

tions where both parties are better o¤ with a contentious contract compared to a

litigation-proof contract. Even if parties are not fully aware of this side e¤ect of

unforeseen contingencies, this aspect could help to explain why incomplete con-

tracts are perhaps less costly than it might appear and why there is frequently

little e¤ort to eradicate incompleteness.
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In this paper, we propose a model of rational incompleteness of contracts,

based on the idea that legal dispute after unwanted outcomes could be employed

as an incentive device. Of course, this should not be misunderstood as an en-

compassing theory of incomplete contracts. There are several limitations to the

model. First, our model applies only to joint production. Even though aspects

of joint production are pervasive and certainly more important than is expressly

acknowledged in contracts, incompleteness is not limited to these cases. Sec-

ond, there are incompleteness phenomena which this model does not address,

for example omitted favorable contingencies (windfalls). Finally, our contribu-

tion should not be misunderstood as saying that bounded rationality is not an

important, and probably the most important, source of incompleteness. Many

incomplete contracts may exhibit both sources of incompleteness: on the one

hand, it is costly to foresee, to de…ne and to verify contingencies because agents

are boundedly rational. On the other hand, the true costs of incompleteness may

be lower because there is the aspect of rational deterrence which is highlighted in

the present paper. That would explain why so often even the attempt of sorting

out contingencies is lacking.
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8. Appendix A: The pretrial settlement bargaining game

This Appendix documents the pretrial settlement game which is adapted from Urs

Schweizer’s model (1989).35 While we document the details needed to understand

the selected equilibrium, we refer to the original for other interesting details.

In any contestable state x 2 S; each agent observes a signal which has two

possible outcomes, “strong” or “weak”. The signals are independently distrib-

uted. Recall that p(i) will denote the probability that the plainti¤ i observes the

good signal, etc. The plainti¤’s chances of winning a process in court is a function

of the pro…le of signals for both agents. Let d and p denote the defendant’s and

the plainti¤’s private information, respectively, and let ®dp denote the probability

that the case is won depending on the pair of signals of defendant and plainti¤,

with d; p 2 fg; bg: For example, ®bg is the probability that litigation is won by the

plainti¤ if she observes the “good” signal and the defendant observes the “bad”

signal. We have

®gb < ®bb < ®bg and ®gb < ®gg < ®bg:

Let

Gdp(x; i) = (®dp(1 + l) ¡ l) Di(x)

denote the expected gain of a plainti¤ of type p against a defendant type d . Then,

the plainti¤ i’s expected gain in court, if her type is p, is:

Gp(x; i) = (1 ¡ p(j))Gbp(x; i) + p(j)Ggp(x; i)

Let

Ldp(x; i) = ®dp(1 + l)Di(x)

denote the expected loss of defendant type d against a plainti¤ of type p. A

defendant j of type d has then an expected loss in court of

Ld(x; i) = (1 ¡ p(i))Ldb(x; i) + p(i)Ldg(x; i)

35The only signi…cant change with respect to Schweizer is that litigation costs are a function

of damages. Any of the numerous models of pretrial settlement bargaining under one-sided or

two-sided incomplete information, adapted to our model, would give analogous results, see for

example Bebchuk (1984), Png (1983) or Spier (1992). See Cooter and Rubinfeld (1989) and

Kennan and Wilson (1993) for surveys.
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In the least-cost separating equilibrium, the “good” and the “bad” defendant

make distinct o¤ers. We describe next the least-cost separating equilibrium where

the o¤er of a “strong” defendant is sometimes rejected while the o¤er of a “weak”

defendant is always accepted. This is the outcome for a certain set of parameter

values; the bounds for this solution are documented below. The weak defendant

makes an o¤er of Gbg(x; i) which is accepted because no type of the plainti¤ i

could receive more. Therefore, the strong defendant must o¤er a settlement which

makes the weak plainti¤ indi¤erent between accepting and rejecting: this amount

is Ggb(x; i); as the plainti¤ infers (in the separating equilibrium) from the o¤er

that she is confronted to a strong defendant. Let q(i) denote the probability

of acceptance of a settlement o¤er proposed by the defendant if agent i is the

plainti¤.36 Note that only the weak plainti¤ mixes between accepting and reject-

ing the o¤er Ggb(x; i); the strong plainti¤ always rejects it. The key to establish

separation between the defendant’s types is that the weak defendant should have

no incentive to mimic her strong counterpart. If she were to imitate a strong

defendant, she would need to o¤er only Ggb(x; i) < Gbg(x; i): If she were always

rejected, she would expect to lose Lb(x; i). However, with probability q(i); her

o¤er of Ggb(x; i) is accepted; in this case, her marginal gain is Ggb(x; i)¡Lbb(x; i);

i.e. her o¤er minus her loss if being rejected (taking into account that she is actu-

ally the weak type.). In the least-cost separating equilibrium, the weak defendant

is just indi¤erent between both options, or

Lb(x; i) + q(i) [Ggb(x) ¡ Lbb(x)] = Gbg(x)

Thus, the acceptance probability of a settlement out of court is:

q(i) =
Lb(x; i) ¡ Gbg(x)

Lbb(x) ¡ Ggb(x)
(8.1)

=
(1 + l)(1 ¡ p(i))(®bb ¡ ®bg) + l

(1 + l) (®bb ¡ ®gb) + l

By calculating out the expectation over the possible matches, the ex-ante

expected payo¤s can be determined as:

¦d(x; i) = [(1 ¡ p(j) + p(j) q(i))l ¡ (1 + l)©(i)] Di(x)

36Equation (8.1) demonstrates that q(i) is independent of x and Di(x).
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¦p(x; i) = ((1 + l)©(i) ¡ l)Di(x)

respectively, where ¦p(x; i) and ¦d(x; i)) denote the plainti¤’s and the defen-

dant’s expected pro…t, respectively, and where

©(i) = p(j)((1 ¡ p(i)®gb + p(i)®gg) + (1 ¡ p(j))®bg:

Note that both functions are linear in Di(x). For the total litigation cost, one

calculates:

C(x; i) = ¡¦d(x) ¡ ¦p(x) (8.2)

= p(j)(1 ¡ q(i)) l Di(x):

Note that if p(i) = p(j); then C(x; i) = C(x; j), i.e. the ex-ante expected

payo¤s of a dispute in state x 2 S are the same for both agents, and the expected

costs of litigation is independent of the choice of the defendant. More generally,

we have that

C(x; i) >
< C(x; j) , p(i) <

> p(j)

as a straightforward consequence of (8.2) and (8.1).

Finally, we document the parameter restrictions necessary for this outcome to

be feasible. These conditions are that 0 · q(i) · 1 ¡ p(i) (see Schweizer (1989),

p.166), or :

1 ¡ l

1 + l
(®bg ¡ ®bb) · p(i) · 1 + l(®bg ¡ ®gb)

l + (1 + l)(®bg ¡ ®gb)
: (8.3)

If p(i) is larger than the upper bound in (8.3), then the weak plainti¤ will

always accept the good o¤er while the strong plainti¤ will mix between accepting

and rejecting it. If p(i) is below the lower bound in (8.3), then a fully separating

equilibrium is not possible.

9. Appendix B: Proofs

9.1. Proof of Lemma 1.

Lemma (1) is proved by transforming the relaxed optimization problem into a

control problem. To this end, we de…ne control variables °1(x), °2(x) and °3(x)
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as follows. °1(x) (°1(x) 2 f0; 1g) indicates whether or not the state x is included

in S1; while °2(x) (°2(x) 2 f0; 1g) indicates if the state x is included in S2.

Finally, °3(x) indicates if the state x is contained in S1 \ S2. That is, S1 = fx 2
X : °1(x) = 1g, S2 = fx 2 X : °2(x) = 1g and S1 \ S2 = fx : °3(x) = 1g.Thus,

we write agent 1’s and agent 2’s ex-ante expected payo¤s from a dispute in the

state x as follows

R1(x) =

µ
°1(x) ¡ °3(x)

2

¶
¦p(x; 1) +

µ
°2(x) ¡ °3(x)

2

¶
¦d(x; 2)

R2(x) =

µ
°1(x) ¡ °3(x)

2

¶
¦d(x; 1) +

µ
°2(x) ¡ °3(x)

2

¶
¦p(x; 2)

with the constraint that

°3(x) ¡ °1(x)°2(x) = 0; 8x: (9.1)

The ex-ante expected costs of litigation in state x, i.e. C(x), are given by

¡(R1(x) + R2(x)) = °1(x)C(x; 1) + °2(x)C(x; 2) ¡ °3(x)

2
(C(x; 1) + C(x; 2))

and the Lagrangian for the relaxed optimization problem is

L = E[xja1; a2] ¡
2X

i=1

c(ai)f (xja1; a2)dx ¡
Z

X
(R1(x) + R2(x)) f (xja1; a2)dx

+`1

½Z

X
¯(x) f1(xja1; a2)dx +

Z

X
R1(x)f1(xja1; a2)dx ¡ c1(a1)

¾

+`2

½Z

X
(1 ¡ ¯(x)) f2(xja1; a2)dx +

Z

X
R2(x)f2(xja1; a2)dx ¡ c2(a2)

¾

+
Z

X

(
2X

i=1

f±i(x)(Dmax ¡ Di(x)) + ½i(x)Di(x) + Ãi(x)(1 ¡ °i(x)) + Ái(x)°i(x)g
)

dx

+
Z

X
f!(x)(°3(x) ¡ °1(x)°2(x))gdx (9.2)

To analyze this problem, we proceed in several steps.

Step 1. In this step, we show that Item 1 of Lemma 1 must be true for any

S1; S2;D1(x) and D2(x). This is shown from incentives constraints (3.1) - (3.2)

and the …rst order conditions of (9.2) with respect to ¯(x) and ai:

@L

@¯(x)
= f(xja1; a2)

µ
`1

f1(xja1; a2)
f(xja1; a2)

¡ `2
f2(xja1; a2)
f(xja1; a2)

¶
= 0 (9.3)
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and

@L

@ai
= Ei[xja1; a2] ¡ ci(ai) ¡

Z

X
(R1(x) + R2(x)) fi(xja1; a2)dx (9.4)

+`1

½Z

X
¯(x) f1i(xja1; a2)dx +

Z

X
R1(x)f1i(xja1; a2)dx ¡ c1i(a1)

¾

+`2

½Z

X
(1 ¡ ¯(x)) f2i(xja1; a2)dx +

Z

X
R2(x)f2i(xja1; a2)dx ¡ c2i(a2)

¾

= 0

for i = 1; 2, with cji(:) = 0 for j 6= i: Note that equation (9.3) implies that

any solution must satisfy:

f1(xja1; a2)
f(xja1; a2)

(`1 ¡ k(a1; a2)`2) = 0 for all x 2 X (9.5)

since f2(xja1; a2) = k(a1; a2)f1(xja1; a2) under Assumption 1. Thus, we have

the following restriction on the equilibrium values of the multipliers for the

incentive-compatibility constraints:

Lemma 2. At any solution of the relaxed optimization problem, `1¡k(a1; a2)`2 =

0; with k(:)`2 > 0.

Proof. By de…nition, `i ¸ 0; i = 1; 2: Hence, condition (9.5) implies that one

of two situations can occur: either `1 = 0 and `2 = 0, or `1 ¡ k(:)`2 = 0 with

k(:)`2 > 0:

Suppose that `1 = 0 and `2 = 0 at the optimal solution. Then, equation (9.4)

reduces to for a2 :

@L

@a2
= E2[xja1; a2] ¡ c2(a1) ¡

Z

X
(R1(x) + R2(x)) f2(xja1; a2)dx = 0 (9.6)

Now, using the fact that

¡C(x) = R1(x) + R2(x); 8x

we can rewrite incentive constraint (3.2) as follows
Z

X
(1¡¯(x)) f2(xja1; a2)dx¡c2(a2)¡

Z

X
(C(x)+R1(x))f2(xja1; a2)dx ¸ 0: (9.7)

Then, substituting equation (9.6) into (9.7) and using Assumption 1 gives us
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¡
Z

X
¯(x)f1(xja1; a2)dx ¡

Z

X
R1(x)f1(xja1; a2)dx ¸ 0 (9.8)

which contradicts incentive constraint (3.1).

Lemma (2) and Assumption 1 allow us to establish the existence of a linear

sharing rule (item 1 of Lemma 1). The proof is exactly analogous to the proof of

Bhattacharyya and Lafontaine ((1995), Proposition 1) and is thus omitted.

Step 2. Next, we determine S¤1 ; S
¤
2 ; D¤

1(x) and D¤
2(x). Using the fact that

`1f1(xja1; a2) = `2f2(xja1; a2)

permits to write the …rst order conditions of the problem with respect to

°1(x); °2(x) and °3(x) as follows:

@L

@°1(x)
= ¡C(x; 1)

µ
1 + `1

f1(xja1; a2)
f(xja1; a2)

¶
f(xja1; a2) ¡ !(x)°2(x) ¡ Ã1(x) + Á1(x)

= 0: (9.9)
@L

@°2(x)
= ¡C(x; 2)

µ
1 + `1

f1(xja1; a2)
f(xja1; a2)

¶
f(xja1; a2) ¡ !(x)°1(x) ¡ Ã2(x) + Á2(x)

= 0: (9.10)
@L

@°3(x)
=

1

2
(C(x; 1) + C(x; 2))

µ
1 + `1

f1(xja1; a2)
f(xja1; a2)

¶
f(xja1; a2) + !(x)

= 0: (9.11)

The FOC with respect to D1(x) and D2(x) are:

@L

@D1(x)
= ¡@C(x; 1)

@D1(x)

µ
°1(x) +

°3(x)

2

¶ µ
1 + `1

f1(xja1; a2)
f(xja1; a2)

¶
f(xja1; a2) ¡ ±1(x) + ½1(x)

= 0: (9.12)
@L

@D2(x)
= ¡@C(x; 2)

@D2(x)

µ
°2(x) +

°3(x)

2

¶ µ
1 + `1

f1(xja1; a2)
f(xja1; a2)

¶
f(xja1; a2) ¡ ±2(x) + ½2(x)

= 0: (9.13)

Note that `1 > 0 and MLRP imply that 1 + `1
f1(xja1;a2)
f(xja1;a2) is increasing with x.

Therefore, there exist a unique x¤ ¸ 0 such that
³
1 + `1

f1(xja1;a2)
f (xja1;a2)

´
f(xja1; a2) < 0

for all x < x¤ and
³
1 + `1

f1(xja1;a2)
f (xja1;a2)

´
f(xja1; a2) ¸ 0 for all x ¸ x¤. If 1 +

`1
f1(0ja1;a2)
f(0ja1;a2) ¸ 0, then x¤ = 0 ; otherwise, x¤ solves 1 + `1

f1(xja1;a2)
f (xja1;a2) = 0. Note

also that @C(x;1)@D1(x)
= lp(2)(1¡q(1)) and @C(x;2)

@D2(x)
= lp(1)(1¡q(2)) are always positive.
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Hence, by complementary slackness, the …rst order conditions (9.12) and (9.13)

imply that D¤
i (x) = Dmax(x) for all x such that x < x¤, and D¤

i (x) = 0 for all x

such that x > x¤.

Now, substituting equation (9.11) into (9.9) and (9.10) gives
³
°2(x)
2 (C(x; 1) + C(x; 2)) ¡ C(x; 1)

´³
1 + `1

f1(xja1;a2)
f (xja1;a2)

´
f(xja1; a2) ¡ Ã1(x) + Á1(x)

= 0 (9.14)
³
°1(x)
2 (C(x; 1) + C(x; 2)) ¡ C(x; 2)

´³
1 + `1

f1(xja1;a2)
f (xja1;a2)

´
f(xja1; a2) ¡ Ã2(x) + Á2(x)

= 0 (9.15)

Recall that C(x; 1) = C(x; 2) = 0 for D1(x) = D2(x) = 0: Furthermore,

C(x; 1) > C(x; 2) when D1(x) = D2(x) > 0 if and only if p(1) < p(2) and

vice versa. Items 2 to 4 are therefore derived from conditions (9.14) and (9.15).

First, °1(x) = 0 and °2(x) = 0 for all x ¸ x¤ always solve these equations since

D¤
1(x) = D¤

2(x) = 0 for all x ¸ x¤:

Next, if p(1) < p(2) (the case where p(1) > p(2) is symmetric), by comple-

mentary slackness, these conditions imply that °1(x) = 1 and °2(x) = 0 for all

x < x¤ since C(x; 1) > C(x; 2) 8x < x¤ (recall that D¤
1(x) = D¤

2 = Dmax(x)).

Thus, S¤2 = ; while S¤1 = S¤ = fx : x < x¤g; with maximum applicable damages

(D¤
1(x) = Dmax(x), 8x 2 S¤1).

If p(1) = p(2), then C(x; 1) = C(x; 2) = Dmax(x)p(1)(1 ¡ q(2)) > 0 for all

x < x¤. Hence, conditions (9.14) and (9.15) imply that we must have either

°1(x) = 1 and °2(x) = 0, or °1(x) = 0 and °2(x) = 1; or °1(x) = °2(x) = 1,

for all x < x¤ : Thus, S¤ = fx : x < x¤g; and any choice of S1 and S2 solve the

problem.

Finally, to see that x¤ < x̂(a1; a2), remember that x̂(a1; a2) is the (unique)

value such that f1(xja1; a2) < 0 for x < x̂(a1; a2) and f1(xja1; a2) ¸ 0 otherwise.

Therefore, 1 + `1
f1(xja1;a2)
f(xja1;a2) > 0 at x = x̂(a1; a2).

Step 3. Now, we show that the optimal contract leads to an action pro…le

(a¤1; a
¤
2) such that a¤1 > ac1 and a¤2 > ac2 for S¤ 6= ;. To this end, note that

`1 = k`2 > 0 implies that incentive constraints (4.2) and (4.3) are binding at any

solution. Thus, using Assumption 1 and adding up the two equations imply that

the optimal action pro…le (a¤1; a
¤
2) must solve

Z

X
x f1(xja¤1; a¤2)dx ¡

Z x¤

C(x; 1)f1(xja¤1; a¤2)dx ¡ c1(a
¤
1) = c2(a

¤
2)=k(a¤1; a

¤
2)
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for p(1) · p(2), where C(x; 1) corresponds to C(x; 1) evaluated at Dmax(x).

Since -
R x¤ C(x; i)f1(xja¤1; a¤2)dx > 0 for x¤ > 0 at the optimal contract, the action

pro…le (a¤1; a
¤
2) satis…es

Z

X
xf1(xja¤1; a¤2)dx ¡ c1(a

¤
1) < c2(a

¤
2)=k(a¤1; a

¤
2):

Hence, by concavity, we obtain that a¤1 > ac1 and a¤2 > ac2 in equilibrium.

Step 4. Finally, we check for the validity of the FOA. To do so, one must

verify that each agent’s e¤ort problem is strictly concave at K¤. In other words,

it is su¢cient to show that

V 1
11(K

¤; (a1; a¤2) < 0 (9.16)

for all a1 2 A1; and

V 2
22(K

¤; (a¤1; a2) < 0 (9.17)

for all a2 2 A2. In fact, these conditions are always satis…ed for S¤1 = S¤2 =

S¤ under the Mirrlees-Rogerson convexity of the distribution function condition

(CDFC). Without loss of generality, assume that S¤1 = ; and S¤2 = S¤, i.e. agent

1 is the defendant. We have:

V 1(K¤; (a1; a2)) =
Z

X
¯¤(x)xf(xja1; a2)dx ¡ c(a1) +

Z x¤

¦d(x; 2)f(xja1; a2)dx

(9.18)

Integrating (9.18) by parts and di¤erentiating twice gives

V 1
11(K

¤; (a1; a¤2) = ¡¯¤
Z

X
F11(xja1; a¤2)dx + ¦d(x; 2)F11(x

¤ja1; a¤2)

¡
Z x¤ @¦d(x; 2)

@x
F11(xja1; a¤2)dx ¡ c11(a1)

Since ¦d(x; 2) · 0 for all x · x¤; and @¦d(x;2)
@x ¸ 0 for @Dmax(x)

@x · 0,

V 1
11(K

¤; (a1; a¤2) is strictly negative if F11(xj:) ¸ 0 which is the Mirrlees-Rogerson

condition (CDFC).

For agent 2, we have

V 2(K¤; (a1; a2)) =
Z

X
(1¡¯¤(x))xf(xja1; a2)dx¡c(a2)+

Z x¤

¦p(x; 2)f(xja1; a2)dx:

(9.19)
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Integrating by parts this expression and di¤erentiating twice gives:

V 2
22(K

¤; (a¤1; a2) = ¡(1 ¡ ¯¤)
R
X F22(xja¤1; a2)dx + ¦p(x¤; 2)F22(x¤ja¤1; a2)

¡ R x¤ @¦p(x;2)
@x F22(xja¤1; a2)dx ¡ c22(a2)

Note that ¦p(x; 2) ¸ 0 for all x, and @¦p(x;2)
@x · 0 for @Dmax(x)

@x · 0. Therefore,

in order to show that expression (9.17) is usually negative under CDFC, we must

be more speci…c here about the legal bound on damages, Dmax(x). Let assume,

for example, that punitive damages are denied in court. Then, the maximum

applicable damages will cover the monetary loss of the plainti¤ and (eventually)

his legal expenses. We set Dmax(x) = ¾(x¤ ¡ x) . It implies that

V 2
22(K

¤; (a¤1; a2) = ¡ ((1 ¡ ¯¤) + ¾ (l ¡ (1 + l)©(2)))
Z x¤

F22(xja¤1; a2)dx

¡(1 ¡ ¯¤)
Z ¹x

x¤
F22(xja¤1; a2)dx ¡ c22(a2)

since ¦p(x¤; 2) = 0: The last expression is strictly negative for a wide range

of values for ¾. Note that incentives constraints (4.2) and (4.3) require that

(1¡¯¤) > 1
2 (1¡ c1(a

¤
1)¡k(:)c2(a¤2)
E1(xja¤1;a¤2)

) at any solution37. Thus, if ¾ < 1
2 (1¡ c1(a)¡kc2(0)

E1(xja;a) )

for example; then ((1 ¡ ¯¤) + ¾ (l ¡ (1 + l)©(2))) is positive for all implementable

(a1; a2) and V 2
22(K

¤; (a¤1; a2) < 0.

Proof of Corollary 1.

Assume to the contrary that S¤ = ; under condition (4.6). Then, incentives

constraints (4.2) and (4.3) imply that (ac1; a
c
2) is the optimal action pro…le. Now,

consider the …rst order conditions of problem (9.2). The FOC with respect to a1,

condition (9.3), reduces to

@L

@a1
= E1[xjac1; ac2] ¡ c1(a

c
1) + `1

½Z

x
x f11(xjac1; ac2)dx ¡ c11(a

c
1)

¾
= 0 (9.20)

since `1 = k`2 at any solution, which gives

`1 = ¡ E1[xjac1; ac2] ¡ c1(a
c
1)R

x xf11(xjac1; ac2)dx ¡ c11(ac1)
:

37To see that, substract equations (4.3) to (4.2).
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But, FOC (9.9) through (9.13) are then violated at x = 0 since 1+ `1
f1(0jac1;ac2)
f (0jac1;ac2)

is

therefore negative.

Proof of Proposition 1.

To establish equivalence between K¤ and the contract of Proposition 1, we

need to show that the optimal contract does not need to specify (Di(x); ¯(x)) for

all x < x¤.

First, concerning Di(x), recall that K¤ always picks Di(x) = Dmax(x): By

assumption, Dmax(x) is awarded if damages are not speci…ed in the contract. It

follows that not specifying Di(x) for x < x¤ is equivalent to K¤.

Second, concerning ¯(x), recall that if ¯(x) is not speci…ed for some x < x¤

then it will be chosen by the court. We show the following claim: if the condition

in Proposition 1 holds, then C(x; i) is the same for contract K¤ and an optimal

contract which does not specify (Di(x); ¯(x)).

Let the plainti¤’s payo¤ be w(x) if she wins and ¸(x) if she loses. By bal-

ancedness, we have that the defendant receives x¡w(x) if she loses and x ¡¸(x)

if she wins. Note that w(x)¡¸(x) is the amount of what is at stake in a dispute.

By de…nition of maximum damages, it must be the case that:

w(x) ¡ ¸(x) · Dmax(x)

Moreover, if Di(x) is not speci…ed for some x, then Dmax(x) will be awarded,

hence

w(x) ¡ ¸(x) = Dmax(x)

for all x 2 fx jDi(x) is not speci…ed for x:g. Also, recall that Dmax(x) will

be attributed under K¤: Thus, the contentious amount is the same in both

cases, viz. Dmax(x): Recall that then litigation costs lDmax(x) are also identical.

With these results, it is easy to verify that q(i) must be as de…ned in equation

(8.1) and C(x; i) = p(j)(1 ¡ q(i))Dmax(x) must be the same in both cases. Fi-

nally, from Lemma 1, it follows that the allocation (a¤1; a
¤
2) is fully explained by

maxiC(x; i):

Proof of Proposition 2.
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Step 1. We begin with the following crucial claim: the expression

@ ¦p(x; i)

@ pI(ai)
+

@ ¦d(x; i)

@ pI(aj)

¯̄
¯̄
¯
ai = aj

is positive.

To prove this claim, note that:

@ ¦p(x; i)

@ pI(ai)
= pI(aj) [®gg ¡ ®gb]Di(x)(1 + l); i 6= j;

and

@ ¦d(x; i)

@ pI(aj)
= ¡

h
pI(ai)®gg + (1 ¡ pI(ai))®gb ¡ ®bg

i
Di(x)(1+l)¡

h
1 ¡ qI(ai)

i
lDi(x); i 6= j:

Thus :
@ ¦p(x;i)
@ pI (ai)

+ @¦d(x;i)
@ pI (aj)

= [®bg ¡ ®gb]Di(x)(1 + l) ¡ (1 ¡ qI(ai))lDi(x)

¡Di(x)(1 + l) [®gg ¡ ®gb]
³

pI(ai) ¡ pI(aj)
´

and

@ ¦p(x; i)

@ pI(ai)
+

@ ¦d(x; i)

@ pI(aj)

¯̄
¯̄
¯
ai = aj

= [®bg ¡ ®gb]Di(x)(1 + l) ¡ (1 ¡ qI(ai))lDi(x)

Thus, to show that this expression is positive, we have to show that

[®bg ¡ ®gb] (1 + l) > (1 ¡ qI(ai))l:

After substituting for qI(ai):

[®bg ¡ ®gb] (1 + l) >

"
1 ¡ (1 + l)(1 ¡ pI(ai))(®bb ¡ ®bg) + l

(1 + l)(®bb ¡ ®gb) + l

#
l

which is always true. This …nishes the …rst step.

Step 2. Let V I i(K; (a1; a2)) denote agent i’s expected utility in the infor-

mative case. Let P i(xjaI1; aI2) denote i’s payo¤ in a contestable state (in analogy

to Ri(xja1; a2) in the model of Section 2.) To check for (1) in Proposition 2, con-

sider the …rst-order conditions with respect to a1 and a2 which hold with equality

for any optimal contract. If signals are correlated, then this condition takes the

following form for agent 1:

V I11 (K; (aI1; a
I
2)) =

R
X ¯(x)f1(xjaI1; aI2)dx +

R
SI P 1(xjaI1; aI2)f1(xjaI1; aI2)dx

¡c1(aI1) +
R
SI

@P 1(xjaI ;aI )
@ pI (a1)

@ pI (a1)
@ a1

f(xjaI1; aI2)dx = 0

(9.21)
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and analogously for agent 2. Adding up the two …rst-order equations (9.21)

and using the fact that f1(xja; a) = f2(xja; a) under the assumptions of Proposi-

tion 2, we get for a symmetric action pro…le (aI ; aI):

R
x xf1(xjaI ; aI)dx +

R
SI

³
P 1(xjaI ; aI) + P 2(xjaI ; aI)

´
f1(xjaI ; aI)dx ¡ 2c1(aI)

+
R
SI

³
@P 1(xjaI ;aI )
@ pI(a1)

@ pI(a1)
@ a1

+ @P 2(xjaI ;aI)
@pI (a2)

@ pI (a2)
@ a2

´
f(xjaI ; aI)dx = 0

(9.22)

Note that (9.22) is a necessary condition for the implementation of the action

pro…le (aI ; aI). Of course, this expression depends on the properties of the optimal

solution of the contracting problem in the informative case. In fact, one can show

that, if the quali…cation in Proposition 2 holds and the allocation is symmetric,

then the optimal set of dispute states satis…es SI = [0; xI); xI < x̂(aI ; aI); with

SI1 = SI2 : Note also that the optimal Di(x) = Dmax(x); as in the basic model.

Therefore, we can rewrite equation (9.22) as follows:

R
x xf1(xjaI ; aI)dx +

R xI C(x; 2)f1(xjaI ; aI)dx ¡ 2c1(a
I)

+
R xI 1

2

³
@¦p(x;1)
@ pI (a1)

+ @¦d(x;1)
@ pI (a2)

´
@ pI (a1)
@ a1

f(xjaI ; aI)dx = 0
(9.23)

since pI(a1)
@ pI (a2)
@ a2

¡pI(a2)
@ pI(a1)
@ a1

= 0 when a1 = a2 8a. The …rst three terms

on the RHS of (9.23) are the same as in the benchmark model (with uncorrelated

signals) for (aI ; aI) = (a¤; a¤) and pI(a¤1) = p(1) and pI(a¤2) = p(2), respectively.

Furthermore, we have shown that the last one is always positive. Hence,

xI < x¤ at (aI ; aI) = (a¤; a¤): (9.24)

Finally, Item 2 in the Proposition is an immediate consequence of (9.24).
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